JP2001273679A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JP2001273679A
JP2001273679A JP2000089615A JP2000089615A JP2001273679A JP 2001273679 A JP2001273679 A JP 2001273679A JP 2000089615 A JP2000089615 A JP 2000089615A JP 2000089615 A JP2000089615 A JP 2000089615A JP 2001273679 A JP2001273679 A JP 2001273679A
Authority
JP
Japan
Prior art keywords
layer
refractive index
recording medium
optical recording
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000089615A
Other languages
Japanese (ja)
Inventor
Toshihiko Nagase
俊彦 永瀬
Katsutaro Ichihara
勝太郎 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000089615A priority Critical patent/JP2001273679A/en
Priority to US09/749,570 priority patent/US20010015949A1/en
Publication of JP2001273679A publication Critical patent/JP2001273679A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical recording medium to which a method for super- resolving/reproducing CAD is adapted by using a super-resolving/reproducing film capable of increasing the extinction coefficient by light irradiation. SOLUTION: A transparent substrate 1 usable also as a recording layer, the super-resolving/reproducing film 2 the extinction coefficient of which can be selectively increased by irradiating with the light of the amount exceeding the prescribed threshold value, a laminated interference layer 11 and a reflection film 5 are laminated successively to obtain this optical recording medium. This optical recording medium is constituted so that a region to be irradiated with the light of the amount exceeding the threshold value can be made to be an optical opening and the light reflected only from this region is detected to read the recorded information. When the film 2 is a signal layer, this region becomes an optical mask since the reflectance is lowered and the detection of the light reflected only from this region is difficult. But this region can be made to be the optical opening by providing the layer 11 to perform multiple reflection and multiple interference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光記録媒体に係
り、特に照射光の光径よりも狭い領域の反射光が得られ
る超解像再生膜を用いた光記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium, and more particularly to an optical recording medium using a super-resolution reproducing film capable of obtaining reflected light in an area smaller than the diameter of irradiation light.

【0002】[0002]

【従来の技術】光ビームの照射により情報の再生または
記録・再生を行う光ディスクメモリは、大容量性、高速
アクセス性、媒体可搬性を兼ね備えた記憶装置として音
声、画像、計算機データなど各種ファイルに実用化され
ており、今後もその発展が期待されている。
2. Description of the Related Art An optical disk memory for reproducing or recording / reproducing information by irradiating a light beam is a storage device having a large capacity, a high-speed access property, and a medium portability. It has been put into practical use, and its development is expected in the future.

【0003】光ディスクの高密度化技術としては原盤カ
ッティング用ガスレーザの短波長化、動作光源である半
導体レーザの短波長化、対物レンズの高開口数化、光デ
ィスクの薄板化が考えられている。さらに、記録可能な
光ディスクにおいてはマーク長記録、ランド・グルーブ
記録など種々のアプローチがある。また、光ディスクの
高密度化の効果が大きい技術として、媒体膜を利用した
超解像再生技術が提案されている。超解像技術は当初・
光磁気ディスクに特有の技術として提案されてきたが、
その後ROMディスクでも記録層に対して再生光照射側
に、再生光の照射により光の透過率が変化する超解像再
生膜を設けて超解像再生する試みが報告されている。こ
のように、超解像再生技術は光磁気ディスク、CD−R
OM、CD−R、WORM、相変化型光記録媒体など全
ての光ディスクに適用可能であることが分かった。
Techniques for increasing the density of an optical disk include shortening the wavelength of a gas laser for cutting a master, shortening the wavelength of a semiconductor laser as an operating light source, increasing the numerical aperture of an objective lens, and reducing the thickness of the optical disk. Furthermore, there are various approaches to recordable optical disks, such as mark length recording and land / groove recording. In addition, a super-resolution reproduction technique using a medium film has been proposed as a technique that has a large effect of increasing the density of an optical disc. Super-resolution technology was initially
Although it has been proposed as a technology specific to magneto-optical disks,
Thereafter, an attempt has been reported to provide a super-resolution reproduction film in which the transmittance of light is changed by the irradiation of the reproduction light on the irradiation side of the reproduction light with respect to the recording layer even on the ROM disk. As described above, the super-resolution reproduction technology is a magneto-optical disk, a CD-R
It has been found that the present invention is applicable to all optical disks such as OM, CD-R, WORM, and phase-change optical recording media.

【0004】従来の超解像再生技術で提案されている超
解像再生膜はヒートモード方式とフォトンモード方式に
大別される。ヒートモード方式では再生光照射による加
熱で超解像再生膜に相転移などを発生させ、透過率の高
い光学開口を形成する。この光学開口の形状は超解像再
生膜の等温線と同一になる。フォトンモード方式では超
解像再生膜としてフォトクロミック材料を用い、再生光
照射による発色または消色を利用するフォトクロミック
材料は光照射より電子が基底準位から寿命の短い励起状
態へ励起され、さらに励起準位から寿命の非常に長い準
安定励起準位へ遷移して捕捉されることにより光吸収特
性の変化を発現する。したがって、繰り返して再生する
には準安定励起準位に捕捉された電子を基底状態へ脱励
起して、いったん形成された光学開口を閉じる必要があ
る。また、フォトンモード方式の超解像再生膜として吸
収飽和現象を利用した半導体連続膜あるいは半導体微粒
子分散膜を用いた例もある。これらの超解像再生材料は
光照射量が所定の閾値を超えた時に材料自体の透過率が
増加する。すなわち消衰係数が減少する特性を持ってい
る。
[0004] Super-resolution reproduction films proposed in the conventional super-resolution reproduction technology are roughly classified into a heat mode system and a photon mode system. In the heat mode method, a phase transition or the like is generated in a super-resolution reproduction film by heating by irradiation of reproduction light, and an optical aperture having a high transmittance is formed. The shape of the optical aperture becomes the same as the isotherm of the super-resolution reproducing film. In the photon mode method, a photochromic material is used as a super-resolution reproducing film, and in a photochromic material that uses color development or decoloration by irradiation of reproduction light, electrons are excited from a ground level to an excited state having a short life by irradiation with light, and the excitation level The transition from the phase to a metastable excitation level with a very long lifetime leads to a change in light absorption characteristics due to trapping. Therefore, to reproduce repeatedly, it is necessary to de-excit the electrons trapped by the metastable excitation level to the ground state and close the optical aperture once formed. There is also an example in which a semiconductor continuous film or a semiconductor fine particle dispersion film utilizing an absorption saturation phenomenon is used as a photon mode type super-resolution reproduction film. When the light irradiation amount of these super-resolution reproduction materials exceeds a predetermined threshold value, the transmittance of the materials themselves increases. That is, it has a characteristic that the extinction coefficient decreases.

【0005】すなわち、光照射量の多い領域(光学開口
部)の光透過率を高くし、光照射量の少ない領域(光学
マスク部)の光透過率を低くするため、光学開口部を透
過する光の強度と、光学マスク部を透過する光の強度の
差を大きくすることができる。
That is, in order to increase the light transmittance in a region with a large light irradiation amount (optical aperture) and to reduce the light transmittance in a region with a small light irradiation amount (optical mask portion), light is transmitted through the optical opening. The difference between the light intensity and the light intensity transmitted through the optical mask can be increased.

【0006】一方、2光子吸収を起こすKBr、CuB
r、RbBr、CuCl等の材料やフォトクロミズムお
よびサーモクロミズムを示す材料で消色状態から発色状
態への変化を利用する場合などは、光照射量が所定の閾
値を超えた時に消衰係数が増加する。
On the other hand, KBr and CuB which cause two-photon absorption
In the case of using a change from a decolored state to a colored state with a material such as r, RbBr, CuCl, or a material exhibiting photochromism and thermochromism, the extinction coefficient increases when the light irradiation amount exceeds a predetermined threshold. .

