JP2001274161A - Method of forming semiconductor wiring film - Google Patents

Method of forming semiconductor wiring film

Info

Publication number
JP2001274161A
JP2001274161A JP2000084961A JP2000084961A JP2001274161A JP 2001274161 A JP2001274161 A JP 2001274161A JP 2000084961 A JP2000084961 A JP 2000084961A JP 2000084961 A JP2000084961 A JP 2000084961A JP 2001274161 A JP2001274161 A JP 2001274161A
Authority
JP
Japan
Prior art keywords
film
copper
wiring film
wiring
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000084961A
Other languages
Japanese (ja)
Other versions
JP4637989B2 (en
Inventor
Shigenori Kusumoto
栄典 楠本
Atsushi Hisamoto
淳 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000084961A priority Critical patent/JP4637989B2/en
Publication of JP2001274161A publication Critical patent/JP2001274161A/en
Application granted granted Critical
Publication of JP4637989B2 publication Critical patent/JP4637989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable reflow of a copper-based wiring material at a low temperature. SOLUTION: In a method of forming a semiconductor wiring film, a wiring film is formed by filling the hole or groove of an insulating film with a metallic material of copper or a copper alloy, by coating the surface of the insulating film with the metallic material by electroplating. The wiring film of the metallic material is formed, while hydrogen is taken in the film by conducting electroplating in a plating bath containing hydrogen gas or hydrogen ions, and thereafter, the hole or groove is filled with the metallic material by heat-treating the wiring film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ULSIに代表さ
れる半導体の製造工程における配線膜の形成方法に関す
るものであり、とくに低電気抵抗で微細な配線構造の配
線膜の形成方法に関するものであり、結果としていわゆ
るULSI等の半導体装置の高速演算、低駆動電圧化、
低消費電力化を実現する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a wiring film in a process of manufacturing a semiconductor represented by ULSI, and more particularly to a method of forming a wiring film having a fine wiring structure with low electric resistance. As a result, high-speed operation and low drive voltage of a semiconductor device such as a so-called ULSI,
The present invention relates to a technology for realizing low power consumption.

【0002】[0002]

【従来の技術】近年、ULSI分野では微細化を進める
ことによる高集積化が急速に進展しており、配線膜につ
いても、従来のAl系材料では微細化に伴う電気抵抗の
増大による信号伝達の遅延がクローズアップされてい
る。配線膜の低電気抵抗化には、従来のAl系材料より
低電気抵抗の材料として銅及び銅合金の利用が検討され
ている。
2. Description of the Related Art In recent years, in the field of ULSI, high integration has been rapidly progressed by miniaturization, and signal transmission of signal wiring due to an increase in electrical resistance due to miniaturization of conventional Al-based materials has also been performed on wiring films. The delay has been close up. To reduce the electric resistance of the wiring film, utilization of copper and copper alloy as materials having lower electric resistance than conventional Al-based materials is being studied.

【0003】[0003]

【発明が解決しようとする課題】銅系の材料は低電気抵
抗であることに加え、ULSIの配線を流れる電流によ
る配線の変形・断線現象(エレクトロマイグレーショ
ン)を生じにくいこと、更には低価格であることからも
っとも有力な材料とされている。この銅系金属の場合、
Al系金属膜で従来行われてきた絶縁膜上にスパッタリ
ング法にて成膜した後エッチング法により配線構造を形
成することが困難であり、絶縁膜に孔・溝を形成した
後、これらの孔・溝に銅系金属をメッキ法によって充填
する方法が採用されている。メッキ法では、空孔の無い
メッキ膜を得るために、孔底や平坦部での成膜速度調整
等の観点から電解メッキ法が用いられているが、あらか
じめ孔・溝の内部や半導体ウエハの表面に導電性を付与
するためのシード層をスパッタリング法やCVD法によ
って形成しておくことが必要である。近年のLSIの微
細化の傾向から、孔については現状の0.25ミクロン
径から2003年頃には0.1ミクロン径にまで小径化
することが予想されており、0.15ミクロン径以下の
微細化に対して、アスペクト比と呼ばれる直径に対する
深さの比が4以上になると、この孔や溝を金属配線材料
で充填することは困難である。
The copper-based material has a low electric resistance, is unlikely to cause wiring deformation and disconnection phenomenon (electromigration) due to a current flowing through the ULSI wiring, and has a low cost. It is considered the most influential material because of its existence. In the case of this copper-based metal,
It is difficult to form a wiring structure by an etching method after forming a film on an insulating film conventionally formed of an Al-based metal film by a sputtering method. -A method of filling a groove with a copper-based metal by a plating method is adopted. In the plating method, an electrolytic plating method is used in order to obtain a plated film having no voids, from the viewpoint of adjusting a film forming speed at the bottom of the hole or a flat portion, and the like. It is necessary to form a seed layer for imparting conductivity to the surface by a sputtering method or a CVD method. Due to the trend of miniaturization of LSI in recent years, it is expected that the diameter of the hole will be reduced from the current 0.25 micron diameter to about 0.1 micron diameter in around 2003, and the microscopic hole having a diameter of 0.15 micron or less is expected. When the ratio of the depth to the diameter, called the aspect ratio, becomes 4 or more, it is difficult to fill these holes and grooves with a metal wiring material.

