JP2001272687A - Liquid crystal device for control of polarized light - Google Patents

Liquid crystal device for control of polarized light

Info

Publication number
JP2001272687A
JP2001272687A JP2000085550A JP2000085550A JP2001272687A JP 2001272687 A JP2001272687 A JP 2001272687A JP 2000085550 A JP2000085550 A JP 2000085550A JP 2000085550 A JP2000085550 A JP 2000085550A JP 2001272687 A JP2001272687 A JP 2001272687A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
substrate
polarization
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000085550A
Other languages
Japanese (ja)
Inventor
Takuro Yamanaka
山中卓郎
Rumiko Yamaguchi
山口留美子
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000085550A priority Critical patent/JP2001272687A/en
Publication of JP2001272687A publication Critical patent/JP2001272687A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device in which the direction of linearly polarized light can be electrically fast rotated and controlled in a simple structure. SOLUTION: The liquid crystal device has a liquid crystal layer 3 sealed between a transparent substrate 2 and a substrate 4 having a punched pattern electrode divided into a plurality of parts by slits. The inner face of one substrate is subjected to intense alignment treatment to align the liquid crystal molecules parallel in one direction to the substrate while the inner face of the other substrate is subjected to the aligning treatment to give weak alignment controlling force. By adding a voltage on divided electrodes such as electrode pairs 4a, 4b or 4c, 4d along the diameter direction of the punched pattern electrode, an effect to twist the alignment of the liquid crystal molecules is induced. Thereby, rotation of the polarization direction of the incident linearly polarized light can be electrically controlled for the incident linearly polarized light having the polarization direction in the uniaxial alignment direction of the liquid crystal molecules.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は直線偏光の偏光方向
を機械的な可動装置を用いずに電気的に回転制御する偏
光制御装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a polarization controller for electrically controlling the direction of polarization of linearly polarized light without using a mechanical movable device.

【0002】[0002]

【従来の技術】光の電界方向に対応する偏光に関わる偏
光特性は光が持つ重要な性質の一つであり、偏光方向を
可変制御できる装置は光の応用分野である光工学や光エ
レクトロニクスにおいてきわめて重要である。
2. Description of the Related Art Polarization characteristics related to polarization corresponding to the direction of the electric field of light are one of the important properties of light, and devices capable of variably controlling the polarization direction are used in optical engineering and optoelectronics, which are applied fields of light. Very important.

【0003】従来、白熱電球や太陽光など、あらゆる方
向の偏光成分を含む光源からの入射光や円偏光特性を有
する入射光と直線偏光板の組み合わせにより、一方向に
偏光した直線偏光を取り出すことができ、直線偏光板を
回転することで、任意の方向に偏光した直線偏光を取り
出すこともできる。
Conventionally, linearly polarized light polarized in one direction is extracted by combining incident light from a light source containing polarized light components in all directions, such as incandescent lamps and sunlight, or incident light having circular polarization characteristics with a linear polarizing plate. By rotating the linear polarizing plate, linearly polarized light polarized in an arbitrary direction can be extracted.

【0004】液晶分子が2枚の基板面に対して平行に配
向しており、その配向が両基板間で徐々にねじれて、9
0度ねじれるようにしたツイステッドネマティック液晶
セル(以下、「TNセル」という)において、液晶セル
に電圧を加えていない場合には入射光の偏光方向が液晶
分子の配向方向に沿って90度回転する効果がある。一
方、液晶セルにしきい値以上の電圧を加えると液晶分子
配向のねじれが解消するため、入射光の偏光方向は回転
せずにそのまま液晶セルを透過する。この効果を利用す
ると、TN液晶セルに加える電圧を可変することで、入
射光の偏光方向を90度制御することができる。さら
に、分子配向のねじれの角度を90度以外の種々の値に
設定した液晶セルを構成することで、その設定した角度
に対応する偏光方向の制御を行うこともできる。
The liquid crystal molecules are oriented parallel to the surfaces of the two substrates, and the orientation is gradually twisted between the two substrates.
In a twisted nematic liquid crystal cell (hereinafter, referred to as a “TN cell”) that is twisted by 0 degrees, when no voltage is applied to the liquid crystal cell, the polarization direction of incident light rotates 90 degrees along the alignment direction of liquid crystal molecules. effective. On the other hand, when a voltage equal to or higher than the threshold value is applied to the liquid crystal cell, the twist of the liquid crystal molecule alignment is eliminated, so that the polarization direction of the incident light is transmitted through the liquid crystal cell without rotating. By utilizing this effect, the polarization direction of the incident light can be controlled by 90 degrees by varying the voltage applied to the TN liquid crystal cell. Furthermore, by configuring a liquid crystal cell in which the twist angle of the molecular orientation is set to various values other than 90 degrees, it is possible to control the polarization direction corresponding to the set angle.

【0005】また、レターデーションと呼ばれる光学的
な位相遅れが波長の二分の一である半波長板を用いる
と、入射光の偏光方向を90度回転することができる。
この原理に基づき、液晶における電界制御複屈折効果を
利用して、同様の偏光方向の回転制御を行うことができ
る。すなわち、誘電異方性が正のネマティック液晶の液
晶分子が2枚の基板間で互いに平行に配向しているホモ
ジニアス配向の液晶セルに加える電圧を加減すること
で、液晶セルに生じる複屈折と液晶セルの厚みの積であ
るレターデーションの値が入射光の波長の二分の一とな
るようにして、電気的に入射光の偏光方向を90度回転
することができる。
When a half-wave plate called an optical retardation called a retardation having a half of the wavelength is used, the polarization direction of the incident light can be rotated by 90 degrees.
Based on this principle, the same rotation control of the polarization direction can be performed using the electric field control birefringence effect of the liquid crystal. In other words, by adjusting the voltage applied to a homogeneously aligned liquid crystal cell in which liquid crystal molecules of a nematic liquid crystal having a positive dielectric anisotropy are aligned parallel to each other between two substrates, the birefringence generated in the liquid crystal cell and the liquid crystal By setting the value of the retardation, which is the product of the cell thickness, to be half the wavelength of the incident light, the polarization direction of the incident light can be electrically rotated by 90 degrees.

【0006】さらに、液晶分子を基板面に平行でかつ特
定の方向に強制的に配向させる方法として、基板面内方
向に電界を印加する方法があり、「Appl.Phy
s.Lett.」(Vol.26,頁603)、「液晶
とその応用(産業図書株式会社)」(頁195)などに
記載されている。また、同一基板上に設けた電極間に電
圧を印加して液晶分子を再配向させることで表示を行う
「インプレーンスイッチング」と呼ばれる液晶セルの駆
動法も知られている。
Further, as a method for forcibly aligning the liquid crystal molecules in a specific direction parallel to the substrate surface, there is a method of applying an electric field in the in-plane direction of the substrate, as described in Appl.
s. Lett. (Vol. 26, p. 603) and "Liquid Crystals and Their Applications (Sangyo Tosho Co., Ltd.)" (p. 195). In addition, a driving method of a liquid crystal cell called “in-plane switching” for performing display by applying a voltage between electrodes provided on the same substrate to reorient liquid crystal molecules is also known.

【0007】さらに、液晶分子が基板に平行で一方向に
配向するような強い配向規制力を有する配向処理を行っ
た対向する一対の穴抜き分割パターン電極の間に液晶層
を挿入し、各電極部分にそれぞれ異なる電圧を印加する
ことで、光軸に垂直な平面内で焦点の位置を変える液晶
マイクロレンズが考案されており、特開平11−109
304に開示されている。
Further, a liquid crystal layer is inserted between a pair of opposing cutout divided pattern electrodes which have been subjected to an alignment treatment having a strong alignment control force such that liquid crystal molecules are aligned in one direction parallel to the substrate. A liquid crystal microlens that changes the position of a focal point in a plane perpendicular to the optical axis by applying different voltages to the portions has been devised.
304.

【0008】また、同様に、液晶分子が基板面に垂直に
配向するような処理を行った互いに対向する一対の穴抜
き分割パターン電極の間に液晶層を挿入し、穴型パター
ンの直径方向の電極部分に電圧を印加して液晶分子をそ
の方向に傾けて配向させることにより、任意の方向に光
軸を有する波長板もしくは位相板を構成する方法が「I
EEE Photonics Technology
Letters」(Vol.8,No.3,頁390)
に開示されている。
Similarly, a liquid crystal layer is inserted between a pair of opposing cutout divided pattern electrodes which have been treated so that liquid crystal molecules are oriented perpendicular to the substrate surface, and the hole pattern is formed in the diameter direction. A method of forming a wave plate or a phase plate having an optical axis in an arbitrary direction by applying a voltage to an electrode portion to incline and orient liquid crystal molecules in that direction is referred to as “I.
EEE Photonics Technology
Letters "(Vol. 8, No. 3, page 390)
Is disclosed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た従来の方法は、直線偏光の光が入射した場合には直線
偏光板を機械的に回転すると偏光板を透過した光に強度
が大幅に変化してしまうため、一定の出力光強度となる
ように入射光の偏光方向を制御することはできない。ま
た、TN液晶セルを用いた場合には、分子配向のねじれ
の角度に対応する角度の偏光制御効果を行うことができ
るが、任意の角度での偏光方向の制御を行うことはでき
ない。さらに、液晶のレターデーションの変化、すなわ
ち電界制御複屈折効果を利用した場合には、偏光方向が
単に90度回転するという効果のみであり、また90度
の回転効果は特定の波長の入射光に対してのみ有効であ
り、一般には液晶セルを透過した光の偏光状態は楕円偏
光となるため、広い波長範囲に対して偏光方向の制御を
行うことはできないという問題点があった。
However, in the above-mentioned conventional method, when linearly polarized light is incident, when the linearly polarizing plate is mechanically rotated, the intensity of the light transmitted through the polarizing plate changes greatly. Therefore, it is not possible to control the polarization direction of the incident light so that the output light intensity becomes constant. When a TN liquid crystal cell is used, a polarization control effect at an angle corresponding to the twist angle of the molecular alignment can be performed, but the polarization direction cannot be controlled at an arbitrary angle. Further, when the change in the retardation of the liquid crystal, that is, the electric field control birefringence effect is used, only the effect that the polarization direction is simply rotated by 90 degrees is obtained, and the 90 degree rotation effect is applied to the incident light having a specific wavelength. However, since the polarization state of the light transmitted through the liquid crystal cell is generally elliptically polarized light, there is a problem that the polarization direction cannot be controlled over a wide wavelength range.

【0010】さらに、穴抜き分割パターン電極間に電圧
を印加する場合には、マイクロレンズ効果の三次元的な
集光特性の制御を行うことや、電界制御波長板としての
動作を行わせることはできるが、直線偏光方向の偏光面
の回転制御を行うことはできないという問題点があっ
た。
Furthermore, when a voltage is applied between the hole-dividing divided pattern electrodes, it is not possible to control the three-dimensional light-collecting characteristics of the microlens effect or to operate as an electric field control wave plate. However, there is a problem that the rotation of the plane of polarization in the direction of linear polarization cannot be controlled.

【0011】本発明の目的は、上述の各問題を解決し、
機械的な可動部分を持たずに簡単な構成できわめて迅速
に入射光の偏光方向を回転制御することができる偏光制
御装置を提供することにある。
An object of the present invention is to solve each of the above problems,
It is an object of the present invention to provide a polarization control device capable of extremely quickly rotating and controlling the polarization direction of incident light with a simple configuration without a mechanically movable part.

【0012】[0012]

【課題を解決するための手段】前記課題を解決するため
に、請求項1に記載の発明は、円形状または楕円形状の
穴部が設けられ、且つ前記穴部と連続的に設けられたス
リットにより複数部分に分割された穴抜きパターン電極
を有する基板と、透明な基板の間に液晶層を封入した液
晶素子であって、一方の基板の液晶に接する面上に液晶
分子が基板に平行に一方向に配向するような強い配向規
制力を有する配向処理を行い、他方の基板の液晶に接す
る面上には弱い配向規制力を有する配向処理を行ってお
り、穴型パターン電極の直径方向に電位分布を形成する
ことを特徴とする液晶偏光制御装置である。
According to a first aspect of the present invention, there is provided a slit provided with a circular or elliptical hole, and provided with a hole continuous with the hole. A liquid crystal element in which a liquid crystal layer is sealed between a substrate having a hole pattern electrode divided into a plurality of portions and a transparent substrate, wherein liquid crystal molecules are parallel to the substrate on a surface in contact with the liquid crystal of one of the substrates. An alignment process having a strong alignment control force such that the alignment is performed in one direction is performed, and an alignment process having a weak alignment control force is performed on a surface of the other substrate that is in contact with the liquid crystal. A liquid crystal polarization controller which forms a potential distribution.

【0013】そして、前記スリットにより分割された前
記電極の複数部分がそれぞれ独立に電圧印加される液晶
偏光制御装置である。
In the liquid crystal polarization controller, a plurality of portions of the electrode divided by the slit are independently applied with a voltage.

【0014】前記配向膜の配向規制力が、強い配向規制
力を有する配向膜では10μJ/m2以上であり、弱い
配向規制力を有する配向膜では1μJ/m2以下であこ
とが好ましい。
It is preferable that the alignment regulating force of the alignment film is 10 μJ / m 2 or more for an alignment film having a strong alignment regulating force, and 1 μJ / m 2 or less for an alignment film having a weak alignment regulating force.

【0015】さらに、前記液晶層が二色性を示す色素を
溶解した液晶であってもよい。
Furthermore, the liquid crystal layer may be a liquid crystal in which a dichroic dye is dissolved.

【0016】このような構成によると、穴型パターン電
極の直径方向に対応する対の電極に電圧を加えて電位分
布を形成することで、液晶分子が一方向に配向した方向
に偏光している直線偏光の入射光の偏光方向を電位分布
が形成された直径方向に回転制御させることができる。
According to such a configuration, by applying a voltage to a pair of electrodes corresponding to the diameter direction of the hole-shaped pattern electrode to form a potential distribution, the liquid crystal molecules are polarized in a direction in which the liquid crystal molecules are aligned in one direction. The direction of polarization of the linearly polarized incident light can be controlled to rotate in the diameter direction where the potential distribution is formed.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1には、本発明における
一実施形態の液晶偏光変換装置の構成を説明するための
図を示している。図1において、1は直線偏光板(又は
偏光子と呼ばれる)であり、2はガラスやプラスチック
等による透明な基板である。3は液晶層であり、4は穴
型パターン分割電極4a、4b、4c、4d等を付けた
基板である。図示しないスペーサにより一定の間隔に保
たれた両基板2と4の間に液晶層3が設けられた構造で
ある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a liquid crystal polarization conversion device according to one embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a linear polarizing plate (or called a polarizer), and reference numeral 2 denotes a transparent substrate made of glass, plastic, or the like. Reference numeral 3 denotes a liquid crystal layer, and reference numeral 4 denotes a substrate provided with hole-shaped pattern division electrodes 4a, 4b, 4c, 4d and the like. This is a structure in which a liquid crystal layer 3 is provided between the two substrates 2 and 4 which are kept at a fixed interval by a spacer (not shown).

【0018】さらに基板2と基板4のいずれか一方の液
晶層3に接する面すなわち対向面上に図示しない強い配
向規制力を有するポリイミドや高重合度・高ケン化度の
ポリビニルアルコール等の配向膜を付けて一方向にラビ
ング(摩擦)処理などを行った配向膜を、他方の対向面
上には図示しない配向規制力が弱いポリメチルアクリレ
ートなどの膜が配向膜としてそれぞれ形成されている。
液晶層3は、ネマティック液晶などの液晶材料(本実施
形態ではMerck社製K15又はBL007を使用)
が両配向膜間に封入され、図示しない封止手段により封
止されたものである。
Further, on one of the substrates 2 and 4 which is in contact with the liquid crystal layer 3, that is, on the opposite surface, an alignment film such as a polyimide (not shown) having a strong alignment regulating force or a polyvinyl alcohol having a high degree of polymerization and high saponification degree. And an alignment film formed by rubbing (friction) in one direction, and a film of polymethyl acrylate or the like (not shown) having a weak alignment control force is formed on the other opposing surface.
The liquid crystal layer 3 is made of a liquid crystal material such as a nematic liquid crystal (in this embodiment, K15 or BL007 manufactured by Merck) is used.
Is sealed between the two alignment films and sealed by a sealing means (not shown).

【0019】5は検光子であり、本発明による偏光変換
装置の特性を測定する場合に使用する。
Reference numeral 5 denotes an analyzer which is used to measure the characteristics of the polarization conversion device according to the present invention.

【0020】以下、図1に示した液晶偏光制御装置の原
理について、透明基板2の対向面上に強い配向規制力を
有する配向膜を付けて一方向にラビング(摩擦)処理を
行った場合について説明する。
Hereinafter, the principle of the liquid crystal polarization controller shown in FIG. 1 will be described in connection with a case where an alignment film having a strong alignment control force is provided on the opposing surface of the transparent substrate 2 and rubbing (friction) is performed in one direction. explain.

【0021】前記に説明した構造の液晶偏光変換装置に
おいて、直線偏光板1の偏光方向は基板2のラビング方
向に一致するように設定されている。ここで、いずれの
電極にも電圧を印加していない状態では、弱い配向規制
力を有する配向膜を付けた基板4の配向膜付近も含めて
ほぼすべての液晶分子は液晶層3内で基板2及び3に平
行で且つ強い配向規制力を有する配向膜におけるラビン
グ方向に平行に配向しており、入射した直線偏光の回転
効果はなく、入射直線偏光は偏光方向を変えることなく
液晶層3を透過する。
In the liquid crystal polarization converter having the structure described above, the polarization direction of the linear polarizer 1 is set so as to match the rubbing direction of the substrate 2. Here, when no voltage is applied to any of the electrodes, almost all of the liquid crystal molecules including the vicinity of the alignment film of the substrate 4 provided with the alignment film having a weak alignment regulating force are in the liquid crystal layer 3. And 3 are oriented parallel to the rubbing direction of the alignment film having a strong alignment regulating force, there is no rotation effect of the incident linearly polarized light, and the incident linearly polarized light passes through the liquid crystal layer 3 without changing the polarization direction. I do.

【0022】これに対し、基板4上に設けた穴型パター
ン分割電極4aと4b間に電圧を印加した場合は、電極
4aと4bの間にある穴型部分の液晶分子は基板に平行
で電界の方向に配向するような力を受け、十分大きな電
圧を加えることで弱い配向規制力を有する配向膜面の液
晶分子も含め、液晶層3の大部分の液晶分子は電界の方
向すなわち電極4aと4bに対応する穴型パターンの直
径方向に配向する効果を受ける。
On the other hand, when a voltage is applied between the hole-shaped pattern dividing electrodes 4a and 4b provided on the substrate 4, the liquid crystal molecules in the hole-shaped portion between the electrodes 4a and 4b are parallel to the substrate and have an electric field. Most of the liquid crystal molecules in the liquid crystal layer 3 including the liquid crystal molecules on the alignment film surface having a weak alignment regulating force by applying a sufficiently large voltage to receive the force for the alignment in the direction of the electric field, that is, the direction of the electric field, that is, the electrode 4a. There is an effect that the hole-shaped pattern corresponding to 4b is oriented in the diameter direction.

【0023】しかし、強い配向規制力を有する配向膜を
付けた基板の付近の液晶分子はラビング方向に配向した
状態を保っているため、液晶層3の液晶分子は強い配向
規制力を有する配向膜を付けた基板2のラビング方向か
ら基板4へ向かって電界の方向に徐々にねじれた構造を
とる。なお、両基板2及び4に強い配向規制力を有する
配向処理を行った場合には、分割電極間に加えた電圧に
よって生じる電界による液晶分子の配向効果が液晶層3
内において不十分となるため、良好な偏光制御特性を得
ることが困難となる。したがって、どちらか一方の基板
面においては液晶分子が電界の方向に容易に配向できる
程度の弱い配向規制力を有する配向処理を行う必要があ
る。
However, since the liquid crystal molecules in the vicinity of the substrate provided with the alignment film having a strong alignment regulating force are kept aligned in the rubbing direction, the liquid crystal molecules of the liquid crystal layer 3 have an alignment film having a strong alignment regulating force. The substrate 2 is gradually twisted in the direction of the electric field from the rubbing direction of the substrate 2 toward the substrate 4. When the two substrates 2 and 4 are subjected to an alignment treatment having a strong alignment regulating force, the alignment effect of the liquid crystal molecules due to the electric field generated by the voltage applied between the divided electrodes is reduced.
In this case, it is difficult to obtain good polarization control characteristics. Therefore, it is necessary to perform an alignment treatment on one of the substrate surfaces, which has a weak alignment control force such that the liquid crystal molecules can be easily aligned in the direction of the electric field.

【0024】ここで入射側の直線偏光板1の偏光方向を
強い配向規制力を有する配向膜のラビング方向に一致す
るように配置しているので、液晶偏光変換装置に入射し
た直線偏光は液晶層の中で液晶分子の配向方向に沿って
ねじれて液晶層を透過し、電界の方向すなわち電位勾配
を持たせた直径方向に偏光方向を回転する効果を受けて
液晶層3を透過する。次に、電極4cと4dの間に電圧
を加えて電極4cと4dに対応する直径方向に電界が生
じるようにすると、入射直線偏光は基板4に向かって4
cと4dの直径方向に回転する効果を受けて液晶層3を
透過する。他の対の電極間に電圧を加えても同様に電圧
を加えた電極に対応する直径方向に偏光した直線偏光を
取り出すことができる。さらに、対の電極間に加える電
圧よりも小さな電圧を隣り合う電極に加えるようにし
て、電位勾配がなめらかに変化するようにすることで、
穴型パターン内で偏光制御効果が生じる領域の割合を大
きくすることができ、また液晶分子の配向の乱れから生
じるディスクリネーションの発生を抑制することができ
る。なお、以上の偏光制御効果は入射光の波長に依存し
ないことが特徴である。さらに、入射側の直線偏光板の
偏光方向を基板2のラビング方向と直交するような方向
に設定しても、同様の偏光制御効果を得ることができ
る。しかし、入射光の偏光方向をラビング方向又はラビ
ング方向と90度となる角度以外の任意の角度に設定す
ると、液晶層の複屈折光から働くため、十分な偏光制御
効果を得ることはできない。
Since the direction of polarization of the linear polarizing plate 1 on the incident side is arranged so as to coincide with the rubbing direction of the alignment film having a strong alignment regulating force, the linearly polarized light incident on the liquid crystal polarization conversion device is The liquid crystal layer is twisted along the alignment direction of the liquid crystal molecules and transmits through the liquid crystal layer, and transmits through the liquid crystal layer 3 under the effect of rotating the polarization direction in the direction of the electric field, that is, in the diameter direction having a potential gradient. Next, when a voltage is applied between the electrodes 4c and 4d so that an electric field is generated in the diameter direction corresponding to the electrodes 4c and 4d, the incident linearly polarized light
The light passes through the liquid crystal layer 3 under the effect of rotating in the diameter direction of c and 4d. Even if a voltage is applied between the other pair of electrodes, linearly polarized light polarized in the diameter direction corresponding to the electrode to which the voltage is applied can be similarly extracted. Furthermore, by applying a voltage smaller than the voltage applied between the pair of electrodes to the adjacent electrodes so that the potential gradient changes smoothly,
The proportion of the region where the polarization control effect occurs in the hole-shaped pattern can be increased, and the occurrence of disclination caused by the disorder of the alignment of the liquid crystal molecules can be suppressed. It is to be noted that the above-described polarization control effect is characterized in that it does not depend on the wavelength of the incident light. Further, the same polarization control effect can be obtained even if the polarization direction of the linear polarizing plate on the incident side is set to a direction orthogonal to the rubbing direction of the substrate 2. However, when the polarization direction of the incident light is set to an arbitrary angle other than the rubbing direction or the angle at which the rubbing direction is 90 degrees, a sufficient polarization control effect cannot be obtained because the birefringence of the liquid crystal layer works.

【0025】液晶層3に二色性を示すゲストと呼ばれる
色素を溶解したホストと呼ばれる液晶を使用すると、液
晶分子の配向方向に対応する偏光成分が吸収されるゲス
ト・ホスト効果が生じるため、ゲスト・ホスト効果によ
る吸収効果を受けない液晶分子の配向方向と直交する偏
光成分のみが液晶層3を透過することができる。したが
って、液晶分子の配向状態がねじれている場合には、透
過光の偏光方向も同様にねじれの効果を受けるので、上
述の偏光方向の回転制御効果も同様に作用させることが
できる。また、ゲスト色素を添加した液晶を用いた場合
には、液晶層3中のゲスト色素による吸収効果が偏光板
の機能と同様の作用を行うので、直線偏光板1を省くこ
とができる。
When a liquid crystal called a host in which a dye called a dichroic guest is dissolved is used for the liquid crystal layer 3, a guest-host effect occurs in which a polarized component corresponding to the orientation direction of the liquid crystal molecules is absorbed. Only the polarization component orthogonal to the alignment direction of the liquid crystal molecules, which is not affected by the absorption effect by the host effect, can pass through the liquid crystal layer 3. Therefore, when the alignment state of the liquid crystal molecules is twisted, the polarization direction of the transmitted light is similarly affected by the twisting effect, so that the above-described rotation control effect of the polarization direction can be similarly exerted. When liquid crystal to which a guest dye is added is used, the linear polarizing plate 1 can be omitted because the absorption effect of the guest dye in the liquid crystal layer 3 has the same effect as the function of the polarizing plate.

【0026】なお、実施例の図1では、強い配向規制力
を有する配向膜は透明な基板2の上に付けた場合につい
て説明したが、穴型多分割パターン電極を付けた基板4
の上に付けた場合でも同様の偏光の回転制御効果を得る
ことができる。この場合に、入射光は強い配向規制力を
有する配向膜を付けた基板側すなわち基板4側から入射
することになる。
In FIG. 1 of the embodiment, the case where the alignment film having a strong alignment regulating force is provided on the transparent substrate 2 has been described.
The same effect of controlling the rotation of polarized light can be obtained even when it is attached on top of. In this case, the incident light enters from the side of the substrate provided with the alignment film having a strong alignment regulating force, that is, from the side of the substrate 4.

【0027】図1では、穴型パターン電極を8分割した
場合を示してあるが、電極の分割数をさらに多くする
と、偏光方向の制御をより高精細に行うことができる。
FIG. 1 shows a case where the hole-shaped pattern electrode is divided into eight, but if the number of divided electrodes is further increased, the polarization direction can be controlled with higher definition.

【0028】次に、本発明による液晶偏光制御装置の電
極に電圧を印加した場合の偏光制御効果について説明す
る。
Next, the polarization control effect when a voltage is applied to the electrodes of the liquid crystal polarization control device according to the present invention will be described.

【0029】ガラス基板にポリイミド膜SE−2170
を約150nmの厚みに塗布し、熱処理を行い安定化さ
せた後一方向にラビング処理を行い、概略100μJ/
m2の強い配向規制力を有する基板2を作製した。一
方、ガラス基板上に真空蒸着法により約150nmの厚
みのアルミニウム薄膜を形成し、フォトリソグラフィ法
により直径が100μmで各電極を分割するスリットの
幅が10μmである8分割の円形穴型パターン電極を付
けた基板4を作製した。この分割パターン電極の対向面
上には概略0.01μJ/m2の弱い配向規制力を有す
る配向膜としてポリメチルアクリレートを塗布した。こ
のポリメチルアクリレートを塗布した基板面は特にラビ
ング等の処理を行う必要はないが、ラビング処理を行っ
ても構わない。配向規制力を有する配向膜としては、重
合度及びケン化度が低いポリビニルアルコール膜を使用
することもできる。
A polyimide film SE-2170 on a glass substrate
Is applied to a thickness of about 150 nm, heat-treated and stabilized, and then subjected to a rubbing treatment in one direction to give approximately 100 μJ /
A substrate 2 having a strong alignment regulating force of m2 was prepared. On the other hand, an aluminum thin film having a thickness of about 150 nm is formed on a glass substrate by a vacuum evaporation method, and an 8-divided circular hole pattern electrode having a diameter of 100 μm and a width of a slit for dividing each electrode of 10 μm is formed by a photolithography method. The attached substrate 4 was produced. Polymethyl acrylate was applied as an alignment film having a weak alignment control force of about 0.01 μJ / m 2 on the opposing surface of the divided pattern electrode. The surface of the substrate coated with the polymethyl acrylate does not need to be particularly subjected to rubbing or the like, but may be subjected to rubbing. As the alignment film having the alignment regulating force, a polyvinyl alcohol film having a low degree of polymerization and a low degree of saponification may be used.

【0030】なお、液晶層に入射した直線偏光の偏光方
向が液晶分子配向のねじれに沿ってねじれるために必要
なモーガン条件を満足するために、液晶の複屈折が大き
い材料を使用し、液晶層3の厚みもある程度厚くする必
要がある。そこで、本実施例ではスペーサとして粒径が
20μmの球状ポリマー粒子を用いて基板2と4の間隔
を一定に保ち、液晶3として正の誘電異方性を有するネ
マティック液晶K15を封入し、偏光変換装置を構成し
た。K15よりも複屈折の値が大きいネマティック液晶
であるBL009を使用する場合には、粒径が11μm
の球状スペーサを使用した。これらの場合には、それぞ
れの液晶層の厚みはモーガン条件を満足するように設定
されている。
In order to satisfy the Morgan condition necessary for the polarization direction of the linearly polarized light incident on the liquid crystal layer to be twisted along the twist of the liquid crystal molecular alignment, a material having a large birefringence of the liquid crystal is used. 3 also needs to be thickened to some extent. Therefore, in this embodiment, spherical polymer particles having a particle size of 20 μm are used as spacers to keep the distance between the substrates 2 and 4 constant, and a nematic liquid crystal K15 having a positive dielectric anisotropy is enclosed as the liquid crystal 3, and polarization conversion is performed. The device was configured. When BL009, which is a nematic liquid crystal having a larger birefringence value than K15, is used, the particle diameter is 11 μm.
Was used. In these cases, the thickness of each liquid crystal layer is set so as to satisfy Morgan conditions.

【0031】本発明における液晶偏光変換装置の特性を
測定するための光源としては、タングステンランプによ
る白色光源に488nmまたは622nmの波長帯を透
過する干渉フィルタを組み合わせた単色光を使用した。
図1で検光子5の偏光方向と透明基板2のラビング方向
とのなす角度すなわち検光子5の方位角をθとし、θの
変化に対する液晶偏光変換装置の透過率の変化を測定し
た。電極に電圧を加えない場合、及びラビング方向と平
行な方向に対応する対の分割電極に8ボルト(1キロヘ
ルツ)の電圧を加えた場合の特性を図2に示す。なお、
図2及び以降で説明する図3、図4において、実線は理
論計算から求めたものであり、白抜きの丸印は632n
mの波長の単色光を入射した場合の実測値であり、黒塗
りの丸印は488nmの波長の単色光を入射した場合の
実測値である。図2から、検光子5の方位角θが0度及
び180度のときに透過率が最大となり、90度の時に
最小となっていることが分かる。すなわち、電極に電圧
を加えない場合及びラビング方向に電界が生じるような
電圧を加えた場合には、液晶分子配向にねじれの効果が
生じないため液晶偏光変換装置に入射した直線偏光は偏
光方向を変化せずにそのまま透過していることになる。
なお、電極間に加える電圧の周波数は数10ヘルツから
数10キロヘルツ程度であればよい。
As a light source for measuring the characteristics of the liquid crystal polarization converter in the present invention, monochromatic light obtained by combining a white light source using a tungsten lamp with an interference filter transmitting a wavelength band of 488 nm or 622 nm was used.
In FIG. 1, the angle between the polarization direction of the analyzer 5 and the rubbing direction of the transparent substrate 2, that is, the azimuthal angle of the analyzer 5 is defined as θ, and the change in the transmittance of the liquid crystal polarization converter with respect to the change in θ is measured. FIG. 2 shows characteristics when no voltage is applied to the electrodes and when a voltage of 8 volts (1 kilohertz) is applied to a pair of split electrodes corresponding to a direction parallel to the rubbing direction. In addition,
In FIG. 2 and FIGS. 3 and 4 described below, a solid line is obtained from theoretical calculation, and a white circle represents 632n.
The measured value is when the monochromatic light having the wavelength of m is incident, and the black circle is the measured value when the monochromatic light having the wavelength of 488 nm is incident. FIG. 2 shows that the transmittance becomes maximum when the azimuth angle θ of the analyzer 5 is 0 degree and 180 degrees, and becomes minimum when the azimuth angle is 90 degrees. In other words, when no voltage is applied to the electrodes and when a voltage that generates an electric field in the rubbing direction is applied, the effect of the twist on the liquid crystal molecule alignment does not occur, so that the linearly polarized light incident on the liquid crystal polarization conversion device changes its polarization direction. This means that the light is transmitted without change.
The frequency of the voltage applied between the electrodes may be several tens hertz to several tens kilohertz.

【0032】次に、ラビング方向に対して電界の方向が
45度となるような対の分割電極に同様に8ボルト(1
キロヘルツ)の電圧を加えた場合の特性を図3に示す。
図3から最大透過率となる検光子5の方位角θは45度
となり、最小となる角度はこの角度を90度回転した1
35度となっており、入射直線偏光の方向が45度回転
していることが分かる。さらに、ラビング方向に対して
電界の方向を90度とした場合の特性を図4に示す。図
4から、同様に入射直線偏光の偏光方向が90度回転し
ていることが確認される。これらのいずれの場合におい
ても、実測値は波長によらず理論値と一致しており、本
発明による液晶偏光変換装置は良好な特性を有している
ことが示された。また、他の組み合わせの電極対に電圧
を加えた場合にも、同様の偏光制御特性を得ることがで
きた。なお、8ボルト(1キロヘルツ)の電圧を加えた
場合の偏光方向が変化する速度は0.1秒以下程度であ
ったが、より大きな電圧を加えることで偏光制御の速度
をさらに速くすることができる。
Next, 8 volts (1 volt) is similarly applied to the pair of divided electrodes so that the direction of the electric field is 45 degrees with respect to the rubbing direction.
FIG. 3 shows the characteristics when a voltage of (kilohertz) is applied.
From FIG. 3, the azimuth angle θ of the analyzer 5 having the maximum transmittance is 45 degrees, and the minimum angle is 1 degree obtained by rotating this angle by 90 degrees.
The angle is 35 degrees, indicating that the direction of the incident linearly polarized light is rotated by 45 degrees. FIG. 4 shows the characteristics when the direction of the electric field is 90 degrees with respect to the rubbing direction. FIG. 4 also confirms that the polarization direction of the incident linearly polarized light is rotated by 90 degrees. In each of these cases, the measured values agreed with the theoretical values irrespective of the wavelength, indicating that the liquid crystal polarization conversion device according to the present invention had good characteristics. Also, when a voltage was applied to another combination of electrode pairs, similar polarization control characteristics could be obtained. The speed at which the polarization direction changes when a voltage of 8 volts (1 kilohertz) is applied is about 0.1 seconds or less, but the speed of polarization control can be further increased by applying a larger voltage. it can.

【0033】図1の液晶層3として、ネマティック液晶
K15に青色二色性ゲスト色素LCDR1(日本化薬
製)を1重量%添加した液晶を用いた。この青色二色性
ゲスト色素の吸収波長範囲である632nmの単色光源
を用い、直線偏光板1を省いて同様に円形パターンの直
径方向に対応する対の分割パターン電極間に電圧を加え
て偏光制御効果の測定を行った結果、図2〜図4に示し
た透過率特性を90度移動した結果が得られた。この結
果は、ゲスト・ホスト効果によりび二色性ゲスト色素の
分子がホストである液晶の分子と共に強い配向規制力を
有する基板のラビング方向から電界方向にねじれて配向
する結果として、液晶層3を透過した光の電界方向に対
応する偏光成分が強く吸収されるため、電界方向と直交
する偏光成分が液晶層3を透過するという効果を示して
いる。ここで、使用した二色性ゲスト色素の二色比やオ
ーダーパラメータが十分大きな値ではなかったため、透
過率の最大値と最小値の比として定義されるコントラス
ト比がやや小さい値となった。ゲスト色素の二色比が大
きい材料を用いることで、より特性が優れた偏光変換装
置を構成することができる。
As the liquid crystal layer 3 in FIG. 1, a liquid crystal obtained by adding 1% by weight of a blue dichroic guest dye LCDR1 (manufactured by Nippon Kayaku) to a nematic liquid crystal K15 was used. Using a monochromatic light source having a wavelength of 632 nm, which is the absorption wavelength range of the blue dichroic guest dye, omitting the linear polarizing plate 1 and similarly applying a voltage between a pair of divided pattern electrodes corresponding to the diameter direction of the circular pattern to control polarization. As a result of measuring the effect, the result obtained by shifting the transmittance characteristics shown in FIGS. 2 to 4 by 90 degrees was obtained. This result is that the molecules of the dichroic guest dye are twisted in the direction of the electric field from the rubbing direction of the substrate having a strong alignment regulating force together with the molecules of the liquid crystal as the host by the guest-host effect, and as a result, the liquid crystal layer 3 Since the polarized light component of the transmitted light corresponding to the electric field direction is strongly absorbed, an effect is shown in which the polarized light component orthogonal to the electric field direction passes through the liquid crystal layer 3. Here, since the dichroic ratio and order parameter of the dichroic guest dye used were not sufficiently large values, the contrast ratio defined as the ratio between the maximum value and the minimum value of the transmittance was a small value. By using a material having a large dichroic ratio of the guest dye, a polarization conversion device having more excellent characteristics can be configured.

【0034】[0034]

【発明の効果】本発明によると、分割パターン電極に電
圧を加えることで、機械的な作用を必要とせずに、簡単
な構成できわめて迅速に直線偏光の方向を回転制御する
ことができる。
According to the present invention, by applying a voltage to the divided pattern electrodes, the direction of the linearly polarized light can be very quickly controlled with a simple structure without requiring any mechanical action.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における液晶偏光制御装置の一実施の形
態の構成図である。
FIG. 1 is a configuration diagram of an embodiment of a liquid crystal polarization control device according to the present invention.

【図2】電極に電圧を加えない場合及びラビング方向に
対応する対の電極間に8ボルト(1キロヘルツ)の電圧
を加えた場合の透過率と検光子の方位角度θの関係を示
す図である。
FIG. 2 is a diagram showing the relationship between the transmittance and the azimuth angle θ of the analyzer when no voltage is applied to the electrodes and when a voltage of 8 volts (1 kilohertz) is applied between a pair of electrodes corresponding to the rubbing direction. is there.

【図3】ラビング方向に対して45度の方向に対応する
対の電極間に8ボルト(1キロヘルツ)の電圧を加えた
場合の透過率と検光子の方位角度θの関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the transmittance and the azimuth angle θ of the analyzer when a voltage of 8 volts (1 kilohertz) is applied between a pair of electrodes corresponding to a direction at 45 degrees to the rubbing direction. .

【図4】ラビング方向に対して90度の方向に対応する
対の電極間に8ボルト(1キロヘルツ)の電圧を加えた
場合の透過率と検光子の方位角度θの関係を示す図であ
る。
FIG. 4 is a diagram showing the relationship between the transmittance and the azimuth angle θ of the analyzer when a voltage of 8 volts (1 kilohertz) is applied between a pair of electrodes corresponding to a direction at 90 degrees to the rubbing direction. .

【符号の説明】[Explanation of symbols]

1 直線偏光板(偏光子) 2 透明基板 3 液晶層 4 穴型パターン分割電極を付けた基板 4a,4b,4c,4d 穴型パターン分割分割電極 5 検光子 DESCRIPTION OF SYMBOLS 1 Linear polarizing plate (polarizer) 2 Transparent substrate 3 Liquid crystal layer 4 Substrate provided with hole type pattern division electrode 4a, 4b, 4c, 4d Hole type pattern division division electrode 5 Analyzer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】円形状または楕円形状の穴部が設けられ、
且つ前記穴部と連続的に設けられたスリットにより複数
部分に分割された穴抜きパターン電極を有する基板と、
透明な基板の間に液晶層を封入した液晶素子であって、
一方の基板の液晶に接する面上に液晶分子が基板に平行
に一方向に配向するような強い配向規制力を有する配向
処理を行い、他方の基板の液晶に接する面上には弱い配
向規制力を有する配向処理を行っており、穴型パターン
電極の直径方向に電位分布を形成することを特徴とする
液晶偏光制御装置。
1. A circular or elliptical hole is provided,
And a substrate having a hole pattern electrode divided into a plurality of portions by a slit provided continuously with the hole portion,
A liquid crystal element having a liquid crystal layer sealed between transparent substrates,
On one surface of the substrate that contacts the liquid crystal, an alignment process is performed that has a strong alignment control force so that the liquid crystal molecules are aligned in one direction parallel to the substrate. On the other surface of the other substrate that contacts the liquid crystal, a weak alignment control force is applied. A liquid crystal polarization control device which performs an alignment treatment having the following characteristics and forms a potential distribution in the diameter direction of the hole-shaped pattern electrode.
【請求項2】前記スリットにより分割された前記電極の
複数部分がそれぞれ独立に電圧印加される請求項1記載
の液晶偏光制御装置。
2. The liquid crystal polarization control device according to claim 1, wherein a voltage is independently applied to a plurality of portions of the electrode divided by the slit.
【請求項3】前記配向規制力が10μJ/m2以上であ
る強い配向規制力を有する配向膜と、1μJ/m2以下
である弱い配向規制力を有する配向膜である請求項1又
は2記載の液晶偏光制御装置。
3. The liquid crystal according to claim 1, wherein the alignment film has a strong alignment control force of 10 μJ / m 2 or more and the alignment film has a weak alignment control force of 1 μJ / m 2 or less. Polarization controller.
【請求項4】前記液晶層が二色性を示す色素を溶解した
液晶であることを特徴とする請求項1,2,又は3記載
の液晶偏光制御装置。
4. A liquid crystal polarization controller according to claim 1, wherein said liquid crystal layer is a liquid crystal in which a dichroic dye is dissolved.
JP2000085550A 2000-03-27 2000-03-27 Liquid crystal device for control of polarized light Pending JP2001272687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000085550A JP2001272687A (en) 2000-03-27 2000-03-27 Liquid crystal device for control of polarized light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000085550A JP2001272687A (en) 2000-03-27 2000-03-27 Liquid crystal device for control of polarized light

Publications (1)

Publication Number Publication Date
JP2001272687A true JP2001272687A (en) 2001-10-05

Family

ID=18601876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000085550A Pending JP2001272687A (en) 2000-03-27 2000-03-27 Liquid crystal device for control of polarized light

Country Status (1)

Country Link
JP (1) JP2001272687A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045890A1 (en) * 2009-10-15 2011-04-21 株式会社アドバンテスト Light receiving device, method for manufacturing light receiving device, and light receiving method
WO2020036230A1 (en) * 2018-08-17 2020-02-20 国立大学法人京都大学 Optical element and refresh drive method for optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045890A1 (en) * 2009-10-15 2011-04-21 株式会社アドバンテスト Light receiving device, method for manufacturing light receiving device, and light receiving method
JP5542841B2 (en) * 2009-10-15 2014-07-09 株式会社アドバンテスト Light receiving device, method for manufacturing light receiving device, and light receiving method
WO2020036230A1 (en) * 2018-08-17 2020-02-20 国立大学法人京都大学 Optical element and refresh drive method for optical element
US11275273B2 (en) 2018-08-17 2022-03-15 Kyoto University Optical device and refresh driving method for optical device

Similar Documents

Publication Publication Date Title
US8174653B2 (en) Liquid crystal display device
EP2598943B1 (en) Liquid crystal display and method for preparation thereof
US4566758A (en) Rapid starting, high-speed liquid crystal variable optical retarder
JPH085837A (en) Optical compensation sheet, its production and liquid crystal display device using the same
JP2002303869A (en) Liquid crystal display device
WO2017063379A1 (en) Display panel and manufacturing method thereof
JPH1083000A (en) Twisted nematic liquid crystal device
WO2007026535A1 (en) Liquid crystal display device using nematic liquid crystal
TWI391759B (en) Liquid crystal display and method of manufacturing the same
KR20060018773A (en) Transflective type display device and method for forming the same
US7375889B1 (en) Apparatus and method for controlling polarization in an optical communications medium
KR970007426A (en) Ferroelectric Nematic Liquid Crystal Display
JPH0534656A (en) Focal length variable liquid crystal lens
He et al. Polarization properties of an amplitude nematic liquid crystal grating
KR100254857B1 (en) Method for aligning high molecular thin film and method for aligning liquid crystal using the same
JP2001272687A (en) Liquid crystal device for control of polarized light
TWI772125B (en) Electrically controlled polarization rotator
JPH07109458B2 (en) Liquid crystal display
JP2001249339A (en) Liquid crystal display device
US6023314A (en) Elliptically polarizing plate and liquid crystal display device using same
RU191765U1 (en) LIQUID-CRYSTAL MODULATOR BASED ON TWIST CELLS WITH ANTISYMMETRIC BOUNDARY CONDITIONS
JPH02304526A (en) Liquid crystal display element
JPH03243919A (en) Liquid crystal electrooptical element
KR100658527B1 (en) Liquid crystal display of in-plane-switching mode and driving method thereof
JP2001272686A (en) Liquid crystal display device