JP2001275696A - Method for detecting physiological activity of microorganism - Google Patents

Method for detecting physiological activity of microorganism

Info

Publication number
JP2001275696A
JP2001275696A JP2000100315A JP2000100315A JP2001275696A JP 2001275696 A JP2001275696 A JP 2001275696A JP 2000100315 A JP2000100315 A JP 2000100315A JP 2000100315 A JP2000100315 A JP 2000100315A JP 2001275696 A JP2001275696 A JP 2001275696A
Authority
JP
Japan
Prior art keywords
cell wall
microorganism
medium
cell
vancomycin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000100315A
Other languages
Japanese (ja)
Inventor
Keiichi Hiramatsu
啓一 平松
Riyuushu Sai
龍洙 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000100315A priority Critical patent/JP2001275696A/en
Publication of JP2001275696A publication Critical patent/JP2001275696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting the physiological activity of microorganisms, for example, the synthetic activity of cell walls in a short time in no need of installation, cost, labor, professional skills, and the like. SOLUTION: A microorganism is allowed to synthesize its cell wall, while it is cultured under the conditions where it causes no cell proliferation whereby the physiological activity of the microorganism is detected according to the degree of the increase of absorbancy with time of the cell suspension. This method is not only useful in the studies and inspections on the physiological activity of microorganisms relating to the cell wall synthesis but also for obtaining the information on the sensitivity of the cells to antimicrobial drugs that manifest their microbicidal activity through the suppression of cell wall synthesis. In addition, this inspection process is useful in simple and rapid detection of Staphylococcus aureus of low sensitivity to glycopeptide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微生物の生理活性
を検出する方法に関する。
[0001] The present invention relates to a method for detecting the biological activity of a microorganism.

【0002】[0002]

【従来の技術】細胞壁の合成は、真菌や細菌などが生存
し、またヒトや動物に病原性を発揮するために不可欠で
ある。従って、細胞壁の合成を特異的に阻害する天然あ
るいは合成抗真菌、抗菌薬は、これらの微生物による感
染の治療薬として広く用いられている。
2. Description of the Related Art The synthesis of cell walls is indispensable for fungi and bacteria to survive and exhibit pathogenicity to humans and animals. Therefore, natural or synthetic antifungal and antibacterial agents that specifically inhibit the synthesis of cell walls are widely used as therapeutic agents for infection by these microorganisms.

【0003】しかし、近年、とくに細菌感染症におい
て、抗菌薬の無効な耐性菌によるものが増加し、大きな
医療問題を起こしている。用いられる抗菌薬の8割以上
はペニシリン、セフェムなどのβ-ラクタム(beta-lact
am)薬や、バンコマイシン、テイコプラニンなどのグリ
コペプチド(glycopeptide)系薬などの細胞壁合成阻害
薬である。本発明者らは、1997年に、これら細胞壁
合成阻害薬のすべてに耐性を獲得した黄色ブドウ球菌
を、バンコマイシン治療の奏効しなかった臨床症例から
検出した。この菌株は、バンコマイシン耐性黄色ブドウ
球菌(VRSA[vancomycin-resistant S. aureus] またはV
ISA[vancomycin-intermediate S. aureus]またはGISA[g
lycopeptide-intermediate S. aureus])と呼ばれる(1,
2)。
[0003] In recent years, however, particularly in bacterial infections, the number of bacteria due to ineffective antimicrobial agents has increased, causing a serious medical problem. More than 80% of the antibacterial drugs used are penicillins, cephem and other β-lactams (beta-lact
am) Drugs and cell wall synthesis inhibitors such as glycopeptides such as vancomycin and teicoplanin. In 1997, the present inventors detected Staphylococcus aureus that acquired resistance to all of these cell wall synthesis inhibitors from clinical cases in which vancomycin treatment did not respond. This strain is either vancomycin-resistant S. aureus [VRSA] or V.
ISA [vancomycin-intermediate S. aureus] or GISA [g
lycopeptide-intermediate S. aureus]) (1,
2).

【0004】また、本発明者らは、1997年に、VRSA
のみならず、VRSAを高頻度に生み出す前駆細胞株ヘテロ
VRSA(hetero-VRSA)が存在することを明らかにした
(9)。ヘテロVRSAは、それ自体の感染によっても、バ
ンコマイシン治療に抵抗を示すことがある(5,6,7,
9)。もちろん、このヘテロVRSAが多く存在する病院、
地域では、VRSAがグリコペプチド治療に伴い出現しやす
いと考えられるため、VRSAの出現を予防するためにも、
ヘテロVRSAの検出も重要である。バンコマイシン、テイ
コプラニンなどのグリコペプチド系抗菌薬は、黄色ブド
ウ球菌のうち、多剤耐性を示すMRSA(methicillin-resi
stanat S.aureus)の数少ない治療薬であるから、感度
のよいグリコペプチド感受性テストの開発がきわめて重
要である。
[0004] In 1997, the present inventors reported that VRSA
Not only, but also heterologous progenitor cell line
He clarified that VRSA (hetero-VRSA) exists (9). HeteroVRSA may also be resistant to vancomycin treatment by its own infection (5,6,7,
9). Of course, hospitals where there are many hetero VRSA,
In regions, VRSA is likely to appear with glycopeptide treatment, so to prevent the appearance of VRSA,
Detection of heterologous VRSA is also important. Glycopeptide antibacterial drugs such as vancomycin and teicoplanin are among the multi-drug resistant MRSA (methicillin-resi) among Staphylococcus aureus.
(stanat S. aureus) is one of the few treatments, so the development of a sensitive glycopeptide sensitivity test is crucial.

【0005】VRSAは、従来の自動化されたMIC測定機器
や、ディスク拡散法などを用いたグリコペプチド感受性
テストでは容易に検出されにくいことがわかった
(8)。さらに、ヘテロVRSAは、これら汎用される従来
の感受性テストでは、いずれも感受性株との区別ができ
ない(10)。きわめて厳密な品質管理下におけるMICの測
定によっても、ヘテロVRSAは検出できない(10)。
It has been found that VRSA is not easily detected by a conventional automated MIC measuring device or a glycopeptide sensitivity test using a disk diffusion method or the like (8). Furthermore, none of these commonly used conventional susceptibility tests can distinguish heterozygous VRSA from susceptible strains (10). Hetero-VRSA cannot be detected by MIC measurement under very strict quality control (10).

【0006】本発明者らは、先にヘテロVRSAを検出する
ためのMu3培地を利用する方法を発明した(10)。この方
法は、β-ラクタム薬とバンコマイシンの併用時の拮抗
現象を利用した方法であるが、VRSAとヘテロVRSAの区別
がつきにい点、感受性菌とヘテロVRSAの中間に属する場
合の判定が難しいという点で、検出方法として未だ完全
ではない。また、このことと関連して、その判定結果
は、植菌数の増減によって、影響を受ける。また、最
近、拮抗現象は、一般の黄色ブドウ球菌すべてに観察さ
れる現象であることが明らかになるなど、ヘテロVRSA,V
RSAに特異的な現象ではないことがわかった。従って、M
3培地を用いた方法は、これらの菌の耐性機構に基づい
た検出法とは言えない。
The present inventors have previously invented a method utilizing a Mu3 medium for detecting hetero VRSA (10). This method is a method that utilizes the antagonistic phenomenon when a combination of β-lactam drug and vancomycin is used, but it is difficult to distinguish between VRSA and hetero VRSA, and it is difficult to judge when it is in the middle between susceptible bacteria and hetero VRSA In this respect, the detection method is not yet complete. Also, in connection with this, the determination result is affected by an increase or decrease in the number of inoculated bacteria. Recently, it has become clear that the antagonistic phenomenon is a phenomenon observed in all common Staphylococcus aureus.
It turns out that it is not a phenomenon specific to RSA. Therefore, M
The method using three culture media cannot be said to be a detection method based on the resistance mechanism of these bacteria.

【0007】ヘテロVRSAは、その耐性のメカニズムとし
て、細胞壁の合成を増加(活性化)することにより、よ
り肥厚した細胞壁を作り、バンコマイシン分子を細胞壁
の中にトラップし、バンコマイシンが細胞壁合成の行わ
れている細胞質膜に容易に到達できないようにすること
で耐性化していることがわかった(3,4,5,6,7)。この耐
性化のメカニズムをaffinity trappingと呼ぶ(6,7)。従
って、黄色ブドウ球菌の個々の細胞株の細胞壁合成活性
を測定することができれば、その株のグリコペプチド感
受性を判定することができる。
[0007] Hetero-VRSA, as a mechanism of its resistance, increases (activates) cell wall synthesis to form a thicker cell wall, traps vancomycin molecules in the cell wall, and causes vancomycin to undergo cell wall synthesis. It was found that the resistance was increased by making it impossible to easily reach the cytoplasmic membrane (3,4,5,6,7). This mechanism of tolerance is called affinity trapping (6, 7). Therefore, if the cell wall synthesis activity of an individual cell line of Staphylococcus aureus can be measured, the glycopeptide sensitivity of that line can be determined.

【0008】しかし、細胞壁合成活性は、アイソトープ
でラベルしたN-acetyl-glucosamineなどの取り込みを経
時的に測定したり、あるいは、透過電子顕微鏡で細胞壁
の厚さを測定するなどが必要となり、経費、施設、設
備、熟練した技術者または研究者を必要とする。しか
も、この方法では、日常の臨床検体の検査などで、多く
の菌株を短時間の内に検査することが要求されている条
件にはそぐわない。
However, the cell wall synthesizing activity requires timely measurement of the uptake of isotope-labeled N-acetyl-glucosamine or the like, or measurement of the cell wall thickness using a transmission electron microscope. Requires facilities, equipment, skilled technicians or researchers. In addition, this method does not meet the conditions required to test many strains within a short period of time, such as in daily clinical sample tests.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、設
備、経費、労働力、専門的手技などを必要とせず、短時
間に微生物の生理活性を検出する方法を提供することで
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for detecting the biological activity of a microorganism in a short time without requiring equipment, cost, labor, and specialized procedures.

【0010】[0010]

【課題を解決するための手段】本発明者は、細胞壁成分
の前駆栄養素を多く含む培地を用い、さらに、その培地
内での微生物の増殖を制限することにより、増殖による
栄養素の消耗を防ぎ、その微生物の持つ細胞壁合成能力
を反映した細胞壁を合成させ、それを検出する方法を見
出した。さらに、この培地を用いて、細胞壁を合成させ
ながら、あるいは、させた後、抗微生物薬を加えた培養
液で菌を増殖させ、抗微生物薬に対する菌の感受性を測
定する方法を見出した。
Means for Solving the Problems The present inventor uses a medium containing a large amount of precursor nutrients for cell wall components, and further restricts the growth of microorganisms in the medium, thereby preventing nutrient depletion due to growth. We found a method for synthesizing a cell wall that reflects the cell wall synthesis ability of the microorganism and detecting it. Further, the present inventors have found a method for measuring the sensitivity of a bacterium to an antimicrobial drug by synthesizing or synthesizing a cell wall using this medium and then growing the bacterium in a culture solution containing an antimicrobial drug.

【0011】即ち、第一の本発明は微生物の細胞増殖を
起こさない培養条件下で細胞壁の合成を行わせ、微生物
の細胞壁合成能の度合いを測定することにより微生物の
生理活性を検出する方法である。第二の本発明は、細胞
壁の合成を助ける栄養素を特に多く含み、かつ、抗微生
物薬を含んだ培地に黄色ブドウ球菌を接種し、その細胞
増殖を観察することにより行う抗微生物薬感受性検査法
である。
That is, a first aspect of the present invention is a method for detecting the physiological activity of a microorganism by synthesizing a cell wall under culture conditions that do not cause cell growth of the microorganism and measuring the degree of the cell wall synthesis ability of the microorganism. is there. The second present invention provides an antimicrobial drug susceptibility test method comprising inoculating a medium containing an antimicrobial agent, which particularly contains a large amount of nutrients that assist the synthesis of cell walls, with Staphylococcus aureus, and observing the cell growth. It is.

【0012】[0012]

【発明の実施の形態】本発明における微生物とは、細胞
壁を有する細菌、真菌などを含む。例えば、グラム陽性
菌が例示でき、代表的には黄色ブドウ球菌を挙げること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The microorganism in the present invention includes bacteria and fungi having a cell wall. For example, Gram-positive bacteria can be exemplified, and Staphylococcus aureus can be typically exemplified.

【0013】細胞増殖を起こさない培養条件とは、細胞
増殖をおこし得る培地に、細胞増殖を妨げる抗菌薬や化
学物質を加えて用いることや、細胞の分裂に必要な必須
アミノ酸を実質的に含まない培地を用いることを含む。
[0013] Culture conditions that do not cause cell growth include the use of a medium capable of causing cell growth with the addition of an antibacterial agent or a chemical substance that hinders cell growth, or the substantial inclusion of essential amino acids required for cell division. Using no media.

【0014】必須アミノ酸は黄色ブドウ球菌の場合は菌
株によっても異なるが、arginine、valineは、ほとんど
の場合必須アミノ酸である。さらに、leucine、cystein
e、prolineなども必須である場合が多い。これらのうち
一つ以上のアミノ酸を含まない培地を用いれば、黄色ブ
ドウ球菌の増殖は起きない。ただし、他の菌種、他の菌
株の場合、これ以外のアミノ酸を欠失していても目的に
かなう場合がある。それらのアミノ酸は、例えば、alan
ine、aspratic acid、histidine、isoleucine、 methio
nine、phenylalanine、serine、threonine、tryptopha
n、tyrosineなどであり得る。必須アミノ酸であるか否
かは、例えば、そのアミノ酸を含有する培地と欠失した
培地で対象とする菌種、菌株を培養し、その増殖の程度
を調べることにより容易に判定することができる。
Although essential amino acids vary depending on the strain of Staphylococcus aureus, arginine and valine are almost always essential amino acids. Furthermore, leucine, cystein
e, proline, etc. are also often required. If a medium not containing one or more of these amino acids is used, Staphylococcus aureus does not grow. However, in the case of other strains or other strains, deletion of other amino acids may serve the purpose. Those amino acids are, for example, alan
ine, aspratic acid, histidine, isoleucine, methio
nine, phenylalanine, serine, threonine, tryptopha
n, tyrosine, etc. Whether or not the amino acid is an essential amino acid can be easily determined by, for example, culturing the target strain or strain in a medium containing the amino acid and a medium lacking the amino acid, and examining the degree of proliferation.

【0015】ただし、このような必須アミノ酸でも、細
胞壁合成に必要なものは培地に含まれる必要がある。細
胞壁合成に必要なアミノ酸としては、下記の細胞壁合成
をサポートする培地の成分として例示したものに含まれ
るGlycine、D-glutamic acid、DL-alanyl-DL-alanine、
DL-lysine等が例示できる。細胞壁合成に必要なアミノ
酸であるか否かは、そのアミノ酸を含有する培地と欠失
した培地で対象とする菌種、菌株を培養し、その細胞壁
の肥厚の程度を調べることにより容易に判定することが
できる。
However, even such essential amino acids required for cell wall synthesis need to be contained in the medium. The amino acids required for cell wall synthesis include Glycine, D-glutamic acid, DL-alanyl-DL-alanine, and Glycine included in those exemplified as components of the culture medium that supports cell wall synthesis described below.
DL-lysine and the like can be exemplified. Whether or not an amino acid is necessary for cell wall synthesis can be easily determined by culturing the target strain and strain in a medium containing the amino acid and a medium lacking the amino acid, and examining the degree of cell wall thickening. be able to.

【0016】必須アミノ酸を欠き、細胞増殖を起こさせ
ず、かつ細胞壁の合成を助ける培地としては、例えば以
下の組成を持った合成培地が挙げられる。 Glycine, 0.5-5 mM; D-glutamic acid, 0.5-5 mM; DL-alanyl-DL-alanine, 0.5-5 mM DL-lysine, 0.3-5 mM; MgCl2, 0.5-2 mM; MnCl2, 0.05-0.2 mM; Uracil, 0.1-0.4 mM; Nicotinamide, 0.005-0.02 mM; K2HPO4, 20-100 mM; Thiamine, 0.001-0.005 mM; Glucose 10-80 mM;
As a medium lacking essential amino acids, not causing cell proliferation and assisting the synthesis of cell walls, for example, a synthetic medium having the following composition can be mentioned. Glycine, 0.5-5 mM; D-glutamic acid, 0.5-5 mM; DL-alanyl-DL-alanine, 0.5-5 mM DL-lysine, 0.3-5 mM; MgCl 2 , 0.5-2 mM; MnCl 2 , 0.05 -0.2 mM; Uracil, 0.1-0.4 mM; Nicotinamide, 0.005-0.02 mM; K 2 HPO 4 , 20-100 mM; Thiamine, 0.001-0.005 mM; Glucose 10-80 mM;

【0017】市販され、一般に用いられている培地は、
いずれも、すべての必須アミノ酸を含んでおり、細胞の
増殖を許す。このような培地の例としては、例えば市販
のLuria 培地、Mueller-Hinton 培地、Heart Infusion
培地、Brain Heart Infusion培地、tryptic soy 培地な
どが例示できる。
Commercially available and commonly used culture media include:
Both contain all essential amino acids and allow cell growth. Examples of such a medium include commercially available Luria medium, Mueller-Hinton medium, and Heart Infusion medium.
Examples include a medium, a Brain Heart Infusion medium, and a tryptic soy medium.

【0018】細胞増殖を妨げる抗菌薬や化学物質とは、
例えば抗菌薬、化学物質として、アミノ配糖体、マクロ
ライド、テトラサイクリン、などの蛋白合成阻害作用を
持ったものや、キノロン系抗菌薬などのDNA合成阻害作
用を持ったものである。それらの添加量は、その菌の増
殖を阻止できる最小濃度MIC (minimal inhibitory conc
entration)を越える濃度になるように加える。
Antibacterial drugs and chemicals that hinder cell growth
For example, as antibacterial agents and chemical substances, those having a protein synthesis inhibitory action such as aminoglycoside, macrolide and tetracycline, and those having a DNA synthesis inhibitory action such as quinolone antibacterial drugs. The amount of these additives is the minimum concentration MIC (minimal inhibitory conc
(entration).

【0019】また、本発明において、細胞壁の合成を助
ける栄養素を特に多く含み、かつ、抗微生物薬を含んだ
培地とは、該栄養素が、Luria 培地、Mueller-Hinton
培地、Heart Infusion培地、Brain Heart Infusion培
地、tryptic soy 培地等におけるよりも多く含んでお
り、グリコペプチド系で代表される抗菌薬を含む培地を
意味する。なお、段落番号[0016]に示した合成培
地の栄養素の一般に用いられる培地における濃度は、正
確に知られていない。したがって、これらの培地に、さ
らにこの合成培地を加えることによって、細胞壁の合成
を助ける栄養素を特に多く含んだ培地を作成できる。
Further, in the present invention, a medium containing a particularly large amount of nutrients for assisting the synthesis of cell walls and containing an antimicrobial agent is defined as a medium containing Luria medium, Mueller-Hinton
A medium containing more antibacterial agents typified by glycopeptides than the medium, Heart Infusion medium, Brain Heart Infusion medium, tryptic soy medium and the like. The concentration of nutrients in the synthetic medium shown in paragraph [0016] in a commonly used medium is not exactly known. Therefore, by further adding this synthetic medium to these mediums, a medium containing a particularly large amount of nutrients that assist the synthesis of the cell wall can be prepared.

【0020】本発明の検出法の対象である微生物の生理
活性とは、例えば細胞壁合成活性、グリコペプチド系抗
菌薬感受性である。ここでいうグリコペプチド系抗菌薬
とは、D-alanyl-D-alanine binding antibiotics with
a heptapeptidic structure(dalbaheptide)のことで、
バンコマイシン(vancomycin)、テイコプラニン(teico
planin)、アボパルシン(avoparcin)などを含む。
The biological activity of the microorganism to be detected by the detection method of the present invention is, for example, cell wall synthesis activity and glycopeptide antimicrobial susceptibility. The glycopeptide antibacterial agent here means D-alanyl-D-alanine binding antibiotics with
a heptapeptidic structure (dalbaheptide)
Vancomycin, teicoplanin (teico)
planin), including avoparcin.

【0021】本発明の方法を実施するには、例えばバン
コマイシン耐性菌の検出の場合は次のように行う。前記
の細胞増殖をおこし得る培地に、細胞増殖を妨げる抗菌
薬や化学物質を加えた培地、又は微生物の増殖、分裂に
必要な栄養素の一部を含まず、かつ細胞壁の合成を助け
る栄養素を多く含んだ微生物の生理活性検出用培地を用
いて試料を培養し、細胞壁の合成を行う。このとき、温
度はほぼ一定に保っておくのが好ましい。この培養中の
培養液の吸光度を経時的に測定する。例えば、バンコマ
イシン耐性菌の場合は、菌数の変化がほとんど生じない
にもかかわらず、吸光度が急激に増加する。それに比較
して、バンコマイシン感受性菌の場合は吸光度の増加は
緩やかである。この吸光度の経時変化からバンコマイシ
ン感受性菌、ヘテロ耐性菌、耐性菌を区別することがで
きる。
The method of the present invention is carried out as follows, for example, in the case of detecting vancomycin-resistant bacteria. A medium in which the above-described cell growth can be performed, a medium to which an antibacterial agent or a chemical substance that hinders cell growth has been added, or a medium that does not contain some of the nutrients necessary for the growth and division of microorganisms and contains a large amount of nutrients that assist in the synthesis of cell walls The sample is cultured using the medium for detecting the physiological activity of the contained microorganism, and the cell wall is synthesized. At this time, it is preferable to keep the temperature substantially constant. The absorbance of the culture during this culture is measured over time. For example, in the case of vancomycin-resistant bacteria, the absorbance sharply increases despite little change in the number of bacteria. In contrast, the absorbance of vancomycin-sensitive bacteria increases slowly. Vancomycin-sensitive bacteria, hetero-resistant bacteria, and resistant bacteria can be distinguished from the change in absorbance with time.

【0022】また、前記培地で試料を培養し、細胞壁の
合成を行う際に、バンコマイシンを0.5-30mg/lの範囲内
で加え、ODの上昇の有無、その上昇スピードを観察し、
バンコマイシン耐性菌、ヘテロ耐性菌、感受性菌との比
較を行うことも可能である。本発明者の実験では、10mg
/lのバンコマイシンを加えた場合、2時間後のOD値の上
昇は、4回の実験の平均とSD値は、Mu50が0.72±0.13,
Mu3が0.41±0.22, H1とFDA209Pは共に、0.05以下(range
0.01-0.05)であった。したがって、この方法によっても
耐性、ヘテロ耐性、感受性菌を鑑別できる。
When culturing a sample in the medium and synthesizing a cell wall, vancomycin is added within a range of 0.5-30 mg / l, and the presence or absence of an increase in OD and the speed of the increase are observed.
It is also possible to compare with vancomycin resistant, hetero resistant and susceptible bacteria. In our experiments, 10 mg
When vancomycin / l was added, the increase in the OD value after 2 hours was the mean and SD value of the four experiments, with a Mu50 of 0.72 ± 0.13,
Mu3 is 0.41 ± 0.22, H1 and FDA209P are both 0.05 or less (range
0.01-0.05). Therefore, also by this method, resistant, heteroresistant and susceptible bacteria can be distinguished.

【0023】また、前記のようにして培養した菌を、バ
ンコマイシンを含む培地に接種して、菌の増殖開始まで
の時間、一定時間後の菌の増殖の有無、あるいはバンコ
マイシンの消費量を測定することにより、菌の検出を行
うことができる。例えば、バンコマイシン耐性菌及びヘ
テロ耐性菌は、8−18時間後には増殖しているが、感
受性菌は増殖していない。また、バンコマイシン耐性
菌、ヘテロ耐性菌の場合は増殖開始までの時間が短く、
感受性菌の場合は長い。また、バンコマイシン耐性菌の
場合は、バンコマイシンの消費が早く、感受性菌の場合
は遅い。
The bacteria cultured as described above are inoculated into a medium containing vancomycin, and the time until the start of bacterial growth, the presence or absence of bacterial growth after a certain period of time, or the consumption of vancomycin are measured. Thereby, bacteria can be detected. For example, vancomycin resistant and hetero resistant bacteria grow after 8-18 hours, but susceptible bacteria do not. In addition, in the case of vancomycin-resistant bacteria and hetero-resistant bacteria, the time until the start of growth is short,
Long for susceptible bacteria. In the case of vancomycin resistant bacteria, consumption of vancomycin is fast, and in the case of susceptible bacteria, consumption is slow.

【0024】[0024]

【実施例】以下に実施例で本発明を説明するが、本発明
はこれららよって何ら限定されない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0025】実施例1 [細胞壁の合成と吸光度の上昇との相関]細胞壁合成に
必要な栄養成分を多く含み、かつ、増殖に必須なアミノ
酸を欠如した培地 Cui-Hiramatsu(CH)broth、および、C
Hからさらにグルコースを欠如したCHglu-、CHに細胞壁
合成を増強するグルタミン(glutamine)を加えた CHGn、
CHglu-に細胞壁アミノ糖の前駆体である N-acetyl-gluc
osamineを加えた CHNAGを用いて、黄色ブドウ球菌株 Mu
50を37℃2時間保温した後の細胞壁の厚さを電子顕微鏡
で観察した。それぞれの培地の構成要素の濃度は、以下
の通りである。
Example 1 [Correlation between synthesis of cell wall and increase of absorbance] Cui-Hiramatsu (CH) broth, which contains a large amount of nutrients necessary for cell wall synthesis and lacks amino acids essential for growth, and C
CHglu- further lacking glucose from H, CHGn with glutamine (glutamine) added to CH to enhance cell wall synthesis,
N-acetyl-gluc, a precursor of cell wall amino sugars in CHglu-
Using CHNAG with osamine, Staphylococcus aureus strain Mu
50 was kept at 37 ° C. for 2 hours, and the thickness of the cell wall was observed with an electron microscope. The concentrations of the components of each medium are as follows.

【0026】CH: Glycine, 1 mM; D-glutamic acid, 1 mM; DL-alanyl-DL-alanine, 0.5 mM; DL-lysine, 0.3 mM; MgCl2, 1mM; MnCl2, 0.1 mM; Uracil, 0.17 mM; Nicotinamide, 0.0082 mM, K2HPO4, 80 mM; Thiamin, 0.003 mM; glucose 28.8 mM GHglu-: CHからグルコース(glucose)を除去。 CHGn: CHに30 mM グルタミン(glutamine)を添加。 CHNAG: CHglu-に30 mM N-acetyl-glucosamineを添加。CH: Glycine, 1 mM; D-glutamic acid, 1 mM; DL-alanyl-DL-alanine, 0.5 mM; DL-lysine, 0.3 mM; MgCl 2 , 1 mM; MnCl 2 , 0.1 mM; Uracil, 0.17 mM; Nicotinamide, 0.0082 mM, K 2 HPO 4 , 80 mM; Thiamin, 0.003 mM; glucose 28.8 mM GHglu-: Removes glucose from CH. CHGn: 30 mM glutamine added to CH. CHNAG: Add 30 mM N-acetyl-glucosamine to CHglu-.

【0027】図1(A, CHglu-; B,CH; C, CHNAG; D,
CHGn)に示すように、CHglu-では細胞壁の厚さは31.03n
m±2.30nmで最も薄く、CHNAGでは38.13nm±3.49nmで中
間、CH、CHGnでは、それぞれ、53.29nm±3 .01nm、57.1
8 nm±3.18nmと肥厚していた。保温2時間における生菌
数は、それぞれ、A, 3.95±0.87×107CFU; B, 3.65±
0.92×107CFU; C, 3.87±0.34×107CFU; D, 3.26±0.4
6×107CFUであり、統計的に差はなかった。すなわち、
この細胞増殖をサポートしない保温条件では、A-Dのそ
れぞれの条件間で、保温時間中の菌数の変化に差が生じ
ないことがわかった。
FIG. 1 (A, CHglu-; B, CH; C, CHNAG; D,
As shown in CHGn), the cell wall thickness of CHglu- was 31.03n
m ± 2.30 nm is the thinnest, 38.13 nm ± 3.49 nm for CHNAG, and 53.29 nm ± 3.01 nm, 57.1 for CH and CHGn, respectively.
The thickness was 8 nm ± 3.18 nm. The viable cell count at 2 hours of incubation was A, 3.95 ± 0.87 × 10 7 CFU; B, 3.65 ±
0.92 × 10 7 CFU; C, 3.87 ± 0.34 × 10 7 CFU; D, 3.26 ± 0.4
6 × 10 7 CFU, no statistical difference. That is,
It was found that there was no difference in the change in the number of bacteria during the incubation time between the AD conditions under the incubation conditions that did not support this cell growth.

【0028】この保温中に菌懸濁液の濁度を吸光度計を
用いて測定した図2を示す。細胞分裂が起きていないに
も関わらず、OD600nm(optical density at 600 nm;以下
ODと略す)の値がCHglu-(A)以外の培地では上昇すること
が観察された。この上昇の度合い(図2の2時間めのOD
値)と図1の細胞壁の厚さは、きわめて良く相関してい
た(相関係数:0.928)。
FIG. 2 shows the turbidity of the bacterial suspension measured using an absorbance meter during the incubation. OD600nm (optical density at 600nm; below
OD) was observed to increase in media other than CHglu- (A). The degree of this rise (OD in the second hour in Figure 2)
1) and the thickness of the cell wall in FIG. 1 correlated very well (correlation coefficient: 0.928).

【0029】実施例2 [細胞壁の厚さ、吸光度の上昇、バンコマイシン低感受
性との相関]実施例1で、2時間保温した菌(A-D)
を、それぞれ一定数(8.5×108CFU)、10mlのバンコマ
イシン30 mg/l を含むbrain heart infusion (BHI)brot
hに接種し、37℃で培養すると、図3のように、一定時
間の後、それぞれの菌が増殖を開始した(A-Dの実線が
菌の増殖曲線を示す)。その時間の長さは、それぞれの
菌細胞の細胞壁の厚さと逆相関していた。すなわち、細
胞壁の厚さが厚いほど、バンコマイシンに対する耐性度
(低感受性)の度合いが増した(すなわち、早期に増殖
曲線が立ち上がる)。さらに、図3に示すように、それ
ぞれの菌を接種して、1時間の間に、細胞壁の厚さと相
関して、バンコマイシンの濃度(a-dの破線グラフ)の
減少が見られた。すなわち、細胞壁が厚いほど、より多
くのバンコマイシンが消費された。
Example 2 [Correlation with Increase in Cell Wall Thickness, Absorbance, and Low Sensitivity to Vancomycin] In Example 1, bacteria (AD) incubated for 2 hours
And a fixed number (8.5 × 10 8 CFU) of brain heart infusion (BHI) broth containing 10 ml of vancomycin 30 mg / l.
After inoculation of h, and culturing at 37 ° C., as shown in FIG. 3, after a certain period of time, each bacterium started to grow (the solid line of AD indicates the growth curve of the bacterium). The length of time was inversely correlated with the cell wall thickness of each bacterial cell. That is, the thicker the cell wall, the higher the degree of resistance (low sensitivity) to vancomycin (that is, the earlier the growth curve rises). Furthermore, as shown in FIG. 3, a decrease in the concentration of vancomycin (dashed line graph of ad) was observed in one hour after inoculation of each bacterium, in correlation with the cell wall thickness. That is, the thicker the cell wall, the more vancomycin was consumed.

【0030】実施例3 [グリコペプチド感受性菌、ヘテロ耐性菌、耐性菌を、
CH培地でのODの上昇で判定する実験]グリコペプチド感
受性黄色ブドウ球菌株FDA09P(メチシリン感受性)とH1
(メチシリン耐性)、ヘテローグリコペプチド耐性黄色ブ
ドウ球菌株Mu3、グリコペプチド耐性黄色ブドウ球菌株M
u50(VRSA)を、CH培地の中で2時間培養すると、市販のB
HI培地で培養したものに比べて、図4のように、電子顕
微鏡の観察により、それぞれ、22.78nm±1.88nm から 2
3.97nm±3.61nm へ(FDA209P)、25.99nm±2.29nm から 2
9.09nm±3.26nm (H1)、26.17nm±2.17 nm から 38.44nm
±1.65nm (Mu3)、31.88nm±1.56nm から 53.29nm±3.01
nm (Mu50)へと細胞壁の厚さが増加した。しかし、細胞
壁の肥厚の増加の割合は、Mu50>Mu3>H1>FDA209の順で、
それぞれの菌株ごとにこの増加の割合は、統計的に有意
な差が見られた (P < 0.001)。
Example 3 [Glycopeptide-sensitive bacteria, heteroresistant bacteria, resistant bacteria
An experiment to determine the increase in OD in CH medium] glycopeptide-sensitive Staphylococcus aureus strains FDA09P (methicillin-sensitive) and H1
(Methicillin resistance), heteroglycopeptide resistant Staphylococcus aureus strain Mu3, glycopeptide resistant Staphylococcus aureus strain M
When u50 (VRSA) is cultured for 2 hours in CH medium, commercially available B
Compared to those cultured in the HI medium, as shown in FIG.
3.97nm ± 3.61nm (FDA209P), 25.99nm ± 2.29nm to 2
9.09nm ± 3.26nm (H1), 26.17nm ± 2.17nm to 38.44nm
± 1.65nm (Mu3), 31.88nm ± 1.56nm to 53.29nm ± 3.01
The cell wall thickness increased to nm (Mu50). However, the rate of increase in cell wall thickening was in the order of Mu50>Mu3>H1> FDA209,
The percentage of this increase for each strain was statistically significant (P <0.001).

【0031】これらの菌株をCH培地で保温中のOD値の上
昇を図5に示す。その上昇度は、明らかに、Mu50>Mu3>H
1>FDA209Pの順となり、細胞壁の厚さの増加と2時間目
のODの値は、良く相関した (相関係数:0.998)。
FIG. 5 shows the increase in the OD value of these strains while keeping them in a CH medium. The rise is apparently Mu50>Mu3> H
1> In order of FDA209P, the increase in cell wall thickness and the OD value at 2 hours were well correlated (correlation coefficient: 0.998).

【0032】実施例4 実施例3のように、CH培地で保温した菌を、30 mg/lの
バンコマイシンを含むBHI brothに接種して、それぞれ
のバンコマイシン耐性度を比較すると、図6に示すよう
に、それぞれの菌の増殖開始までの時間の逆数と細胞壁
の厚さ、及び、それぞれの菌の増殖開始までの時間の逆
数と図5における2時間後のOD値の上昇は、共に良く相
関した(相関係数:それぞれ0.923と0.956)。
Example 4 As in Example 3, bacteria incubated in a CH medium were inoculated into BHI broth containing 30 mg / l vancomycin, and the degree of vancomycin resistance was compared as shown in FIG. In addition, the reciprocal of the time until the start of the growth of each bacterium and the thickness of the cell wall, and the reciprocal of the time until the start of the growth of each bacterium and the increase in the OD value after 2 hours in FIG. 5 were well correlated. (Correlation coefficients: 0.923 and 0.956, respectively).

【0033】実施例5 BHI培地にCH培地の構成栄養素のそれぞれを、最終濃度
がCH培地と同様になるように加え、バンコマイシンを30
mg/Lになるように加えて、細胞壁合成のための栄養素
を多く含んだ培地BHI-CHを作成した。BHI-CHと、BHI培
地とに、それぞれ、BHI培地で一晩培養した菌株、Mu50,
Mu3, H1,FDA09Pを、それぞれ1×106CFU接種した。図7
に示すように、BHI-CHの場合(B)は、BHIの場合(A)と
比較して、すべての菌株がより早期に増殖開始した。し
かし、Mu3の増殖開始までの時間は、BHIの場合と比較
し、BHI-CHにおいては、他の菌株と比較して、より大き
く短縮した。そのため、バンコマイシン感受性菌株H1と
の鑑別が容易となった。すなわち、18〜30時間の間に菌
の増殖の有無を判定することにより、ヘテロ耐性菌と感
受性菌の区別を行うことができる。
Example 5 Each of the constituent nutrients of the CH medium was added to the BHI medium so that the final concentration was the same as that of the CH medium, and vancomycin was added to the medium for 30 minutes.
A medium BHI-CH containing a large amount of nutrients for cell wall synthesis in addition to mg / L was prepared. BHI-CH and BHI medium, respectively, a strain cultured overnight in BHI medium, Mu50,
Mu3, H1, and FDA09P were each inoculated at 1 × 10 6 CFU. FIG.
As shown in the figure, in the case of BHI-CH (B), all strains started to grow earlier than in the case of BHI (A). However, the time until the start of the growth of Mu3 was much shorter in BHI-CH than in BHI-CH compared to other strains. Therefore, it was easy to distinguish the strain from the vancomycin-sensitive strain H1. That is, hetero-resistant bacteria and susceptible bacteria can be distinguished by determining the presence or absence of bacterial growth during 18 to 30 hours.

【0034】[0034]

【発明の効果】本発明の方法は、細胞壁合成の強弱が関
係するすべての微生物の生理活性の研究、検査に有用で
あるだけでなく、細胞壁の合成阻害を作用機序とする抗
微生物薬剤への細胞の感受性に関する情報を得ることが
できる。さらにこの検査法は、グリコペプチド低感受性
の黄色ブドウ球菌の簡易的、迅速検出に有用な検査法で
ある。とくに、これらの方法により、ヘテロVRSAを含む
バンコマイシン低感受性菌の検出が可能となった。
The method of the present invention is useful not only for studying and examining the physiological activities of all microorganisms involved in the strength of cell wall synthesis, but also as an antimicrobial drug whose action mechanism is inhibition of cell wall synthesis. Can obtain information on the sensitivity of the cells. Furthermore, this test method is a useful test method for simple and rapid detection of S. aureus with low glycopeptide sensitivity. In particular, these methods have made it possible to detect vancomycin-insensitive bacteria containing hetero VRSA.

【0035】[0035]

【文献】1. Hiramatsu, K., H. Hanaki, T. Ino, K. Ya
buta, T. Oguri, and F. C.Tenover. 1997. Methicilli
n-resistant Staphylococcus aureus clinical strainw
ith reduced vancomycin susceptibility. Journal of
Antimicrobial Chemotherapy. 40:135-136. 2. Hiramatsu, K. 1998. The emergence of Staphyloco
ccus aureus with reduced susceptibility to vancomy
cin in Japan. American Journal of Medicine.104(5
A):7S-10S. 3. Hanaki, H., K. Kuwahara-Arai, S. Boyle-Vavra,
R. S. Daum, H.Labischinski, and K. Hiramatsu. 199
8. Activated cell-wall synthesis is associatedwith
vancomycin resistance in methicillin-resistant St
aphylococcus aureus clinical strains Mu3 and Mu50.
Journal of Antimicrobial Chemotherapy.42:199-209. 4. Hanaki, H., H. Labischinski, Y. Inaba, N. Kond
o, H. Murakami, and K.Hiramatsu. 1998. Increase in
glutamine-non-amidated muropeptides in the peptid
oglycan of vancomycin-resistant Staphylococcus aur
eus strain Mu50.Journal of Antimicrobial Cheomothe
rapy. 42:315-320. 5. Hiramatsu, K. 1998. Vancomycin resistance in st
aphylococci. Drug Resistance Updates. 1:135-150.
[Literature] 1. Hiramatsu, K., H. Hanaki, T. Ino, K. Ya
buta, T. Oguri, and FCTenover. 1997. Methicilli
n-resistant Staphylococcus aureus clinical strainw
ith reduced vancomycin susceptibility. Journal of
Antimicrobial Chemotherapy. 40: 135-136. 2. Hiramatsu, K. 1998. The emergence of Staphyloco
ccus aureus with reduced susceptibility to vancomy
cin in Japan.American Journal of Medicine.104 (5
A): 7S-10S. 3. Hanaki, H., K. Kuwahara-Arai, S. Boyle-Vavra,
RS Daum, H. Labischinski, and K. Hiramatsu. 199
8. Activated cell-wall synthesis is associatedwith
vancomycin resistance in methicillin-resistant St
aphylococcus aureus clinical strains Mu3 and Mu50.
Journal of Antimicrobial Chemotherapy. 42: 199-209. 4. Hanaki, H., H. Labischinski, Y. Inaba, N. Kond.
o, H. Murakami, and K. Hiramatsu. 1998. Increase in
glutamine-non-amidated muropeptides in the peptid
oglycan of vancomycin-resistant Staphylococcus aur
eus strain Mu50.Journal of Antimicrobial Cheomothe
rapy. 42: 315-320. 5. Hiramatsu, K. 1998. Vancomycin resistance in st
aphylococci.Drug Resistance Updates.1: 135-150.

【0036】6. Hiramatsu, K., and H. Hanaki. 1998.
Glycopeptide resistance in staphylococci. Current
Opinion in Infectious Diseases. 11:653-658. 7. Hiramatsu, K., T. Ito, and H. Hanaki. 1999. Ev
olution of methicillinand glycopeptide resistance
in Staphylococcus aureus., p. 221-242. InR. G. Fi
nch, and Williams, R. J., (ed.), Bailliereユs Cli
nical Infectious Disease, vol. 5. Bailliere Tindal
l, London. 8. Tenover, F. C., M. V. Lancaster, B. C. Hill, C.
D. Steward, S. A.Stocker, G. A. Hancock, C. M. O'
Hara, N. C. Clark, and K. Hiramatsu. 1998. Charact
erization of staphylococci with reduced susceptibi
lity to vancomycin and other glycopeptides. Journa
l of Clinical Microbiology. 36:1020-1027. 9. Hiramatsu, K., N. Aritaka, H. Hanaki, S. Kawasa
ki, Y. Hosoda, S. Hori, Y. Fukuchi, and I. Kobayas
hi. 1997. Dissemination in Japanese hospitals of s
trains of Staphylococcus aureus heterogeneously re
sistant to vancomycin. Lancet. 350:1668-1671. 10. Hanaki, H., and K. Hiramatsu. 1998. A novel me
thod of detecting Staphylococcus aureus heterogene
ously resistant to vancomycin (hetero-VRSA).Japane
se Journal of Antibiotics. 51:521-530 (in Japanes
e).
6. Hiramatsu, K., and H. Hanaki. 1998.
Glycopeptide resistance in staphylococci.Current
Opinion in Infectious Diseases. 11: 653-658. 7. Hiramatsu, K., T. Ito, and H. Hanaki. 1999. Ev
olution of methicillinand glycopeptide resistance
in Staphylococcus aureus., p. 221-242. InR. G. Fi
nch, and Williams, RJ, (ed.), Bailliere Yus Cli
nical Infectious Disease, vol. 5.Bailliere Tindal
l, London. 8. Tenover, FC, MV Lancaster, BC Hill, C.
D. Steward, SAStocker, GA Hancock, CM O '
Hara, NC Clark, and K. Hiramatsu. 1998.Charact
erization of staphylococci with reduced susceptibi
lity to vancomycin and other glycopeptides. Journa
l of Clinical Microbiology. 36: 1020-1027. 9. Hiramatsu, K., N. Aritaka, H. Hanaki, S. Kawasa
ki, Y. Hosoda, S. Hori, Y. Fukuchi, and I. Kobayas
hi. 1997. Dissemination in Japanese hospitals of s
trains of Staphylococcus aureus heterogeneously re
sistant to vancomycin. Lancet. 350: 1668-1671. 10. Hanaki, H., and K. Hiramatsu. 1998. A novel me
thod of detecting Staphylococcus aureus heterogene
ously resistant to vancomycin (hetero-VRSA) .Japane
se Journal of Antibiotics. 51: 521-530 (in Japanes
e).

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1において、増殖に必須なアミノ酸を欠
如した培地 Cui-Hiramatsu(CH)broth(B)、および、CHか
らさらにグルコースを欠如したCHglu-(A)、CHに細胞壁
合成を増強するグルタミン(glutamine)を加えた CHGn
(D)、CHglu-に細胞壁アミノ糖の前駆体である N-acetyl
-glucosamineを加えた CHNAG(C)を用いて、黄色ブドウ
球菌株 Mu50を37℃2時間保温した後の細胞壁の厚さを
電子顕微鏡で観察した写真である。
FIG. 1 In Example 1, cell wall synthesis was enhanced by Cui-Hiramatsu (CH) broth (B), a medium lacking amino acids essential for growth, and CHglu- (A), CH further lacking glucose from CH. CHGn with glutamine
(D), N-acetyl, a precursor of cell wall amino sugars on CHglu-
5 is a photograph obtained by observing, with an electron microscope, the thickness of cell walls after keeping S. aureus strain Mu50 at 37 ° C. for 2 hours using CHNAG (C) to which -glucosamine has been added.

【図2】実施例1における保温中の菌懸濁液の濁度を、
吸光度計を用いて測定した図である。
FIG. 2 shows the turbidity of the bacterial suspension during the incubation in Example 1.
It is the figure measured using the absorptiometer.

【図3】実施例1で、2時間保温した菌(A-D)を、バ
ンコマイシン30 mg/l を含むBHIbrothに接種し培養した
ときの、菌の増殖とバンコマイシン濃度変化を表した図
である。
FIG. 3 is a graph showing bacterial growth and changes in vancomycin concentration when bacteria (AD) incubated for 2 hours were inoculated and cultured in BHIbroth containing vancomycin 30 mg / l in Example 1.

【図4】実施例3における、グリコペプチド感受性黄色
ブドウ球菌株FDA09P(メチシリン感受性)とH1(メチシ
リン耐性)、ヘテローグリコペプチド耐性黄色ブドウ球
菌株Mu3、グリコペプチド耐性黄色ブドウ球菌株Mu50(V
RSA)を、市販のBHI培地とCH培地の中で培養したときの
細胞壁の厚さの変化を電子顕微鏡で観察した写真であ
る。
FIG. 4 shows glycopeptide-sensitive Staphylococcus aureus strains FDA09P (methicillin-sensitive) and H1 (methicillin-resistant), heteroglycopeptide-resistant Staphylococcus aureus strain Mu3, and glycopeptide-resistant Staphylococcus aureus strain Mu50 (V) in Example 3.
7 is a photograph obtained by observing, under an electron microscope, a change in cell wall thickness when (RSA) was cultured in a commercially available BHI medium and CH medium.

【図5】実施例3における培養菌株のCH培地で保温中の
OD値の上昇を表した図である。
FIG. 5: Incubation of the culture strain in Example 3 with CH medium
It is a figure showing rise of OD value.

【図6】CH培地で保温した各菌を、30 mg/Lのバンコマ
イシンを含むBHI brothに接種して、それぞれのバンコ
マイシン耐性度を比較した図である。
FIG. 6 is a diagram comparing each degree of vancomycin resistance by inoculating each of the bacteria kept in a CH medium into BHI broth containing 30 mg / L vancomycin.

【図7】バンコマイシン30 mg/Lを含むBHI-CH(B)とBHI
培地(A)でMu50, Mu3, H1,FDA09を培養して、細胞増殖
を比較した図である。
FIG. 7: BHI-CH (B) containing 30 mg / L vancomycin and BHI
FIG. 3 is a diagram comparing cultures of cells by culturing Mu50, Mu3, H1, and FDA09 in a medium (A).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) (C12N 1/20 (C12N 1/20 C12R 1:445) C12R 1:445) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) (C12N 1/20 (C12N 1/20 C12R 1: 445) C12R 1: 445)

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 微生物の細胞増殖を起こさない培養条件
下で細胞壁の合成を行わせ、微生物の細胞壁合成能の度
合いを測定することにより微生物の生理活性を検出する
方法。
1. A method for detecting a biological activity of a microorganism by synthesizing a cell wall under culture conditions that do not cause cell growth of the microorganism, and measuring the degree of cell wall synthesis ability of the microorganism.
【請求項2】 微生物の細胞壁合成能の測定法が、微生
物懸濁液の吸光度測定であるところの請求項1の検出
法。
2. The detection method according to claim 1, wherein the method for measuring the cell wall synthesizing ability of the microorganism is an absorbance measurement of the microorganism suspension.
【請求項3】 生理活性が細胞壁合成阻害薬に対する感
受性である請求項1又は2の方法。
3. The method according to claim 1, wherein the physiological activity is sensitivity to a cell wall synthesis inhibitor.
【請求項4】 生理活性がグリコペプチド系抗菌薬に対
する感受性である請求項1又は2の方法。
4. The method according to claim 1, wherein the physiological activity is sensitivity to a glycopeptide antibacterial drug.
【請求項5】 微生物が黄色ブドウ球菌である請求項4
の方法。
5. The method according to claim 4, wherein the microorganism is Staphylococcus aureus.
the method of.
【請求項6】 用いる培養条件が微生物の増殖、分裂に
必要な栄養素の一部を含まず、かつ細胞壁の合成を助け
る栄養素を多く含んだ培地を用いることを特徴とする請
求項5の方法。
6. The method according to claim 5, wherein a culture medium used does not contain a part of nutrients necessary for the growth and division of the microorganism, and uses a medium rich in nutrients for assisting cell wall synthesis.
【請求項7】 グリコペプチド系抗菌薬がバンコマイシ
ンである請求項6の方法。
7. The method according to claim 6, wherein the glycopeptide antibacterial agent is vancomycin.
【請求項8】 微生物の増殖、分裂に必要な栄養素の一
部を含まず、細胞壁の合成を助ける栄養素を多く含んだ
培地を用いて細胞壁の合成を行った後、抗微生物薬感受
性テストを行うことを特徴とする抗微生物薬感受性検査
法。
8. A cell wall is synthesized using a medium that does not contain some of the nutrients necessary for the growth and division of microorganisms and contains a large amount of nutrients that assist in cell wall synthesis, and then an antimicrobial drug susceptibility test is performed. An antimicrobial drug susceptibility test method, characterized in that:
【請求項9】 微生物が黄色ブドウ球菌であり、抗微生
物薬が細胞壁合成阻害抗菌薬である請求項8の検査法。
9. The method according to claim 8, wherein the microorganism is Staphylococcus aureus and the antimicrobial agent is an antibacterial agent inhibiting cell wall synthesis.
【請求項10】 細胞壁合成阻害薬がグリコペプチド系
抗菌薬である請求項9の検査法。
10. The method according to claim 9, wherein the cell wall synthesis inhibitor is a glycopeptide antibacterial agent.
【請求項11】 グリコペプチド系抗菌薬がバンコマイ
シンである請求項10の検査法。
11. The method according to claim 10, wherein the glycopeptide antibacterial agent is vancomycin.
【請求項12】 細胞壁の合成を助ける栄養素を特に多
く含み、かつ、抗微生物薬を含んだ培地に黄色ブドウ球
菌を接種し、その細胞増殖を観察することにより行う抗
微生物薬感受性検査法。
12. An antimicrobial drug susceptibility test method comprising inoculating a medium containing an especially large amount of nutrients that assist the synthesis of cell walls and containing an antimicrobial agent with Staphylococcus aureus and observing cell proliferation.
【請求項13】 抗微生物薬がグリコペプチド系抗菌薬
である請求項12の検査法。
13. The test method according to claim 12, wherein the antimicrobial agent is a glycopeptide antibacterial agent.
【請求項14】 グリコペプチド系抗菌薬がバンコマイ
シンである請求項13の検査法。
14. The test method according to claim 13, wherein the glycopeptide antibacterial agent is vancomycin.
【請求項15】 細胞増殖の観察が、培養一定時間後の
増殖の有無であるところの請求項13又は14の検出
法。
15. The method according to claim 13, wherein the observation of cell proliferation is the presence or absence of proliferation after a certain period of culture.
【請求項16】 細胞増殖の観察が、増殖が検出される
までに要する時間であるところの13又は14の検出
法。
16. The method for detecting 13 or 14, wherein the observation of cell proliferation is the time required until the proliferation is detected.
【請求項17】 微生物の増殖、分裂に必要な栄養素の
一部を含まず、かつ細胞壁の合成を助ける栄養素を多く
含んだ微生物の生理活性検出用培地。
17. A medium for detecting the biological activity of a microorganism, which does not contain a part of nutrients necessary for the growth and division of the microorganism, and contains a large amount of nutrients for assisting cell wall synthesis.
【請求項18】 細胞増殖をおこし得る培地に、細胞増
殖を妨げる抗菌薬又は化学物質を加えた微生物の生理活
性検出用培地。
18. A medium for detecting the physiological activity of a microorganism, comprising a medium capable of causing cell growth and an antibacterial agent or a chemical substance that inhibits cell growth added.
【請求項19】 細胞壁の合成を助ける栄養素を特に多
く含み、かつ、抗微生物薬を含んだ抗微生物薬感受性検
査用培地。
19. A medium for testing antimicrobial susceptibility, which is particularly rich in nutrients that assist in the synthesis of cell walls and contains an antimicrobial.
JP2000100315A 2000-04-03 2000-04-03 Method for detecting physiological activity of microorganism Pending JP2001275696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000100315A JP2001275696A (en) 2000-04-03 2000-04-03 Method for detecting physiological activity of microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000100315A JP2001275696A (en) 2000-04-03 2000-04-03 Method for detecting physiological activity of microorganism

Publications (1)

Publication Number Publication Date
JP2001275696A true JP2001275696A (en) 2001-10-09

Family

ID=18614538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100315A Pending JP2001275696A (en) 2000-04-03 2000-04-03 Method for detecting physiological activity of microorganism

Country Status (1)

Country Link
JP (1) JP2001275696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112400023A (en) * 2019-03-14 2021-02-23 株式会社日立高新技术 Method for examining drug sensitivity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078382A (en) * 1996-09-04 1998-03-24 Denka Seiken Co Ltd Method of extracting multiple resistant staphylococcus antigen
WO1998043622A1 (en) * 1997-03-28 1998-10-08 University Of Florida Use of inhibitors of undecaprenol kinase to inhibit cell wall biosynthesis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078382A (en) * 1996-09-04 1998-03-24 Denka Seiken Co Ltd Method of extracting multiple resistant staphylococcus antigen
WO1998043622A1 (en) * 1997-03-28 1998-10-08 University Of Florida Use of inhibitors of undecaprenol kinase to inhibit cell wall biosynthesis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112400023A (en) * 2019-03-14 2021-02-23 株式会社日立高新技术 Method for examining drug sensitivity
JP2022511399A (en) * 2019-03-14 2022-01-31 株式会社日立ハイテク Drug susceptibility testing method
JP7461935B2 (en) 2019-03-14 2024-04-04 株式会社日立ハイテク Drug susceptibility testing methods

Similar Documents

Publication Publication Date Title
MacKay et al. Growth-inhibitory and bactericidal effects of human parotid salivary histidine-rich polypeptides on Streptococcus mutans
Ofek et al. Suppression of bacterial adherence by subminimal inhibitory concentrations of β-lactam and aminoglycoside antibiotics
EP2465939B1 (en) Medium for the specific detection of resistant organisms
US7632657B2 (en) Method of detecting meticillin-resistant microorganisms
GB2435475A (en) Selective culture medium
Merghni et al. Adhesive properties and extracellular enzymatic activity of Staphylococcus aureus strains isolated from oral cavity
Shah et al. Urinary calculi: a microbiological and biochemical analysis at a tertiary care hospital in Eastern Nepal
Peacock Staphylococcus aureus
EP2331702A2 (en) Culture medium enabling the differentiation of staphylococcus aureus from coagulase-negative staphylococci
Morales et al. An electrochemical method for simultaneous detection and identification of Escherichia coli, Staphylococcus aureus and Salmonella choleraesuis using a glucose oxidase-peroxidase composite biosensor
JP2001275696A (en) Method for detecting physiological activity of microorganism
US20050026813A1 (en) Antibiotic-metal complexes in the detection of gram-positive bacteria and other biological analytes
JP2016168058A (en) Disk test specimen for detecting drug-resistant bacterium
KR102189833B1 (en) Media for disk diffusion method for evaluating susceptibility to antibiotics
KR101824588B1 (en) A culture medium for screening or enrichment of methicillin-resistant s. aureus
JP3964178B2 (en) Method for testing drug sensitivity of metallo-β-lactamase producing bacteria
EP3763809A1 (en) Method for neutralization of antibiotics in a culture medium
FR2732693A1 (en) Incubation limit indicator for microbial growth
Son et al. In vitro efficacy of N-acetylcysteine in combination with antimicrobial agents against Pseudomonas aeruginosa in canine otitis externa
CA2458101C (en) Van a and van b vancomycin resistant enterococci detection media and the method of detecting the organisms using the media
Omran et al. Molecular investigation of mecgene among coagulase negative Staphylococcus isolated from different cases
Heuck et al. Iron supply of staphylococci and of micrococci by α-ketoacids
JPH05227992A (en) Medium for bacterial cell culture
Salah et al. Inhibition of the vancomycin resistance in Staphylococcus aureus in Egypt using silver nanoparticles
Onolitola et al. Nasal carriage of methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility (MRSA-RVS) by healthy adults in Zaria, Nigeria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427