【0004】さらに、前述のシード層が不完全な場合に
おいては、現状の0.25ミクロン径であっても空孔等
の膜中の欠陥が発生することが知られている。この孔や
溝の金属配線材料の充填が不完全であれば、電気抵抗の
増加としてULSI特性を劣化させるだけでなく、エレ
クトロマイグレーションの起点となって信頼性を低下さ
せることも知られている。この課題を解決する手段とし
て、これらの開口部が塞がった充填が不充分な孔・溝を
有するULSI製造途中段階の材料、及びこれらの孔・
溝の開口部を金属膜で塞いだ材料に対して高温下で高圧
ガス圧力を作用させる方法(高圧アニール法)が提案さ
れている。しかしながら、通常の電解メッキ法で形成さ
れた銅配線膜の場合には、この高圧アニール法を持って
しても圧力を120Mpa以上で温度を350℃以上と
する高温処理が必要であり、一層のプロセスの低温化が
求められている。
Further, when the seed layer is incomplete, it is known that defects such as vacancies occur in the film even if the current diameter is 0.25 μm. It is known that if the metal wiring material is incompletely filled in the holes or grooves, not only the ULSI characteristics are degraded as an increase in electric resistance, but also the starting point of electromigration and the reliability is lowered. As a means for solving this problem, a material in the middle of ULSI manufacturing having holes / grooves in which these openings are closed and having insufficient filling,
A method (high-pressure annealing method) in which a high-pressure gas pressure is applied at a high temperature to a material in which an opening of a groove is closed with a metal film has been proposed. However, in the case of a copper wiring film formed by a normal electrolytic plating method, even with this high-pressure annealing method, a high-temperature treatment of a pressure of 120 MPa or more and a temperature of 350 ° C. or more is required, and There is a demand for lowering the temperature of the process.

【0005】[0005]

【課題を解決するための手段】上記課題解決のため、請
求項1に係る発明において採用した方法は、孔又は溝が
形成された絶縁膜の表面を電解メッキ法によって銅又は
銅合金の金属材料で被覆することにより、前記孔又は溝
の内部に前記金属材料を充填して配線膜を形成する半導
体配線膜の形成方法であって、前記電解メッキを水素ガ
ス又は水素イオンを含むメッキ浴中にて行い、膜中に水
素を取り込みながら前記金属材料の配線膜を形成し、そ
の後、加熱処理することにより前記孔又は溝に前記金属
材料を充填することを特徴とする。
According to a first aspect of the present invention, there is provided a method of forming a metal material such as copper or copper alloy on a surface of an insulating film having holes or grooves formed thereon by electrolytic plating. Forming a wiring film by filling the metal material into the hole or groove by coating with the electrolytic plating, wherein the electrolytic plating is carried out in a plating bath containing hydrogen gas or hydrogen ions. And forming a wiring film of the metal material while incorporating hydrogen into the film, and then filling the hole or groove with the metal material by performing a heat treatment.

【0006】銅系金属配線膜を形成する際に、同時に金
属配線膜中に水素をドープさせることにより、金属配線
膜材料の金属材料原子の拡散による移動が促進される。
この原子の拡散現象の促進によって、成膜時に十分金属
材料を充填できなかった孔・溝の確実な充填を、後工程
の熱処理との組合せることで行うことができる。このよ
うな水素の取り込みのためには、メッキ浴中に平衡状態
以上の水素ガス又は水素イオンが含まれてよい。したが
って、例えば、水素ガス供給源からメッキ浴中に水素ガ
スを供給する水素供給装置を設けることでも実現でき
る。しかし、電解メッキ法では、メッキ条件(電流電圧
条件)を変更することによってメッキ時に水素ガスを発
生させることが可能である。請求項2に係る発明では、
これに着目し、メッキ浴から水素ガスを発生する電流電
圧条件にて前記電解メッキ法による成膜を行うことを特
徴とする。
By simultaneously doping the metal wiring film with hydrogen when forming the copper-based metal wiring film, movement of the metal wiring film material by diffusion of metal material atoms is promoted.
By accelerating the diffusion of atoms, reliable filling of holes / grooves that could not be sufficiently filled with a metal material at the time of film formation can be performed in combination with a heat treatment in a later step. In order to take in such hydrogen, the plating bath may contain hydrogen gas or hydrogen ions in an equilibrium state or higher. Therefore, for example, it can also be realized by providing a hydrogen supply device that supplies hydrogen gas from a hydrogen gas supply source into the plating bath. However, in the electrolytic plating method, it is possible to generate hydrogen gas during plating by changing plating conditions (current voltage conditions). In the invention according to claim 2,
Focusing on this, the film is formed by the electrolytic plating method under a current voltage condition in which hydrogen gas is generated from a plating bath.

【0007】通常の電解メッキ法では、メッキ中に水素
ガスを発生させることは、水素による膜中への気孔発生
などによる欠陥導入につながるとの観点と、電流効率の
低下を招くとの観点から、実施しないことが常識である
が、本発明では、従来回避されることが常識であった水
素ガス発生を伴う電流電圧条件での電解メッキによる銅
系配線膜形成を行った。また、請求項3に係る発明は、
配線膜を形成した後の加熱処理を、高温高圧の不活性ガ
スを主成分とするガス雰囲気下で行うことを特徴とす
る。前記熱処理だけでは金属配線材料の完全な充填が困
難なような径が細かい孔・溝の場合には、上記熱処理を
高圧力による組成変形現象を利用して充填することがで
きる。
In the ordinary electrolytic plating method, the generation of hydrogen gas during plating leads to the introduction of defects due to generation of pores in the film due to hydrogen, and the reduction of current efficiency. According to the present invention, a copper-based wiring film was formed by electrolytic plating under a current-voltage condition accompanied by hydrogen gas generation, which was commonly known to be avoided in the past. The invention according to claim 3 is:
The heat treatment after forming the wiring film is performed in a gas atmosphere containing a high-temperature and high-pressure inert gas as a main component. In the case of a hole or groove having a small diameter where it is difficult to completely fill the metal wiring material only by the heat treatment, the heat treatment can be filled by utilizing a composition deformation phenomenon due to a high pressure.

【0008】[0008]

【発明の実施の形態】本発明が適用される多層構造のU
LSIの断面を図1に模式的に示す。図1において「n
・pウエル・n」及び「p・nウエル・p」のトランジ
スタ1Aが形成されたSi基板1の上に絶縁膜2が形成
される。絶縁膜2の上には第1層の金属配線M1が反応
防止用のバリア膜を介して形成される。絶縁膜2にはコ
ンタクトホール(孔)2Aが形成され、タングステンを
CVD法にて充填して第1層の金属配線M1に接続され
る。
BEST MODE FOR CARRYING OUT THE INVENTION A multilayer structure U to which the present invention is applied
FIG. 1 schematically shows a cross section of the LSI. In FIG. 1, "n
The insulating film 2 is formed on the Si substrate 1 on which the transistors 1A of "p well.n" and "pn well.p" are formed. On the insulating film 2, a first-layer metal wiring M1 is formed via a barrier film for preventing a reaction. A contact hole (hole) 2A is formed in the insulating film 2, and is filled with tungsten by a CVD method and connected to the first-layer metal wiring M1.

【0009】この第1層の金属配線M1上にも更に絶縁
膜層が形成される。この絶縁層には第1層の金属配線M
1と第2層の金属配線M2との接続のためのヴィアホー
ル(孔)2Bが形成され、第2層の金属配線M2を形成
するための溝2Cが形成される。このヴィアホール2B
は第2層の金属配線M2を形成するための溝2Cの充填
と同時に行われる。この場合、ヴィアホール2Bのみの
アスペクト比は3程度であるが、溝2Cを併せると4〜
6になることが多い。図中に示した第3層から第6層の
配線膜M3〜M6及びそれらを接続するためのヴィアホ
ールも同様の方法で形成される。
An insulating film layer is further formed on the first-layer metal wiring M1. This insulating layer has a first-layer metal wiring M
Via holes (holes) 2B for connecting the first and second-layer metal wires M2 are formed, and grooves 2C for forming the second-layer metal wires M2 are formed. This via hole 2B
Is performed simultaneously with the filling of the groove 2C for forming the second-layer metal wiring M2. In this case, the aspect ratio of the via hole 2B alone is about 3, but when the groove 2C is combined, the aspect ratio is 4 to 4.
Often 6 The wiring films M3 to M6 of the third to sixth layers shown in the figure and via holes for connecting them are formed in the same manner.

【0010】一般に、図1に示した多層配線構造を有す
るULSI製造工程では、一層形成毎に表面の平坦化処
理が必要であり、CMP工程と呼ばれる表面平坦化研磨
工程が施される。この工程に先立ち、CMP工程の安定
な再現性を得ることと、一様な研磨を達成するために、
基板全体を加熱してリフロー法と呼ばれる金属配線材料
の熱処理が施される。このリフロー法は再結晶温度以上
の温度に加熱した状態で顕著になると一般的にいわれて
いる金属配線材料の表面拡散現象を利用している。銅系
金属配線材料の再結晶温度は400℃近傍であることが
一般的に知られている。
In general, in the ULSI manufacturing process having the multilayer wiring structure shown in FIG. 1, a surface flattening process is required for each formation, and a surface flattening polishing process called a CMP process is performed. Prior to this step, in order to obtain stable reproducibility of the CMP step and achieve uniform polishing,
By heating the entire substrate, a heat treatment of a metal wiring material called a reflow method is performed. This reflow method utilizes a surface diffusion phenomenon of a metal wiring material, which is generally said to be remarkable when heated to a temperature higher than a recrystallization temperature. It is generally known that the recrystallization temperature of a copper-based metal wiring material is around 400 ° C.

【0011】しかし、水素ガスを発生させながら電解メ
ッキ法によって形成された銅もしくは銅合金の配線膜
(図2参照)は、メッキ工程において不可避的に水素ガ
スが膜中に取り込まれ、銅原子の拡散等が促進されるよ
うになる。この結果、メッキ後の加熱処理(リフロー処
理)温度を低減化させ、圧力も低減化させることができ
るようになる。このような効果を得るためには、メッキ
浴中に平衡状態以上の水素ガスまたは水素イオンが含ま
れればよいが、電解メッキ法ではメッキ条件を変更する
ことによって容易にメッキ時に水素ガスを発生させるこ
とが可能である。
However, in a copper or copper alloy wiring film (see FIG. 2) formed by electrolytic plating while generating hydrogen gas, hydrogen gas is unavoidably taken into the film in the plating step, and copper atoms are removed. Diffusion is promoted. As a result, the temperature of the heat treatment (reflow treatment) after plating can be reduced, and the pressure can be reduced. In order to obtain such an effect, it is sufficient that the plating bath contains hydrogen gas or hydrogen ions in an equilibrium state or higher, but in the electrolytic plating method, hydrogen gas is easily generated during plating by changing plating conditions. It is possible.

【0012】通常の電解メッキ法では図3に示すように
水素ガスを発生させないことを前提に、工業的に利用で
きる電流密度において領域A−B(銅が析出し水素が少
ない領域)で示される範囲内で電流・電圧条件が決定さ
れる。なお、本領域はメッキ材、メッキ液の種類、メッ
キ液の濃度、及びメッキ時の温度により変化するが、逆
にこれらの条件が決まれれば一義的に定まる領域であ
る。なお、図3の数値は、あるメッキ作業条件下での単
なる例示にすぎない。メッキ中に水素ガスを発生させる
ことは、水素による膜中への気孔発生等による欠陥導入
につながるとの観点と、電流効率の低下を招くとの観点
から、実施しないことが常識である。本発明では、水素
ガス又は水素イオンを膜中に取り込むことによって銅系
配線膜中の銅原子の拡散促進効果を得ることにより銅配
線膜のリフロー特性を改善するため、従来回避されるこ
とが常識であった水素ガス発生を伴う電流・電圧条件で
の電解メッキによる銅系配線膜形成を行う。
As shown in FIG. 3, on the assumption that no hydrogen gas is generated in the ordinary electrolytic plating method, the current density is indicated by the area AB (the area where copper is deposited and the amount of hydrogen is small) at an industrially usable current density. The current and voltage conditions are determined within the range. This area varies depending on the plating material, the type of the plating solution, the concentration of the plating solution, and the temperature at the time of plating. On the contrary, if these conditions are determined, the area is uniquely determined. It should be noted that the numerical values in FIG. 3 are merely examples under certain plating operation conditions. It is common practice not to generate hydrogen gas during plating, from the viewpoint that it leads to the introduction of defects due to generation of pores or the like in the film due to hydrogen, and from the viewpoint that the current efficiency is reduced. In the present invention, it is a common knowledge that the reflow characteristic of the copper wiring film is improved by obtaining the effect of promoting the diffusion of copper atoms in the copper-based wiring film by incorporating hydrogen gas or hydrogen ions into the film. A copper-based wiring film is formed by electrolytic plating under current and voltage conditions accompanied by hydrogen gas generation.

【0013】銅メッキ浴としては、硫酸銅浴、シアン化
銅浴、ほう弗化銅浴又はピロリン酸銅浴が採用できる。
後述の実施例では、硫酸銅浴を採用している。硫酸銅浴
の代表的な浴組成は、「硫酸銅:125〜150g/リ
ットル、硫酸:30〜100あるいは125〜150g
/リットル、添加剤:適当量」である(「銅および銅合
金の基礎と工業技術(改訂版)」1995年改訂版、発
行日本伸銅協会、参照)。水素ガス発生を伴う電流・電
圧条件も、メッキ材、メッキ液の種類、メッキ液の濃
度、及びメッキ時の温度により変化するが、当業者であ
れば、これらの条件が決まれば必要な電流電圧条件を見
いだすことは容易である。図3に基づけば、Bより高電
圧側の領域(銅が析出し水素も発生する領域)となる。
As the copper plating bath, a copper sulfate bath, a copper cyanide bath, a copper borofluoride bath or a copper pyrophosphate bath can be used.
In examples described later, a copper sulfate bath is employed. A typical bath composition of the copper sulfate bath is “copper sulfate: 125 to 150 g / liter, sulfuric acid: 30 to 100 or 125 to 150 g.
/ Liter, additive: appropriate amount "(see" Basic and Industrial Technology of Copper and Copper Alloys (Revised Edition) "1995 revised edition, published by Japan Copper and Brass Association). The current and voltage conditions associated with the generation of hydrogen gas also vary depending on the plating material, the type of plating solution, the concentration of the plating solution, and the temperature at the time of plating, but those skilled in the art can determine the necessary current and voltage if these conditions are determined. Finding conditions is easy. Based on FIG. 3, it is a region on the higher voltage side than B (a region where copper is precipitated and hydrogen is also generated).

【0014】ただし、膜中に取り込まれる水素ガスが多
すぎると、配線膜自体がポーラスな構造となるばかりで
なく、配線膜以外の半導体構成材料に悪影響を及ぼす。
このような理由により、電解メッキ時の電流電圧条件
は、メッキ液に依存して一義的に決まる水素ガス発生を
抑制した条件での(図3にB点として示した)最大電圧
より大であって、B+5,000mVを超えない領域B
−Cで示す範囲内であることが望ましい。すなわち、通
常の電解メッキ法で適正とされている領域より5V程度
大きい範囲までが望ましい。電流効率(陰極電流効率:
流した電流のうち、どの程度がCu析出に使われたか)
でいえば、従来の電解メッキでは95〜100パーセン
トであるところ、本発明では80パーセント程度であ
る。
However, if too much hydrogen gas is taken into the film, not only the wiring film itself will have a porous structure, but also adversely affect semiconductor constituent materials other than the wiring film.
For this reason, the current-voltage condition during electrolytic plating is larger than the maximum voltage (shown as point B in FIG. 3) under the condition that the generation of hydrogen gas, which is uniquely determined depending on the plating solution, is suppressed. And the region B not exceeding B + 5,000 mV
It is desirable to be within the range shown by -C. In other words, it is desirable that the area be up to about 5 V larger than the area determined to be appropriate by the ordinary electrolytic plating method. Current efficiency (cathode current efficiency:
How much of the current passed was used for Cu deposition)
In other words, it is about 95 to 100% in the conventional electrolytic plating, but is about 80% in the present invention.

【0015】既述した如く、現状技術では孔径が0.1
5ミクロン以下、アスペクト比4以上の微細化に対し
て、図4(a)に示したような孔の奥底部へのボイド発
生が懸念され、金属系配線材料の充填が困難であるとさ
れている。このようなボイドに対しては、膜中の水素の
拡散促進現象を利用した大気圧近傍のリフロー法では完
全な金属配線膜材料の充填はできない。このような状況
下では、リフロー処理を、高温高圧の不活性ガスを主成
分とするガス雰囲気下で行うことが推奨される。図4
(b)は、この作用を模式的に示したものである。金属
配線膜中に含まれた水素による金属配線膜原子の拡散促
進機能により、金属配線膜材料の見かけの変形抵抗が小
さくなり、塑性変形が容易となることから、高圧のガス
圧力による金属配線膜材料が孔・溝の奥底部まで充填さ
れる。なお、本発明は、高圧リフロー時の圧力を水素を
含まない配線膜材料の充填条件と同じにして温度を低下
させることのみを規定するものではなく、温度を同じに
して圧力を低減する条件、或いは両者ともに低減する条
件も選択しうる。
As described above, in the state of the art, the hole diameter is 0.1
For miniaturization of 5 microns or less and an aspect ratio of 4 or more, there is a concern that voids may be generated at the deep bottom of the hole as shown in FIG. 4A, and it is difficult to fill a metal-based wiring material. I have. Such voids cannot be completely filled with the metal wiring film material by a reflow method near the atmospheric pressure utilizing the hydrogen diffusion promoting phenomenon in the film. Under such circumstances, it is recommended that the reflow treatment be performed in a gas atmosphere containing a high-temperature and high-pressure inert gas as a main component. FIG.
(B) schematically shows this operation. The diffusion promoting function of metal wiring film atoms by hydrogen contained in the metal wiring film reduces the apparent deformation resistance of the metal wiring film material and facilitates plastic deformation. The material is filled to the bottom of the hole / groove. Incidentally, the present invention does not specify only that the pressure during high-pressure reflow is the same as the filling condition of the wiring film material containing no hydrogen to lower the temperature, but the condition that the pressure is reduced by making the temperature the same, Alternatively, conditions for reducing both may be selected.

【0016】[0016]

【実施例】Si基板上に厚さ1.5ミクロンのシリコン
酸化膜(SiO2)を形成して、パターンニング後、シ
リコン酸化膜をエッチングして表1に示すような孔・溝
を形成した試料を用い、本発明の効果を検証した。な
お、孔・溝の内面には、銅系配線材料で一般的に採用さ
れるTaNバリア層を、更に銅シード層をスパッタリン
グ法によって成膜した。処理条件は表1に示したとおり
であり、一部従来法による成膜・リフロー処理を行い比
較材とした。
EXAMPLE A silicon oxide film (SiO 2 ) having a thickness of 1.5 μm was formed on a Si substrate, and after patterning, the silicon oxide film was etched to form holes and grooves as shown in Table 1. The effect of the present invention was verified using a sample. A TaN barrier layer generally used for a copper-based wiring material and a copper seed layer were formed on the inner surfaces of the holes and grooves by a sputtering method. The processing conditions are as shown in Table 1. A film was formed and reflowed by a conventional method, and a comparative material was used.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例1と比較例1の比較から、本発明の
水素ガス含有メッキ膜を用いることによりリフロー温度
の低減化が可能であること、即ち従来法よりも低温で孔
への銅配線材料の充填が可能であることが確認できた。
また、実施例2と比較例2の比較から、溝の底に孔が形
成されたデュアルダマシン構造でも、本発明の水素ガス
含有メッキ膜を用いることによりリフロー温度の低減化
が可能であること、即ち従来法よりも低温で孔・溝への
銅配線材料の充填が可能であることが確認できた。
From the comparison between Example 1 and Comparative Example 1, it is found that the reflow temperature can be reduced by using the hydrogen gas-containing plating film of the present invention. It was confirmed that the filling was possible.
Also, from the comparison between Example 2 and Comparative Example 2, it was found that the reflow temperature can be reduced by using the hydrogen gas-containing plating film of the present invention even in a dual damascene structure in which a hole is formed at the bottom of the groove. That is, it was confirmed that the copper wiring material can be filled into the holes and grooves at a lower temperature than the conventional method.

【0019】更に、実施例3と、比較例3の比較から、
本発明の水素ガス含有メッキ膜に高圧ガス雰囲気下での
高圧リフロー処理を施すことによって、金属配線材料を
高アスペクト比の孔・溝へ充填可能であることが確認で
きた。
Further, from the comparison between Example 3 and Comparative Example 3,
It has been confirmed that the metal wiring material can be filled into holes / grooves having a high aspect ratio by subjecting the hydrogen gas-containing plating film of the present invention to high-pressure reflow treatment in a high-pressure gas atmosphere.

【0020】[0020]

【発明の効果】以上述べたように、本発明により、低電
気抵抗の観点から今後の配線材料として期待されている
銅系配線材料の低温でのリフローが可能となり、高圧ガ
ス雰囲気下でのリフロー処理と組み合わせれば、ますま
す微細化する孔・溝への充填が可能となる。本発明はこ
のような効果によって、金属配線膜材料を用いたULS
Iの工業的生産プロセスの簡素化、信頼性向上に多大な
る貢献を果たすことが期待される。
As described above, according to the present invention, it is possible to reflow a copper-based wiring material expected as a future wiring material from the viewpoint of low electric resistance at a low temperature, and to reflow under a high-pressure gas atmosphere. When combined with processing, it is possible to fill holes and grooves that are becoming increasingly fine. According to the present invention, ULS using a metal wiring film material
It is expected to greatly contribute to the simplification and reliability improvement of the industrial production process of I.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体の多層配線構造の一例を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing an example of a semiconductor multilayer wiring structure.

【図2】電解メッキ法によって形成された銅配線の拡大
断面図である。
FIG. 2 is an enlarged cross-sectional view of a copper wiring formed by an electrolytic plating method.

【図3】電解メッキ法の電流電圧条件を示す図である。FIG. 3 is a diagram showing current-voltage conditions in an electrolytic plating method.

【図4】(a)は、孔奥底部にボイドを有する配線断面
図であり、(b)は、高圧高圧のリフロー処理で孔が充
填され水素が追い出された状態を示す配線断面図であ
る。
FIG. 4 (a) is a cross-sectional view of a wiring having a void at the bottom of the hole, and FIG. 4 (b) is a cross-sectional view of a wiring showing a state in which the holes have been filled and hydrogen has been expelled by high-pressure and high-pressure reflow processing. .

【符号の説明】[Explanation of symbols]

1 基板 2 絶縁膜 2B コンタクトホール 2C 溝 3 銅配線 Reference Signs List 1 substrate 2 insulating film 2B contact hole 2C groove 3 copper wiring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/288 H01L 21/88 M Fターム(参考) 4K024 AA09 AB01 BA11 BB12 BC01 CA05 CA16 DB02 GA16 4M104 BB04 BB18 CC01 DD16 DD37 DD52 DD79 FF18 HH13 5F033 HH11 HH32 JJ01 JJ11 JJ19 JJ32 KK01 KK11 KK32 MM01 MM02 MM12 MM13 NN06 NN07 PP06 PP15 PP27 QQ37 QQ73 QQ75 QQ86 RR04 XX02 XX11──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) H01L 21/288 H01L 21/88 MF term (Reference) 4K024 AA09 AB01 BA11 BB12 BC01 CA05 CA16 DB02 GA16 4M104 BB04 BB18 CC01 DD16 DD37 DD52 DD79 FF18 HH13 5F033 HH11 HH32 JJ01 JJ11 JJ19 JJ32 KK01 KK11 KK32 MM01 MM02 MM12 MM13 NN06 NN07 PP06 PP15 PP27 QQ37 QQ73 QQ75 QQ86 RR04 XX02 XX11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 孔又は溝が形成された絶縁膜の表面を電
解メッキ法によって銅又は銅合金の金属材料で被覆する
ことにより、前記孔又は溝の内部に前記金属材料を充填
して配線膜を形成する半導体配線膜の形成方法であっ
て、 前記電解メッキを水素ガス又は水素イオンを含むメッキ
浴中にて行い、膜中に水素を取り込みながら前記金属材
料の配線膜を形成し、 その後、加熱処理することにより前記孔又は溝に前記金
属材料を充填することを特徴とする半導体配線膜の形成
方法。
An interconnection film formed by coating the surface of an insulating film having holes or grooves with a metal material of copper or copper alloy by electrolytic plating to fill the inside of the holes or grooves with the metal material. A method for forming a semiconductor wiring film, wherein the electrolytic plating is performed in a plating bath containing hydrogen gas or hydrogen ions, and a wiring film of the metal material is formed while incorporating hydrogen into the film. A method for forming a semiconductor wiring film, wherein the hole or groove is filled with the metal material by performing a heat treatment.
【請求項2】 メッキ浴から水素ガスを発生する電流電
圧条件にて前記電解メッキ法による成膜を行うことを特
徴とする請求項1記載の半導体配線膜の形成方法。
2. The method for forming a semiconductor wiring film according to claim 1, wherein the film is formed by the electrolytic plating method under a current voltage condition in which hydrogen gas is generated from a plating bath.
【請求項3】 配線膜を形成した後の加熱処理を、高温
高圧の不活性ガスを主成分とするガス雰囲気下で行うこ
とを特徴とする請求項1又は2記載の半導体配線膜の形
成方法。
3. The method for forming a semiconductor wiring film according to claim 1, wherein the heat treatment after forming the wiring film is performed in a gas atmosphere containing a high-temperature and high-pressure inert gas as a main component. .
JP2000084961A 2000-03-24 2000-03-24 Method for forming semiconductor wiring film Expired - Fee Related JP4637989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000084961A JP4637989B2 (en) 2000-03-24 2000-03-24 Method for forming semiconductor wiring film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000084961A JP4637989B2 (en) 2000-03-24 2000-03-24 Method for forming semiconductor wiring film

Publications (2)

Publication Number Publication Date
JP2001274161A true JP2001274161A (en) 2001-10-05
JP4637989B2 JP4637989B2 (en) 2011-02-23

Family

ID=18601360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000084961A Expired - Fee Related JP4637989B2 (en) 2000-03-24 2000-03-24 Method for forming semiconductor wiring film

Country Status (1)

Country Link
JP (1) JP4637989B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303417A (en) * 2007-06-06 2008-12-18 Toshiba Corp Plating film forming apparatus and plating film forming method
CN102485965A (en) * 2010-12-06 2012-06-06 中国科学院微电子研究所 Electroplating method of deep blind hole
KR20190006095A (en) * 2016-06-10 2019-01-16 어플라이드 머티어리얼스, 인코포레이티드 Seam during the super-atmospheric process in a diffusion-promoting atmosphere - healing method
US11361978B2 (en) 2018-07-25 2022-06-14 Applied Materials, Inc. Gas delivery module
US11462417B2 (en) 2017-08-18 2022-10-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11527421B2 (en) 2017-11-11 2022-12-13 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US11610773B2 (en) 2017-11-17 2023-03-21 Applied Materials, Inc. Condenser system for high pressure processing system
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11705337B2 (en) 2017-05-25 2023-07-18 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
US11881411B2 (en) 2018-03-09 2024-01-23 Applied Materials, Inc. High pressure annealing process for metal containing materials
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294315A (en) * 1997-04-18 1998-11-04 Sony Corp Formation of metal wiring
JPH11238794A (en) * 1998-02-20 1999-08-31 Sony Corp Formation of interconnection
JPH11288937A (en) * 1998-04-03 1999-10-19 Kobe Steel Ltd Method for forming copper wiring film
JP2000003886A (en) * 1998-06-12 2000-01-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device and apparatus thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294315A (en) * 1997-04-18 1998-11-04 Sony Corp Formation of metal wiring
JPH11238794A (en) * 1998-02-20 1999-08-31 Sony Corp Formation of interconnection
JPH11288937A (en) * 1998-04-03 1999-10-19 Kobe Steel Ltd Method for forming copper wiring film
JP2000003886A (en) * 1998-06-12 2000-01-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device and apparatus thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303417A (en) * 2007-06-06 2008-12-18 Toshiba Corp Plating film forming apparatus and plating film forming method
JP4575401B2 (en) * 2007-06-06 2010-11-04 株式会社東芝 Plating film forming apparatus and plating film forming method
CN102485965A (en) * 2010-12-06 2012-06-06 中国科学院微电子研究所 Electroplating method of deep blind hole
KR20190006095A (en) * 2016-06-10 2019-01-16 어플라이드 머티어리얼스, 인코포레이티드 Seam during the super-atmospheric process in a diffusion-promoting atmosphere - healing method
JP2019517740A (en) * 2016-06-10 2019-06-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Seam remediation in a superatmosphere process in a diffusion promoting atmosphere
US10636704B2 (en) 2016-06-10 2020-04-28 Applied Materials, Inc. Seam-healing method upon supra-atmospheric process in diffusion promoting ambient
KR102182127B1 (en) 2016-06-10 2020-11-23 어플라이드 머티어리얼스, 인코포레이티드 Seam-healing method in the hyper-atmospheric process in a diffusion-promoting atmosphere
TWI767132B (en) * 2016-06-10 2022-06-11 美商應用材料股份有限公司 Seam-healing method upon supra-atmospheric process in diffusion promoting ambient
US11705337B2 (en) 2017-05-25 2023-07-18 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US11462417B2 (en) 2017-08-18 2022-10-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11469113B2 (en) 2017-08-18 2022-10-11 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11527421B2 (en) 2017-11-11 2022-12-13 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US11756803B2 (en) 2017-11-11 2023-09-12 Applied Materials, Inc. Gas delivery system for high pressure processing chamber
US11610773B2 (en) 2017-11-17 2023-03-21 Applied Materials, Inc. Condenser system for high pressure processing system
US11881411B2 (en) 2018-03-09 2024-01-23 Applied Materials, Inc. High pressure annealing process for metal containing materials
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US11361978B2 (en) 2018-07-25 2022-06-14 Applied Materials, Inc. Gas delivery module
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Also Published As

Publication number Publication date
JP4637989B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US6290833B1 (en) Method for electrolytically depositing copper on a semiconductor workpiece
JP3979791B2 (en) Semiconductor device and manufacturing method thereof
JP5284944B2 (en) Structure and method for forming electrodeposited contacts
EP1346408B1 (en) Method of electroless introduction of interconnect structures
JP3116897B2 (en) Fine wiring formation method
JP5203602B2 (en) Method for direct electroplating of copper onto a non-copper plateable layer
US20050230263A1 (en) Methods for forming interconnect structures by co-plating of noble metals and structures formed thereby
JP3631392B2 (en) Method for forming wiring film
US6440849B1 (en) Microstructure control of copper interconnects
EP0982771A1 (en) Process for semiconductor device fabrication having copper interconnects
US7799681B2 (en) Method for forming a ruthenium metal cap layer
TW201636459A (en) Methods for forming cobalt or nickel interconnects
JP4637989B2 (en) Method for forming semiconductor wiring film
US20070298607A1 (en) Method for copper damascence fill for forming an interconnect
US20090061629A1 (en) Method of forming a metal directly on a conductive barrier layer by electrochemical deposition using an oxygen-depleted ambient
KR101076927B1 (en) Structure of copper wiring in semiconductor device and method of forming the same
KR100413632B1 (en) The Method of Cu Electroplating Using Dual Pretreatment of Hydrogen Plasma/Rapid Thermal Annealing
JP3715975B2 (en) Manufacturing method of multilayer wiring structure
KR100456259B1 (en) Method of forming a copper wiring in a semiconductor device
KR20010003575A (en) Method of forming a metal wiring in a semiconductor device
KR100421913B1 (en) Method for forming interconnect structures of semiconductor device
WO2008134536A1 (en) Method for electrochemically depositing metal onto a microelectronic workpiece
KR100451767B1 (en) Method for forming interconnect structures of semiconductor device
JP2001250824A (en) Semiconductor integrated circuit device and its manufacturing method
JPH11312655A (en) Formation of copper-alloy film and manufacture of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080425

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees