JP2001279433A - METHOD FOR MANUFACTURING PURE Al TARGET PREVENTING ABNORMAL DISCHARGE - Google Patents

METHOD FOR MANUFACTURING PURE Al TARGET PREVENTING ABNORMAL DISCHARGE

Info

Publication number
JP2001279433A
JP2001279433A JP2000097178A JP2000097178A JP2001279433A JP 2001279433 A JP2001279433 A JP 2001279433A JP 2000097178 A JP2000097178 A JP 2000097178A JP 2000097178 A JP2000097178 A JP 2000097178A JP 2001279433 A JP2001279433 A JP 2001279433A
Authority
JP
Japan
Prior art keywords
target
pure
hardness
abnormal discharge
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000097178A
Other languages
Japanese (ja)
Inventor
Hiroshi Takashima
洋 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000097178A priority Critical patent/JP2001279433A/en
Publication of JP2001279433A publication Critical patent/JP2001279433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a pure Al target with which splash or abnormal discharge and the resultant development of particles can be prevented an deposition of a pure Al film by sputtering. SOLUTION: Machining is carried out after control of the hardness Hv of the sputter surface to >=20, to suppressed the development of surface defects due to working and to prevent abnormal discharges. Moreover, the contents of O and N as finely dispersed oxides and nitrides of Al are limited to >=1 ppm in total to increase the hardness of the target, by which machinability is improved and the of burr is suppressed to prevent abnormal discharge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、純Al膜のスパッ
タリングに用いられる純Alターゲットの製造方法に関
するものである。
The present invention relates to a method of manufacturing a pure Al target used for sputtering a pure Al film.

【0002】[0002]

【従来の技術】純Al膜は高い導電性と可視光域で高い
反射率を有することから、電極膜や反射膜の材料として
広く用いられている。純Al膜の代表的な形成方法に
は、蒸着法とスパッタリング法があり、前者は成膜速度
が速く生産効率が高い特徴があり、後者は成膜速度は前
者に劣るがスパッタ粒子のエネルギーが高いため膜の結
晶性に優れている特徴があり、特に高い膜質を要求され
る半導体集積回路の電極や液晶パネルの電極や反射膜の
形成にはスパッタリング法が採用されている。スパッタ
リング法は不活性ガスのグロー放電を利用した薄膜形成
方法で、希ガスのグロー放電により発生した希ガスイオ
ンがターゲット表面に生じた電位勾配により加速され、
ターゲット表面に衝突し、スパッタ粒子が叩き出されて
基板に付着することにより膜が形成される。スパッタリ
ング法ではターゲットの品質が膜の均一性や生産性に影
響するため、これまでにも様々な改良が提案されてい
る。
2. Description of the Related Art Pure Al films are widely used as materials for electrode films and reflection films because of their high conductivity and high reflectance in the visible light range. Typical methods for forming a pure Al film include a vapor deposition method and a sputtering method. The former has a feature that the film formation rate is high and the production efficiency is high, and the latter has a film formation rate that is inferior to the former, but the energy of the sputtered particles is low. Because of its high properties, the film is excellent in crystallinity. In particular, a sputtering method is used for forming an electrode of a semiconductor integrated circuit, an electrode of a liquid crystal panel, and a reflective film which require high film quality. The sputtering method is a thin film forming method using a glow discharge of an inert gas.Rare gas ions generated by a glow discharge of a rare gas are accelerated by a potential gradient generated on a target surface,
A film is formed by colliding with the target surface, and the sputter particles are beaten out and adhere to the substrate. In the sputtering method, various improvements have been proposed since the quality of the target affects the uniformity and productivity of the film.

【0003】前記の通りターゲットは膜の母材であると
同時に、前記グロー放電の電極としての機能を持つた
め、ターゲットに欠陥があると前記グロー放電時に異常
放電が生じる原因となる。例えば、ターゲットの組織に
空孔、介在物に発生した割れ、マトリックスと介在物と
の界面付近に発生した隙間等の欠陥が存在する場合、欠
陥周辺部のターゲットの冷却が不十分となりターゲット
の一部が過熱して液相となり基板に付着するスプラッシ
ュが発生する。また、ターゲットに酸化物等の介在物が
含まれる場合、マトリックスとの導電性の違いにより異
常放電が発生し、介在物自身が破裂して基板に付着する
パーティクルが発生する。以上の現象は製品の歩留まり
低下の原因となるため、ターゲット中の欠陥を低減する
ために様々なターゲットの改良方法が提案されている。
[0003] As described above, since the target is a base material of the film and at the same time functions as an electrode for the glow discharge, a defect in the target causes abnormal discharge during the glow discharge. For example, if the target structure contains defects such as voids, cracks generated in inclusions, and gaps generated near the interface between the matrix and the inclusions, the cooling of the target in the vicinity of the defect becomes insufficient and one of the targets may be damaged. The part is overheated and becomes a liquid phase, and a splash which adheres to the substrate is generated. Further, when the target contains an inclusion such as an oxide, abnormal discharge occurs due to a difference in conductivity from the matrix, and the inclusion itself ruptures to generate particles that adhere to the substrate. Since the above phenomenon causes a reduction in product yield, various target improvement methods have been proposed to reduce defects in the target.

【0004】例えば、特開平9−25564号には純A
lまたはAl合金からなるターゲット材料において介在
物の単位面積当たりの個数40個/cm以下とするこ
とにより、スプラッシュを低減できる事が開示されてい
る。
For example, Japanese Patent Application Laid-Open No. 9-25564 discloses a pure A
It is disclosed that splash can be reduced by setting the number of inclusions per unit area to 40 / cm 2 or less in a target material made of 1 or Al alloy.

【0005】また、特開平11−315373号には純
AlまたはAl合金からなるターゲット材料においてタ
ーゲットに内在する介在物の最大長さを全て20μm以
下とすることにより、スプラッシュを低減できる事が開
示されている。
Also, Japanese Patent Application Laid-Open No. 11-315373 discloses that splash can be reduced by setting the maximum length of inclusions included in the target to 20 μm or less in a target material made of pure Al or Al alloy. ing.

【0006】さらに、本出願人は特開平9−23566
6号において、純Al及びAl合金ターゲットにおける
スプラッシュはスパッタ時のAr原子の衝突による加熱
によって、ターゲット表面に残留する歪みが解放され、
原子団としてターゲット表面から放出される事に起因す
ると推定し、表面の硬度をHv25以下に調整すること
により、スプラッシュの低減を図れることを開示してい
る。
[0006] Further, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 9-23566.
In No. 6, the splash in the pure Al and Al alloy targets was heated by the collision of Ar atoms during sputtering, and the strain remaining on the target surface was released.
It discloses that it is presumed to be caused by emission from the target surface as an atomic group, and that the splash can be reduced by adjusting the surface hardness to Hv25 or less.

【0007】[0007]

【発明が解決しようとする課題】本発明者は純Alター
ゲットのスプラッシュの原因である異常放電の原因につ
いて鋭意調査を行った結果、純Alは本質的に硬度が低
いため、機械加工時に微細なバリが発生したり研磨時に
砥粒のめり込みが発生し、特にスパッタ開始直後に異常
放電が多発して、ターゲット表面にノジュールと呼ばれ
る突起物が生成され、後の異常放電の起点となって新た
なノジュールが生成される悪循環を生み、ターゲットラ
イフを通して異常放電の回数が増加していることがわか
った。また、スパッタ中にターゲット周辺で剥離した膜
のかけらやスパッタ装置の摺動部から発生したダスト等
のパーティクルが活性なターゲット表面に吸着されるこ
とも、ノジュールが生成される原因となっていることも
判った。
The inventor of the present invention has conducted intensive studies on the cause of abnormal discharge, which is the cause of the splash of the pure Al target. As a result, since pure Al has a low hardness, fine Al is hardly formed during machining. Burrs occur and abrasive grains are entrapped during polishing, and abnormal discharge frequently occurs, especially immediately after the start of sputtering, and a projection called a nodule is generated on the target surface, which becomes a starting point of abnormal discharge later and a new nodule It was found that the number of abnormal discharges increased during the target life due to a vicious cycle in which was generated. Particles such as film fragments peeled around the target during sputtering and dust generated from sliding parts of the sputtering apparatus are also adsorbed on the active target surface, which also causes the generation of nodules. I also understood.

【0008】尚、前記改良方法はいずれも異常放電の起
点となる介在物量の低減を目的としており、上述のスパ
ッタ開始直後の異常放電に影響を与えるターゲットのご
く表面の性状の改善や、パーティクルの吸着防止効果は
無いため、上記原因による異常放電に対しては効果が得
られない事もわかった。本発明の目的はスパッタ開始直
後からライフエンドまで安定した放電が実現されるスパ
ッタリング用純Alターゲットの製造方法を提供するこ
とである。
[0008] All of the above-mentioned improvement methods aim at reducing the amount of inclusions which are the starting points of abnormal discharge, and improve the properties of the very surface of the target which affects the abnormal discharge immediately after the start of the above-mentioned sputtering, as well as the particle generation. It was also found that there was no adsorption prevention effect, and no effect was obtained for abnormal discharge due to the above-mentioned causes. An object of the present invention is to provide a method for producing a pure Al target for sputtering, which realizes a stable discharge from immediately after the start of sputtering to the life end.

【0009】[0009]

【課題を解決するための手段】本発明者は、前記問題の
解決のため検討を行った結果、純Alターゲット表面の
硬度をHv20以上に調整することにより機械加工によ
って発生する微細なバリ、砥粒のめりこみ等の表面欠陥
が減少し、そのターゲットを用いて膜を形成する際のス
パッタ開始直後の異常放電が低減されることを見出し
た。さらに、ターゲットに含まれるO、Nから選ばれる
元素の合計の含有量を1ppm以上となるよう調整する
ことにより、スパッタ中にノジュールが生成されず、安
定した放電が実現される事を見出し本発明に到達した。
The inventors of the present invention have conducted studies to solve the above-mentioned problems. As a result, by adjusting the hardness of the surface of the pure Al target to Hv 20 or more, fine burrs and abrasives generated by machining are obtained. It has been found that surface defects such as grain penetration are reduced, and abnormal discharge immediately after the start of sputtering when a film is formed using the target is reduced. Further, the present inventors have found that by adjusting the total content of elements selected from O and N contained in the target to be 1 ppm or more, nodules are not generated during sputtering and stable discharge is realized. Reached.

【0010】すなわち本発明は、スパッタ面側の硬度を
Hv20以上に調整した後、スパッタ面側に仕上機械加
工を施す純Alターゲットの製造方法である。
That is, the present invention is a method for producing a pure Al target in which the hardness on the sputter surface side is adjusted to Hv 20 or more, and then the finish sputtering is performed on the sputter surface side.

【0011】また、本発明のターゲットの製造方法にお
いては、O、Nの含有量の合計を1ppm以上に調整す
ることが好ましい。
In the method of manufacturing a target according to the present invention, the total content of O and N is preferably adjusted to 1 ppm or more.

【0012】[0012]

【発明の実施の形態】上述したように、本発明の重要な
特徴はスパッタ面の硬度をHv20以上に調整した後、
仕上機械加工を施すことにある。スパッタ面の硬度をH
v20以上に調整するのは、特に機械加工時の被削性が
向上し、微細なバリの発生や研磨時の砥粒のめりこみを
低減できるためである。このことにより、ターゲットか
ら膜を形成するときに、スパッタ開始直後の異常放電を
低減できる。また、スパッタ面の表面硬度は、Hv25
以上に調整することが好ましく、さらに好ましくは、H
v30以上である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that after adjusting the hardness of a sputter surface to Hv20 or more,
To perform finish machining. Sputtered surface hardness is H
The reason for adjusting to v20 or more is that the machinability during machining is particularly improved, and the occurrence of fine burrs and the incorporation of abrasive grains during polishing can be reduced. Thus, when a film is formed from the target, abnormal discharge immediately after the start of sputtering can be reduced. The surface hardness of the sputtered surface is Hv25.
It is preferable to adjust the above, more preferably, H
v30 or more.

【0013】また、本発明の純Alターゲットの製造方
法においてO、Nの合計の含有量が1ppm以上に調整
することが好ましい。純AlターゲットにOとNを添加
すると、それぞれAlとの酸化物や窒化物を生成し、こ
れらがターゲット組織に微細に分散してターゲットの硬
度を高める効果がある。このことにより機械加工時の被
削性がさらに向上し、微細なバリの発生や研磨時の砥粒
のめりこみをより低減できるものとなる。また、上記の
酸化物や窒化物は、共に離型材として作用し、パーティ
クルの吸着を防止する効果もある。
In the method for producing a pure Al target of the present invention, the total content of O and N is preferably adjusted to 1 ppm or more. When O and N are added to a pure Al target, oxides and nitrides with Al are generated, and these are finely dispersed in the target structure, thereby increasing the hardness of the target. As a result, the machinability during machining is further improved, and the occurrence of fine burrs and the penetration of abrasive grains during polishing can be further reduced. In addition, the above-mentioned oxides and nitrides both act as release materials, and have an effect of preventing adsorption of particles.

【0014】O、Nの合計の含有量は10ppm以上で
あるとより好ましく、さらに好ましくは50ppm以上
である。また、O、Nの合計の含有量が多すぎると、膜
の電気伝導が低下する原因となるため、上限としては2
000ppm以下であることが好ましい。また、好まし
い硬さの上限はHv35である。
[0014] The total content of O and N is more preferably at least 10 ppm, and even more preferably at least 50 ppm. On the other hand, if the total content of O and N is too large, the electric conductivity of the film may be reduced.
It is preferably at most 000 ppm. The preferred upper limit of the hardness is Hv35.

【0015】本発明に用いる純Al原料にはゾーンメル
ト法、三層式電解法、Ziegler法、AlCl
電解精製法等により得られた純Al地金を用いることが
できる。尚、本発明において純Alとは、O、N、H、
希ガス等のガス分を除いた元素からなる不純物の含有量
が1質量%以下のAlのことである。また、ビレットの
作製方法としては、真空溶解鋳造法やスプレーフォーミ
ング法等の方法が適用できる。あるいは、純Al地金に
ガスアトマイズ法、アークメルティング法等の方法を適
用し得られた粉末を、ホットプレス、熱間静水圧プレ
ス、熱間押し出し整形等の方法により加圧焼結する方法
を適用することができる。
As the pure Al raw material used in the present invention, a pure Al ingot obtained by a zone melt method, a three-layer electrolytic method, a Ziegler method, an AlCl 3 bath electrolytic refining method or the like can be used. In the present invention, pure Al means O, N, H,
This is Al having an impurity content of 1% by mass or less, excluding elements such as rare gases. In addition, as a method for producing a billet, a method such as a vacuum melting casting method or a spray forming method can be applied. Alternatively, a method in which a powder obtained by applying a method such as a gas atomizing method or an arc melting method to a pure Al ingot is subjected to pressure sintering by a method such as hot pressing, hot isostatic pressing, hot extrusion shaping, or the like. Can be applied.

【0016】次に、前記ビレットに据え込み鍛造、圧延
等により総加工率50%以上の塑性加工を施し、大まか
に所望のターゲットサイズに近い板材となるように調整
する。尚、塑性加工時の総加工率は好ましくは60%以
上であり、さらに好ましくは80%以上である。素材表
面の硬さがHv20に達しない場合は、加工率10%以
下、歪み速度0.5/s以上で冷間圧延を施すことによ
り、素材表面の硬さがHv20以上となる様に調整する
ことができる。また、冷間圧延の代わりにショットピー
ニング等の方法によって表面を硬化させることもでき
る。加工硬化層の厚さは少なくとも機械加工によって除
去される加工層の厚さを超える様に調整する。以上の工
程により得られた素材を所望の形状に機械加工を施すこ
とにより純Al膜形成用の純Alターゲットを得ること
ができる。
Next, the billet is subjected to plastic working with a total working ratio of 50% or more by upsetting forging, rolling, or the like, and is adjusted so as to roughly obtain a sheet material having a desired target size. In addition, the total working rate at the time of plastic working is preferably 60% or more, and more preferably 80% or more. If the hardness of the material surface does not reach Hv20, the material is subjected to cold rolling at a working rate of 10% or less and a strain rate of 0.5 / s or more, so that the hardness of the material surface is adjusted to Hv20 or more. be able to. Further, the surface can be hardened by a method such as shot peening instead of cold rolling. The thickness of the work hardened layer is adjusted so as to exceed at least the thickness of the work layer removed by machining. A pure Al target for forming a pure Al film can be obtained by subjecting the material obtained through the above steps to machining into a desired shape.

【0017】また、ターゲットにO、Nを添加するに
は、真空溶解の場合は溶湯にこれらの元素からなるガス
をバブリングする方法や、Alの酸化物、窒化物を溶湯
中に添加して導入することができる。粉末焼結法やスプ
レーフォーミング法においては、前記方法に加えて、雰
囲気を酸素雰囲気、窒素雰囲気、Ar雰囲気とすること
により導入することができる。
In addition, in order to add O and N to the target, in the case of vacuum melting, a method of bubbling a gas composed of these elements into the molten metal, or adding and introducing an oxide or nitride of Al into the molten metal are introduced. can do. In the powder sintering method and the spray forming method, in addition to the above methods, the atmosphere can be introduced by setting the atmosphere to an oxygen atmosphere, a nitrogen atmosphere, or an Ar atmosphere.

【0018】また、ターゲットをスパッタリングする際
は、本発明で製造したターゲットに熱処理などを施し、
ターゲット表面の硬さを下げることも可能である。
When sputtering the target, the target manufactured in the present invention is subjected to a heat treatment or the like.
It is also possible to reduce the hardness of the target surface.

【0019】[0019]

【実施例】(実施例1)純度99.99%の純Al塊を
真空溶解し、φ150mm×300mmの鉄製鋳型に鋳
造した。次にこの鋳塊を200℃に加熱し、プレスによ
り100mmまで加工率66%の据え込み鍛造を施し、
およそφ250mm×100mmとした。この純Al塊
にスキンパスロールを用いて圧下率0.5%で圧延を施
した。この素材のスパッタ面に相当する面の中心部硬度
をビッカース硬度計により荷重0.98Nとして測定し
仕上前硬度とした。続いてターゲットのスパッタ面側を
仕上機械加工として旋盤仕上げし、φ125×5mmの
ターゲット(試料No.1)を得た。さらに、ターゲッ
ト表面を400番の耐水ペーパーによる研磨仕上げとし
たターゲットを得た。(試料No.2)
EXAMPLES (Example 1) A pure Al lump having a purity of 99.99% was melted in a vacuum and cast into an iron mold having a diameter of 150 mm x 300 mm. Next, this ingot was heated to 200 ° C., and subjected to upsetting forging at a working ratio of 66% to 100 mm by pressing.
It was approximately φ250 mm × 100 mm. This pure Al lump was rolled using a skin pass roll at a rolling reduction of 0.5%. The hardness at the center of the surface corresponding to the sputtered surface of this material was measured with a Vickers hardness meter under a load of 0.98 N, and the hardness before finishing was determined. Subsequently, the target was spun on the sputter surface side as finish machining to obtain a target (sample No. 1) of φ125 × 5 mm. Further, a target whose surface was polished with a # 400 waterproof paper was obtained. (Sample No. 2)

【0020】(実施例2)純度99.99%の純Al塊
を真空溶解し、溶湯にAlとAlNを添加して溶
湯中に酸素と窒素を導入し、φ150mm×300mm
の鉄製鋳型に鋳造した。次にこの鋳塊を200℃に加熱
し、プレスにより100mmまで加工率66%の据え込
み鍛造を施し、およそφ250mm×100mmとした
後、実施例1と同様に仕上前硬度を測定した。続いて機
械加工を施し、ターゲットのスパッタ面側を仕上機械加
工として旋盤仕上げし、φ125×5mmのターゲット
(試料No.3、4、5)を得た。
(Example 2) A pure Al lump having a purity of 99.99% was melted in a vacuum, Al 2 O 3 and AlN were added to the molten metal, and oxygen and nitrogen were introduced into the molten metal.
Cast into an iron mold. Next, this ingot was heated to 200 ° C., subjected to upsetting forging at a working ratio of 66% to 100 mm by a press, and was set to approximately φ250 mm × 100 mm. Then, the hardness before finishing was measured in the same manner as in Example 1. Subsequently, machining was performed, and the sputter surface side of the target was lathe-finished as finish machining to obtain a target (sample Nos. 3, 4, and 5) of φ125 × 5 mm.

【0021】(実施例3)純度99.99%の純Al塊
をArガスをアトマイズとして純Al粉末を得た。この
粉末を#32のふるいにより分級し、粒径の粗い粉末を
除去した後、粉末充填部の寸法がφ200×15mmで
肉厚2mmの軟鉄製のHIP缶に充填し、蓋を溶接後、
脱気パイプに接続した油拡散ポンプにより真空排気を行
いながら、400℃以上で1h加熱して脱気を行い、熱
間静水圧プレス装置を用いて圧力120MPaで550
℃×1h加圧焼結した後、実施例1と同様に仕上前硬度
を測定した。続いて、機械加工によりHIP缶を除去
し、ターゲットのスパッタ面側を仕上機械加工として旋
盤仕上げし、φ125×5mmのターゲット(試料N
o.6)を得た。
Example 3 Pure Al powder having a purity of 99.99% was atomized with Ar gas to obtain pure Al powder. This powder was classified with a # 32 sieve to remove coarse-grained powder, and then filled into a soft iron HIP can having a diameter of 200 mm x 15 mm and a thickness of 2 mm, and a lid welded.
While evacuating with an oil diffusion pump connected to a degassing pipe, degassing was performed by heating at 400 ° C. or more for 1 h, and 550 at a pressure of 120 MPa using a hot isostatic press.
After pressure sintering at 1 ° C. × 1 h, the hardness before finishing was measured in the same manner as in Example 1. Subsequently, the HIP can was removed by machining, and the sputter surface side of the target was lathe-finished as finish machining to obtain a φ125 × 5 mm target (sample N).
o. 6) was obtained.

【0022】(実施例4)純度99.99%の純Al塊
に窒素ガスをアトマイズガスとしたスプレーフォーミン
グ法を適用してサイズφ150mm×300mmのビレ
ットを作製した。このビレットを200℃に加熱し、プ
レスにより100mmまで加工率66%の据え込み鍛造
を施し、およそφ250mm×100mmとした後、実
施例1と同様に仕上前硬度を測定した。続いて、ターゲ
ットのスパッタ面側を仕上機械加工として旋盤仕上げ
し、φ125×5mmのターゲット(試料No.7)を
得た。
Example 4 A billet having a size of φ150 mm × 300 mm was prepared by applying a spray forming method using nitrogen gas as an atomizing gas to a pure Al lump having a purity of 99.99%. This billet was heated to 200 ° C., and subjected to upsetting forging at a working ratio of 66% up to 100 mm by a press to make it approximately φ250 mm × 100 mm. Then, the hardness before finishing was measured in the same manner as in Example 1. Subsequently, the sputtering surface side of the target was lathe-finished as finish machining to obtain a target (sample No. 7) of φ125 × 5 mm.

【0023】(実施例5)純度99.99%の純Al塊
をHガスをアトマイズとして純Al粉末を得た。この
粉末を#32のふるいにより分級し、粒径の粗い粉末を
除去した後、粉末充填部の寸法がφ150×300mm
で肉厚2mmの軟鉄製のHIP缶に充填し、蓋を溶接
後、脱気パイプに接続した油拡散ポンプにより真空排気
を行いながら、400℃以上で1h加熱して脱気を行
い、熱間静水圧プレス装置を用いて圧力120MPaで
550℃×1h加圧焼結した後、HIP缶を除去した。
次に、200℃に加熱し、プレスにより100mmまで
加工率66%の据え込み鍛造を施し、およそφ250m
m×100mmとした後、この純Al塊にスキンパスロ
ールを用いて圧下率0.5%で圧延を施した後機械加工
を施した。この後、実施例1と同様に仕上前硬度を測定
し、続いてターゲットのスパッタ面側を仕上機械加工と
して旋盤仕上げし、φ125×5mmのターゲット(試
料No.8)を得た。
(Example 5) Pure Al lump having a purity of 99.99% was atomized with H 2 gas to obtain a pure Al powder. This powder was classified with a # 32 sieve to remove coarse powder, and the size of the powder filling portion was φ150 × 300 mm.
Filled into a soft iron HIP can with a thickness of 2 mm, welded the lid, and degassed by heating at 400 ° C or higher for 1 h while evacuating with an oil diffusion pump connected to a degassing pipe. After sintering at 550 ° C. × 1 h under a pressure of 120 MPa using a hydrostatic press, the HIP can was removed.
Next, it is heated to 200 ° C. and subjected to upsetting forging with a processing rate of 66% up to 100 mm by pressing.
After having a size of mx 100 mm, this pure Al lump was rolled using a skin pass roll at a rolling reduction of 0.5%, and then machined. Thereafter, the hardness before finishing was measured in the same manner as in Example 1, and subsequently, the sputtering surface side of the target was subjected to lathe finishing as finish machining to obtain a target (sample No. 8) of φ125 × 5 mm.

【0024】(比較例1)純度99.99%の純Al塊
を真空溶解し、φ250mm×100mmの鉄製鋳型に
鋳造し、この純Al鋳塊に機械加工を施し、実施例1と
同様に仕上前硬度を測定し、仕上機械加工を施しφ12
5×5mmターゲット(試料No.9)を得た。
(Comparative Example 1) Pure aluminum ingot having a purity of 99.99% was melted in vacuum, cast into an iron mold having a diameter of 250 mm x 100 mm, and the pure aluminum ingot was subjected to machining and finished in the same manner as in Example 1. Pre-hardness is measured, finish machining is performed and φ12
A 5 × 5 mm target (sample No. 9) was obtained.

【0025】(比較例2)純度99.99%の純Al塊
を真空溶解し、φ150mm×300mmの鉄製鋳型に
鋳造し、このビレットを600℃に加熱しプレスにより
200mmまで加工率33%の据え込み鍛造を施し、お
よそφ180mm×200mmの純Al塊とした後、機
械加工を施した後、実施例1と同様に仕上前硬度を測定
した。続いてターゲット表面を仕上機械加工とする旋盤
仕上げしφ125×5mmのターゲット(試料No.1
0)を得た。
(Comparative Example 2) A pure aluminum lump having a purity of 99.99% was vacuum-melted and cast into an iron mold having a diameter of 150 mm x 300 mm. The billet was heated to 600 ° C and pressed to 200 mm by pressing to maintain a processing rate of 33%. After ingot forging was performed to form a pure Al lump having a diameter of about 180 mm x 200 mm, and then machined, the hardness before finishing was measured in the same manner as in Example 1. Subsequently, the target surface was subjected to lathe finishing for finish machining, and a target of φ125 × 5 mm (sample No. 1)
0) was obtained.

【0026】以上のターゲットをマグネトロンカソード
を有するスパッタ装置に装着し、到達真空度8.0×1
−5Pa以下まで排気を行った後、高純度Arガスを
0.4Paまで導入して、直流電源により電圧500
V、電流1Aを印可しスパッタリングを行った。この
際、カソードと電源の間にアークモニターを装着し、電
圧の絶対値の下降量が200Vを超えた場合をアークと
して検出する様設定し、アークの発生数をカウントし
た。以上の結果と仕上前硬度の関係を表1に示す。
The above target was mounted on a sputtering apparatus having a magnetron cathode, and the ultimate vacuum degree was 8.0 × 1.
0 -5 Pa after it evacuated to below, by introducing a high-purity Ar gas to 0.4 Pa, voltage 500 by the DC power supply
V and a current of 1 A were applied to perform sputtering. At this time, an arc monitor was attached between the cathode and the power supply, and a setting was made so that a case where the amount of decrease in the absolute value of the voltage exceeded 200 V was detected as an arc, and the number of arcs generated was counted. Table 1 shows the relationship between the above results and the hardness before finishing.

【0027】[0027]

【表1】 [Table 1]

【0028】表1より比較例の試料No.9、10のタ
ーゲットは放電開始直後から異常放電が多発したため、
測定時間全般に渡ってアーク発生数が多く、本発明によ
り製造したターゲットは比較例のターゲットに比べて特
にスパッタ開始直後の異常放電が極めて少ない事がわか
る。また、表1に挙げられる全ての試料において、機械
加工時のバリ、研磨時の砥粒のめり込みについて走査型
電子顕微鏡にて確認した。その結果、本発明例の試料N
o.1〜8については機械加工時のバリ、研磨時の砥粒
のめり込みを確認することは出来なかったが、比較例で
ある試料No.9、10については機械加工時のバリ、
研磨時の砥粒のめり込みが確認された。このことがスパ
ッタ開始直後に多発した異常放電に起因するものと考え
られる。
Table 1 shows that the sample No. Since the abnormal discharge occurred frequently immediately after the start of discharge for the targets 9 and 10,
It can be seen that the number of arcs generated is large over the entire measurement time, and that the target manufactured according to the present invention has extremely little abnormal discharge, especially immediately after the start of sputtering, as compared with the target of the comparative example. Further, in all the samples listed in Table 1, burrs at the time of machining and embedding of abrasive grains at the time of polishing were confirmed by a scanning electron microscope. As a result, the sample N of the present invention example
o. Regarding Samples Nos. 1 to 8, it was not possible to confirm burrs at the time of machining and embedding of abrasive grains at the time of polishing. Burrs during machining for 9 and 10,
Abrasion of abrasive grains during polishing was confirmed. This is considered to be caused by abnormal discharge that occurred frequently immediately after the start of sputtering.

【0029】[0029]

【発明の効果】本発明によれば純Alターゲットを製造
する際の機械加工時のバリ、研磨時の砥粒のめり込みを
低減でき、これによりスパッタリングする際に発生する
異常放電を著しく低減することが出来ることから、純A
l膜を用いる製品の製造に際して欠くことのできない技
術となる。
According to the present invention, it is possible to reduce burrs at the time of machining during the production of a pure Al target, and to reduce the penetration of abrasive grains at the time of polishing, thereby significantly reducing abnormal discharge generated at the time of sputtering. Pure A from what you can do
This is an indispensable technique in the manufacture of a product using the l film.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年4月11日(2000.4.1
1)
[Submission date] April 11, 2000 (2004.1.
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】(実施例5)純度99.99%の純Al塊
ガスをアトマイズとして純Al粉末を得た。この
粉末を#32のふるいにより分級し、粒径の粗い粉末を
除去した後、粉末充填部の寸法がφ150×300mm
で肉厚2mmの軟鉄製のHIP缶に充填し、蓋を溶接
後、脱気パイプに接続した油拡散ポンプにより真空排気
を行いながら、400℃以上で1h加熱して脱気を行
い、熱間静水圧プレス装置を用いて圧力120MPaで
550℃×1h加圧焼結した後、HIP缶を除去した。
次に、200℃に加熱し、プレスにより100mmまで
加工率66%の据え込み鍛造を施し、およそφ250m
m×100mmとした後、この純Al塊にスキンパスロ
ールを用いて圧下率0.5%で圧延を施した後機械加工
を施した。この後、実施例1と同様に仕上前硬度を測定
し、続いてターゲットのスパッタ面側を仕上機械加工と
して旋盤仕上げし、φ125×5mmのターゲット(試
料No.8)を得た。
Example 5 Pure Al powder having a purity of 99.99% was atomized with N 2 gas to obtain pure Al powder. This powder was classified with a # 32 sieve to remove coarse powder, and the size of the powder filling portion was φ150 × 300 mm.
Filled into a soft iron HIP can with a thickness of 2 mm, welded the lid, and degassed by heating at 400 ° C or higher for 1 h while evacuating with an oil diffusion pump connected to a degassing pipe. After sintering at 550 ° C. × 1 h under a pressure of 120 MPa using a hydrostatic press, the HIP can was removed.
Next, it is heated to 200 ° C. and subjected to upsetting forging with a processing rate of 66% up to 100 mm by pressing.
After having a size of mx 100 mm, this pure Al lump was rolled using a skin pass roll at a rolling reduction of 0.5%, and then machined. Thereafter, the hardness before finishing was measured in the same manner as in Example 1, and subsequently, the sputtering surface side of the target was subjected to lathe finishing as finish machining to obtain a target (sample No. 8) of φ125 × 5 mm.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スパッタ面側の硬度をHv20以上に調
整した後、スパッタ面側に仕上機械加工を施すことを特
徴とする純Alターゲットの製造方法。
1. A method for producing a pure Al target, comprising: adjusting the hardness on the sputter surface side to Hv 20 or more; and performing finish machining on the sputter surface side.
【請求項2】 O、Nの含有量を合計で1ppm以上に
調整することを特徴とする請求項1に記載の純Alター
ゲットの製造方法。
2. The method for producing a pure Al target according to claim 1, wherein the total content of O and N is adjusted to 1 ppm or more.
JP2000097178A 2000-03-31 2000-03-31 METHOD FOR MANUFACTURING PURE Al TARGET PREVENTING ABNORMAL DISCHARGE Pending JP2001279433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000097178A JP2001279433A (en) 2000-03-31 2000-03-31 METHOD FOR MANUFACTURING PURE Al TARGET PREVENTING ABNORMAL DISCHARGE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097178A JP2001279433A (en) 2000-03-31 2000-03-31 METHOD FOR MANUFACTURING PURE Al TARGET PREVENTING ABNORMAL DISCHARGE

Publications (1)

Publication Number Publication Date
JP2001279433A true JP2001279433A (en) 2001-10-10

Family

ID=18611833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097178A Pending JP2001279433A (en) 2000-03-31 2000-03-31 METHOD FOR MANUFACTURING PURE Al TARGET PREVENTING ABNORMAL DISCHARGE

Country Status (1)

Country Link
JP (1) JP2001279433A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316339A (en) * 2005-04-12 2006-11-24 Kobe Steel Ltd Aluminum-based sputtering target
JP2008106287A (en) * 2006-10-23 2008-05-08 Hitachi Tool Engineering Ltd Nitride-containing target material
EP1923479A1 (en) 2006-11-20 2008-05-21 Kabushiki Kaisha Kobe Seiko Sho AI-Ni-La system AI-based alloy sputtering target and process for producing the same
EP1932940A1 (en) 2006-11-20 2008-06-18 Kabushiki Kaisha Kobe Seiko Sho AL-based alloy sputtering target and process for producing the same
DE102008034145A1 (en) 2007-07-24 2009-01-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Sputtering target of an Al-based alloy of the Al-Ni-La-Si system and method for its production
WO2009035933A2 (en) * 2007-09-12 2009-03-19 Honeywell International Inc. Sputtering targets comprising a novel manufacturing design, methods of production and uses thereof
US8580093B2 (en) 2008-03-31 2013-11-12 Kobelco Research Institute Inc. AL-Ni-La-Cu alloy sputtering target and manufacturing method thereof
US9551065B2 (en) 2011-02-04 2017-01-24 Kobe Steel, Ltd. Al-based alloy sputtering target and Cu-based alloy sputtering target
KR20170026398A (en) 2015-08-03 2017-03-08 가부시키가이샤 코베루코 카겐 Aluminum sputtering target

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316339A (en) * 2005-04-12 2006-11-24 Kobe Steel Ltd Aluminum-based sputtering target
JP2008106287A (en) * 2006-10-23 2008-05-08 Hitachi Tool Engineering Ltd Nitride-containing target material
EP1923479A1 (en) 2006-11-20 2008-05-21 Kabushiki Kaisha Kobe Seiko Sho AI-Ni-La system AI-based alloy sputtering target and process for producing the same
EP1932940A1 (en) 2006-11-20 2008-06-18 Kabushiki Kaisha Kobe Seiko Sho AL-based alloy sputtering target and process for producing the same
US9212418B2 (en) 2006-11-20 2015-12-15 Kobe Steel, Ltd. Al-Ni-La system Al-based alloy sputtering target
DE102008034145A1 (en) 2007-07-24 2009-01-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Sputtering target of an Al-based alloy of the Al-Ni-La-Si system and method for its production
US8163143B2 (en) 2007-07-24 2012-04-24 Kobe Steel, Ltd. Al-Ni-La-Si system Al-based alloy sputtering target and process for producing the same
WO2009035933A2 (en) * 2007-09-12 2009-03-19 Honeywell International Inc. Sputtering targets comprising a novel manufacturing design, methods of production and uses thereof
WO2009035933A3 (en) * 2007-09-12 2009-07-02 Honeywell Int Inc Sputtering targets comprising a novel manufacturing design, methods of production and uses thereof
US8580093B2 (en) 2008-03-31 2013-11-12 Kobelco Research Institute Inc. AL-Ni-La-Cu alloy sputtering target and manufacturing method thereof
US9551065B2 (en) 2011-02-04 2017-01-24 Kobe Steel, Ltd. Al-based alloy sputtering target and Cu-based alloy sputtering target
KR20170026398A (en) 2015-08-03 2017-03-08 가부시키가이샤 코베루코 카겐 Aluminum sputtering target

Similar Documents

Publication Publication Date Title
JP5006030B2 (en) Powder metallurgy sputtering target and manufacturing method thereof
JP5472353B2 (en) Silver-based cylindrical target and manufacturing method thereof
US8663402B2 (en) Sputtering target with few surface defects, and surface processing method thereof
EP1923479A1 (en) AI-Ni-La system AI-based alloy sputtering target and process for producing the same
JP5203908B2 (en) Ni-Mo alloy sputtering target plate
JP2004100000A (en) Iron silicate sputtering target and production method therefor
JP2012017481A (en) Cu-Ga ALLOY AND Cu-Ga ALLOY SPUTTERING TARGET
JPWO2006134743A1 (en) Ruthenium alloy sputtering target
JP2004002989A (en) Copper alloy stock having satisfactory press working property and its production method
EP2626443A1 (en) Al-based alloy sputtering target and production method of same
WO2018173450A1 (en) Tungsten silicide target and method of manufacturing same
JPWO2012014921A1 (en) Sputtering target and / or coil and manufacturing method thereof
JP2001279433A (en) METHOD FOR MANUFACTURING PURE Al TARGET PREVENTING ABNORMAL DISCHARGE
US20230024291A1 (en) Method for producing molybdenum alloy targets
JP2901049B2 (en) Al-Ti alloy target material for arc ion plating
EP4006197A1 (en) Sputtering target
EP4089200A1 (en) Method for producing sputtering target material
JP3086447B1 (en) Tungsten target for sputtering and method for producing the same
KR20170044343A (en) Preparation method of reuse tungsten target and the reuse tungsten target prepared thereby
JP3765475B2 (en) Ti-Si alloy-based target material, method for producing the same, and film coating method
JP2000199055A (en) Cr TARGET MATERIAL AND ITS PRODUCTION
CN113614279B (en) V alloy target
JPH1161392A (en) Production of sputtering target for forming ru thin film
CN116334563A (en) Sputtering target and method for manufacturing sputtering target
JPH0729446A (en) Manufacture of electrode for vacuum interrupter