JP2001272452A - Method for measuring position during loss of satellite radio wave - Google Patents

Method for measuring position during loss of satellite radio wave

Info

Publication number
JP2001272452A
JP2001272452A JP2000086573A JP2000086573A JP2001272452A JP 2001272452 A JP2001272452 A JP 2001272452A JP 2000086573 A JP2000086573 A JP 2000086573A JP 2000086573 A JP2000086573 A JP 2000086573A JP 2001272452 A JP2001272452 A JP 2001272452A
Authority
JP
Japan
Prior art keywords
mobile station
satellites
satellite
received
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000086573A
Other languages
Japanese (ja)
Inventor
Setsuo Yoshida
節男 吉田
Hiromi Okada
裕美 岡田
Tadashi Hashimoto
正 橋本
Yoshio Uchida
佳夫 打田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Churyo Engineering Co Ltd
Suzuka Circuitland Co Ltd
Original Assignee
Churyo Engineering Co Ltd
Suzuka Circuitland Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Churyo Engineering Co Ltd, Suzuka Circuitland Co Ltd filed Critical Churyo Engineering Co Ltd
Priority to JP2000086573A priority Critical patent/JP2001272452A/en
Publication of JP2001272452A publication Critical patent/JP2001272452A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a position measuring method for a mobile station during the loss of a satellite radio wave (when there are less than three supplementary satellites). SOLUTION: By this position measuring method, the position (XB, YB) of the mobile station is found by a regular analysis expression which is used when carrier waves can be received from four satellites while the elliptic body height of the mobile station is made constant. The position (XA, YA, ZA) of a base station in an earth coordinate system is already known, a pseudo-noise code signal of an L1 band (1575.42 MHz) or an L2 band (1227.6 MHz) from an artificial satellite is received by a GPS receiving antenna and decoded by the GPS receiver, and its corrected data are sent to the mobile station through a corrected data transmitter and a transmitting antenna.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動局の位置測定
方法に関し、特に、衛星電波失探時の位置測定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a position of a mobile station, and more particularly to a method for measuring a position when a satellite wave is lost.

【0002】[0002]

【従来の技術】従来、移動局の位置測定方法として人工
衛星を使用するGPS(GlobalPosition
ing System)が知られている。このGPS
は、複数の衛星からそれぞれ疑似雑音コード信号を用い
てスペクトラム拡散処理された中心周波数が、L1帯
(1575.42[MHz])及びL2帯(1227.6
[MHz])の2つの測距信号を送信すると共に、移動局
側と基地局の双方で同時に、前記4つの衛星の測距信号
(軌道情報及び時計情報等)を受信し、その搬送波の位
相データを比較測定して、移動局の位置を精度よく(数
10cm以下)測定する方法がある。
2. Description of the Related Art Conventionally, GPS (Global Position) using an artificial satellite has been used as a method for measuring the position of a mobile station.
ing System) is known. This GPS
The center frequencies subjected to the spread spectrum processing using the pseudo noise code signals from a plurality of satellites respectively have L1 band (1575.42 [MHz]) and L2 band (1227.6).
[MHz]), the mobile station side and the base station simultaneously receive the ranging signals (orbit information and clock information, etc.) of the four satellites, and the phase of the carrier wave is transmitted. There is a method of measuring the position of the mobile station with high accuracy (several tens of cm or less) by comparing and measuring data.

【0003】[0003]

【発明が解決しようとする課題】前記のように、移動局
の位置を精度よく測定するためには、よく知られている
ように、移動局の位置座標(XB、XB、ZB)と時間t
の4個が未知数である。そのため、それらを解くために
は、少なくとも4つの衛星の測距信号を受信する必要で
あるが、移動局において、上空の遮蔽物によって必ずし
も4つの衛星からの測距信号を受信できず、一瞬でも3
個以下になった場合には、前記従来の移動局の測定方法
では対処できない課題が生ずる。そこで、本発明は、か
かる場合であっても、正確な位置測定を可能にする計算
方法を提供するものである。
As described above, in order to accurately measure the position of the mobile station, it is well known that the position coordinates (XB, XB, ZB) of the mobile station and the time t are used.
Are unknowns. Therefore, in order to solve them, it is necessary to receive ranging signals of at least four satellites. However, a mobile station cannot always receive ranging signals from four satellites due to an obstruction in the sky. 3
If the number of mobile stations becomes less than the number, there arises a problem which cannot be dealt with by the conventional method of measuring a mobile station. Therefore, the present invention provides a calculation method that enables accurate position measurement even in such a case.

【0004】[0004]

【課題を解決するための手段】請求項1の位置測定方法
は、4個の衛星からの搬送波を受信可能なときに用いる
正規解析式に於て、移動局の楕円体高(h)を一定とし
て求めるものである。具体的には、先ず、(式1)に於
て、移動局の位置(XB、YB)からZBを求め、(式
2)に於て、補正量ΔX、ΔYが「0」に近い(許容誤差
内)ときのXB、YBが求める移動局の位置である。又、
請求項2の位置測定方法は、2個の衛星に対する仰角
(θ1、θ2)が等しいとする(式5)と、移動局に備
えた方位角を測定する方位測定器による進行方向の直線
式(式6)とを解くことによって、移動局の位置(X
B、YB)を求める。
According to the position measuring method of the present invention, the ellipsoidal height (h) of the mobile station is made constant in a normal analysis formula used when a carrier wave from four satellites can be received. Is what you want. More specifically, first, in (Equation 1), ZB is obtained from the position (XB, YB) of the mobile station, and in (Equation 2), the correction amounts ΔX and ΔY are close to “0” (permissible). XB and YB at (within error) are the positions of the mobile station to be obtained. or,
According to the position measuring method of the present invention, when the elevation angles (θ1, θ2) with respect to the two satellites are equal (Equation 5), when the azimuth measuring device provided in the mobile station measures the azimuth, the traveling direction linear expression ( By solving equation (6), the position of the mobile station (X
B, YB).

【0005】[0005]

【発明の実施の形態】図1は、本発明の概念図であり、
4個の人工衛星、基地局及び移動局の関係を示し、複数
の衛星から、基地局と移動局は同時に受信し、その搬送
波の位相データを補正情報と位相情報として、移動局に
送信して、移動局でそれらのデータに基づいて位置を精
度よく測定する。即ち、基地局は、地球座標系における
位置(XA、YA、ZA)は既知であり、人工衛星からの
L1帯(1575.42[MHz])或いはL2帯(12
27.6[MHz])の疑似雑音コード信号をGPS受信
アンテナで受信し、GPS(Global Posit
ioning System)受信機で解読し、その補
正データを補正データ送信機、送信アンテナを介して移
動局に送る。又、移動局の位置は、基地局とでDGPS
(Differential Global Posi
tioning System)によって測定するた
め、移動局にもGPS受信機を備えると共に、前記基地
局からの補正データを受信する補正データ受信アンテナ
と補正データ受信機を備えている。
FIG. 1 is a conceptual diagram of the present invention.
The relation between the four artificial satellites, the base station and the mobile station is shown. The base station and the mobile station receive simultaneously from a plurality of satellites, and transmit the phase data of the carrier as correction information and phase information to the mobile station. The mobile station measures the position with high accuracy based on the data. That is, the position of the base station in the earth coordinate system (XA, YA, ZA) is known, and the L1 band (1575.42 [MHz]) or the L2 band (12
27.6 [MHz]) is received by a GPS receiving antenna, and GPS (Global Position) is received.
(Ioning System) The decoding is performed by the receiver, and the correction data is transmitted to the mobile station via the correction data transmitter and the transmission antenna. Also, the position of the mobile station is determined by DGPS with the base station.
(Differential Global Posi
The mobile station is provided with a GPS receiver and a correction data receiving antenna for receiving correction data from the base station, and a correction data receiver for measuring by the Tying System.

【0006】尚、移動局の位置座標は(XB、YB、Z
B)であり、補足可能な第1の衛星の座標(X1、Y1、
Z1)、第2の衛星の座標(X2、Y2、Z2)、第3の衛
星の座標(X3、Y3、Z3)、第4の衛星の座標(X4、
Y4、Z4)とする。又、よく知られているように、疑似
雑音コード信号(C/A、Pコード等)と搬送波の位相
データによって、移動局の位置座標(XB、YB、ZB)
と時計の誤差Δtの4個の未知数を得るためには、第1
〜4の衛星の位置座標に基づく正規解析式を解く必要が
あり、この正規解析式はよく知られているので省略す
る。
The position coordinates of the mobile station are (XB, YB, Z
B) and the coordinates of the first satellite that can be supplemented (X1, Y1,
Z1), coordinates of the second satellite (X2, Y2, Z2), coordinates of the third satellite (X3, Y3, Z3), coordinates of the fourth satellite (X4,
Y4, Z4). Also, as is well known, the position coordinates (XB, YB, ZB) of the mobile station are obtained by using a pseudo noise code signal (C / A, P code, etc.) and carrier phase data.
To obtain the four unknowns of the clock error Δt
It is necessary to solve a normal analysis formula based on the position coordinates of the satellites No. to No. 4, and this normal analysis formula is well known and will not be described.

【0007】次に、前記4個の衛星のうち、1個の衛星
(第4の衛星)の搬送波を受信できない失探時におけ
る、測定方法について説明する。この場合には、前記正
規解析式(図示略)における未知数は、4個(XB、Y
B、ZB、時間t)であるにも拘らず、3個の衛星からの
搬送波しか受信できないので、正規解析式を解くことが
できない。そこで、移動局において、最も、変化が少な
いと推定される移動局の楕円体高(h)を一定とする
と、WGS84直交座標系は(式1)で表わされる。
Next, a description will be given of a measuring method at the time of a lost search in which the carrier of one of the four satellites (the fourth satellite) cannot be received. In this case, the number of unknowns in the normal analysis formula (not shown) is four (XB, Y
In spite of B, ZB, time t), only the carrier waves from three satellites can be received, so that the normal analysis formula cannot be solved. Therefore, assuming that the ellipsoidal height (h) of the mobile station, which is estimated to have the least change in the mobile station, is constant, the WGS84 rectangular coordinate system is represented by (Equation 1).

【0008】[0008]

【式1】 ここで、m:卯酉線曲率半径、a:赤道半径、e:離心
率、φ:緯度 f:扁平率 、b:極半径、h:楕円体高 XB:移動局の座標、YB:移動局の座標、ZB:移動局
の座標である。
(Equation 1) Here, m: radius of curvature of the wattle line, a: radius of the equator, e: eccentricity, φ: latitude f: oblateness, b: polar radius, h: ellipsoidal height XB: mobile station coordinates, YB: mobile station coordinates Coordinates, ZB: Coordinates of the mobile station.

【0009】次に、3個の衛星と基地局及び移動局の距
離と座標及び位相の関係は、(式2)によって与えられ
る。
Next, the relationship between the distances, coordinates and phases between the three satellites and the base station and mobile station is given by (Equation 2).

【式2】 (Equation 2)

【0010】ここで、f:人工衛星からのL1帯の周波
数(1575.42[MHz]) c:光速度(299792458m/s) (X1、Y1、Z1):第1の衛星の座標 (X2、Y2、Z2):第2の衛星の座標 (X3、Y3、Z3):第3の衛星の座標 (XB、YB、ZB):移動局の位置座標 (XA、YA、ZA):基地局の位置座標 ΔX、ΔYは補正量である。
Here, f: frequency of the L1 band from the artificial satellite (1575.42 [MHz]) c: light speed (299792458 m / s) (X1, Y1, Z1): coordinates of the first satellite (X2, Y2, Z2): coordinates of the second satellite (X3, Y3, Z3): coordinates of the third satellite (XB, YB, ZB): position coordinates of the mobile station (XA, YA, ZA): position of the base station The coordinates ΔX and ΔY are correction amounts.

【0011】φ12AB、φ13ABは、基地局、移動局で測定
した第1〜2衛星の位相データから求める2重位相差で
あり、(式3)から求める。
.Phi.12AB and .phi.13AB are double phase differences obtained from the phase data of the first and second satellites measured at the base station and the mobile station, and are obtained from (Equation 3).

【式3】 ここで、φ1A:基地局で受信した第1衛星の位相データ φ2A:基地局で受信した第2衛星の位相データ φ3A:基地局で受信した第3衛星の位相データ φ1B:移動局で受信した第1衛星の位相データ φ2B:移動局で受信した第2衛星の位相データ φ3B:移動局で受信した第3衛星の位相データ(Equation 3) Here, φ1A: phase data of the first satellite received by the base station φ2A: phase data of the second satellite received by the base station φ3A: phase data of the third satellite received by the base station φ1B: phase data received by the mobile station Phase data of one satellite φ2B: Phase data of second satellite received by mobile station φ3B: Phase data of third satellite received by mobile station

【0012】又、前記N12、N13は位相アンギュビュィ
ティ(整数値バイアス)であり、予め移動局の位置(X
B、YB、ZB)が既知である時点に於ける(式4)で求
める。
Further, N12 and N13 are phase angularity (integer value bias), and the position (X
(B, YB, ZB) is obtained by (Equation 4) at the time when it is known.

【式4】 (Equation 4)

【0013】以上の(式1)〜(式4)において、予め
既知の時点の移動局の位置(XB、YB、ZB)を初期値
とし、補正量ΔX、ΔYが「0」になる移動局の位置(X
B、YB、ZB)を求める。尚、移動局の位置(ZB)は
(式1)により求める。又、前記補正量ΔX、ΔYが
「0」になる方程式を求める方法は、多く知られている
が、本例では逐次代入法を採用して、発散することな
く、数回の繰返し計算で簡便に求めることができた。即
ち、式1から求めるXBi、YBi、ZBiを初期値とし、前
記(式1)〜(式4)から補正量ΔXi、ΔYiを求め、こ
の補正量ΔXi、ΔYiが「0」に近い許容値以下になるま
で、順次、位置(XB、YB、ZB)を(XBi+ΔXi、YB
i+ΔYi)に修正し、前記(式2)〜(式4)を繰りかえ
し計算を行う。
In the above (Equation 1) to (Equation 4), the mobile station position (XB, YB, ZB) at a known point in time is set as an initial value, and the mobile stations whose correction amounts ΔX, ΔY become “0” are set. Position (X
B, YB, ZB). Note that the position (ZB) of the mobile station is obtained by (Equation 1). Many methods are known for obtaining an equation in which the correction amounts ΔX and ΔY are “0”. In this example, however, a sequential substitution method is employed, and the method does not diverge, and is simply performed by several repeated calculations. I was able to ask. That is, XBi, YBi, and ZBi obtained from Expression 1 are used as initial values, and the correction amounts ΔXi and ΔYi are obtained from Expressions (1) to (Equation 4). Until the position (XB, YB, ZB) is changed to (XBi + ΔXi, YB
i + ΔYi), and repeat the above (Equation 2) to (Equation 4) to calculate.

【0014】そして、補正量ΔXi、ΔYiが「0」に近い
許容値以下になったときの、値(XBi、YBi、ZBi)が
移動局の位置である。この様に、3個の衛星だけが受信
可能な状態に於いて、移動局の位置が最も変化が少ない
楕円体高(h)を一定と仮定したものであるが、その計
算方法は簡便で短時間に演算でき、その測定精度は、数
10cm以下であり、十分、実用に耐え得る。
The values (XBi, YBi, ZBi) when the correction amounts .DELTA.Xi, .DELTA.Yi become equal to or less than an allowable value close to "0" are the positions of the mobile station. As described above, in a state where only three satellites can receive, the ellipsoidal height (h) where the position of the mobile station has the least change is assumed to be constant, but the calculation method is simple and short. And the measurement accuracy is several tens cm or less, which is sufficient for practical use.

【0015】次に、2個の衛星からの搬送波しか受信で
きない失探時における、測定方法について説明する。こ
の場合には、図2に示すように、基地局と移動局から、
衛星は遥か遠方に位置するため、基地局と移動局におけ
る第1衛星に対する仰角(θ1)、第2衛星に対する仰
角(θ2)が等しいと仮定すると、基地局と移動局で受
信する位相データの差は行路差となる。そして、この行
路差を受信可能な2つの衛星について考慮すると、移動
局が存在する直線式は、(式5)にて表すことができ
る。尚、この(式5)は基地局と移動局の高度差を補正
した式である。
Next, a description will be given of a measurement method at the time of a lost search in which only carrier waves from two satellites can be received. In this case, as shown in FIG.
Since the satellites are located far away, assuming that the elevation angle (θ1) of the base station and the mobile station with respect to the first satellite and the elevation angle (θ2) of the second satellite are equal, the difference between the phase data received by the base station and the phase data received by the mobile station is assumed. Is the path difference. Then, considering two satellites capable of receiving the path difference, a straight line equation in which the mobile station exists can be expressed by (Equation 5). This (Equation 5) is an equation in which the altitude difference between the base station and the mobile station is corrected.

【0016】[0016]

【式5】 (Equation 5)

【0017】(X1、Y1):第1衛星の座標、 (X2、
Y2):第2衛星の座標 φ1AB:第1衛星、基地局と第1衛星、移動局の1重位
相差 φ2AB:第2衛星、基地局と第2衛星、移動局の1重位
相差 λ :波長 φ12AB:第1、2衛星、基地局、移動局の2重位相差 θ1:基地局から第1衛星の仰角 θ2:基地局から第2衛星の仰角 Δh:基地局と移動局の高度差
(X1, Y1): coordinates of the first satellite, (X2,
Y2): Coordinate of the second satellite φ1AB: Single phase difference between the first satellite, the base station and the first satellite, and the mobile station φ2AB: Single phase difference between the second satellite, the base station and the second satellite, and the mobile station λ: Wavelength φ12AB: Double phase difference between first and second satellites, base station, and mobile station θ1: Elevation angle from base station to first satellite θ2: Elevation angle from base station to second satellite Δh: Altitude difference between base station and mobile station

【0018】前記(式5)における概念を図3に示す
と、第1衛星に対し、基地局はK1面(第1衛星に対す
る垂直線)と接平面E(水平面)との交点(直線U
1)、移動局は接平面E(水平面)に対してする行路差
を考慮するK1面と接平面E(水平面)との交点(直線
D1)に存在する。又、第2衛星に対し、基地局はK2
面(第2衛星に対する垂直線)と接平面E(水平面)と
の交点(直線U2)、移動局は接平面E(水平面)に対
してする行路差を考慮するK2面と接平面E(水平面)
との交点(直線D2)に存在する。従って、(式5)
は、前記直線U1と直線D2の交点(P)と前記直線U
2と直線D1の交点(Q)を結ぶ直線を意味する。
FIG. 3 shows the concept of the above (Equation 5). For the first satellite, the base station determines the intersection (straight line U) of the K1 plane (perpendicular to the first satellite) and the tangent plane E (horizontal plane).
1) The mobile station is located at the intersection (straight line D1) between the K1 plane and the tangent plane E (horizontal plane) in consideration of the path difference with respect to the tangent plane E (horizontal plane). Also, for the second satellite, the base station is K2
At the intersection (straight line U2) between the plane (perpendicular to the second satellite) and the tangent plane E (horizontal plane), the mobile station considers the path difference to the tangent plane E (horizontal plane) and the K2 plane and the tangent plane E (horizontal plane). )
At the intersection (straight line D2). Therefore, (Equation 5)
Is the intersection (P) of the straight line U1 and the straight line D2 and the straight line U
2 and a straight line connecting the intersection (Q) of the straight line D1.

【0019】又、この移動局には、X、Yの進行方向を
測定する方位測定器が備えてあり、この方位角(α)
(m=tan(α))に基づく直線式は、Y−YB=m(X
−XB)(式6)で表される。そして、前記(式5)と
(式6)とを解くことによって、移動局の位置(XB、
YB)を求めることができる。この様に、2個の衛星だ
けが受信可能な状態に於いて、各衛星に対する仰角が等
しいと仮定することによって、簡便に、移動局の位置を
求めることができ、その測定精度は、数10cm以下で
あり、十分、実用に耐え得る。
The mobile station is provided with an azimuth measuring device for measuring the traveling directions of X and Y, and the azimuth (α)
The linear equation based on (m = tan (α)) is Y−YB = m (X
-XB) (Equation 6). By solving Equations (5) and (6), the position (XB,
YB) can be obtained. As described above, in a state where only two satellites can receive, the position of the mobile station can be easily obtained by assuming that the elevation angles with respect to each satellite are equal, and the measurement accuracy is several tens cm. The following is sufficient and can be practically used.

【0020】[0020]

【発明の効果】請求項1の位置測定方法は、3個の衛星
からの搬送波を受信可能なときであっても、移動局の楕
円体高(h)を一定として求めることによって、簡便
に、数10cm以下の精度で移動局の位置を測定でき
る。又、請求項2の位置測定方法は、2個の衛星に対す
る仰角が等しいと仮定することによって、2個の衛星し
か受信できない状態のときであっても、簡便に、数10
cm以下の精度で移動局の位置を測定できる。
According to the position measuring method of the first aspect, even when the carrier waves from three satellites can be received, the ellipsoidal height (h) of the mobile station is determined to be constant, so that the number can be easily calculated. The position of the mobile station can be measured with an accuracy of 10 cm or less. In addition, the position measuring method according to the second aspect assumes that the elevation angles with respect to the two satellites are the same, so that even when only two satellites can be received, the position measurement method can be easily performed by the following equation.
The position of the mobile station can be measured with an accuracy of less than cm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】衛星、基地局、移動局の概念図である。FIG. 1 is a conceptual diagram of a satellite, a base station, and a mobile station.

【図2】2個の衛星に対する基地局と移動局における仰
角を示す図である。
FIG. 2 is a diagram illustrating elevation angles of a base station and a mobile station with respect to two satellites.

【図3】2個の衛星に対する基地局と移動局が存在する
位置を示す図である。
FIG. 3 is a diagram showing positions where base stations and mobile stations exist for two satellites.

【符号の説明】[Explanation of symbols]

(XB、YB、ZB) 移動局の位置座標 (XA、YA、ZA) 基地局の位置座標 (X1、Y1、Z1) 第1の衛星の座標 (X2、Y2、Z2) 第2の衛星の座標 (X3、Y3、Z3) 第3の衛星の座標 (X4、Y4、Z4) 第4の衛星の座標 (XB, YB, ZB) Position coordinates of mobile station (XA, YA, ZA) Position coordinates of base station (X1, Y1, Z1) Coordinates of first satellite (X2, Y2, Z2) Coordinates of second satellite (X3, Y3, Z3) coordinates of the third satellite (X4, Y4, Z4) coordinates of the fourth satellite

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 裕美 名古屋市中村区岩塚町字九反所60番地の1 中菱エンジニアリング株式会社内 (72)発明者 橋本 正 三重県鈴鹿市稲生町7992 株式会社鈴鹿サ ーキットランド内 (72)発明者 打田 佳夫 三重県鈴鹿市稲生町7992 株式会社鈴鹿サ ーキットランド内 Fターム(参考) 2F029 AB07 AC03 AD01 5J062 AA01 AA13 CC07 DD03 DD04 DD05 DD23 DD25 EE04 9A001 BB04 GG03 JJ78 KK56  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiromi Okada 1 at 60, Kutsubo, Iwazuka-cho, Nakamura-ku, Nagoya-shi Within Nakanishi Engineering Co., Ltd. (72) Inventor Tadashi Hashimoto 7992 Inaucho, Suzuka-shi, Mie Co., Ltd. Inside Suzuka Circuit Land (72) Inventor Yoshio Uchida 7792 Inamachi, Suzuka City, Mie Prefecture F-term in Suzuka Circuit Land Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基地局と移動局との間でDGPSを用い
て位置補正により特定時間間隔で基準位置を算出し、4
個の衛星からの搬送波を受信可能なときに用いる正規解
析式に於て、 3個の衛星からの搬送波を受信可能なときには、前記正
規解析式において、移動局の楕円体高(h)を一定とし
て、位置(XB、YB)を求めることを特徴とする位置測
定方法。
A reference position is calculated at specific time intervals by position correction between a base station and a mobile station using DGPS, and
When a carrier wave from three satellites can be received in the normal analysis formula used when a carrier wave from three satellites can be received, the ellipsoidal height (h) of the mobile station is set constant in the normal analysis formula. And a position (XB, YB).
【請求項2】 基地局と移動局との間でDGPSを用い
て位置補正により特定時間間隔で基準位置を算出し、4
個の衛星からの搬送波を受信可能なときに用いる正規解
析式に於て、 2個の衛星からの搬送波を受信可能なときには、前記正
規解析式において、各衛星に対する仰角が等しいと仮定
した式と、移動局に備えた方位角を測定する方位測定器
による進行方向の直線式とによって、移動局の位置(X
B、YB)を求めることを特徴とする位置測定方法。
2. A reference position is calculated at specific time intervals by position correction between a base station and a mobile station using DGPS, and
When a carrier wave from two satellites can be received in the normal analysis formula used when a carrier wave from two satellites can be received, the following equation assumes that the elevation angles with respect to each satellite are equal in the normal analysis formula. , The position of the mobile station (X
B, YB).
JP2000086573A 2000-03-27 2000-03-27 Method for measuring position during loss of satellite radio wave Withdrawn JP2001272452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000086573A JP2001272452A (en) 2000-03-27 2000-03-27 Method for measuring position during loss of satellite radio wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000086573A JP2001272452A (en) 2000-03-27 2000-03-27 Method for measuring position during loss of satellite radio wave

Publications (1)

Publication Number Publication Date
JP2001272452A true JP2001272452A (en) 2001-10-05

Family

ID=18602717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000086573A Withdrawn JP2001272452A (en) 2000-03-27 2000-03-27 Method for measuring position during loss of satellite radio wave

Country Status (1)

Country Link
JP (1) JP2001272452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040752A1 (en) * 2001-11-06 2003-05-15 Chang-Don Kee Pseudolite-based precise positioning system with synchronised pseudolites

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040752A1 (en) * 2001-11-06 2003-05-15 Chang-Don Kee Pseudolite-based precise positioning system with synchronised pseudolites
KR100501949B1 (en) * 2001-11-06 2005-07-18 재단법인서울대학교산학협력재단 Pseudolite-Based Precise Positioning System with Synchronised Pseudolites

Similar Documents

Publication Publication Date Title
JP3576177B2 (en) GPS pointing or attitude system using a single receiver
US7292185B2 (en) Attitude determination exploiting geometry constraints
US8255160B2 (en) Integrated mobile terminal navigation
Han et al. Accurate absolute GPS positioning through satellite clock error estimation
US7403155B2 (en) Method for the accelerated acquisition of satellite signals
JP2003518632A (en) Method and apparatus for determining algebraic solutions to GPS ground hybrid positioning system equations
US20230258817A1 (en) Antenna phase center compensation for orbital assistance data
JP2013516606A (en) Indoor positioning system based on pseudo satellite with GPS signal and outdoor directional antenna
CN111448480B (en) Positioning system with global navigation satellite system signal generating device and radiation cable
KR100721517B1 (en) Apparatus and method for determining a position of mobile terminal equipment
Moore et al. GPS applications in power systems. I. Introduction to GPS
US7272495B2 (en) System and method for inverse multilateration
WO2019003623A1 (en) Positioning method and positioning terminal
JP5163511B2 (en) GNSS receiver and positioning method
AU2004277511B2 (en) Geographic and space positioning system and process
JP4215264B2 (en) Position and orientation estimation device
JP2010145178A (en) Moving body position specification device
JP2001272452A (en) Method for measuring position during loss of satellite radio wave
JP2010139318A (en) Gnss receiver and positioning method
FI115167B (en) Method and system for positioning and device
US20240014549A1 (en) Method and apparatus for processing radio signals
JP2001051041A (en) Selection system for kinematic gps satellite
KR102023118B1 (en) System and Method For Directional Compensation of Loran H-field Antenna
HAMID Study and Analysis Real-Time Methods of Tracking Objects on GPS and Mobile Telephone Towers Stations
JP2003167044A (en) Position measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605