JP2001276831A - Electrolyzer for water - Google Patents

Electrolyzer for water

Info

Publication number
JP2001276831A
JP2001276831A JP2000134011A JP2000134011A JP2001276831A JP 2001276831 A JP2001276831 A JP 2001276831A JP 2000134011 A JP2000134011 A JP 2000134011A JP 2000134011 A JP2000134011 A JP 2000134011A JP 2001276831 A JP2001276831 A JP 2001276831A
Authority
JP
Japan
Prior art keywords
water
anode
electrolytic
electrolysis
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000134011A
Other languages
Japanese (ja)
Inventor
Yoshimi Sano
義美 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000134011A priority Critical patent/JP2001276831A/en
Publication of JP2001276831A publication Critical patent/JP2001276831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyzer improved in the physical properties of an electrolytic anode for enhancing the efficiency in the electrolyzer for water, and greatly improving the characteristics of produced water, especially sterilizing anode-water. SOLUTION: In the device by which an aqueous solution in an electrolytic room is electrolyzed by a membrane electrolytic method or a nonmembrane electrolytic method to obtain a production liquid having sterilizing property, a layer of noble metal such as Pt, Ir, Pd or Rh, etc., having catalytic property or its oxide, etc., is fitted to a surface of the anode of an electrolytic bath by electric plating or baking, and further the layer is sintered at a temp. of 200-1000 K in the atmosphere of nitrogen, argon or steam, etc., to activate it, to improve the catalystic performance. By using such electrode, polarization is prevented and the electrolytic efficiency is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水の電解装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water electrolysis apparatus.

【0002】[0002]

【従来の技術】従来水電解装置の電極としてはフェライ
トまたは金属チタンに白金コーティングしたものが使用
されていた。この電極を使用する電解装置により希薄食
塩水を電解して生成される陽極殺菌水は次亜塩素酸、亜
塩素酸、塩素酸等の生成量に比し塩素ガスの生成量が多
いという傾向がある。またこの電極を使用することによ
っては分極を防止することは難しく電解効率は必然的に
低い。
2. Description of the Related Art Conventionally, a ferrite or titanium metal coated with platinum has been used as an electrode of a water electrolysis apparatus. The anodic sterilizing water generated by electrolyzing the dilute saline solution by the electrolysis device using this electrode tends to generate more chlorine gas than the amount of hypochlorous acid, chlorous acid, chloric acid, etc. is there. Also, it is difficult to prevent polarization by using this electrode, and the electrolysis efficiency is necessarily low.

【0003】[0003]

【発明が解決しようとする課題】希薄食塩水などの電気
分解によって得られる陽極水の殺菌作用の機序に於ける
問題点と、殺菌力の持続性に於ける問題点および電解効
率について研究を進める中でその解快の鍵を握るものは
陽極表面の物性によることに帰着した。極言するとそれ
は陽極における析出物質と周囲の水分子との反応速度に
よるものである。即ち陽極に析出する物質はCl*(発
生機の塩素)で、これはごく短時間でCl(塩素ガ
ス)に移行するが、移行する前に速やかに水と反応させ
ると次亜塩素酸等の化合物を生ずる。陽極水の殺菌作用
として塩素ガスの殺菌力に依存するか次亜塩素酸等に依
存するかではその殺菌機序(メカニズム)と持久性に於
て格段の差異が生じると同時に電解効率が大きく変化す
る。これを改善する最良の手段は陽極表面に触媒性能を
付与することである。
SUMMARY OF THE INVENTION Research on the problems in the mechanism of the bactericidal action of the anodic water obtained by electrolysis of dilute saline, etc., the problems in the sustainability of the bactericidal power, and the electrolytic efficiency. The key to the dissolution during the course of the process came to be attributed to the physical properties of the anode surface. Ultimately, it is due to the rate of reaction between the deposited material at the anode and the surrounding water molecules. That is, the substance deposited on the anode is Cl * (chlorine of the generator), which is converted to Cl 2 (chlorine gas) in a very short time. The compound of formula Whether the bactericidal action of the anode water depends on the bactericidal activity of chlorine gas or hypochlorous acid, etc., causes a marked difference in the bactericidal mechanism (mechanism) and endurance, and at the same time greatly changes the electrolysis efficiency. I do. The best way to improve this is to impart catalytic performance to the anode surface.

【0004】[0004]

【課題を解決するための手段】水溶液を電解して殺菌水
を得るには通常ハロゲン化アルカリ例えば塩化ナトリウ
ム(NaCl)の希溶液(0.1〜0.5%)を用い
る。その機序は次に示す反応によると おりClは電気吸引力(クーロン力)により陽極に集
まりヘルムホルツの二重層を形成するが陽極に接触する
と瞬間的に陽極の電荷で中和(酸化)されてCl*(発
生機の塩素)となり、これは水と反応してHCl(塩
酸)、HClO(次亜塩素酸)、HClO(亜塩素
酸)、あるいはHClO(塩素酸)等をつくりまた反
応しなかったCl*はCl(塩素ガス)(残留塩素)
となって水に溶け一部は空気中に放散する。この時Cl
*がClに移行する時間は非常に短いので水と反応さ
せるためには極めて速やかに水分子と接触し反応させる
ことが必要である。Clは水に溶けやすい気体である
が殺菌水の質としてはなるべくClの生成を抑えてH
ClO,HClO,HClOが多量に生成されこと
が望ましい。それは殺菌力とその持続性於て優れている
ことと、それにもまして、多量のClの存在はハロゲ
ン化メタン(トリハロメタン等)の生成を誘発するとと
いう問題があるからである。加えて、Clの生成は陽
極での分極を生じそのため、より高い電解印加電圧を必
要とされ電解効率を低下させる不利を招く。
In order to obtain sterilizing water by electrolyzing an aqueous solution, a dilute solution (0.1 to 0.5%) of an alkali halide such as sodium chloride (NaCl) is usually used. According to the reaction shown below, Cage Cl - electric attraction forms a double layer of Helmholtz gathered anode by (Coulomb force) neutralized with momentarily anodic charge in contact with the anodic (oxidation) has been Cl * (chlorine generator) and , which reacts with water HCl (hydrochloric acid), HClO (hypochlorous acid), HClO 2 (chlorite), or HClO 3 * Cl did not make addition reaction (chlorate), etc. Cl 2 ( Chlorine gas) (residual chlorine)
As it dissolves in water, a part of it dissipates into the air. At this time Cl
Since the transition time of * to Cl 2 is very short, it is necessary to contact and react with water molecules very quickly in order to react with water. Cl 2 is suppressed as much as possible the generation of Cl 2 as quality but sterilizing water is easily soluble gas in water H
It is desirable that ClO, HClO 2 and HClO 3 be produced in large amounts. This is because of its problem of excellent sterilizing power and its persistence, and moreover, the presence of a large amount of Cl 2 induces the production of halogenated methane (such as trihalomethane). In addition, the generation of Cl 2 causes polarization at the anode, which requires a higher applied voltage for electrolysis, and disadvantageously lowers electrolysis efficiency.

【0005】Cl*とClとでは水との反応速度とそ
の強さに格段の差がある。勿論Cl*のほうが強烈であ
るが、そこでCl*からClに変わる瞬間よりもいち
早く水との反応を起こさせる必要がある。この反応を促
進する働きをするものが陽極板表面の触媒性能である。
本発明ではそのため陽極板の表面を雰囲気中の熱処理を
もって賦活する。雰囲気には窒素、アルゴン、水蒸気等
を用い温度は200°K〜1000°Kが良い。
There is a marked difference between the reaction rate of Cl * and Cl 2 with water and its strength. Of course Cl * of more While it is intense, it is necessary therefore to cause the reaction of the early water than the moment that changes from Cl * to Cl 2. What promotes this reaction is the catalytic performance of the anode plate surface.
In the present invention, the surface of the anode plate is activated by heat treatment in an atmosphere. The atmosphere is preferably nitrogen, argon, water vapor or the like, and the temperature is preferably 200 ° K to 1000 ° K.

【0006】[0006]

【作用】賦活処理を施した陽極板を使用した場合、施し
てない陽極板を使用した場合に比較して、より低い電解
電圧、電解電流でより高い効果を上げることができる。
これは賦活処理を施した陽極の触媒作用により、陽極酸
化によって生成する発生機の塩素Cl*がいち早く近傍
の水と反応してHClO等を生成して水に溶解し、不導
電性のCl(気体塩素)の層を作ることを防ぎ、いわ
ゆる分極を防止しているためである。
When the anode plate subjected to the activation treatment is used, a higher effect can be obtained with a lower electrolysis voltage and electrolysis current than when an anode plate not subjected to the activation treatment is used.
This is because, due to the catalytic action of the activated anode, chlorine Cl * of the generator generated by anodic oxidation reacts quickly with nearby water to generate HClO or the like and dissolves in the water, resulting in non-conductive Cl 2. This is because the formation of a layer of (gaseous chlorine) is prevented, and so-called polarization is prevented.

【0007】また一方生成する殺菌水の特性を観察する
と、従来の装置で作ったものは時間の経過とともにかな
り急速にpHが上がり(酸性度が弱くなる)ORPが下
降(殺菌性が弱くなる)する。これは酸性成分の蒸発と
殺菌物質の脱減によると考えられるがこのことは殺菌作
用をClに依存している証左である。一方、本発明に
よる陽極を使用した装置により生成した酸性殺菌水を放
置したとき時間の経過とともに逆にpHが下がり酸性値
が強くなったり、ORP(殺菌力)の下降がゆるやかで
あったりする。これはClに比しHClO等塩素酸類
の生成量が多く、時間経過によりHClO→HCl+O
*の反応が進みそれにつれてHClOが減ってHClの
量が多くなることによるもので殺菌力の主力が塩素によ
るものではなく塩素酸系の物質によるものであることを
示している。∵HClOは弱酸HClは強酸である。O
*は発生機の酸素で殺菌力が強烈である。この現象は目
的とする生成物質の生成量が多く変換効率が優れている
ことの証左である。
On the other hand, when observing the characteristics of the generated sterilizing water, the pH of the water produced by the conventional apparatus rises fairly rapidly with time (the acidity decreases), and the ORP decreases (the sterility decreases). I do. This is thought to be due to evaporation of the acidic components and loss of the bactericidal substance, which is evidence that the bactericidal action is dependent on Cl 2 . On the other hand, when the acid sterilizing water generated by the apparatus using the anode according to the present invention is allowed to stand, the pH decreases with the lapse of time and the acid value increases, or the ORP (sterilizing power) gradually decreases. This is because the amount of chloric acids such as HClO is larger than that of Cl 2, and HClO → HCl + O
* The progress of the reaction indicated by * indicates that HClO decreases and the amount of HCl increases, indicating that the main bactericidal activity is not due to chlorine but to chloric acid-based substances. ∵HClO is a weak acid. HCl is a strong acid. O
* Indicates that the germicidal power of the generator is strong. This phenomenon is evidence that the production amount of the target product is large and the conversion efficiency is excellent.

【0008】[0008]

【実施例】幅6.5cm長さ15.5cmの同一の大き
さの電極板を有する二つの電解槽を用意しその一つ
(A)には賦活処理を施さない陽極板を装着し、他の一
方(B)には賦活処理を施した陽極板を装着して比較し
た。(A)に12V10Aの電流を通じ毎分1リットル
のの流量で0.2%の食塩水を電解したところ陽極水と
してpH=2.6 ORP=1155mVの殺菌水を得
た。同一の流量で同じpH、同じORPの水を(B)で
生成したときの印加電圧および電流は10V9.5Aで
あった。生成した水について経時的変化を比較したとこ
ろ次に示す結果が現れた。(双方共密閉容器で冷暗所に
保管)
EXAMPLE Two electrolytic cells having electrode plates of the same size of 6.5 cm in width and 15.5 cm in length were prepared, and one (A) was equipped with an anode plate not subjected to an activation treatment, and the other was used. On one side (B), an anode plate subjected to an activation treatment was mounted and compared. When a current of 12 V and 10 A was passed through (A) to electrolyze 0.2% saline at a flow rate of 1 liter per minute, sterilized water having pH = 2.6 ORP = 1155 mV was obtained as anode water. The applied voltage and current when water of the same pH and the same ORP was produced in (B) at the same flow rate was 10V9.5A. When the change with time was compared for the generated water, the following results appeared. (Both are kept in a closed container in a cool dark place.)

【0009】[0009]

【発明の効果】まず、本発明の効果として目的の物質を
生成するために消費される電気エネルギーの節減が認め
られる。同時に生成物質の保存性が向上する等生成物質
の物性が改善されることが認められる。
First, as an effect of the present invention, a reduction in electric energy consumed for producing a target substance is recognized. At the same time, it is recognized that the physical properties of the product are improved, such as the storage stability of the product is improved.

【0010】ここで、発明の効果を説明するため当該電
解現象について、少しく更なる考察を加えることが必要
と考える。よって電解の機序について陽極近傍に於ける
電気化学的現象を中心として考察することとし代表例と
して食塩水(NaCl・Aq)を電解する場合について
説明する。食塩(NaCl)は強電解質で水溶液中では
NaイオンおよびClイオンとして解離して存在し
おり、0.2%のような希薄溶液に於てはほとんど10
0%に近い解離率を示し、Naイオンは5〜6個、C
イオンは4〜7個の水分子とそれぞれ水和して水和
イオンとして存在している。そのため(水和水分子を引
き連れているため)水溶液中のNaion,或はCl
ionの挙動は理論的に期待される値よりかなり動き
が鈍いことが観測される。また電解が進行するに従い二
次的に生成される物質が参加してくるので電解末期(電
解槽の終端付近)ではかなり複雑な様相を呈する。しか
しここでの考察は発明の効果を説明する目的であるから
総ての現象について厳密に論じて複雑にする事を避け、
関連する要点に絞って分かり易く説明する。食塩は水溶
液中では次式の如く電離しており電極間に電圧(正しく
は塩素およびナトリウムの単極電位の合計を超える電圧
〔+1.360−(−2.714)=4.084ボルト
を超える電圧〕を印加すると順次以下のごとき挙動をす
る。 1.水溶液中に於ける食塩の電離 NaCl⇔Na
Cl 2.陽極に於ける電気化学現象 Clはマイナスの荷電粒子であるからクーロン力(電
気力)によってプラス電極(陽極)に引き寄せられて集
まる。Clは陽極に接触すると瞬間的に電荷が中和さ
れてCl*(原子状態の塩素・発生機の塩素)となる。
Cl*は、2Cl*→Clのように瞬時にして塩素ガ
ス(分子状塩素)となるが、Cl*は激しくClは緩
やかに水と反応して次のような化学変化をする。大部分
のClは気体のまま水に溶解する。 ここに於て殺菌の目的からこれらの化学変化を検討する
に、殺菌に貢献する物質はClとO*である。Cl
は水道水の殺菌として余りにも有名である。非常に強力
な殺菌力を有し、飲料水に対してはわずか0.1ppm
の濃度があれば十分な効果があると認められている。か
なりの濃度(水1cc中に100万個程度)の細菌ある
いは細菌群を滅殺するためには10ppm程度の濃度が
必要であるが、この程度の殺菌水を作ることは簡単であ
る。即ち0.2%の食塩水を10Aの電流で電解すれば
毎分1リットル程度の殺菌水を生成できる。また、塩素
は1容の水に室温で1気圧のもとで2.3容も溶解す
る。つまり1ccの水に塩素ガス2.3ccを溶かすこ
とができる。使い勝手からすれば非常に便宜である。こ
れに対し、O*(発生機の酸素)はそう簡単にはいかな
い。殺菌力の強さはCl同様強力であるが出現のチャ
ンスが条件付である。前述の化学式から分かる通りO*
は塩素酸類(HClO次亜塩素酸、HClO亜塩素
酸、HClO塩素酸)の分解によって生成されるが、
たちまち2O*→Oの変化を起こし瞬時にして普通の
酸素ガスとなってしまう。(Oは殺菌力はClの様
に強力ではない。)しかし密閉容器中の塩素酸類の水溶
液は保存性が良く直射日光や紫外線を遮断すれば数ケ月
は保存できる。また、この物は自然には非常に徐々に分
解してO*を発生する(徐々に消耗する)が細菌などの
対象物(有機物等)に接触すると瞬間的に多量のO*を
発生し強力な殺菌作用を呈する。保存性という点ではC
よりはるかに有利であるだけでなくClは毒性が
あり特有の刺激臭があることと有機物と結合してトリハ
ロメタン等の有害物を発生するという欠点がある。塩素
酸類に含まれるClO等はイオン性のもので無害であ
り、分解して生ずるClイオンは生物にとっては体液
の主要陰イオンとして重要なものであり、また分解して
生ずるO*は無臭で殺菌の役を終えた後はO(酸素ガ
ス)となりBOD,CODを減少させる働きがある。こ
のような諸点からして殺菌水を得る目的の食塩水の電気
分解に於ては前出の化学式の(1)(2)(3)(6)
の反応を起こすことが望ましく塩素ガスの発生を招く反
応は極力これを抑さえることが望ましい。本発明による
陽極賦活処理はまさにこの要望に答えるものである。即
ち強力な陽極の触媒性能が陽極に析出するCl*と水と
の反応を触媒して(1)(2)(3)の反応を優先的に
進行させるものである。同時に塩素ガスの発生を抑え分
極を防いで低電圧での電解を可能にし電解効率を改善す
る。 *付記 電解は電荷の移動によって起こる現象であり、従って電
荷の移動量即ち電流の強さと時間の積にのみ関連する。
印加する電圧には無関係である。電解によって生成する
物質の量は次式により計算される。Q=(M/nF)×
A×T (グラム) Q;析出する物質の量(グラム) M;物質の原子量または式量(構成する原子の原子量の
和) n;原子価、または式量の持つ電荷 F;ファラデー数=96500クーロン(原子価1の物
質一原子または式量当り1の電荷を有する物質1式量を
析出するに必要な電気量) A;電流の強さアンペア(1アンペア×1秒間に移動す
る電気量が1クーロン) T;作用時間(秒) この式は印加電圧V(ボルト)には無関係である。一方
電力ワットは電圧Vと電流Aの積であるから印加電圧が
高ければ消費する電力は多くなる。より小さい電圧で電
解できれば消費電力を節約できて効率が良いわけであ
る。
Here, in order to explain the effect of the present invention, it is necessary to consider the electrolytic phenomenon a little further. Therefore, the mechanism of electrolysis will be considered focusing on the electrochemical phenomena near the anode, and the case of electrolyzing saline (NaCl.Aq) will be described as a typical example. Salt (NaCl) is a strong electrolyte which is dissociated as Na + ions and Cl ions in an aqueous solution, and almost 10% in a dilute solution such as 0.2%.
It shows a dissociation rate close to 0%, 5 to 6 Na + ions,
The 1 - ion hydrates with 4 to 7 water molecules and exists as a hydrated ion. Therefore, Na + ion or Cl in the aqueous solution (because it attracts hydration water molecules)
- behavior of ion is observed to be much dull motion than theoretically expected value. In addition, since a substance generated secondarily participates as the electrolysis proceeds, the appearance of the electrolysis becomes quite complicated at the end of the electrolysis (near the end of the electrolytic cell). However, the discussion here is for the purpose of explaining the effects of the invention, so avoiding strict discussion of all phenomena and complicating it,
The explanation is focused on relevant points for easy understanding. The salt is ionized in the aqueous solution as shown in the following formula, and the voltage between the electrodes (correctly, a voltage exceeding the sum of the monopolar potentials of chlorine and sodium [+1.360-(− 2.714) = exceeding 4.084 volts) to sequentially such following behavior when voltage is applied]. 1. ionization in saline in an aqueous solution NaCl⇔Na + +
Cl - 2. Electrochemical Phenomenon at the Anode Since Cl is a negatively charged particle, it is attracted to the plus electrode (anode) by the Coulomb force (electric force) and gathers. When Cl comes into contact with the anode, the charge is instantaneously neutralized to Cl * (chlorine in atomic state / chlorine in the generator).
Cl * is, 2Cl * → to instantaneously as Cl 2 becomes chlorine gas (molecular chlorine), Cl * violently Cl 2 is slowly react with water to chemical changes such as the following. Most Cl 2 dissolves in water as a gas. Here, in examining these chemical changes for the purpose of sterilization, substances that contribute to sterilization are Cl 2 and O *. Cl 2
Is too famous for sterilizing tap water. Very strong sterilizing power, only 0.1 ppm for drinking water
It has been recognized that the presence of a concentration is effective enough. A concentration of about 10 ppm is required to kill bacteria or a group of bacteria at a considerable concentration (about 1 million per cc of water), but it is easy to make sterile water of such a degree. That is, if a 0.2% saline solution is electrolyzed with a current of 10 A, about 1 liter of sterilized water can be generated per minute. Also, chlorine dissolves in 1 volume of water at room temperature under 1 atm of 2.3 volume. That is, 2.3 cc of chlorine gas can be dissolved in 1 cc of water. It is very convenient for usability. In contrast, O * (generator oxygen) is not so easy. The bactericidal power is as strong as Cl 2 , but the chance of appearance is conditional. As can be seen from the above chemical formula, O *
Is produced by the decomposition of chloric acids (HClO hypochlorous acid, HClO 2 chlorous acid, HClO 3 chloric acid)
It becomes ordinary oxygen gas is quickly instantly cause a change of 2O * → O 2. (O 2 has a disinfecting power not as strong as Cl 2. ) However, the aqueous solution of chloric acid in a closed container has a good preservation property and can be stored for several months by blocking direct sunlight and ultraviolet rays. In addition, this substance naturally decomposes very slowly and generates O * (slowly depletes), but when it comes into contact with an object (organic matter, etc.) such as bacteria, it instantaneously generates a large amount of O * and is powerful. It has an effective bactericidal action. In terms of storability, C
Cl 2 not only is much more advantageous than l 2 is the disadvantage that combines with that and organic substance is peculiar pungent odor is toxic to generate harmful substances such as trihalomethanes. ClO contained chlorine acids - such is harmless ones ionic, resulting in degradation Cl - ions are of importance as the major anion of body fluids for the organism, also decompose to produce O * is odorless After the end of the sterilization, it becomes O 2 (oxygen gas) and has the function of reducing BOD and COD. From these points, in the electrolysis of saline for the purpose of obtaining sterilized water, the chemical formulas (1), (2), (3) and (6)
It is desirable to suppress the reaction which causes the generation of chlorine gas as much as possible. The anodic activation treatment according to the present invention exactly meets this need. That is, the strong catalytic performance of the anode catalyzes the reaction between Cl * deposited on the anode and water, and the reactions (1), (2) and (3) proceed preferentially. At the same time, the generation of chlorine gas is suppressed to prevent polarization, thereby enabling electrolysis at a low voltage and improving the electrolysis efficiency. * Note Electrolysis is a phenomenon caused by the movement of electric charges, and is therefore only related to the amount of electric charge transferred, that is, the product of current intensity and time.
It is independent of the applied voltage. The amount of the substance generated by the electrolysis is calculated by the following equation. Q = (M / nF) ×
A × T (gram) Q; amount of substance to be deposited (gram) M: atomic weight or formula weight of substance (sum of atomic weights of constituent atoms) n: valence or charge of formula weight F: Faraday number = 96500 Coulomb (the amount of electricity required to deposit one atom of a substance having a valence of 1 or one quantity of a substance having one charge per formula quantity) A; Amperage of electric current (1 ampere x the quantity of electricity moving per second) 1 coulomb) T; duration of action (seconds) This equation is independent of the applied voltage V (volts). On the other hand, the power watt is the product of the voltage V and the current A, so that the higher the applied voltage, the more power is consumed. If electrolysis can be performed with a smaller voltage, power consumption can be saved and efficiency can be improved.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/76 C02F 1/76 A C25B 1/00 C25B 11/08 A 11/08 1/00 Z Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C02F 1/76 C02F 1/76 A C25B 1/00 C25B 11/08 A 11/08 1/00 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 隔膜電解法あるいは無隔膜電解法により
電解質の水溶液を電気分解して殺菌性を有する生成液を
得る装置において、電解槽の陽極の表面に鍍金あるいは
焼着により白金、イリジウム、パラジウム、あるいはロ
ジウム等の触媒性を有する貴金属或はその酸化物等の層
を装着せしめ更にその層を雰囲気炉内において200°
K〜1000°Kの温度で焼成賦活して触媒性能を向上
せしめた電極を使用することを特徴ととする電解装置。
An apparatus for electrolyzing an aqueous solution of an electrolyte by a diaphragm electrolysis method or a non-diaphragm electrolysis method to obtain a germicidal product solution, comprising platinum, iridium, palladium by plating or baking on the surface of the anode of an electrolytic cell. Or a layer of a noble metal having a catalytic property such as rhodium or an oxide thereof, and the layer is placed at 200 ° in an atmosphere furnace.
An electrolysis apparatus characterized by using an electrode whose catalytic performance is improved by firing activation at a temperature of K to 1000 ° K.
JP2000134011A 2000-03-30 2000-03-30 Electrolyzer for water Pending JP2001276831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000134011A JP2001276831A (en) 2000-03-30 2000-03-30 Electrolyzer for water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000134011A JP2001276831A (en) 2000-03-30 2000-03-30 Electrolyzer for water

Publications (1)

Publication Number Publication Date
JP2001276831A true JP2001276831A (en) 2001-10-09

Family

ID=18642366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000134011A Pending JP2001276831A (en) 2000-03-30 2000-03-30 Electrolyzer for water

Country Status (1)

Country Link
JP (1) JP2001276831A (en)

Similar Documents

Publication Publication Date Title
JP4410155B2 (en) Electrolyzed water ejection device
Ghernaout et al. From chemical disinfection to electrodisinfection: The obligatory itinerary?
US8262872B2 (en) Cleansing agent generator and dispenser
Rahmani et al. A comprehensive study of electrochemical disinfection of water using direct and indirect oxidation processes
Santos et al. Photoelectrolysis of clopyralid wastes with a novel laser-prepared MMO-RuO2TiO2 anode
RU2602110C2 (en) Method and device for water treatment
AU2008302995A1 (en) Disinfection using a high-pressure cleaning device and hydrolyzed water
KR101220891B1 (en) A porous 3-dimensional bipolar electrode, an electrolyzer having the porous 3-dimensional bipolar electrode, and water treatment method using the electrolyzer having the porous 3-dimensional bipolar electrode
WO2007048806A1 (en) Method for the preparation of biocidal activated water solutions
JP2015211928A (en) Acidic electrolyzed water and method for producing the same, disinfectant and cleanser each containing the electrolyzed water, disinfection method using the electrolyzed water, and apparatus for producing acidic electrolyzed water
US20130277211A1 (en) Reusable spray bottle with integrated dispenser
US20150375025A1 (en) Method of decontaminating chemical agent vx using a portable chemical decontamination system
JP2004267956A (en) Method for producing mixed electrolytic water
CN110759437A (en) Method for electrochemical-UV composite treatment of refractory organic matters
US20140302168A1 (en) Microbiocidal Solution with Ozone and Methods
JP2002301476A (en) Ascorbylglucosamine electrolyzed water and method for making the same
CN105040023A (en) Preparation method of liquid potassium ferrate by utilizing ultrasonic electrolysis
JP2000226680A (en) Production of sterilizing electrolytic water and device therefor
JPH081160A (en) Method for producing water and water obtained
JPH11151493A (en) Electrolyzer and electrolyzing method
US20140190820A1 (en) Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting
JP2003033425A (en) Method for disinfecting metallic instrument and device therefor
JP3363248B2 (en) Sterilized water, its production method and production equipment
KR101951448B1 (en) Sterilizing water generating device capable of controlling concentration
JPH0673675B2 (en) Method for producing sterilized water containing hypochlorous acid by electrolysis