【0007】たとえば、この材料を超解像再生膜として
用い、通常のレーザー光を用いて光照射した場合、照射
光強度の高い光照射領域の中央部が光学マスク部とな
り、照射光強度の低い光照射領域端部近傍が光学開口と
なる。そのため、超解像再生膜の透過光の強度差を大き
くすることが困難であり、また、照射光強度の強い領域
を情報の読み取りに使用できない。
For example, when this material is used as a super-resolution reproducing film and irradiated with light using a normal laser beam, the central portion of the light irradiation region where the irradiation light intensity is high becomes an optical mask portion and the irradiation light intensity is low. The vicinity of the end of the light irradiation area is an optical aperture. Therefore, it is difficult to increase the intensity difference of the transmitted light of the super-resolution reproduction film, and a region where the intensity of the irradiated light is high cannot be used for reading information.

【0008】すなわち、閾値を越える光照射によって消
衰係数大きくなる材料は、照射光強度の強い光スポット
中央部が光学開口とならず、光利用効率が低下するとい
う問題があった。
That is, a material whose extinction coefficient is increased by light irradiation exceeding a threshold value has a problem that the central portion of a light spot having a high irradiation light intensity does not become an optical aperture, and the light use efficiency is reduced.

【0009】[0009]

【発明が解決しようとする課題】上述したように、所定
の閾値を超える光を照射した時に、消衰係数が増加する
材料を超解像再生膜として使用した場合には、照射光強
度の強い領域を光学マスク部とするために光利用効率が
低下するという問題があった。
As described above, when a material whose extinction coefficient increases when irradiated with light exceeding a predetermined threshold value is used as the super-resolution reproduction film, the intensity of the irradiated light is high. There is a problem that light utilization efficiency is reduced because the region is used as an optical mask portion.

【0010】本発明は、このような問題に鑑みて為され
たものであり、所定の閾値を超える光照射によって消衰
係数が大きくなる材料を超解像再生膜として用い、か
つ、光照射領域中の照射光強度の高い領域の情報を読取
ることのできる光記録媒体を提供することを目的とす
る。
The present invention has been made in view of such a problem, and uses a material whose extinction coefficient is increased by light irradiation exceeding a predetermined threshold value as a super-resolution reproduction film, and a light irradiation region. It is an object of the present invention to provide an optical recording medium capable of reading information in a region having a high irradiation light intensity therein.

【0011】[0011]

【課題を解決するための手段】本発明の光記録媒体は、
記録層と、この記録層を介して照射光が照射される反射
層と、すくなくとも前記反射層の前記照射光側に形成さ
れ、所定の閾値を超える量の光照射により選択的に消衰
係数が大きくなる超解像再生膜とを具備する光記録媒体
であり、光記録媒体への照射光スポット内で、前記閾値
を超える領域と、前記閾値以下の領域とで、光記録媒体
の反射率が異なる光記録媒体において、前記反射層に対
して少なくとも照射光側に形成され、前記照射光の入射
光および、前記反射層による反射光を多重反射・多重干
渉させる、高屈折率層および低屈折率層を有する積層干
渉層を具備することを特徴とする。
The optical recording medium of the present invention comprises:
The recording layer, the reflective layer irradiated with irradiation light through the recording layer, formed at least on the irradiation light side of the reflective layer, the extinction coefficient selectively by light irradiation of an amount exceeding a predetermined threshold An optical recording medium comprising a super-resolution reproduction film that increases in size, in the light spot irradiated on the optical recording medium, in a region exceeding the threshold, and in a region equal to or less than the threshold, the reflectance of the optical recording medium is increased. A high-refractive-index layer and a low-refractive-index layer, which are formed at least on the irradiation light side with respect to the reflective layer and cause multiple reflection and multiple interference of incident light of the irradiation light and light reflected by the reflective layer, in different optical recording media. It is characterized by comprising a laminated interference layer having a layer.

【0012】すなわち、所定の閾値を超える光照射によ
って消衰係数が増加する(吸収率が増加するため、一般
に光反射率、および光透過率が低減する)超解像再生膜
は、単層で用いると、光照射量の多い領域で吸収率が増
加するため、光透過率や光反射率を低下させるが、反射
層上に、記録層、積層干渉層および超解像再生膜を積層
した光記録媒体においては、所定の閾値を超える光が照
射された領域のみ光記録媒体の反射率が高まることを見
出した。
That is, a super-resolution reproduction film whose extinction coefficient increases (irradiation coefficient generally increases due to increase in absorptance and light reflectivity and light transmittance decrease) by light irradiation exceeding a predetermined threshold value is a single layer. When used, the absorptance increases in a region with a large amount of light irradiation, so that the light transmittance and the light reflectance are reduced. However, the light having a recording layer, a laminated interference layer, and a super-resolution reproduction film laminated on a reflective layer It has been found that in a recording medium, the reflectance of the optical recording medium is increased only in a region irradiated with light exceeding a predetermined threshold.

【0013】このような本発明の光記録媒体によれば、
所定の閾値を超える光を照射する領域を反射率の高い領
域とすることができ、光の利用効率を高めることができ
る。
According to such an optical recording medium of the present invention,
A region to be irradiated with light exceeding a predetermined threshold can be a region having a high reflectance, and the light use efficiency can be improved.

【0014】さらに、本発明の光記録媒体によれば、光
記録媒体の反射率の高い領域(以下、光学開口部と呼
ぶ)と、光反射率の低い領域(以下、光学マスク部と呼
ぶ)との反射率差を大きくすることが可能となり、読取
り誤差などの問題が低減される。
Further, according to the optical recording medium of the present invention, a region having a high reflectivity (hereinafter referred to as an optical aperture) and a region having a low light reflectivity (hereinafter referred to as an optical mask) of the optical recording medium. Can be increased, and problems such as reading errors can be reduced.

【0015】前記積層干渉層は、高屈折率層および低屈
折率層が順次積層された3層以上の積層体であることが
望ましい。
It is preferable that the laminated interference layer is a laminate of three or more layers in which a high refractive index layer and a low refractive index layer are sequentially laminated.

【0016】すなわち、高屈折率層/低屈折率層/高屈
折率層/低屈折率層・・・の積層順、あるいは低屈折率
層/高屈折率層/低屈折率層/高屈折率層・・・の積層
順で積層し、多重反射・干渉する機会をより増やすこと
で、前述した効果が顕著になる。
That is, the order of lamination of high refractive index layer / low refractive index layer / high refractive index layer / low refractive index layer... Or low refractive index layer / high refractive index layer / low refractive index layer / high refractive index By laminating the layers in the order of lamination and increasing the chances of multiple reflection and interference, the above-described effects become remarkable.

【0017】なお、高屈折率層とは隣合う干渉層に対し
相対的に屈折率の高い層であり、低屈折率層とは隣合う
干渉層に対し相対的に屈折率の低い層を指す。
The high refractive index layer is a layer having a relatively high refractive index with respect to the adjacent interference layer, and the low refractive index layer is a layer having a relatively low refractive index with respect to the adjacent interference layer. .

【0018】また、前記超解像再生膜は、前記高屈折率
層および前記低屈折率層のうちの少なくとも1層に兼用
することができる。
The super-resolution reproducing film may be used as at least one of the high refractive index layer and the low refractive index layer.

【0019】低屈折率層/高屈折率層からなる積層干渉
層の高屈折率層に隣接して、この高屈折率層よりも屈折
率の小さな超解像再生膜を形成する、あるいは低屈折率
層に隣接してこの低屈折率層よりも屈折率の大きな超解
像再生膜を形成することで、超解像再生膜を積層干渉層
の一部として使用することも可能である。
A super-resolution reproducing film having a smaller refractive index than the high refractive index layer is formed adjacent to the high refractive index layer of the laminated interference layer composed of the low refractive index layer / high refractive index layer, or a low refractive index layer. By forming a super-resolution reproduction film having a higher refractive index than that of the low-refractive-index layer adjacent to the refractive index layer, the super-resolution reproduction film can be used as a part of the laminated interference layer.

【0020】また、前記反射層と前記積層干渉層との間
に、前記閾値を超える照射光に対する光記録媒体の反射
率を実質的に最大にする、あるいは前記閾値以下の照射
光に対する光記録媒体の反射率を実質的に最小にするよ
うに膜厚制御された光学マッチング層を設けることがで
きる。
Further, between the reflection layer and the laminated interference layer, the reflectance of the optical recording medium with respect to the irradiation light exceeding the threshold value is substantially maximized, or the optical recording medium with respect to the irradiation light having the threshold value or less is provided. Can be provided with an optical matching layer whose film thickness is controlled so as to substantially minimize the reflectance.

【0021】本発明の光記録媒体は、光学開口部の光反
射率が最大の反射率となる、あるいは光学マスク部の光
反射率が最小となるように層構成を調整し、光学マスク
部と、光学開口部との反射光の強度差を大きくすること
が望まれる。超解像再生膜の膜厚や屈折率、あるいは必
要に応じ設けられる透明基板の屈折率や反射率によっ
て、光学開口部の光反射率が最大とならない場合があ
る。所定の屈折率を持つ材料からなる層を反射膜と積層
干渉層との間に配置し、その膜厚を制御することで光学
開口部の光反射率が最大となるように調整することが可
能となる。
In the optical recording medium of the present invention, the layer structure is adjusted so that the light reflectance of the optical opening becomes the maximum or the light reflectance of the optical mask is the minimum, and the optical mask and the optical mask are combined. It is desired to increase the difference in the intensity of the reflected light from the optical aperture. Depending on the thickness and refractive index of the super-resolution reproduction film, or the refractive index and reflectance of the transparent substrate provided as needed, the light reflectance of the optical opening may not be maximum. A layer made of a material with a predetermined refractive index is placed between the reflective film and the laminated interference layer, and by controlling the film thickness, it is possible to adjust the optical reflectance of the optical aperture to be the maximum. Becomes

【0022】なお、本発明に用いられる超解像再生膜の
消衰係数は複素屈折率の虚部を、屈折率とは複素屈折率
の実部を指す。
The extinction coefficient of the super-resolution reproducing film used in the present invention refers to the imaginary part of the complex refractive index, and the refractive index refers to the real part of the complex refractive index.

【0023】[0023]

【発明の実施の形態】図1に本発明に関わる光記録媒体
の断面図の一例を示す。
FIG. 1 shows an example of a sectional view of an optical recording medium according to the present invention.

【0024】図1の光記録媒体では、記録情報がピット
として形成された記録層となる光ディスク基板1上に低
屈折率層2と高屈折率層3とが複数層順次積層された積
層干渉層11、超解像再生膜4、反射膜5が順次形成さ
れている。図1の例では低屈折率層2と高屈折率層3は
3組積層されている。
In the optical recording medium of FIG. 1, a laminated interference layer in which a plurality of low-refractive index layers 2 and high-refractive index layers 3 are sequentially laminated on an optical disc substrate 1 which is a recording layer in which recorded information is formed as pits. 11, a super-resolution reproduction film 4 and a reflection film 5 are sequentially formed. In the example of FIG. 1, three sets of the low refractive index layer 2 and the high refractive index layer 3 are laminated.

【0025】次に、本発明に係る超解像再生膜の消衰係
数が変化した時の、光記録媒体の反射率特性について説
明する。
Next, the reflectance characteristics of the optical recording medium when the extinction coefficient of the super-resolution reproducing film according to the present invention changes will be described.

【0026】図2は、本発明の光記録媒体の照射光波長
と反射率の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the irradiation light wavelength and the reflectance of the optical recording medium of the present invention.

【0027】まず、図2においては、超解像再生膜は、
屈折率2.3(照射光による変化はなし)、照射光が閾
値以下の時の消衰係数(以下、初期の消衰係数と呼ぶ)
が0ものを用いる。図1で説明したような低屈折率層と
してSiO2、高屈折率層としてZnSを用いた6層の
積層干渉層を用い、それぞれの膜厚を68.3nm、4
2.7nmとし、照射光として波長410nmのレーザ
ー光を用いた時に、光記録媒体の初期の反射率が最低と
なるように、超解像再生膜の膜厚を73.5nmとして
ある。
First, in FIG. 2, the super-resolution reproducing film is
Refractive index 2.3 (no change by irradiation light), extinction coefficient when irradiation light is below threshold (hereinafter referred to as initial extinction coefficient)
Is used. As shown in FIG. 1, a six-layered interference layer using SiO 2 as the low refractive index layer and ZnS as the high refractive index layer is used.
The thickness of the super-resolution reproduction film is set to 73.5 nm so that the initial reflectance of the optical recording medium is minimized when laser light having a wavelength of 410 nm is used as irradiation light.

【0028】図2は、このような光記録媒体に所定の閾
値以下の照射光を照射した時(超解像再生膜の屈折率
2.3、消衰係数0)の光記録媒体の反射率、照射光が
所定の閾値を超え、超解像再生膜の消衰係数が0.1、
0.2、あるいは0.5に変化した場合の反射率の計算
結果を示す。
FIG. 2 shows the reflectivity of the optical recording medium when such an optical recording medium is irradiated with irradiation light of a predetermined threshold value or less (the refractive index of the super-resolution reproducing film is 2.3 and the extinction coefficient is 0). Irradiating light exceeds a predetermined threshold, the extinction coefficient of the super-resolution reproduction film is 0.1,
The calculation result of the reflectance when changing to 0.2 or 0.5 is shown.

【0029】また、図3には、超解像再生膜の消衰係数
が、初期の屈折率の時と、所定の閾値を超え消衰係数が
変化した時との反射率差を示す。
FIG. 3 shows the reflectance difference between the case where the extinction coefficient of the super-resolution reproducing film is the initial refractive index and the case where the extinction coefficient exceeds a predetermined threshold value and changes.

【0030】図2から明らかなように、照射光410n
m近傍では消衰係数が大きくなるにしたがって反射率が
増加することが分かる。すなわち、所定の閾値を超える
光照射領域で超解像再生膜の消衰係数が増加し、その領
域のみ光記録媒体の光反射率が増加し光学開口部とな
り、超解像再生膜が初期の消衰係数のままである所定の
閾値以下の光照射領域では、光記録媒体の反射率が小さ
く光学マスク部となることが分かる。
As is apparent from FIG. 2, the irradiation light 410n
It can be seen that near m, the reflectance increases as the extinction coefficient increases. In other words, the extinction coefficient of the super-resolution reproduction film increases in a light irradiation region exceeding a predetermined threshold, and the light reflectance of the optical recording medium increases only in that region to become an optical aperture, and the super-resolution reproduction film is initially It can be seen that, in a light irradiation area below a predetermined threshold, which remains at the extinction coefficient, the reflectance of the optical recording medium is small and the optical recording medium becomes an optical mask portion.

【0031】このように超解像再生膜の消衰係数の増加
に伴い反射率が増加するのは、積層干渉層を設けたこと
で、光記録媒体内で、照射光が多重反射し、多重干渉し
たためである。
The reason why the reflectance increases with the increase of the extinction coefficient of the super-resolution reproducing film is that the irradiation light is reflected multiple times in the optical recording medium due to the provision of the laminated interference layer. This is because they interfered.

【0032】また、図3から、消衰係数の変化率が大き
くなるにしたがって、光学開口部と光学マスク部との反
射率差が大きくなることが分かる。
FIG. 3 shows that as the rate of change of the extinction coefficient increases, the reflectance difference between the optical aperture and the optical mask increases.

【0033】次に、このような光記録媒体を用いた超解
像再生技術について説明する。
Next, a super-resolution reproduction technique using such an optical recording medium will be described.

【0034】図4は、超解像再生技術を説明するための
光照射方向から見た光記録媒体の模式図である。
FIG. 4 is a schematic view of an optical recording medium viewed from a light irradiation direction for explaining a super-resolution reproduction technique.

【0035】光記録媒体41には、トラックT1、T
2、T3に沿って、所定ピッチで記録領域42が形成さ
れており、再生光をトラックT1、トラックT2、トラ
ックT3をそれぞれ順次走査していくことで、各トラッ
クの記録情報を読み出す。
In the optical recording medium 41, tracks T1, T
2, recording areas 42 are formed at a predetermined pitch along T3, and the recording information of each track is read by sequentially scanning the track T1, the track T2, and the track T3 with the reproduction light.

【0036】図4は、トラックT2にレーザー光などを
用いて再生光を照射した時の図面であり、その再生光の
光スポットをSで示している。超解像再生膜を具備しな
い光記録媒体においては、光スポットSと同じ領域から
反射光を受けるため、光スポット径よりも小さなピッチ
で記録領域が形成されていると、光スポット内に複数の
記録領域42、正確に記録情報を読み出すことができな
い。
FIG. 4 is a drawing when the track T2 is irradiated with reproduction light using a laser beam or the like, and the light spot of the reproduction light is indicated by S. In an optical recording medium having no super-resolution reproduction film, since the reflected light is received from the same area as the light spot S, if the recording area is formed at a pitch smaller than the light spot diameter, a plurality of light spots are formed in the light spot. The recording area 42 cannot accurately read the recording information.

【0037】本発明の光記録媒体においては、例えば、
光スポットSの中心部近傍のみ所定の閾値を超える光照
射量となるレーザー光を用いた場合には、所定の閾値を
超える光照射領域のみ光記録媒体の反射率が高くなり、
光スポットSより狭い光学開口Aが形成され、光スポッ
ト内の所定の閾値以下の光が照射される領域は反射率の
低い光学マスクMとなる。その結果、光スポットSより
も狭い光学開口A内のみの記録領域を読取ることが可能
になり、光スポットSよりも狭いピッチで記録領域が形
成された記録情報を正確に読取ることが可能になる。
In the optical recording medium of the present invention, for example,
When using a laser beam having a light irradiation amount exceeding a predetermined threshold only near the center of the light spot S, the reflectance of the optical recording medium is increased only in a light irradiation region exceeding the predetermined threshold,
An optical aperture A narrower than the light spot S is formed, and an area of the light spot irradiated with light having a predetermined threshold or less is an optical mask M having a low reflectance. As a result, it is possible to read a recording area only in the optical aperture A that is narrower than the light spot S, and it is possible to accurately read recorded information in which a recording area is formed at a smaller pitch than the light spot S. .

【0038】一方比較の為に、図2の構成で積層干渉層
がなく、超解像再生膜と反射膜のみ形成された光記録媒
体において、超解像再生膜の消衰係数が0から0.1、
0.2、0.5に変化したときの各波長における反射率
を図9に、反射率変化量を図10に示した。ただし、超
解像再生膜が初期の消衰係数の時に光反射率が最低とな
るように、超解像再生膜の膜厚を73.5nmとした。
On the other hand, for comparison, the extinction coefficient of the super-resolution reproduction film is 0 to 0 in the optical recording medium having the super-resolution reproduction film and the reflection film in the configuration of FIG. .1,
FIG. 9 shows the reflectance at each wavelength when changed to 0.2 and 0.5, and FIG. 10 shows the amount of change in reflectance. However, the thickness of the super-resolution reproducing film was set to 73.5 nm so that the light reflectance became minimum when the super-resolution reproducing film had an initial extinction coefficient.

【0039】図9、10から分かるように、低屈折率層
と高屈折率層の積層構造がない場合、消衰係数の増加に
伴い反射率は低下することが分かる。
As can be seen from FIGS. 9 and 10, when there is no laminated structure of the low refractive index layer and the high refractive index layer, the reflectance decreases as the extinction coefficient increases.

【0040】この記録媒体を用いた超解像再生を図11
を用いて説明する。
The super-resolution reproduction using this recording medium is shown in FIG.
This will be described with reference to FIG.

【0041】光ビームの強い中心部近傍においては、超
解像再生膜の消衰係数が大きくなり吸収率が増加して光
記録媒体の反射率が低下し、光スポットSの中心部近傍
に光学マスクMが形成される。また、光スポットSの境
界域近傍では、消衰係数が小さいので反射率が大きくな
り光学開口Aが形成される。
In the vicinity of the center of the light beam where the light beam is strong, the extinction coefficient of the super-resolution reproducing film increases, the absorption rate increases, the reflectance of the optical recording medium decreases, and the optical spot near the center of the light spot S A mask M is formed. In the vicinity of the boundary area of the light spot S, since the extinction coefficient is small, the reflectance increases and the optical aperture A is formed.

【0042】すなわち、照射光量が多い領域の反射率が
低く、照射光量が少ない領域の反射率が高いため、光学
マスクMと光学開口Aとの反射光の強度差が小さくな
り、また、光学開口部A内に複数の記録領域102が含ま
れる可能性が高くなり、記録情報の読取り誤差が生じる
恐れがある。
That is, since the reflectance in the area with a large amount of irradiation light is low and the reflectance in the area with a small amount of irradiation light is high, the difference in the intensity of the reflected light between the optical mask M and the optical aperture A is small. There is a high possibility that a plurality of recording areas 102 are included in the part A, and there is a possibility that a reading error of recorded information may occur.

【0043】本発明に係る超解像再生膜は、前述のよう
に所定の閾値を超える光照射によって選択的に消衰係数
が大きくなる材料であり、一般にヒートモード系と、フ
ォトンモード系のものが知られている。
The super-resolution reproducing film according to the present invention is a material whose extinction coefficient is selectively increased by light irradiation exceeding a predetermined threshold value as described above, and is generally a heat mode type or a photon mode type. It has been known.

【0044】ヒートモード系の超解像再生膜とは、光ビ
ーム照射による加熱で閾値を超える部分のみを選択的に
相転移などを発生させ、消衰係数を変化させる。例えば
カルコゲン系のGeSbTe、AgInSbTeなどの
相変化材料、ビアンスロン系、スピロピラン等のサーモ
クロミック材料などが挙げられる。
The heat-mode super-resolution reproducing film selectively generates a phase transition or the like only in a portion exceeding a threshold value by heating by light beam irradiation to change an extinction coefficient. Examples thereof include phase change materials such as chalcogen-based GeSbTe and AgInSbTe, and thermochromic materials such as Bianthrone-based and spiropyran.

【0045】フォトンモード系の超解像再生膜は、例え
ばフォトクロミック材料など光照射により発色又は消色
を利用したものが挙げられる。フォトクロミック材料は
光照射より電子が規定順位から寿命の短い励起状態へ励
起し、さらに励起準位から寿命の非常に長い準安定励起
準位へ遷移して捕捉されることにより屈折率を選択的に
変化させる。具体的にはピロベンゾピラン系分子、フル
ギド系分子、ジアリールエテン系分子、シクロファン系
分子、アゾベンゼンなどが挙げられる。また、吸収飽和
により光学定数が変化する半導体、半導体微粒子分散膜
等が挙げられる。また、吸収飽和により消衰係数が変化
する半導体、半導体微粒子分散膜などが挙げられる。
As the photon mode type super-resolution reproducing film, for example, a film utilizing color development or decoloration by light irradiation, such as a photochromic material, may be mentioned. In a photochromic material, electrons are excited by light irradiation from a specified order to an excited state with a short lifetime, and further, transition from the excited level to a metastable excited state with a very long lifetime is captured, thereby selectively changing the refractive index. Change. Specific examples include pyrobenzopyran-based molecules, fulgide-based molecules, diarylethene-based molecules, cyclophane-based molecules, and azobenzene. Further, a semiconductor whose optical constant changes due to absorption saturation, a semiconductor fine particle dispersed film, and the like can be given. Further, a semiconductor whose extinction coefficient changes due to absorption saturation, a semiconductor fine particle dispersed film, and the like can be given.

【0046】本発明に係る積層干渉層は、干渉効果を出
させるために再生光などの照射光に対して実質的に光学
膜厚λ/4の膜厚にすることが望ましい。また、隣接す
る高屈折率層と低屈折率層の屈折率差を大きくとること
が望ましい。具体的にはSiO2、Al23、ZrO2
TiO2 、ZrO2等の酸化物、 MgF2、CaF2等の
弗化物、AlN、Si34等の窒化物、ZnS等の硫化
物、或いはそれらの混合物などを使用すればよい。
It is desirable that the laminated interference layer according to the present invention has an optical thickness λ / 4 substantially with respect to irradiation light such as reproduction light in order to produce an interference effect. In addition, it is desirable to increase the difference in refractive index between the adjacent high refractive index layer and low refractive index layer. Specifically, SiO 2 , Al 2 O 3 , ZrO 2 ,
TiO 2, ZrO 2, etc. oxides, MgF 2, CaF 2, etc. fluorides, AlN, Si 3 N nitrides such 4, sulfides such as ZnS, or may be used such as mixtures thereof.

【0047】また、本発明に係る積層干渉層を構成する
高屈折率層、あるいは低屈折率層とは、屈折率の異なる
層を積層した積層干渉層において、隣合う層に対して相
対的に高屈折率、あるいは低屈折率の材料からなる層を
指す。例えばその組合わせとして、高屈折率層としてZ
rO2、TiO2、ZnS、ZnS・SiO2等を、低屈
折率層としてMgF2、CaF2、SiO2、Al23
Na3Al26等を用いることができる。
The high refractive index layer or the low refractive index layer constituting the laminated interference layer according to the present invention is a laminated interference layer in which layers having different refractive indices are laminated, and is relatively to an adjacent layer. Refers to a layer made of a material having a high or low refractive index. For example, as a combination thereof, as a high refractive index layer, Z
rO 2 , TiO 2 , ZnS, ZnS · SiO 2, etc., as a low refractive index layer, MgF 2 , CaF 2 , SiO 2 , Al 2 O 3 ;
Na 3 Al 2 F 6 or the like can be used.

【0048】また、積層干渉層は、高屈折率層と低屈折
率層とを順次積層してなるが、この積層数は5層〜8層
程度とすることが望ましい。但し、高屈折率層と低屈折
率層の積層順および屈折率によってはこれ以外であって
も、消衰係数の増加に伴ない、記録媒体の反射率が増加
する。図1に示す光記録媒体において、積層数の異なる
積層干渉層について、光照射により消衰係数が0から
0.5に変化する超解像再生膜を用いた場合の反射率差
を図5aに示す。ここでは、低屈折率層、高屈折率層、
高屈折率層、低屈折率層の順で4層積層しており、消衰
係数が0.5まで増加しても、消衰係数が0のときに比
べて反射率が低いが、6層、8層では消衰係数が0のと
きに比べて反射率が高く、光学開口を形成できる。積層
数が10層では消衰係数が0のときに比べて反射率が低
くなる。一方、図1の層構成で積層干渉層が基板側から
高屈折率層/低屈折率層の順に積層された構成におい
て、積層数の異なる積層干渉層について、光照射により
消衰係数が0から0.5に変化する超解像再生膜を用い
た場合の反射率差を図5bに示す。この場合、4層から1
0層まで積層数を変えても消衰係数が0のときに比べて
反射率が高くなるが、最も反射率差が大きいのは6層の
ときである。このように高屈折率層、低屈折率層の積層
順、各層の屈折率によって、最適な積層数が決まる。い
ずれの場合においても、消衰係数が0のときの設定波長
における反射率が20%以下であることが望ましく、反射
率が小さければ小さいほど好ましい。
The laminated interference layer is formed by sequentially laminating a high-refractive index layer and a low-refractive index layer, and the number of layers is desirably about 5 to 8 layers. However, depending on the order of lamination of the high refractive index layer and the low refractive index layer and the refractive index, the reflectance of the recording medium increases with an increase in the extinction coefficient even in other cases. In the optical recording medium shown in FIG. 1, the difference in the reflectance when the super-resolution reproduction film whose extinction coefficient changes from 0 to 0.5 by light irradiation is used for the stacked interference layers having different numbers of layers is shown in FIG. Show. Here, a low refractive index layer, a high refractive index layer,
Four layers are stacked in the order of a high refractive index layer and a low refractive index layer. Even if the extinction coefficient increases to 0.5, the reflectivity is lower than when the extinction coefficient is 0, but 6 layers. , 8 layers have a higher reflectance than when the extinction coefficient is 0, and can form an optical aperture. When the number of layers is 10, the reflectance is lower than when the extinction coefficient is 0. On the other hand, in the configuration in which the laminated interference layers are laminated in the order of high refractive index layer / low refractive index layer from the substrate side in the layer configuration of FIG. FIG. 5B shows the difference in reflectance when a super-resolution reproducing film that changes to 0.5 is used. In this case, from 4 layers to 1
Even if the number of layers is changed up to 0 layers, the reflectivity is higher than when the extinction coefficient is 0, but the reflectivity difference is greatest when there are 6 layers. Thus, the optimum number of layers is determined by the order of lamination of the high refractive index layer and the low refractive index layer and the refractive index of each layer. In any case, the reflectance at the set wavelength when the extinction coefficient is 0 is preferably 20% or less, and the smaller the reflectance, the better.

【0049】また、積層干渉層の積層数を多くするため
に、前記超解像再生膜を積層干渉層の一部として機能さ
せることも可能である。例えば、積層干渉層と超解像再
生膜とを隣接して形成し、超解像再生膜と隣接する層が
高屈折率層である場合にはそれよりも屈折率の小さな材
料からなる超解像再生膜を、超解像再生膜と隣接する層
が低屈折率層である場合にはそれよりも屈折率の大きな
材料からなる超解像再生膜を形成すればよい。
In order to increase the number of laminated interference layers, the super-resolution reproducing film can be made to function as a part of the laminated interference layer. For example, when the laminated interference layer and the super-resolution reproduction film are formed adjacent to each other, and the layer adjacent to the super-resolution reproduction film is a high refractive index layer, the super resolution When the layer adjacent to the super-resolution reproduction film is a low-refractive-index layer, a super-resolution reproduction film made of a material having a higher refractive index may be formed.

【0050】本発明に係る記録層は、図1に示すよう
に、ポリカーボネート、ポリメチルメタクリレート、ガ
ラスなどからなる光ディスク基板など適当な層を形成
し、ピットを形成したものであっても良いし、例えば、
Ge−Sb−Te系、Ag−In−Sb−Te系などの
相変化材料などを記録層とし、この記録層に光ビームを
照射し、その一部の光学特性を変化させることで、記録
情報を作成したものであっても良い。
As shown in FIG. 1, the recording layer according to the present invention may be formed by forming an appropriate layer such as an optical disk substrate made of polycarbonate, polymethyl methacrylate, glass or the like and forming pits. For example,
A recording layer is made of a phase-change material such as a Ge-Sb-Te system or an Ag-In-Sb-Te system, and the recording layer is irradiated with a light beam to change a part of its optical characteristics, thereby recording information. May be created.

【0051】本発明に係る反射層は、前述した記録層、
積層干渉層および超解像再生膜を介して照射される光を
全反射することが好ましく、例えば、Al及びAl−C
r、Al−Ti、Al−Mo等のAl合金、Au、A
g、Cuなどを50nm以上の平均膜厚を有する層とす
ることが望ましい。
The reflection layer according to the present invention comprises the above-described recording layer,
It is preferable to totally reflect the light irradiated through the laminated interference layer and the super-resolution reproducing film, for example, Al and Al-C
r, Al alloy such as Al-Ti, Al-Mo, Au, A
It is desirable that g, Cu, and the like be a layer having an average thickness of 50 nm or more.

【0052】また、図1に示す光記録媒体においては、
超解像再生膜の膜厚を調整することで、光記録媒体の光
学マスク部の反射率を最小となるように調整したが、干
渉層と反射膜との間に光学マッチング層を形成し、この
光学マッチング層の屈折率や膜厚を調整することで、超
解像再生膜を任意の値にしても光記録媒体の光学マスク
部の反射率を最小とすることができる。また、光記録媒
体の光学開口部の反射率が最大となるように、光学マッ
チング層の屈折率や膜厚を調整しても良い。
In the optical recording medium shown in FIG.
By adjusting the thickness of the super-resolution reproduction film, the reflectance of the optical mask portion of the optical recording medium was adjusted to be the minimum, but an optical matching layer was formed between the interference layer and the reflection film, By adjusting the refractive index and the film thickness of the optical matching layer, the reflectance of the optical mask portion of the optical recording medium can be minimized even if the super-resolution reproduction film has an arbitrary value. Further, the refractive index and the thickness of the optical matching layer may be adjusted so that the reflectance of the optical opening of the optical recording medium is maximized.

【0053】前述したような光記録媒体の変形例を図6
に示す。
FIG. 6 shows a modification of the optical recording medium as described above.
Shown in

【0054】図6においては、透明基板からなる光ディ
スク基板1上に、低屈折率層2および高屈折率層3が順
次積層された6層構造の積層干渉層11、積層干渉層1
1上には超解像再生膜4が形成されており、この超解像
再生膜は隣接する高屈折率層よりも低い屈折率の材料か
ら形成されている。超解像再生膜上には相変化材料から
なる記録層9、光学マッチング層10および反射膜5が
順次積層されている。
FIG. 6 shows a laminated interference layer 11 having a six-layer structure in which a low refractive index layer 2 and a high refractive index layer 3 are sequentially laminated on an optical disk substrate 1 made of a transparent substrate.
A super-resolution reproduction film 4 is formed on 1, and this super-resolution reproduction film is formed of a material having a lower refractive index than the adjacent high-refractive-index layer. On the super-resolution reproduction film, a recording layer 9 made of a phase change material, an optical matching layer 10, and a reflection film 5 are sequentially laminated.

【0055】上述したように、本発明の光記録媒体によ
れば、所定の閾値を超える光照射によって消衰係数が大
きくなる超解像再生膜を用い、光強度の強い領域を光学
開口として利用できるために、光利用効率の高い光記録
媒体が得られる。
As described above, according to the optical recording medium of the present invention, a super-resolution reproduction film whose extinction coefficient is increased by light irradiation exceeding a predetermined threshold is used, and a region having a high light intensity is used as an optical aperture. As a result, an optical recording medium with high light use efficiency can be obtained.

【0056】なお、超解像再膜を用いた光記録媒体の再
生技術について説明したが、本発明の光記録媒体は、同
様の技術で光スポットよりも小さな記録領域を形成する
ことも可能である。
Although the reproduction technique of the optical recording medium using the super-resolution film has been described, the optical recording medium of the present invention can form a recording area smaller than the light spot by the same technique. is there.

【0057】[0057]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0058】実施例1 本実施例の層構成は、PC(ポリカーボネイト)基板/
積層干渉層/超解像再生膜/反射膜を順次積層したもの
である。積層干渉層は、PC基板側から低屈折率層、高
屈折率層の順で順次6層積層した構造である。
Example 1 The layer structure of this example is a PC (polycarbonate) substrate /
The laminated interference layer / super-resolution reproduction film / reflection film are sequentially laminated. The laminated interference layer has a structure in which six layers are sequentially laminated in order of a low refractive index layer and a high refractive index layer from the PC substrate side.

【0059】PC基板にトラック別に0.2μm〜0.
6μmの長さ、幅0.3um、間隔が長さと同じピット
列がそれぞれ形成されている。再生波長は413nmで
ある。低屈折率層及び高屈折率層の屈折率はそれぞれ
1.5,2.4であり、膜厚は光学膜厚がλ/4に相当
する膜厚、低屈折率層68.8nm、高屈折率層43.
0nmである。超解像再生膜の屈折率は2.3、初期の
消衰係数は0.05である。
On a PC board, 0.2 μm to 0.2 μm for each track.
A pit row having the same length of 6 μm, width of 0.3 μm, and interval is formed. The reproduction wavelength is 413 nm. The refractive indices of the low refractive index layer and the high refractive index layer are 1.5 and 2.4, respectively, and the film thickness is such that the optical film thickness corresponds to λ / 4, the low refractive index layer is 68.8 nm, and the high refractive index is high. Rate layer 43.
0 nm. The super-resolution reproducing film has a refractive index of 2.3 and an initial extinction coefficient of 0.05.

【0060】超解像再生膜の膜厚は、再生光が照射され
ていない初期状態において反射率が最小となるように7
3.5nmとしてある。この超解像再生膜は、再生光が
照射されると消衰係数が0.3に変化する。反射膜には
AlTiを用い、その膜厚は50nmである。
The film thickness of the super-resolution reproducing film is adjusted so that the reflectance becomes minimum in the initial state where the reproducing light is not irradiated.
It is 3.5 nm. The extinction coefficient of this super-resolution reproduction film changes to 0.3 when irradiated with reproduction light. The reflective film is made of AlTi and has a thickness of 50 nm.

【0061】また、比較例として、積層干渉層がない以
外は、実施例1と同様の構成のディスクを作製した。
As a comparative example, a disk having the same configuration as in Example 1 except that no laminated interference layer was provided was produced.

【0062】実施例1および比較例のディスクをKr+
ガスレーザーを光源とした再生評価機でCNRのピット
長依存性を測定した。但し、再生評価機の再生波長41
3nm、再生パワー1mWである。その結果を図7に示
した。
The disks of Example 1 and Comparative Example were replaced with Kr +
The pit length dependence of the CNR was measured with a reproduction evaluator using a gas laser as a light source. However, the reproduction wavelength 41 of the reproduction evaluation machine
3 nm, reproduction power 1 mW. The result is shown in FIG.

【0063】図7からわかるように、ピット長が0.4
μm以上と長い場合は、超解像再生膜が無い比較例の方
がCNRが大きいが、ピット長が0.4μmよりも短く
なると急激にCNRが減少する。これは十分な超解像効
果が得られていないためである。
As can be seen from FIG. 7, the pit length is 0.4
When the length is as long as μm or more, the CNR is larger in the comparative example having no super-resolution reproduction film, but the CNR sharply decreases when the pit length is shorter than 0.4 μm. This is because a sufficient super-resolution effect has not been obtained.

【0064】これに対し、本実施例のディスクはピット
長が0.2μmと短くなっても高いCNRを維持してい
る。以上のことから、多層誘電体が超解像再生膜の特性
向上に効果があることが確認できた。
On the other hand, the disk of this embodiment maintains a high CNR even when the pit length is reduced to 0.2 μm. From the above, it was confirmed that the multilayer dielectric was effective in improving the characteristics of the super-resolution reproduction film.

【0065】実施例2 本実施例の層構成はPC基板/積層干渉層/低屈折率層
/超解像再生膜/マッチング層/反射膜である。積層干
渉層は、PC基板側から低屈折率層、高屈折率層の順
で、順次4層積層された構造である。PC基板には0.
2μm〜0.6μmの長さ、幅0.3um、間隔が長さ
と同じピット列がそれぞれ形成されている。再生波長は
413nmである。低屈折率層及び高屈折率層の屈折率
はそれぞれ1.5、2.4であり、膜厚は光学膜厚がλ
/4に相当する膜厚、低屈折率層68.6nm、高屈折
率層43.0nmである。超解像再生膜の屈折率は2.
3、初期の消衰係数は0.05であり、その膜厚は光挙
膜厚がλ/4に相当する膜厚、44.9nmである。こ
の超解像再生膜は再生光が照射されると消衰係数は0.
3に変化する。
Example 2 The layer structure of this example is a PC substrate / laminated interference layer / low refractive index layer / super-resolution reproduction film / matching layer / reflection film. The laminated interference layer has a structure in which four layers are sequentially laminated in the order of a low refractive index layer and a high refractive index layer from the PC substrate side. 0.
Pit rows having the same length of 2 μm to 0.6 μm, the width of 0.3 μm, and the same interval are formed. The reproduction wavelength is 413 nm. The refractive indices of the low refractive index layer and the high refractive index layer are 1.5 and 2.4, respectively.
/ 4, a low refractive index layer of 68.6 nm, and a high refractive index layer of 43.0 nm. The refractive index of the super-resolution reproducing film is 2.
3. The initial extinction coefficient is 0.05, and the film thickness is 44.9 nm, the film thickness corresponding to the optical film thickness of λ / 4. The extinction coefficient of this super-resolution reproduction film is set to 0.
Change to 3.

【0066】マッチング層にはAlNを用いた。AlN
の屈折率は1.8である。マッチング層の膜厚は、再生
光が照射されていない初期状態において反射率が最小と
なるように100nmとしてある。反射膜にはAlTi
を用い、その膜厚は50nmである。
AlN was used for the matching layer. AlN
Has a refractive index of 1.8. The thickness of the matching layer is set to 100 nm so that the reflectance becomes minimum in the initial state where the reproduction light is not irradiated. AlTi for reflective film
And the film thickness is 50 nm.

【0067】実施例1と同様の測定を行い、実施例1と
略同様の効果を確認した。
The same measurement as in Example 1 was performed, and substantially the same effect as in Example 1 was confirmed.

【0068】実施例3 本実施例の層構成は実施例1と同様の層構成である。但
し、超解像再生膜の屈折率が2.25、初期の消衰係数
が0.05である。
Embodiment 3 The layer configuration of this embodiment is the same as that of Embodiment 1. However, the refractive index of the super-resolution reproduction film is 2.25, and the initial extinction coefficient is 0.05.

【0069】この超解像再生膜は再生光の照射により、
屈折率が2.3消衰係数が0.25に変化する。実施例
1と同様の測定を行い、略同様の効果を確認した。
This super-resolution reproduction film is irradiated with reproduction light to
The refractive index changes to 2.3 and the extinction coefficient changes to 0.25. The same measurement as in Example 1 was performed, and substantially the same effect was confirmed.

【0070】実施例4 本実施例の層構成はPC基板/積層干渉層/超解像再生
膜/マッチング層/記録層/干渉層/反射膜である。積
層干渉層はPC基板側から低屈折率層、高屈折率層の順
で順次6層積層した積層構造である。
Embodiment 4 The layer configuration of this embodiment is a PC substrate / laminated interference layer / super-resolution reproduction film / matching layer / recording layer / interference layer / reflection film. The laminated interference layer has a laminated structure in which six layers are sequentially laminated in the order of a low refractive index layer and a high refractive index layer from the PC substrate side.

【0071】すなわち、記録層がGe2Sb2Te5、2
0nm、干渉層がZnS−SiO2、40nmであるこ
と以外は、実施例1と同様の構成である。
That is, when the recording layer is Ge 2 Sb 2 Te 5 ,
The configuration is the same as that of the first embodiment, except that the thickness is 0 nm and the interference layer is ZnS-SiO 2 , 40 nm.

【0072】また、比較例として積層干渉層の無いディ
スクを作製した。
As a comparative example, a disk having no laminated interference layer was manufactured.

【0073】記録・再生波長413nmで、本実施例及
び比較例の光ディスクを用いて言己録再生特性を評価し
た。6m/s、記録パワーレベルを9mW、消去パワー
レベルを4mWに設定し、オーバーライトモードでマー
ク長が0.3μmの記録マークをマーク間隔を変化させ
ながら単一周波数で記録した。
The recording / reproducing wavelength was 413 nm, and the self-recording / reproducing characteristics were evaluated using the optical disks of the present example and the comparative example. At 6 m / s, the recording power level was set to 9 mW, the erasing power level was set to 4 mW, and a recording mark having a mark length of 0.3 μm was recorded at a single frequency in the overwrite mode while changing the mark interval.

【0074】この際、熱干渉の影響を防ぐ目的で記録パ
ルスを分割する記録補償を適用した。
At this time, recording compensation for dividing a recording pulse was applied in order to prevent the influence of thermal interference.

【0075】上記のようにして記録した光ディスクにつ
いて再生を行った。再生パワー1mWに設定したとき
に、マーク間隔の異なるトラックを再生した高密度記録
特性を評価した。この結果を図8に示す。
The optical disk recorded as described above was reproduced. When the reproducing power was set to 1 mW, the high-density recording characteristics of reproducing tracks having different mark intervals were evaluated. The result is shown in FIG.

【0076】比較例の光ディスクではマーク間隔が0.
3μm未満で符号間干渉の影響が強く、CNRが低下し
ている。また、隣接トラックからのクロストークも大き
いため、トラック上のマーク間隔が長い場合でもCNR
のレベルはそれほど高くならない。これに対して、本実
施例のディスクではマーク間隔が0.15μmでも高い
CNRで再生できる。また、クロストークの影響を全く
受けないため、0.15μmよりもマーク間隔が長いと
きのCNRも比較例より高い。
In the optical disk of the comparative example, the mark interval is set to 0.
At less than 3 μm, the influence of intersymbol interference is strong, and the CNR is reduced. Also, since the crosstalk from the adjacent track is large, even when the mark interval on the track is long, the CNR is high.
Level is not so high. On the other hand, in the disk of the present embodiment, reproduction can be performed with a high CNR even when the mark interval is 0.15 μm. Further, since there is no influence of crosstalk, the CNR when the mark interval is longer than 0.15 μm is higher than that of the comparative example.

【0077】[0077]

【発明の効果】低屈折率層と高屈折率層を積層すること
で、光照射により消衰係数が増加するような超解像再生
膜を用いても、CADの超解像再生方法を行なうことが
でき、狭マークピッチ及び狭トラックピッチの記録マー
クを高分解能で再生することができる。超解像膜に適応
できる材料を広げることができる。
According to the present invention, a CAD super-resolution reproducing method can be performed even if a super-resolution reproducing film whose extinction coefficient increases by light irradiation is used by laminating a low refractive index layer and a high refractive index layer. Thus, a recording mark having a narrow mark pitch and a narrow track pitch can be reproduced with high resolution. Materials applicable to super-resolution films can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の光記録媒体の一例を示す断面図。FIG. 1 is a sectional view showing an example of an optical recording medium of the present invention.

【図2】 本発明の光記録媒体の照射光波長と反射率の
関係を示す図。
FIG. 2 is a diagram showing the relationship between the irradiation light wavelength and the reflectance of the optical recording medium of the present invention.

【図3】 超解像再生膜の消衰係数が、初期の屈折率の
時と、所定の閾値を超え消衰係数が変化した時との反射
率差を示す図。
FIG. 3 is a diagram showing a reflectance difference between a case where the extinction coefficient of the super-resolution reproduction film is an initial refractive index and a case where the extinction coefficient changes beyond a predetermined threshold value.

【図4】 超解像再生技術を説明するための図。FIG. 4 is a diagram for explaining a super-resolution reproduction technique.

【図5】 積層干渉層の積層数の違いによる光記録媒体
の反射率差を示す図。
FIG. 5 is a diagram showing a difference in reflectance of an optical recording medium due to a difference in the number of stacked interference layers.

【図6】 本発明の光記録媒体の変形例を示す図。FIG. 6 is a diagram showing a modification of the optical recording medium of the present invention.

【図7】 本発明の実施例の光記録媒体に辛けるCNR
のピット長依存性を示す図。
FIG. 7 shows a CNR that is hot in an optical recording medium according to an embodiment of the present invention.
FIG. 3 is a diagram showing the pit length dependence of the pit.

【図8】 本発明の実施例の光記録媒体におけるCNR
のマーク間隔依存性を示す図。
FIG. 8 shows a CNR in an optical recording medium according to an embodiment of the present invention.
FIG. 3 is a diagram showing mark interval dependency.

【図9】 超解像再生膜と反射膜のみ形成された光記録
媒体の超解像再生膜の消衰係数が変化したときの反射率
を示す図。
FIG. 9 is a graph showing the reflectance when the extinction coefficient of the super-resolution reproduction film of the optical recording medium having only the super-resolution reproduction film and the reflection film is changed.

【図10】 図9の反射率変化量を示す図。FIG. 10 is a diagram showing a reflectance change amount in FIG. 9;

【図11】 積層干渉層のない光記録媒体における超解
像再生技術を説明するための図。
FIG. 11 is a diagram for explaining a super-resolution reproduction technique in an optical recording medium without a laminated interference layer.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・超解像再生膜 3・・・停屈折率層 4・・・高屈折率層 5・・・反射膜 11・・・積層構成 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Super-resolution reproduction film 3 ... Refractive index layer 4 ... High refractive index layer 5 ... Reflective film 11 ... Laminated structure

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】記録層と、この記録層を介して照射光が照
射される反射層と、すくなくとも前記反射層の前記照射
光側に形成され、所定の閾値を超える量の光照射により
選択的に消衰係数が大きくなる超解像再生膜とを具備す
る光記録媒体であり、 光記録媒体への照射光スポット内で、前記閾値を超える
領域と、前記閾値以下の領域とで、光記録媒体の反射率
が異なる光記録媒体において、 前記反射層に対して少なくとも照射光側に形成され、前
記照射光の入射光および、前記反射層による反射光を多
重反射・多重干渉させる、高屈折率層および低屈折率層
を有する積層干渉層を具備することを特徴とする光記録
媒体。
1. A recording layer, a reflective layer to which irradiation light is irradiated through the recording layer, and at least a reflection layer formed on the irradiation light side of the reflection layer. An optical recording medium comprising a super-resolution reproduction film having a large extinction coefficient, and optical recording is performed in an area exceeding the threshold value and an area equal to or less than the threshold value in an irradiation light spot on the optical recording medium. In an optical recording medium having a different reflectivity of a medium, a high refractive index formed at least on the irradiation light side with respect to the reflective layer, causing multiple reflection and multiple interference of incident light of the irradiation light and light reflected by the reflective layer. An optical recording medium comprising a laminated interference layer having a layer and a low refractive index layer.
【請求項2】前記積層干渉層は、高屈折率層および低屈
折率層が順次積層された3層以上の積層体であることを
特徴とする請求項1記載の光記録媒体。
2. The optical recording medium according to claim 1, wherein the laminated interference layer is a laminate of three or more layers in which a high refractive index layer and a low refractive index layer are sequentially laminated.
【請求項3】前記超解像再生膜は、前記高屈折率層およ
び前記低屈折率層のうちの少なくとも1層に兼用したこ
とを特徴とする請求項2記載の光記録媒体。
3. The optical recording medium according to claim 2, wherein the super-resolution reproducing film is used as at least one of the high refractive index layer and the low refractive index layer.
【請求項4】前記照射光の波長をλとした時に、前記高
屈折率層および低屈折率層の膜厚が実質的にλ/4であ
ることを特徴とする請求項2記載の光記録媒体。
4. The optical recording apparatus according to claim 2, wherein when the wavelength of the irradiation light is λ, the thickness of the high refractive index layer and the low refractive index layer is substantially λ / 4. Medium.
【請求項5】前記反射層と前記積層干渉層との間に、前
記閾値を超える照射光に対する光記録媒体の反射率を実
質的に最大にする、あるいは前記閾値以下の照射光に対
する光記録媒体の反射率を実質的に最小にするように膜
厚制御された光学マッチング層を具備することを特徴と
する請求項1記載の光記録媒体。
5. An optical recording medium between the reflective layer and the laminated interference layer, which substantially maximizes the reflectance of the optical recording medium with respect to irradiation light exceeding the threshold, or with respect to irradiation light below the threshold. The optical recording medium according to claim 1, further comprising an optical matching layer whose film thickness is controlled so as to substantially minimize the reflectance of the optical recording medium.
JP2000089615A 1999-12-28 2000-03-28 Optical recording medium Pending JP2001273679A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000089615A JP2001273679A (en) 2000-03-28 2000-03-28 Optical recording medium
US09/749,570 US20010015949A1 (en) 1999-12-28 2000-12-28 Optical recording medium and recording-reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089615A JP2001273679A (en) 2000-03-28 2000-03-28 Optical recording medium

Publications (1)

Publication Number Publication Date
JP2001273679A true JP2001273679A (en) 2001-10-05

Family

ID=18605349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089615A Pending JP2001273679A (en) 1999-12-28 2000-03-28 Optical recording medium

Country Status (1)

Country Link
JP (1) JP2001273679A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245577B2 (en) 2002-10-30 2007-07-17 Hitachi, Ltd. Optical information recording apparatus and optical information recording medium
US7397755B2 (en) 2002-03-05 2008-07-08 Sharp Kabushiki Kaisha Optical information recording medium
US7436755B2 (en) 2002-11-18 2008-10-14 Sharp Kabushiki Kaisha Optical information recording medium, recording and reproduction methods using the same, optical information recording device, and optical information reproduction device
US7556912B2 (en) 2003-06-06 2009-07-07 Sharp Kabushiki Kaisha Optical information recording medium, reproducting method using the same, and optical information processing device
US7682678B2 (en) 2003-06-06 2010-03-23 Sharp Kabushiki Kaisha Optical information recording medium, recording and readout methods using the same, optical information recording device, and optical information readout device
US7813258B2 (en) 2007-02-28 2010-10-12 Hitachi, Ltd. Optical information recording medium and optical information reproducing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7397755B2 (en) 2002-03-05 2008-07-08 Sharp Kabushiki Kaisha Optical information recording medium
US7245577B2 (en) 2002-10-30 2007-07-17 Hitachi, Ltd. Optical information recording apparatus and optical information recording medium
US7436755B2 (en) 2002-11-18 2008-10-14 Sharp Kabushiki Kaisha Optical information recording medium, recording and reproduction methods using the same, optical information recording device, and optical information reproduction device
US7556912B2 (en) 2003-06-06 2009-07-07 Sharp Kabushiki Kaisha Optical information recording medium, reproducting method using the same, and optical information processing device
US7682678B2 (en) 2003-06-06 2010-03-23 Sharp Kabushiki Kaisha Optical information recording medium, recording and readout methods using the same, optical information recording device, and optical information readout device
US7813258B2 (en) 2007-02-28 2010-10-12 Hitachi, Ltd. Optical information recording medium and optical information reproducing method

Similar Documents

Publication Publication Date Title
KR100506553B1 (en) Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus
US6064642A (en) Phase-change type optical disk
US7682678B2 (en) Optical information recording medium, recording and readout methods using the same, optical information recording device, and optical information readout device
US7436755B2 (en) Optical information recording medium, recording and reproduction methods using the same, optical information recording device, and optical information reproduction device
EP0564260B1 (en) Optical recording medium and optical recording/reproducing apparatus
JP3648378B2 (en) optical disk
US20010015949A1 (en) Optical recording medium and recording-reproducing apparatus
JP2001273679A (en) Optical recording medium
JP2003109217A (en) Optical recording medium and optical recording method
US5949751A (en) Optical recording medium and a method for reproducing information recorded from same
KR100338756B1 (en) Phase change optical medium
Hatakeyama et al. Super-resolution rewritable optical disk having a mask layer composed of thermo-chromic organic dye
JP3287860B2 (en) Optical information recording method and recording medium
JP2001189033A (en) Optical recording medium
US20060210757A1 (en) Writable optical record carrier
JP2002109786A (en) Optical recording medium
JP3156418B2 (en) Optical information recording medium and optical information recording / reproducing method
JP2008159207A (en) Optical recording medium and optical recording/reproducing apparatus
KR100694031B1 (en) Phase change optical disk
JP2006085845A (en) Multilayer optical information recording medium and optical information recording and reproducing device
JPH09134546A (en) Optical recording medium and method for reproducing its information signal
JP3980544B2 (en) Optical information recording medium
JPH05225603A (en) Phase transition optical disk medium for short wavelength
JP3170531B2 (en) optical disk
JP2596477B2 (en) Optical information recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401