JP2001275247A - Element failure detecting device - Google Patents

Element failure detecting device

Info

Publication number
JP2001275247A
JP2001275247A JP2000088644A JP2000088644A JP2001275247A JP 2001275247 A JP2001275247 A JP 2001275247A JP 2000088644 A JP2000088644 A JP 2000088644A JP 2000088644 A JP2000088644 A JP 2000088644A JP 2001275247 A JP2001275247 A JP 2001275247A
Authority
JP
Japan
Prior art keywords
reactor
current
phase
failure
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000088644A
Other languages
Japanese (ja)
Other versions
JP3367502B2 (en
Inventor
Masakuni Asano
正邦 浅野
Katsuo Matsubara
克夫 松原
Kensho Tokuda
憲昭 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2000088644A priority Critical patent/JP3367502B2/en
Publication of JP2001275247A publication Critical patent/JP2001275247A/en
Application granted granted Critical
Publication of JP3367502B2 publication Critical patent/JP3367502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Protection Of Static Devices (AREA)
  • Rectifiers (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an element failure detecting device of low cost, which is compact and detects surely element failure of a three-phase rectifier current limiting apparatus. SOLUTION: The respective primary sides of transformers T1 to T3 are connected in series with the three-phase AC system 14, one of the secondary sides of the transformers T1 to T3 is shorted, and diodes D1 to D6 connected in parallel where positive and negative poles are inverted are connected with the other side. Thus a three-phase rectifier circuit 11 is constituted. The opposite sides of the diodes D1 to D6 connected with the transformers are divided into positive and negative and connected. A DC reactor L is connected between the positive and the negative, thus constituting the three-phase rectifier current limiting apparatus. A search coil 15 which is the element failure detecting device for detecting failures of the diodes D1 to D6 and detects a ripple current in a current in the DC reactor L, a bandpass filter 19 for extracting the fundamental wave component of the ripple current, and a comparator 23 which judges the failure of the elements when the output of the bandpass filter is higher than a previously determined discrimination level are installed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は素子故障検出装置に
関し、例えば送配電系統などの三相交流系統における事
故電流を抑制する限流装置において、その限流装置を構
成するサイリスタやダイオードの整流素子の故障を検出
する素子故障検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element failure detecting device, and more particularly to a current limiting device for suppressing a fault current in a three-phase AC system such as a transmission and distribution system. The present invention relates to an element failure detection device that detects a failure of a device.

【0002】[0002]

【従来の技術】例えば送配電系統などの三相交流系統に
おいては、交流系統の事故電流を抑制することを目的と
して、限流装置を設置するようにしている。このような
限流装置の一例として、図5に示すような三相整流回路
1および直流リアクトルLを具備した構成のものがあ
る。
2. Description of the Related Art For example, in a three-phase AC system such as a transmission and distribution system, a current limiting device is provided for the purpose of suppressing a fault current in the AC system. As an example of such a current limiting device, there is a current limiting device having a three-phase rectifier circuit 1 and a DC reactor L as shown in FIG.

【0003】この限流装置は、三相交流電源2および電
源変圧器3からなる三相交流系統4と直列に遮断器CB
13を介して三相各相に対応して設けられた変圧器T1
3に接続されている。つまり、各変圧器T13の一次
側を三相交流系統4と直列にそれぞれ接続し、また、各
変圧器T13の二次側の一方を短絡し、その二次側の他
方に正負逆極性に並列接続されたダイオードD16をそ
れぞれ接続した三相整流回路1を備え、各ダイオードD
16の変圧器T13と接続された反対側を正側と負側に
分けて接続し、その正負間に直流リアクトルLを接続し
た構成を有する。
[0003] This current limiting device includes a circuit breaker CB in series with a three-phase AC system 4 including a three-phase AC power supply 2 and a power transformer 3.
Transformers T 1 provided for each of the three phases via 1 to 3
Connected to ~ 3 . That is, the primary side of each of the transformers T 1 to T 3 is connected in series with the three-phase AC system 4, and one of the secondary sides of each of the transformers T 1 to T 3 is short-circuited, and the other side of the secondary side is connected. And a three-phase rectifier circuit 1 in which diodes D 1 to D 6 connected in parallel with opposite polarities are connected.
1 to the opposite side connected to the transformer T 1 to 3 of 6 divided into the positive side and the negative side is connected, it has the configuration of connecting the DC reactor L between its positive and negative.

【0004】三相交流系統4の定常時、限流装置では、
直流リアクトルLに概ね直流電流が流れダイオードD1
6がほとんどの期間オンとなり、変圧器T13の二次
側が短絡された状態となるので、変圧器T13の一次側
から見たインピーダンスは漏れインピーダンス相当の小
さな値となる。
In the steady state of the three-phase AC system 4, the current limiting device
Generally, a DC current flows through DC reactor L and diode D 1
1-6 becomes the most of the time on and the secondary side of the transformer T 1 - 3 is a state of being short-circuited, the impedance seen from the primary side of the transformer T 1 - 3 becomes a small value equivalent leakage impedance.

【0005】一方、三相交流系統4に短絡事故などが発
生して直流リアクトルLに流れる直流電流より大きな事
故電流が流れようとすると、ダイオードD16がオフし
て直流リアクトルLの電流が急増しようとして直流リア
クトルLのインダクタンスが有効となり、前記変圧器T
13の二次側短絡が解消されることにより三相交流系統
4の事故電流を抑制することができる。
On the other hand, if a short circuit fault or the like occurs in the three-phase AC system 4 and an accident current larger than the DC current flowing in the DC reactor L flows, the diodes D 1 to D 6 are turned off and the current of the DC reactor L is reduced. The inductance of the DC reactor L becomes effective in order to increase rapidly, and the transformer T
The fault current of the three-phase AC system 4 can be suppressed by eliminating the secondary-side short circuits 1 to 3 .

【0006】この限流装置におけるダイオードD16
素子故障は、各ダイオードD16に設けられた電流変成
器CT16や計器用変圧器PT16を用いることによ
り、素子通過電流および素子端子間電圧を検出すること
によって行われている。
[0006] element failure of the diode D 1 ~ 6 of this current limiting device, by using a current transformer CT 1 ~ 6 and instrument transformer PT 1 ~ 6 provided in each of the diodes D 1 ~ 6, element This is performed by detecting a passing current and a voltage between element terminals.

【0007】[0007]

【発明が解決しようとする課題】ところで、前述した限
流装置では、ダイオードD16の素子故障を検出するに
あたって、各ダイオードD16に設けられた電流変成器
CT16や計器用変圧器PT16を用いることにより、
素子通過電流および素子端子間電圧を検出し、その検出
結果に基づいて素子故障を検出するようにしているが、
この場合、各ダイオードD16に電流変成器CT16
よび計器用変圧器PT16をそれぞれ設けなければなら
ず、コストアップを招来すると共に装置が大型化すると
いう問題があった。
Meanwhile [0008] In current limiting device described above, the diode D 1 ~ order to detect the element failure 6, current transformer CT 1 ~ 6 and instruments provided in each of the diodes D 1 ~ 6 by using use transformers PT 1 ~ 6,
The device passing current and the voltage between the device terminals are detected, and the device failure is detected based on the detection result.
In this case, it is necessary to provide each of the diode D 1 ~ 6 current transformer CT 1 ~ 6 and the instrument transformer PT 1 ~ 6 respectively, there is a problem that the apparatus becomes large as well as lead to cost .

【0008】また、前記ダイオードD16の素子故障に
は、ダイオードD16に順方向電流が流れなくなる非導
通破壊とダイオードD16に逆方向電流が流れる逆導通
破壊とがあるが、前者の非導通破壊を検出することは可
能であるが、後者の逆導通破壊については、定常運転
時、ダイオードD16が導通状態で運転されるため、逆
導通破壊を検出することは困難である。このため、前記
逆導通破壊の検出は、定期点検時に判断するしか方法が
なく、その定期点検も、通常、年に一度程度であるの
で、その間に素子故障が発生すると、限流装置はその機
能を低下させた状態で運転されることになる。
Further, the diode D 1 elements failure to 6, there is a reverse conducting breaking reverse current flows through the diodes D 1 to 6 in a non-conductive destruction and diodes D 1 to 6 comprising no forward current flows However, it is possible to detect the non-conductive breakdown of the former, but as for the reverse conductive breakdown of the latter, the diode D 1 to 6 are operated in a conductive state during normal operation, so that the reverse conductive breakdown must be detected. It is difficult. For this reason, the reverse conduction breakdown can only be detected at the time of periodic inspection, and the periodic inspection is usually performed only once a year. Will be operated in a state where is reduced.

【0009】そこで、本発明の目的は、三相整流型限流
装置の素子故障を確実に検出することができ、コンパク
トで安価な素子故障検出装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a compact and inexpensive element failure detecting device which can reliably detect an element failure of a three-phase rectifier type current limiting device.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
の技術的手段として、請求項1の発明は、三相交流系統
と直列に変圧器の一次側をそれぞれ接続し、前記変圧器
の二次側の一方を短絡し、その他方に正負逆極性に並列
接続した整流素子をそれぞれ接続した三相整流回路を備
え、前記各相整流素子の変圧器と接続された反対側を正
負に分けて接続し、その正負間に直流リアクトルを接続
した三相整流型限流装置において、前記整流素子の故障
を検出するための素子故障検出装置であって、前記直流
リアクトルに流れる電流中のリップル電流を検出する検
出手段と、前記リップル電流の基本波成分を抽出する抽
出手段と、前記抽出手段の出力が予め定める弁別レベル
以上であるときには、素子故障であると判定する判定手
段とを含むことを特徴とする。
As a technical means for achieving the above object, the invention of claim 1 is to connect a primary side of a transformer in series with a three-phase AC system, respectively, One side of the secondary side is short-circuited, and the other side is provided with a three-phase rectifier circuit in which rectifiers connected in parallel to the positive and negative polarities are respectively connected, and the opposite side connected to the transformer of each phase rectifier is divided into positive and negative. Connected, in a three-phase rectifier type current limiting device in which a DC reactor is connected between the positive and negative sides, an element failure detecting device for detecting a failure of the rectifying element, wherein a ripple current in a current flowing through the DC reactor is detected. Detecting means for detecting, a extracting means for extracting a fundamental wave component of the ripple current, and determining means for determining that an element failure has occurred when an output of the extracting means is equal to or higher than a predetermined discrimination level. And butterflies.

【0011】本発明では、ダイオードやサイリスタなど
で実現される整流素子からなる三相整流回路と直流リア
クトルとを備え、前記直流リアクトルの電流減衰時定数
を系統周波数に対応して適宜選択することによって、定
常時のインピーダンスが略零であり、故障時には直流リ
アクトルの電流保存作用によって瞬時に高インピーダン
スとなって限流効果を発揮させる三相整流型限流装置に
関して、前記三相整流回路を構成する整流素子の故障を
素子故障検出装置により検出する。
According to the present invention, there is provided a three-phase rectifier circuit including a rectifier element realized by a diode or a thyristor and a DC reactor, and a current decay time constant of the DC reactor is appropriately selected according to a system frequency. The three-phase rectifier circuit is configured with respect to a three-phase rectifier type current limiting device that has a substantially zero impedance at a steady state and instantaneously has a high impedance due to the current preserving action of the DC reactor and exhibits a current limiting effect when a failure occurs. The failure of the rectifier is detected by an element failure detector.

【0012】素子故障検出装置では、整流素子の故障
を、直流リアクトルに流れるリップル電流の基本波成分
から検出する。つまり、前記直流リアクトルには、素子
の正常時、常に基本波周波数の6倍のリップルを少量含
んだ直流電流が流れており、素子故障が発生すると、そ
の素子が整流できなくなってしまうので、前記リップル
電流には基本波周波数成分が含有される。したがって、
直流リアクトルに流れるリップル電流を検出して、その
リップル電流が基本波周波数の6倍であれば、素子は正
常であり、基本波周波数が予め定める弁別レベル以上含
有されていれば、素子故障であると判断することができ
る。このように直流リアクトルに流れる電流のみを検出
するだけで済むので、各整流素子ごとに電流変成器およ
び計器用変圧器を設ける必要がなく、コンパクトで安価
な限流装置を提供できる。
The element failure detecting device detects a failure of the rectifier element from a fundamental wave component of a ripple current flowing in the DC reactor. That is, when the element is normal, a direct current including a small amount of ripple that is six times the fundamental frequency always flows through the DC reactor. If an element failure occurs, the element cannot be rectified. The ripple current contains a fundamental frequency component. Therefore,
A ripple current flowing in the DC reactor is detected. If the ripple current is six times the fundamental frequency, the element is normal. If the fundamental frequency is higher than a predetermined discrimination level, the element is faulty. Can be determined. Since only the current flowing through the DC reactor need be detected in this way, it is not necessary to provide a current transformer and an instrument transformer for each rectifier element, and a compact and inexpensive current limiting device can be provided.

【0013】また、請求項2の発明は、前記請求項1の
発明における検出手段として、前記直流リアクトルの磁
界を検出するサーチコイルを使用することを特徴とす
る。つまり、通常、直流リアクトルには空芯コイルが用
いられるので、その空芯コイル内に、比較的感度が良好
なサーチコイルを配置することができる。空芯コイルを
流れる電流の変動による磁場変動によってサーチコイル
に誘起された電圧に基づいて、直流リアクトルに流れる
リップル電流を検出する。また、系統電位の空芯コイル
に対して、ほぼ大地電位のサーチコイルとの絶縁も容易
に確保することができる。
Further, the invention of claim 2 is characterized in that a search coil for detecting the magnetic field of the DC reactor is used as the detection means in the invention of claim 1. That is, since an air-core coil is usually used for a DC reactor, a search coil having relatively good sensitivity can be arranged in the air-core coil. A ripple current flowing in the DC reactor is detected based on a voltage induced in the search coil due to a magnetic field variation due to a variation in the current flowing through the air-core coil. Further, the insulation of the air-core coil having the system potential from the search coil having the substantially ground potential can be easily secured.

【0014】[0014]

【発明の実施の形態】本発明の実施形態について以下に
詳述する。本発明を適用する三相整流型限流装置は、図
2に示すように三相整流回路11および直流リアクトル
Lを具備する。つまり、三相交流電源12および電源変
圧器13からなる三相交流系統14と直列に遮断器CB
13を介して三相各相に対応して設けられた変圧器T1
3に接続されている。各変圧器T13の一次側を三相
交流系統14と直列にそれぞれ接続し、また、各変圧器
13の二次側の一方を短絡し、その二次側の他方に正
負逆極性に並列接続されたダイオードD16をそれぞれ
接続した三相整流回路11を備え、各ダイオードD16
の変圧器T13と接続された反対側を正側と負側に分け
て接続し、その正負間に直流リアクトルLを接続した構
成を有する。なお、この限流装置は、整流素子のすべて
あるいは一部をサイリスタで構成することも可能であ
る。
Embodiments of the present invention will be described in detail below. A three-phase rectifier type current limiting device to which the present invention is applied includes a three-phase rectifier circuit 11 and a DC reactor L as shown in FIG. That is, the circuit breaker CB is connected in series with the three-phase AC system 14 including the three-phase AC power supply 12 and the power transformer 13.
Transformers T 1 provided for each of the three phases via 1 to 3
Connected to ~ 3 . The primary side of the transformer T 1 ~ 3 respectively connected to the three-phase AC system 14 in series, also a short circuit one of the secondary side of the transformer T 1 ~ 3, the positive and negative on the other of the secondary side comprising a three-phase rectifier circuit 11 of the diode connected in parallel with D 1 ~ 6 were connected to the opposite polarity, the diode D 1 ~ 6
The transformer T 1 ~ 3 and connected opposite to connect separately to the positive side and the negative side has a configuration of connecting the DC reactor L between its positive and negative. In this current limiting device, all or a part of the rectifying element can be configured by a thyristor.

【0015】三相交流系統14の定常時、限流装置で
は、直流リアクトルLに概ね直流電流が流れダイオード
16がほとんどの期間オンとなり、変圧器T13の二
次側が短絡された状態となるので、変圧器T13の一次
側から見たインピーダンスは漏れインピーダンス相当の
小さな値となる。
When the three-phase AC system 14 is in a steady state, in the current limiting device, a DC current flows substantially through the DC reactor L, the diodes D 1 to D 6 are turned on for almost the entire period, and the secondary sides of the transformers T 1 to T 3 are short-circuited. since the state, the impedance seen from the primary side of the transformer T 1 ~ 3 becomes a small value equivalent leakage impedance.

【0016】一方、三相交流系統14に短絡事故などが
発生して直流リアクトルLに流れる直流電流より大きな
事故電流が流れようとすると、ダイオードD16がオフ
して直流リアクトルLの電流が急増しようとして直流リ
アクトルLのインダクタンスが有効となり、前記変圧器
13の二次側短絡が解消されることにより三相交流系
統14の事故電流を抑制することができる。
On the other hand, if a short circuit fault or the like occurs in the three-phase AC system 14 and an accident current larger than the DC current flowing in the DC reactor L flows, the diodes D 1 to D 6 are turned off and the current of the DC reactor L is reduced. the inductance of the DC reactor L trying surge is enabled, by the secondary side short circuit of the transformer T 1 ~ 3 is eliminated it is possible to suppress the fault current of the three-phase AC system 14.

【0017】ここで、限流装置を構成する直流リアクト
ルLには、通常、図3(a)(b)に示すように空芯コ
イルが用いられるので、その空芯コイルの中心に、比較
的感度が良好なサーチコイル15を配置する。空芯コイ
ルを流れる電流の変動による磁場変動によってサーチコ
イル15に誘起された電圧に基づいて、直流リアクトル
Lに流れるリップル電流を検出する。このように直流リ
アクトルLの磁界を検出するサーチコイル15を配置す
るだけで前記直流リアクトルLに流れるリップル電流を
検出することができ、各ダイオードD16ごとに電流変
成器CT16および計器用変圧器PT16(図5参照)
を設ける必要がなく、コンパクトで安価な限流装置を提
供できる。
Here, as shown in FIGS. 3 (a) and 3 (b), an air-core coil is usually used for the DC reactor L constituting the current limiting device. A search coil 15 having good sensitivity is arranged. A ripple current flowing through the DC reactor L is detected based on a voltage induced in the search coil 15 due to a magnetic field variation due to a variation in the current flowing through the air-core coil. Thus, the ripple current flowing through the DC reactor L can be detected only by disposing the search coil 15 for detecting the magnetic field of the DC reactor L, and the current transformers CT 1 to CT 6 and D 1 to D 6 are provided for each of the diodes D 1 to D 6. Instrument transformers PT 1 to 6 (see Fig. 5)
Therefore, a compact and inexpensive current limiting device can be provided.

【0018】図1は本発明の一実施形態として、図2の
三相整流型限流装置に適用した素子故障検出装置の電気
的構成を示す。また、図3に示すように空芯コイルで構
成される前記直流リアクトルL内にサーチコイル15が
配置されており、この空芯コイルを流れる電流の変動に
よる磁場変動によってサーチコイル15に誘起された電
圧は、図1に示す検出抵抗16および過電圧防止用のツ
ェナダイオード17を介してアンプ18に入力される。
FIG. 1 shows, as one embodiment of the present invention, an electric configuration of an element failure detecting device applied to the three-phase rectification type current limiting device of FIG. Further, as shown in FIG. 3, a search coil 15 is arranged in the DC reactor L composed of an air-core coil, and the search coil 15 is induced in the search coil 15 by a magnetic field fluctuation due to a fluctuation of a current flowing through the air-core coil. The voltage is input to the amplifier 18 via the detection resistor 16 and the zener diode 17 for preventing overvoltage shown in FIG.

【0019】アンプ18の出力は、50Hz又は60H
zの系統周波数に対応した通過帯域を有するバンドパス
フィルタ19によって、その基本波成分が抽出されて全
波整流回路20に入力される。全波整流回路20では、
前記基本波成分の脈動のピーク値が検出され、そのピー
ク値に対して、加算器21において、バイアス電源22
からの所定のバイアス電圧が加算された後、比較器23
に入力される。比較器23は、前記加算器21の出力電
圧を所定の閾値電圧でレベル弁別し、前記閾値電圧以上
である時には、ハイレベルの故障判定出力をANDゲー
ト24の一方の入力へ出力する。ANDゲート24の他
方の入力には、継電器などの検知手段25から、正常運
転時にはハイレベルの出力が入力されている。ANDゲ
ート24からは、正常運転状態で、比較器23から素子
故障を表わす出力が入力された時に、素子故障を報知す
るための出力が導出され、ランプやブザーなどによって
運転員に報知される。
The output of the amplifier 18 is 50 Hz or 60 H
The fundamental component is extracted by a band-pass filter 19 having a pass band corresponding to the system frequency of z and input to the full-wave rectifier circuit 20. In the full-wave rectifier circuit 20,
The peak value of the pulsation of the fundamental wave component is detected.
After the predetermined bias voltage from
Is input to The comparator 23 performs level discrimination of the output voltage of the adder 21 with a predetermined threshold voltage, and outputs a high-level failure determination output to one input of the AND gate 24 when the output voltage is equal to or higher than the threshold voltage. During normal operation, a high-level output is input to the other input of the AND gate 24 from a detecting means 25 such as a relay. When an output indicating an element failure is input from the comparator 23 in the normal operation state from the AND gate 24, an output for reporting the element failure is derived, and is reported to the operator by a lamp, a buzzer, or the like.

【0020】前記構成からなる素子故障検出装置におい
て、直流リアクトルLの定格電流を直流300(A)、
空芯コイルの中心磁場が0.15(T)程度とすると、
直流リアクトルLの空芯コイルのリップル電流は、20
(AP-P)であり、このリップル電流によって生じる磁
場変動幅ΔBは、 ΔB=0.15×(20/2)/300=0.005
(T) となる。この磁場変動によって、サーチコイル15に誘
起される電圧VSは、磁束φとし、そのサーチコイル1
5の巻数をnとし、系統周波数をfとすると、 VS=n(δφ/δt)=2πf・nφ=2πf・n・SΔB =2π×50×0.005×nS=1.57×nS となる。ただし、Sはサーチコイル15の面積(m2
である。また、f=50(Hz)で近似している。
In the device failure detecting device having the above-described configuration, the rated current of the DC reactor L is 300 (A) DC,
Assuming that the center magnetic field of the air-core coil is about 0.15 (T),
The ripple current of the air-core coil of the DC reactor L is 20
(A PP ), and the magnetic field fluctuation width ΔB generated by the ripple current is: ΔB = 0.15 × (20/2) /300=0.005
(T). The voltage V S induced in the search coil 15 by this magnetic field fluctuation is changed to a magnetic flux φ, and the search coil 1
Assuming that the number of turns of No. 5 is n and the system frequency is f, V S = n (δφ / δt) = 2πf · nφ = 2πf · n · SΔB = 2π × 50 × 0.005 × ns = 1.57 × ns Become. Where S is the area of the search coil 15 (m 2 )
It is. Also, the approximation is made at f = 50 (Hz).

【0021】一方、後段回路への信号レベルとしては、
S=1(VP-P)程度であれば充分であり、サーチコイ
ル15の直径を例えば50(mm)とすると、 S=(π/4×0.052)=0.001963(m2) となり、巻数nが、 n=1/(1.57×0.001963)=324(タ
ーン) 程度のコイルで実現することができる。
On the other hand, the signal level to the subsequent circuit is
It is sufficient if V S = 1 (V PP ). If the diameter of the search coil 15 is, for example, 50 (mm), S = (π / 4 × 0.05 2 ) = 0.19663 (m 2 ) And the number of turns n can be realized by a coil of about n = 1 / (1.57 × 0.001963) = 324 (turns).

【0022】このようなサーチコイル15は、前記直流
リアクトルLの、例えば直径で240(mm)のほぼ1
/5程度で実現することができ、前述の図3で示すよう
に直流リアクトルLの中心にサーチコイル15を配置し
ても、系統電位の直流リアクトルLに対して、ほぼ大地
電位のサーチコイル15に特に絶縁を行う必要がなく、
安価な構成で前記リップル電流の検出を行うことができ
る。なお、サーチコイル15は良好な感度で、直流リア
クトルLを流れる電流を検知することができる箇所であ
れば、直流リアクトルLの中心に限らず、他の箇所に設
けてもよい。
Such a search coil 15 has a diameter of about 1 mm (for example, 240 mm) of the DC reactor L.
/ 5, and even if the search coil 15 is arranged at the center of the DC reactor L as shown in FIG. No special insulation is required for
The ripple current can be detected with an inexpensive configuration. The search coil 15 is not limited to the center of the DC reactor L but may be provided at another location as long as the search coil 15 can detect the current flowing through the DC reactor L with good sensitivity.

【0023】図4は素子正常時および素子故障時におけ
る直流リアクトルの電流波形を示す。同図(a)で示す
ようにダイオードD16の正常時、直流リアクトルLを
流れる電流には、その直流リアクトルLの充放電によっ
て、1/6fのリップル成分が現れることになる。
FIG. 4 shows current waveforms of the DC reactor when the element is normal and when the element has failed. As shown in FIG. 7A, when the diodes D 1 to D 6 are normal, a 1 / 6f ripple component appears in the current flowing through the DC reactor L due to charging and discharging of the DC reactor L.

【0024】これに対して、ダイオードD16のいずれ
か一つにでも素子故障(逆導通破壊)が生じると、その
素子故障したダイオードD16が非導通であるべき期間
にも導通しているので、その間、直流リアクトルLに電
流が充電されなくなってしまう。また、ダイオードD1
6のいずれか一つにでも素子故障(非導通破壊)が生
じると、その素子故障したダイオードを介しては直流リ
アクトルLに電流が充電されなくなってしまう。したが
って、直流リアクトルLを流れる電流には、同図(b)
(c)で示すように1/fのリップル成分が現れること
になる。なお、同図(b)は1アーム開放による素子故
障(非導通破壊)の場合、同図(c)は1アーム短絡に
よる素子故障(逆導通破壊)の場合をそれぞれ示す。
[0024] In contrast conduction, the device failure even in any one of the diodes D 1 ~ 6 (reverse conduction breakdown) occurs in the device failed diodes D 1 ~ 6 period should be non-conductive During this time, no current is charged in the DC reactor L during that time. Also, the diode D 1
If an element failure (non-conductivity breakdown) occurs in any one of the devices ( 6 ) to ( 6 ), no current is charged to the DC reactor L via the diode in which the element has failed. Therefore, the current flowing through the DC reactor L includes the current shown in FIG.
As shown in (c), a ripple component of 1 / f appears. FIG. 2B shows a case where an element failure occurs due to one arm opening (non-conduction breakdown), and FIG. 4C shows a case where an element failure occurs due to short circuit of one arm (reverse conduction breakdown).

【0025】このようにして、直流リアクトルLを流れ
る電流をサーチコイル15で検知し、その検知結果に1
/fのリップル成分が含まれているか否かから、限流装
置を構成するダイオードD16の素子故障を検知する。
すなわち、リップル電流が基本波周波数の6倍であれ
ば、素子は正常であり、基本波周波数成分が含有してい
れば、素子故障であると判断することができる。
As described above, the current flowing through the DC reactor L is detected by the search coil 15 and the detection result indicates 1
A failure of the diodes D 1 to D 6 constituting the current limiting device is detected based on whether or not a ripple component of / f is included.
That is, if the ripple current is six times the fundamental frequency, the element is normal, and if the fundamental frequency component is included, it can be determined that the element is faulty.

【0026】[0026]

【発明の効果】請求項1の発明に係る素子故障検出装置
によれば、前記直流リアクトルには、素子の正常時、常
に基本波周波数の6倍のリップルを少量含んだ直流電流
が流れており、素子故障が発生すると、その素子が整流
できなくなってしまうので、前記リップル電流に基本波
周波数成分が含まれることを利用することにより、直流
リアクトルに流れるリップル電流を検出して、そのリッ
プル電流が基本波周波数の6倍であれば、素子は正常で
あり、基本波周波数成分が含有していれば、素子故障で
あると判断することができる。このように直流リアクト
ルに流れる電流のみを検出するだけで済むので、各整流
素子ごとに電流変成器および計器用変圧器を設ける必要
がなく、コンパクトで安価な限流装置を提供できる。
According to the device failure detecting device of the first aspect of the present invention, a DC current including a small amount of ripple six times the fundamental frequency always flows through the DC reactor when the device is normal. When an element failure occurs, the element cannot be rectified. Therefore, by utilizing the fact that the fundamental current frequency component is included in the ripple current, the ripple current flowing in the DC reactor is detected, and the ripple current is detected. If the frequency is six times the fundamental frequency, the element is normal, and if the element contains a fundamental frequency component, it can be determined that the element has failed. Since only the current flowing through the DC reactor need be detected in this way, it is not necessary to provide a current transformer and an instrument transformer for each rectifier element, and a compact and inexpensive current limiting device can be provided.

【0027】また、請求項2の発明に係る素子故障検出
装置では、前記請求項1の発明における検出手段を、前
記直流リアクトルの磁界を検出するサーチコイルとする
ことにより、通常、直流リアクトルに用いられる空芯コ
イル内に、比較的感度が良好なサーチコイルを配置する
ことができ、安価な構成で前記リップル電流の検出を行
うことができる。また、系統電位の空芯コイルに対し
て、ほぼ大地電位のサーチコイルとの絶縁も容易に確保
することができる。
In the device failure detecting device according to the second aspect of the present invention, the detecting means according to the first aspect of the present invention includes a search coil for detecting a magnetic field of the DC reactor, so that it is normally used for a DC reactor. A search coil having relatively good sensitivity can be arranged in the air-core coil to be used, and the ripple current can be detected with an inexpensive configuration. Further, the insulation of the air-core coil having the system potential from the search coil having the substantially ground potential can be easily secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態である素子故障検出装置の電
気的構成を示すブロック図である。
FIG. 1 is a block diagram showing an electrical configuration of an element failure detection device according to an embodiment of the present invention.

【図2】図1の素子故障検出装置を具備した三相整流型
限流装置の電気的構成を示す回路図である。
FIG. 2 is a circuit diagram showing an electrical configuration of a three-phase rectification type current limiting device including the element failure detection device of FIG.

【図3】図1で示す素子故障検出装置におけるサーチコ
イルの直流リアクトルへの設置状態を示し、(a)は斜
視図、(b)は断面図である。
3 (a) is a perspective view, and FIG. 3 (b) is a cross-sectional view, showing an installation state of a search coil in a DC reactor in the element failure detection device shown in FIG.

【図4】素子正常時(a)および素子故障時(b)
(c)での直流リアクトルの電流波形図である。
FIG. 4 shows a case where the device is normal (a) and a case where the device has failed (b).
It is a current waveform diagram of a DC reactor in (c).

【図5】三相整流型限流装置を交流系統に設置した状態
を示す回路図である。
FIG. 5 is a circuit diagram showing a state where the three-phase rectification type current limiting device is installed in an AC system.

【符号の説明】 11 三相整流回路 14 三相交流系統 15 検出手段(サーチコイル) 19 抽出手段(バンドパスフィルタ) 23 判定手段(比較器) D16 整流素子(ダイオード) L 直流リアクトル T13 変圧器[Description of Signs] 11 Three-phase rectifier circuit 14 Three-phase AC system 15 Detecting means (search coil) 19 Extracting means (bandpass filter) 23 Judging means (comparator) D 1 to 6 Rectifying element (diode) L DC reactor T 1 to 3 transformer

フロントページの続き (72)発明者 徳田 憲昭 京都府京都市右京区梅津高畝町47番地 日 新電機株式会社内 Fターム(参考) 5G013 AA01 AA04 AA12 AA16 BA01 CA14 5G053 AA16 BA01 BA09 DA01 EC01 FA01 5H006 AA04 CA03 CA07 CA12 CA13 CB01 CC05 CC08 DC02 Continuation of the front page (72) Inventor Noriaki Tokuda 47-Umezu Takaunecho, Ukyo-ku, Kyoto-shi, Nippon Electric F-term (reference) 5G013 AA01 AA04 AA12 AA16 BA01 CA14 5G053 AA16 BA01 BA09 DA01 EC01 FA01 5H006 AA04 CA03 CA07 CA12 CA13 CB01 CC05 CC08 DC02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 三相交流系統と直列に変圧器の一次側を
それぞれ接続し、前記変圧器の二次側の一方を短絡し、
その他方に正負逆極性に並列接続された整流素子をそれ
ぞれ接続した三相整流回路を備え、前記各相整流素子の
変圧器と接続された反対側を正負に分けて接続し、その
正負間に直流リアクトルを接続した三相整流型限流装置
において、前記整流素子の故障を検出するための素子故
障検出装置であって、 前記直流リアクトルに流れる電流中のリップル電流を検
出する検出手段と、前記リップル電流の基本波成分を抽
出する抽出手段と、前記抽出手段の出力が予め定める弁
別レベル以上であるときに素子故障であると判定する判
定手段とを含むことを特徴とする素子故障検出装置。
1. A primary side of a transformer is connected in series with a three-phase AC system, and one of secondary sides of the transformer is short-circuited.
The other side is provided with a three-phase rectifier circuit to which rectifiers connected in parallel with the positive and negative polarities are connected respectively, the other side connected to the transformer of each phase rectifier is connected to the positive and negative sides, and between the positive and negative sides In the three-phase rectifier type current limiting device to which the DC reactor is connected, an element failure detection device for detecting a failure of the rectifying element, wherein a detecting means for detecting a ripple current in a current flowing through the DC reactor, An element failure detection device comprising: extraction means for extracting a fundamental component of a ripple current; and determination means for determining that an element failure has occurred when an output of the extraction means is equal to or higher than a predetermined discrimination level.
【請求項2】 前記検出手段は、前記直流リアクトルの
磁界を検出するサーチコイルであることを特徴とする請
求項1に記載の素子故障検出装置。
2. The device failure detecting device according to claim 1, wherein said detecting means is a search coil for detecting a magnetic field of said DC reactor.
JP2000088644A 2000-03-28 2000-03-28 Element failure detection device Expired - Fee Related JP3367502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088644A JP3367502B2 (en) 2000-03-28 2000-03-28 Element failure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088644A JP3367502B2 (en) 2000-03-28 2000-03-28 Element failure detection device

Publications (2)

Publication Number Publication Date
JP2001275247A true JP2001275247A (en) 2001-10-05
JP3367502B2 JP3367502B2 (en) 2003-01-14

Family

ID=18604492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088644A Expired - Fee Related JP3367502B2 (en) 2000-03-28 2000-03-28 Element failure detection device

Country Status (1)

Country Link
JP (1) JP3367502B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239642A (en) * 2010-05-13 2011-11-24 Chugoku Electric Power Co Inc:The Power source inspection apparatus, power source inspection method, and power source apparatus
WO2013056751A1 (en) * 2011-10-21 2013-04-25 Abb Research Ltd Method and system for detecting a failed rectifier in an ac/dc convertor
WO2021059949A1 (en) * 2019-09-25 2021-04-01 パナソニックIpマネジメント株式会社 Energy transfer circuit, and electricity storage system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239642A (en) * 2010-05-13 2011-11-24 Chugoku Electric Power Co Inc:The Power source inspection apparatus, power source inspection method, and power source apparatus
WO2013056751A1 (en) * 2011-10-21 2013-04-25 Abb Research Ltd Method and system for detecting a failed rectifier in an ac/dc convertor
CN103947096A (en) * 2011-10-21 2014-07-23 Abb研究有限公司 Method and system for detecting a failed rectifier in an ac/dc convertor
US8924170B2 (en) 2011-10-21 2014-12-30 Abb Research Ltd. Method and system for detecting a failed rectifier in an AC/DC converter
RU2562968C1 (en) * 2011-10-21 2015-09-10 Абб Рисерч Лтд Method and system for detecting faulty rectifier in ac-to-dc converter
WO2021059949A1 (en) * 2019-09-25 2021-04-01 パナソニックIpマネジメント株式会社 Energy transfer circuit, and electricity storage system
JP7418457B2 (en) 2019-09-25 2024-01-19 パナソニックIpマネジメント株式会社 Energy transfer circuit and power storage system

Also Published As

Publication number Publication date
JP3367502B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
RU2542494C2 (en) Device and method for detection of ground short-circuit
RU2743460C1 (en) Method and device for fast elimination of ferromagnetic resonance of voltage transformer
US6980005B2 (en) Circuit protection device with timed negative half-cycle self test
US8924170B2 (en) Method and system for detecting a failed rectifier in an AC/DC converter
US3611035A (en) Ground fault protective system having grounded neutral protection
JPH05501043A (en) Loss of neutral or ground protection circuit
US6411482B1 (en) Surge protector comprising means for detecting and permanently recording an overvoltage event and panelboard employing the same
CN109188278B (en) Three-phase unbalance detection circuit and system
US20050047035A1 (en) Method and apparatus for detecting faults in AC to AC, or DC to AC power conversion equipments when the equipment is in a high impedance mode
JPS60500397A (en) Failure prevention system for power supply using ferro-resonant transformer
US4210906A (en) Transient suppression and detection system with operational indicator means
JPH02133099A (en) Trouble detectgor for ac generator
EP2196812A1 (en) Monitoring device for detecting earth faults
KR102164483B1 (en) Ark detection circuit using damped oscillation
JP3367502B2 (en) Element failure detection device
JPH04222417A (en) Differential current protecting circuit
WO2018193003A1 (en) Short circuit detection in paralleled half-bridge modules
JP3137029B2 (en) Element failure detection device in grid interconnection equipment
US20200153238A1 (en) Integrated fault current rise limiter and fault detection device for dc microgrids
RU2821432C1 (en) Device for detecting turn-to-turn short circuit in electrical machine windings
US9979279B2 (en) DC-DC converter input voltage high-energy transient clamping topology
JP3367503B2 (en) System failure detection device
KR20010000555A (en) Ground relay of engine driven generator
US11562872B2 (en) Circuit interrupter for detecting breaker fault conditions and interrupting an electric current
JPH06313776A (en) Detector of ground fault current of grounding line

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees