JP2001272225A - Range finder - Google Patents

Range finder

Info

Publication number
JP2001272225A
JP2001272225A JP2001010815A JP2001010815A JP2001272225A JP 2001272225 A JP2001272225 A JP 2001272225A JP 2001010815 A JP2001010815 A JP 2001010815A JP 2001010815 A JP2001010815 A JP 2001010815A JP 2001272225 A JP2001272225 A JP 2001272225A
Authority
JP
Japan
Prior art keywords
light
distance
distance measuring
conversion
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001010815A
Other languages
Japanese (ja)
Other versions
JP3962546B2 (en
Inventor
Yasuhiro Miwa
康博 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP2001010815A priority Critical patent/JP3962546B2/en
Publication of JP2001272225A publication Critical patent/JP2001272225A/en
Application granted granted Critical
Publication of JP3962546B2 publication Critical patent/JP3962546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a range finder which is improved in range-finding accuracy through reduction of A/D conversion errors by repeatedly performing range- finding operations several times by changing the number of repeating times of the range-finding operations. SOLUTION: This range finder is provided with an IRED 4, which projects a luminous flux towards an object to be found, a PSD 5 which receives the reflected light of the luminous flux projected toward the object and outputs the output signal corresponding to the distance to the object, and an output circuit 15 which charges an integrating capacitor 6 according to the output signal of the PSD 5. This finder is also provided with a converting means, which A/D-converts the voltage of the capacitor 6, after the termination of the range-finding operations which are performed by repeating the light reception by means of the PSD 5 and the integration by means of the output circuit a fixed number of times. This finder detects the distance to the object, based on the A/D-converted value obtained through the A/D conversion performed, after each range-finding operation ends, by repeatedly performing the range- finding operations several times by changing the number of repeating times of the range-finding operations.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測距対象物までの
距離を測定する測距装置に関し、特に、カメラ等に用い
られるアクティブ型の測距装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring apparatus for measuring a distance to an object to be measured, and more particularly to an active distance measuring apparatus used for a camera or the like.

【0002】[0002]

【従来の技術】従来、カメラ等に用いられるアクティブ
型の測距装置としては、特開平10−274524号公
報に記載されるように、測距対象物での反射光を受けて
その測距対象物までの距離に応じた近側信号及び遠側信
号を出力する受光手段を有し、その遠側信号と予め設定
されるクランプ信号とを大小比較し、その比較により大
きい信号と近側信号との比から出力比信号を算出し、そ
の出力比信号の値に基づいて異なる変換式により出力比
信号を距離信号に変換するものが知られている。
2. Description of the Related Art Conventionally, as an active type distance measuring device used for a camera or the like, as described in Japanese Patent Application Laid-Open No. H10-274524, the distance measuring object receives reflected light from a distance measuring object. It has a light receiving unit that outputs a near side signal and a far side signal according to the distance to the object, compares the magnitude of the far side signal with a preset clamp signal, and compares the larger signal and the near side signal with the larger signal. An output ratio signal is calculated from the ratio of the output ratio signal, and the output ratio signal is converted into a distance signal by a different conversion formula based on the value of the output ratio signal.

【0003】この測距装置は、回路規模を大きくするこ
となく、かつ、短時間に従来の光量測距併用方式と同程
度の測距結果を得て、測距対象物までの距離が大きくて
も一意的かつ安定に距離を求めようとするものである。
In this distance measuring apparatus, a distance measurement result similar to that of the conventional light amount and distance measurement combined method is obtained in a short time without increasing the circuit scale, and the distance to the distance measuring object is large. Also seeks a distance uniquely and stably.

【0004】[0004]

【発明が解決しようとする課題】ところで、この種の測
距装置において、複数回の発光動作により出力比信号を
繰り返し算出し、それらの出力比信号に応じて積分コン
デンサに充電することが考えられる。この場合、この積
分コンデンサの充電電圧をCPUにより処理するために
A/D変換を行い、そのA/D変換値に基づいて測距対
象物までの距離を算出することができる。
By the way, in this type of distance measuring apparatus, it is conceivable that an output ratio signal is repeatedly calculated by a plurality of light emitting operations, and the integration capacitor is charged in accordance with the output ratio signal. . In this case, A / D conversion is performed to process the charging voltage of the integration capacitor by the CPU, and the distance to the distance measurement target can be calculated based on the A / D conversion value.

【0005】しかしながら、A/D変換の際にA/D分
割数のあらさによる変換誤差が生ずるおそれがある。ま
た、測距動作を複数回行い、その平均をとって測距結果
とする測距装置では、A/D変換の際の変換誤差が重畳
されて大きな誤差となるおそれがある。
However, during the A / D conversion, a conversion error may occur due to the roughness of the number of A / D divisions. Further, in a distance measuring apparatus that performs a distance measuring operation a plurality of times and calculates an average thereof to obtain a distance measurement result, a conversion error at the time of A / D conversion may be superimposed and a large error may occur.

【0006】そこで本発明は、このような技術課題を解
決するためになされたものであって、A/D変換の変換
誤差の低減を図り測距精度の向上が図れる測距装置を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a technical problem, and it is an object of the present invention to provide a distance measuring device capable of reducing a conversion error of A / D conversion and improving a distance measuring accuracy. With the goal.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
るために、本発明に係る測距装置は、測距対象物に向け
て光束を投光する投光手段と、測距対象物に投光された
光束の反射光を受光し測距対象物までの距離に応じた出
力信号を出力する受光手段と、受光手段の出力信号に応
じて積分コンデンサに対し充電又は放電を行う積分手段
と、投光手段による投光、受光手段による受光及び積分
手段による積分を一定回数繰り返してなる測距動作の終
了後、積分コンデンサの電圧をA/D変換する変換手段
とを備えて構成され、測距動作の繰り返し回数を異なら
せて測距動作を複数回繰り返して行い、各測距動作の終
了後のA/D変換にて得られたA/D変換値に基づいて
距離を検出することを特徴とする。
In order to achieve the above object, a distance measuring apparatus according to the present invention comprises: a light projecting means for projecting a light beam toward a distance measuring object; Light receiving means for receiving the reflected light of the projected light beam and outputting an output signal corresponding to the distance to the object to be measured, and integrating means for charging or discharging an integration capacitor according to the output signal of the light receiving means. And a converting means for A / D-converting the voltage of the integrating capacitor after the distance measuring operation, in which the light emitting by the light emitting means, the light receiving by the light receiving means and the integration by the integrating means are repeated a fixed number of times, is completed. The distance measuring operation is repeated a plurality of times while varying the number of repetitions of the distance operation, and the distance is detected based on the A / D conversion value obtained by the A / D conversion after the end of each distance measuring operation. Features.

【0008】また本発明に係る測距装置は、各測距動作
における投光手段による投光、受光手段による受光及び
積分手段による積分の繰り返し回数が、A/D変換値が
異なる値となるように設定されていることを特徴とす
る。
In the distance measuring apparatus according to the present invention, the number of repetitions of light projection by the light projecting means, light reception by the light receiving means, and integration by the integrating means in each distance measuring operation has a different A / D conversion value. Is set to.

【0009】更に本発明に係る測距装置は、各測距動作
における投光手段による投光、受光手段による受光及び
積分手段による積分の繰り返し回数は、A/D変換値に
おける変換誤差が異なる値となるように設定されている
ことを特徴とする。
Further, in the distance measuring apparatus according to the present invention, the number of repetitions of light emission by the light projecting means, light reception by the light receiving means and integration by the integrating means in each distance measuring operation is a value at which a conversion error in an A / D conversion value differs. Is set so that

【0010】これらの発明によれば、各測距動作におけ
る繰り返し回数を異ならせることにより、A/D変換の
際に生ずる変換誤差がばらつくため、変換誤差が大きく
なることを防止できる。従って、測距精度の向上が図れ
る。
According to these inventions, by making the number of repetitions in each distance measurement operation different, a conversion error generated at the time of A / D conversion varies, thereby preventing an increase in the conversion error. Therefore, the distance measurement accuracy can be improved.

【0011】[0011]

【発明の実施の形態】以下、添付図面に基づき、本発明
の種々の実施形態について説明する。尚、各図において
同一要素には同一の符号を付し、重複する説明を省略す
る。また、図面の寸法比率は、説明のものと必ずしも一
致していない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the accompanying drawings. In each of the drawings, the same elements are denoted by the same reference numerals, and redundant description will be omitted. Also, the dimensional ratios in the drawings do not always match those described.

【0012】図1に本実施形態に係る測距装置の構成図
を示す。
FIG. 1 shows a configuration diagram of a distance measuring apparatus according to the present embodiment.

【0013】図1に示すように、本実施形態に係る測距
装置100には、CPU1が設けられている。CPU1
は、測距装置100を備えるカメラ全体の制御を行うも
のであり、EEPROM2に予め記憶されているプログ
ラム及びパラメータに基づいて測距装置100を含むカ
メラ全体の制御を行う。
As shown in FIG. 1, a distance measuring apparatus 100 according to the present embodiment is provided with a CPU 1. CPU1
Controls the entire camera including the distance measuring apparatus 100, and controls the entire camera including the distance measuring apparatus 100 based on programs and parameters stored in the EEPROM 2 in advance.

【0014】測距装置100には、IRED(赤外線発
光ダイオード)4が設けられている。IRED4は、発
光により測距対象物へ投光ビームを投光する投光手段と
して機能する。このIRED4は、ドライバ3を介して
それぞれCPU1に接続されており、CPU1に発光制
御されている。
The distance measuring apparatus 100 is provided with an IRED (infrared light emitting diode) 4. The IRED 4 functions as a light projecting unit that emits a light projecting beam to the object to be measured by emitting light. The IREDs 4 are connected to the CPU 1 via the drivers 3 respectively, and are controlled by the CPU 1 to emit light.

【0015】ドライバ3は、カメラに内蔵されるバッテ
リ(図示なし)の電源供給を受けCPU1の制御信号に
従って、IRED4のほか、AFIC10などのカメラ
の構成部品に電源供給を行うものであり、例えばドライ
バICなどが用いられる。
The driver 3 receives power supply from a battery (not shown) built in the camera and supplies power to the camera components such as the AFIC 10 in addition to the IRED 4 in accordance with a control signal of the CPU 1. An IC or the like is used.

【0016】また、測距装置100には、PSD(位置
検出素子)5が設けられている。PSD5は、各IRE
D4から測距対象物に投光された投光ビームの各反射ビ
ームを受光する受光手段として機能するものである。
The distance measuring apparatus 100 is provided with a PSD (position detecting element) 5. PSD5 is used for each IRE
It functions as a light receiving means for receiving each reflected beam of the projected light beam projected from D4 to the object to be measured.

【0017】更に、測距装置100には、自動焦点用I
C(以下「AFIC」という。)10が設けられてい
る。AFIC10は、PSD5の出力信号を処理する信
号処理手段として機能するものであり、このAFIC1
0の動作はCPU1により制御され、AFIC10から
出力されるAF信号(積分信号)はCPU1に入力され
る。
Further, the distance measuring apparatus 100 includes an autofocus I
C (hereinafter referred to as “AFIC”) 10 is provided. The AFIC 10 functions as signal processing means for processing the output signal of the PSD 5.
The operation of 0 is controlled by the CPU 1, and the AF signal (integrated signal) output from the AFIC 10 is input to the CPU 1.

【0018】IRED4から赤外光である投光ビームが
出射されると、その投光ビームはIRED4の前面に配
置された投光レンズ(図示せず)を介して測距対象物に
投光される。その投光ビームの一部が反射され、PSD
5の前面に配置された受光レンズ(図示せず)を介して
PSD5の受光面上の何れかの位置で受光される。この
受光位置は、測距対象物までの距離に応じたものであ
る。そして、PSD5は、その受光位置に応じた2つの
信号I1及びI2を出力する。
When a projected light beam, which is infrared light, is emitted from the IRED 4, the projected light beam is projected on an object to be measured through a light projecting lens (not shown) disposed in front of the IRED 4. You. A part of the light beam is reflected, and the PSD
Light is received at any position on the light receiving surface of the PSD 5 via a light receiving lens (not shown) disposed on the front surface of the PSD 5. The light receiving position corresponds to the distance to the object to be measured. Then, the PSD 5 outputs two signals I 1 and I 2 according to the light receiving position.

【0019】信号I1は、受光光量が一定であれば距離
が近いほど大きな値となる近側信号であり、信号I
2は、受光光量が一定であれば距離が遠いほど大きな値
となる遠側信号である。信号I1及びI2の和は、PSD
5が受光した反射光の光量を表す。近側信号I1はAF
IC10のPSDN端子に入力され、遠側信号I2はA
FIC10のPSDF端子に入力される。ただし、実際
には外界条件により近側信号I1 及び遠側信号I2それ
ぞれに定常光成分I0が付加された信号がAFIC10
に入力される。
The signal I 1 is a near-side signal having a larger value as the distance is shorter if the amount of received light is constant.
Reference numeral 2 denotes a far-side signal that has a larger value as the distance increases if the amount of received light is constant. The sum of signals I 1 and I 2 is given by PSD
Reference numeral 5 denotes the amount of reflected light received. The near side signal I 1 is AF
The far-side signal I 2 is input to the PSDN terminal of the IC 10 and A
It is input to the PSDF terminal of FIC10. However, in practice, a signal obtained by adding a steady light component I 0 to each of the near-side signal I 1 and the far-side signal I 2 due to external conditions is the AFIC 10
Is input to

【0020】AFIC10は、集積回路(IC)であっ
て、第1信号処理回路11、第2信号処理回路12、演
算回路14及び出力回路15を備えて構成されている。
The AFIC 10 is an integrated circuit (IC) and includes a first signal processing circuit 11, a second signal processing circuit 12, an arithmetic circuit 14, and an output circuit 15.

【0021】第1信号処理回路11は、PSD5から出
力された信号I1+I0の入力を受け、その信号に含まれ
る定常光成分I0を除去して近側信号I1を出力する。ま
た、第2信号処理回路12は、PSD5から出力された
信号I2+I0の入力を受け、その信号に含まれる定常光
成分I0を除去して遠側信号I2を出力する。
The first signal processing circuit 11 receives the signal I 1 + I 0 output from the PSD 5 and removes the steady light component I 0 included in the signal to output the near-side signal I 1 . Further, the second signal processing circuit 12 receives the input of the signal I 2 + I 0 output from the PSD 5 , removes the stationary light component I 0 included in the signal, and outputs the far-side signal I 2 .

【0022】演算回路14は、第1信号処理回路11か
ら出力された近側信号I1と、第2信号処理回路12か
ら出力された遠側信号I2との入力を受け、出力比(I1
/(I1+I2))を演算し、その結果を表す出力比信号
を出力する。なお、この出力比(I1/(I1+I2))
は、PSD5の受光面上の受光位置、即ち測距対象物ま
での距離を表す。
The arithmetic circuit 14 receives an input of the near-side signal I 1 output from the first signal processing circuit 11 and the far-side signal I 2 output from the second signal processing circuit 12 and outputs an output ratio (I 1
/ (I 1 + I 2 )) and outputs an output ratio signal indicating the result. The output ratio (I 1 / (I 1 + I 2 ))
Represents the light receiving position on the light receiving surface of the PSD 5, that is, the distance to the object to be measured.

【0023】出力回路15は、この出力比信号の入力を
受け、AFIC10のCINT端子に接続された積分コ
ンデンサ6とともにその出力比を多数回積算する積分手
段であり、これによりS/N比の改善が図られる。この
とき、積分コンデンサ6への出力比の積算は、放電した
状態の積分コンデンサ6に出力比信号に応じて徐々に充
電していくことにより行われる。
The output circuit 15 is an integration means for receiving the output ratio signal and integrating the output ratio with the integration capacitor 6 connected to the CINT terminal of the AFIC 10 many times, thereby improving the S / N ratio. Is achieved. At this time, the integration of the output ratio to the integration capacitor 6 is performed by gradually charging the discharged integration capacitor 6 according to the output ratio signal.

【0024】そして、その積算された出力比は、AF信
号(積分信号)としてAFIC10のSOUT端子から
出力される。CPU1は、AFIC10から出力された
AF信号の入力を受け、所定の演算を行ってAF信号を
距離信号に変換し、その距離信号をレンズ駆動回路7に
送出する。レンズ駆動回路7は、その距離信号に基づい
て撮影レンズ8を合焦動作させる。
Then, the integrated output ratio is output from the SOUT terminal of the AFIC 10 as an AF signal (integrated signal). The CPU 1 receives the input of the AF signal output from the AFIC 10, performs a predetermined calculation, converts the AF signal into a distance signal, and sends the distance signal to the lens driving circuit 7. The lens driving circuit 7 causes the taking lens 8 to perform a focusing operation based on the distance signal.

【0025】図2にAFIC10の第1信号処理回路1
1、出力回路15の具体的な構成図を示す。なお、第2
信号処理回路12も、第1信号処理回路11と同様な回
路構成を有している。
FIG. 2 shows the first signal processing circuit 1 of the AFIC 10.
1, a specific configuration diagram of the output circuit 15 is shown. The second
The signal processing circuit 12 also has a circuit configuration similar to that of the first signal processing circuit 11.

【0026】図2に示すように、第1信号処理回路11
は、PSD5から出力された定常光成分I0を含む近側
信号I1を入力し、定常光成分I0を除去して、近側信号
1を出力するものである。PSD5の近距離側端子か
ら出力される電流(I1+I0)は、AFIC10のPS
DN端子を経て、第1信号処理回路11のオペアンプ2
0の−入力端子に入力される。オペアンプ20の出力端
子はトランジスタ21のベース端子に接続されており、
トランジスタ21のコレクタ端子は、トランジスタ22
のベース端子に接続されている。トランジスタ22のコ
レクタ端子には、オペアンプ23の−入力端子が接続さ
れ、このコレクタ端子には圧縮ダイオード24のカソー
ド端子が接続されている。また、オペアンプ23の+入
力端子には圧縮ダイオード25のカソード端子が接続さ
れており、圧縮ダイオード24及び25のそれぞれのア
ノード端子には第1基準電源26が接続されている。
As shown in FIG. 2, the first signal processing circuit 11
Receives the near-side signal I 1 comprising a stationary light component I 0 output from PSD 5, to remove the stationary light component I 0, and outputs the near-side signal I 1. The current (I 1 + I 0 ) output from the short distance terminal of the PSD 5 is equal to the PS of the AFIC 10.
Through the DN terminal, the operational amplifier 2 of the first signal processing circuit 11
0 is input to the-input terminal. The output terminal of the operational amplifier 20 is connected to the base terminal of the transistor 21,
The collector terminal of the transistor 21
Is connected to the base terminal. The negative input terminal of the operational amplifier 23 is connected to the collector terminal of the transistor 22, and the cathode terminal of the compression diode 24 is connected to this collector terminal. The + input terminal of the operational amplifier 23 is connected to the cathode terminal of the compression diode 25, and the anode terminals of the compression diodes 24 and 25 are connected to the first reference power supply 26.

【0027】また、AFIC10のCHF端子には、定
常光除去コンデンサ27が外付けされている。この定常
光除去コンデンサ27は、第1信号処理回路11内の定
常光除去用トランジスタ28のベース端子に接続されて
いる。定常光除去コンデンサ27とオペアンプ23は、
スイッチ29を介して接続されており、このスイッチ2
9のオンオフはCPU1により制御される。定常光除去
用トランジスタ28のコレクタ端子はオペアンプ20の
−入力端子に接続されており、トランジスタ28のエミ
ッタ端子は他端が接地された抵抗30に接続されてい
る。
A stationary light removing capacitor 27 is externally connected to the CHF terminal of the AFIC 10. The steady light removing capacitor 27 is connected to a base terminal of a steady light removing transistor 28 in the first signal processing circuit 11. The stationary light removing capacitor 27 and the operational amplifier 23
The switch 2 is connected via a switch 29.
9 is controlled by the CPU 1. The collector terminal of the steady light removing transistor 28 is connected to the negative input terminal of the operational amplifier 20, and the emitter terminal of the transistor 28 is connected to the resistor 30 whose other end is grounded.

【0028】一方、図2において、出力回路15は、A
FIC10のCINT端子に外付けされた積分コンデンサ
6を備えている。積分コンデンサ6は、スイッチ60を
介して演算回路14の出力端子に接続され、スイッチ6
2を介して定電流源63に接続され、スイッチ64を介
して接地されている。これらのスイッチ60、62及び
64は、CPU1からの制御信号により制御される。ス
イッチ62がオンすることにより、定電流源63から積
分コンデンサ6に充電が行える。一方、スイッチ64を
オンすることにより、積分コンデンサ6を放電すること
ができる。
On the other hand, in FIG.
The FIC 10 has an integrating capacitor 6 externally connected to the CINT terminal. The integrating capacitor 6 is connected to the output terminal of the arithmetic circuit 14 via the switch 60,
2 is connected to a constant current source 63 via a switch 2 and grounded via a switch 64. These switches 60, 62 and 64 are controlled by a control signal from the CPU 1. When the switch 62 is turned on, the integration capacitor 6 can be charged from the constant current source 63. On the other hand, by turning on the switch 64, the integrating capacitor 6 can be discharged.

【0029】次に、本実施形態に係る測距装置の動作に
ついて説明する。
Next, the operation of the distance measuring apparatus according to this embodiment will be described.

【0030】図3に測距装置の動作に係るタイミングチ
ャートを示し、図4に測距装置の動作時における積分コ
ンデンサの充電電圧を示す。
FIG. 3 shows a timing chart relating to the operation of the distance measuring apparatus, and FIG. 4 shows the charging voltage of the integrating capacitor during the operation of the distance measuring apparatus.

【0031】シャッタレリーズなどのカメラ操作によ
り、測距ルーチンの制御処理が開始され、コントロール
信号に従って制御処理が順次行われる。コントロール信
号は、CPU1からAFIC10のCONT端子に入力
される制御信号であり、図3のCONTに示すように、
先行する六つのパルス(P1〜P6)と、それに次いで
入力される積分動作のためのパルス(P10、P20)
とによりなる信号である。
A control operation of a distance measurement routine is started by a camera operation such as a shutter release, and the control processing is sequentially performed according to a control signal. The control signal is a control signal input from the CPU 1 to the CONT terminal of the AFIC 10, and as shown by CONT in FIG.
The preceding six pulses (P1 to P6) and the pulses (P10, P20) for the integration operation input next
This is a signal represented by

【0032】AFIC10にドライバ3から電源供給が
開始されると、その電源供給を受けて積分コンデンサ6
の急速充電が行われる。そして、コントロール信号のパ
ルスP1の立ち下がり時に積分コンデンサ6の急速充電
を終了し、積分コンデンサ6の放電が行われる。
When the power supply from the driver 3 to the AFIC 10 is started, the power supply is received and the integration capacitor 6 is received.
Is rapidly charged. Then, when the pulse P1 of the control signal falls, the rapid charging of the integration capacitor 6 is terminated, and the integration capacitor 6 is discharged.

【0033】そして、コントロール信号のパルスP3の
立ち下がり時に補正積分が行われる。補正積分は、積分
コンデンサ6に一定時間に一定電流を流すことにより行
われる。この補正積分は、コントロール信号のパルスP
4の立ち下がりにより終了する。
Then, the correction integration is performed at the falling of the pulse P3 of the control signal. The correction integration is performed by supplying a constant current to the integration capacitor 6 for a fixed time. This correction integration is based on the pulse P of the control signal.
The process is terminated by the falling edge of “4”.

【0034】そして、積分コンデンサ6の充電電圧がA
/D変換され、CPU1に読み込まれる。CPU1で
は、A/D変換された電圧値から積分コンデンサ6の容
量を算出する。この実測の容量に基づいて測距演算結果
に補正を行うことにより、測距精度の向上が図られる。
そして、パルスP5の入力により積分コンデンサ6が放
電される。
The charging voltage of the integrating capacitor 6 is A
/ D converted and read by the CPU 1. The CPU 1 calculates the capacity of the integration capacitor 6 from the A / D converted voltage value. By correcting the distance measurement calculation result based on the actually measured capacity, the distance measurement accuracy is improved.
Then, the integration capacitor 6 is discharged by the input of the pulse P5.

【0035】そして、コントロール信号のパルスP10
の立ち上がり時からパルスP20の立ち上がり時までの
期間では定常光除去コンデンサ27の充放電がホールド
され、パルスP10の立ち下がり時からパルスP20の
立ち上がり時までの期間ではスイッチ60がオンされ積
分コンデンサ6へ出力比信号に応じた充電が行われる。
Then, the control signal pulse P10
During the period from the rise of the pulse P20 to the rise of the pulse P20, the charge / discharge of the steady light removing capacitor 27 is held. During the period from the fall of the pulse P10 to the rise of the pulse P20, the switch 60 is turned on and the integration capacitor 6 is turned on. Charging is performed according to the output ratio signal.

【0036】このコントロール信号のパルスP10、P
20の入力により、IRED4による投光が一回行わ
れ、それに従い積分コンデンサ6に充電が行われる。そ
して、コントロール信号のパルスP10、P20が繰り
返し入力されることにより、積分コンデンサ電圧が上昇
していく。
The pulses P10, P of the control signal
With the input of 20, the light emission by the IRED 4 is performed once, and the integration capacitor 6 is charged accordingly. Then, the pulses P10 and P20 of the control signal are repeatedly input, so that the integration capacitor voltage increases.

【0037】そして、図4に示すように、一定回数のI
RED4の投光が行われると、積分コンデンサ6が一度
Vccまで充電され、その後、放電された後、再度測距
動作が行われる。ここでいう「測距動作」とは、IRE
D4の投光、PSD5の受光、積分コンデンサ6への充
電の各工程を一定回数繰り返す動作をいう。この測距動
作は、一回の測距ルーチンにおいて複数回行われ、例え
ば、3回行われる。
Then, as shown in FIG.
When the light emission of the RED 4 is performed, the integrating capacitor 6 is once charged to Vcc, then discharged, and the distance measuring operation is performed again. Here, the “ranging operation” refers to the IRE
The operation of repeating the steps of projecting D4, receiving light from PSD5, and charging the integrating capacitor 6 a fixed number of times. This ranging operation is performed a plurality of times in one ranging routine, for example, three times.

【0038】このとき、各測距動作におけるIRED4
の投光、PSD5の受光、積分コンデンサ6への充電の
各工程の繰り返し回数は、異なる回数とされる。一回目
の繰り返し回数をN1、二回目の繰り返し回数をN2、
三回目の繰り返し回数をN3とすると、例えば、N1が
107回、N2が110回、N3が113回に設定され
る。
At this time, the IRED 4 in each distance measuring operation is
, The light receiving of the PSD 5, and the charging of the integrating capacitor 6 are repeated at different times. The first repetition count is N1, the second repetition count is N2,
Assuming that the third repetition number is N3, for example, N1 is set to 107 times, N2 is set to 110 times, and N3 is set to 113 times.

【0039】また、この繰り返し回数は、測距動作の終
了後における積分コンデンサ6の充電電圧をA/D変換
(アナログ・デジタル変換)して得られたA/D変換値
が異なる値となるように設定するのが望ましい。
The number of repetitions is set so that the A / D conversion value obtained by A / D conversion (analog-to-digital conversion) of the charging voltage of the integration capacitor 6 after the end of the distance measurement operation is different. It is desirable to set to.

【0040】更に、より望ましくは、繰り返し回数が、
A/D変換値における変換誤差が異なる値となるように
設定される。
More preferably, the number of repetitions is
It is set so that the conversion error in the A / D conversion value becomes a different value.

【0041】そして、各測距動作の終了ごとに、積分コ
ンデンサ6の充電電圧がA/D変換され、CPU1に読
み込まれる。全ての測距動作を終了したら、各測距動作
における積分コンデンサ6の充電電圧のA/D変換値に
基づいて測距対象物までの距離が算出される。なお、測
距動作において、積分コンデンサ6の積分工程は、積分
コンデンサ6に一定の電圧を予め充電しておき、出力比
信号に応じた電圧を繰り返し放電するものであってもよ
い。
Each time the distance measuring operation is completed, the charging voltage of the integrating capacitor 6 is A / D converted and read into the CPU 1. When all the distance measuring operations are completed, the distance to the object to be measured is calculated based on the A / D converted value of the charging voltage of the integrating capacitor 6 in each distance measuring operation. In the distance measuring operation, the integrating step of the integrating capacitor 6 may be a method in which the integrating capacitor 6 is charged in advance with a constant voltage, and a voltage corresponding to the output ratio signal is repeatedly discharged.

【0042】次に、本実施形態に係る測距装置により実
際に測距を行った測距結果について説明する。
Next, a description will be given of the result of distance measurement actually performed by the distance measuring apparatus according to the present embodiment.

【0043】図5に本実施形態に係る測距装置の測距結
果を示す。図6に各測距動作における繰り返し回数(発
光回数)を同じとした場合の測距結果を示す。なお、図
5、図6の測距は、測距装置から測距対象物までの距離
を907mmとし、A/D分割数を256分割としてA
/D変換を行った結果を示してある。なお、A/D変換
結果(A/D変換値)は、積分コンデンサ6の電圧値が
連続的な値をとるのに対し、離散的な値をとるものであ
る。
FIG. 5 shows the distance measurement result of the distance measuring apparatus according to the present embodiment. FIG. 6 shows the distance measurement result when the number of repetitions (the number of light emission) in each distance measurement operation is the same. 5 and 6, the distance from the distance measuring device to the object to be measured is 907 mm, and the number of A / D divisions is 256.
The result of performing / D conversion is shown. The A / D conversion result (A / D conversion value) is a discrete value while the voltage value of the integration capacitor 6 is a continuous value.

【0044】図5に示すように、本実施形態に係る測距
装置では、1回目の測距動作の繰り返し回数を107
回、2回目の測距動作の繰り返し回数を110回、3回
目の測距動作の繰り返し回数を113回とし、各測距動
作の繰り返し回数を異ならせて測距を行っている。
As shown in FIG. 5, in the distance measuring apparatus according to the present embodiment, the number of repetitions of the first distance measuring operation is set to 107.
The number of repetitions of the second and third distance measurement operations is set to 110, and the number of repetitions of the third distance measurement operation is set to 113. The number of repetitions of each distance measurement operation is varied to perform the distance measurement.

【0045】このため、各測距動作の終了後における積
分コンデンサ(積分C)の電圧値は、1回目が146
9.54mV、2回目が1510.74mV、3回目が
1551.94mVとなり、それぞれ異なる電圧値とな
っており、これら1〜3回目の電圧平均値は1510.
74mVである。また、その電圧値のA/D変換値(A
/D変換結果)も1回目〜3回目の各カウント値が異な
るものとなっている。しかしながら、A/D変換値の平
均値から逆算した積分コンデンサ6の電圧平均値は15
10.81mVであり、実際の積分コンデンサの電圧平
均値とほとんど誤差が生じていない。
Therefore, the voltage value of the integration capacitor (integration C) after the end of each distance measurement operation is 146 for the first time.
9.54 mV, the second time is 151.74 mV, the third time is 1551.94 mV, and they have different voltage values. The voltage average value of the first to third times is 1510.mV.
74 mV. Also, the A / D conversion value (A
/ D conversion results) also have different count values in the first to third times. However, the average value of the voltage of the integrating capacitor 6 calculated from the average value of the A / D conversion values is 15
10.81 mV, and there is almost no error from the actual average voltage value of the integrating capacitor.

【0046】一方、図6に示すように、1回目から3回
目までの測距動作の繰り返し回数を110回として測距
した場合には、各測距動作の終了後における積分コンデ
ンサ(積分C)の電圧値は、1回目から3回目まで全て
1510.74mVである。また、その電圧値のA/D
変換値(A/D変換結果)も1回目〜3回目の各カウン
ト値が全て94となっている。このA/D変換値から逆
算した積分コンデンサ6の電圧平均値は1505.47
mVであり、実際の積分コンデンサの電圧平均値である
1505.47mVと5.5mVの誤差を生じている。
On the other hand, as shown in FIG. 6, when the number of repetitions of the first to third distance measurement operations is set to 110 and the distance measurement is performed, the integration capacitor (integration C) after each distance measurement operation is completed. Is 1510.74 mV from the first time to the third time. Also, the A / D of the voltage value
In the conversion value (A / D conversion result), the first to third count values are all 94. The average value of the voltage of the integrating capacitor 6 calculated from the A / D converted value is 1505.47.
mV, and an error of 5.55.4 mV, which is the average voltage value of the integrating capacitor, is generated.

【0047】この誤差の原因は、図7に示すように、各
測距動作における繰り返し回数(発光回数)を同じにし
た場合には、測距動作を繰り返してもA/D変換による
誤差を低減できず、誤差がそのまま測距結果に上乗せさ
れてしまうからである。
As shown in FIG. 7, when the number of repetitions (the number of times of light emission) in each distance measuring operation is the same, the error due to the A / D conversion is reduced even if the distance measuring operation is repeated. This is because the error cannot be added and the error is directly added to the distance measurement result.

【0048】一方、図8に本実施形態に係る測距装置の
ように、各測距動作における繰り返し回数を異ならせる
場合には、A/D変換による誤差が適当にばらついて相
殺され、その誤差が重畳して大きな誤差が生ずることが
防止される。
On the other hand, when the number of repetitions in each distance measuring operation is made different from each other as in the distance measuring apparatus according to the present embodiment shown in FIG. 8, errors due to A / D conversion are appropriately dispersed and cancelled. Are prevented from being superimposed to generate a large error.

【0049】以上のように、本実施形態に係る測距装置
によれば、各測距動作における繰り返し回数を異ならせ
ることにより、A/D変換の際に生ずる変換誤差がばら
つくため、変換誤差が大きくなることを防止できる。従
って、測距精度の向上が図れる。
As described above, according to the distance measuring apparatus of the present embodiment, since the number of repetitions in each distance measuring operation is made different, the conversion error generated at the time of A / D conversion varies. It can be prevented from growing. Therefore, the distance measurement accuracy can be improved.

【0050】なお、本実施形態において、測距動作を複
数回行う場合、図9に示すように、一回目の測距動作に
おける積分コンデンサ6の充電時間ta1に対し、二回
目以降の測距動作における積分コンデンサ6の充電時間
ta2、ta3を短くすることが望ましい。
In this embodiment, when the distance measuring operation is performed a plurality of times, as shown in FIG. 9, the charging time ta1 of the integrating capacitor 6 in the first distance measuring operation is compared with the second and subsequent distance measuring operations. It is desirable to shorten the charging times ta2 and ta3 of the integrating capacitor 6 in the above.

【0051】また、一回目の測距動作における補正積分
の時間tb1に対し、二回目以降の測距動作における補
正積分の時間tb2、tb3を短くすることが望まし
い。
It is desirable that the times tb2 and tb3 of the correction integration in the second and subsequent distance measurement operations be shorter than the time tb1 of the correction integration in the first distance measurement operation.

【0052】このように、二回目以降の測距動作におけ
る積分コンデンサ6の充電時間及び補正積分の時間を短
くすることにより、測距時間を短くしてタイムパララッ
クスを低減させることができる。
As described above, by shortening the charging time of the integration capacitor 6 and the correction integration time in the second and subsequent distance measuring operations, the distance measuring time can be shortened and the time parallax can be reduced.

【0053】また、複数回連続して測距動作を行う場合
には、補正積分は一回目の結果を共通して用いることが
できる。このため、二回目以降の測距動作における補正
積分を省略してもよい。本実施形態に係る測距装置で
は、コントロール信号のパルス入力に従って制御処理が
進行するため、二回目以降の測距動作では補正積分の時
間を短くしている。
When the distance measuring operation is performed a plurality of times consecutively, the first result can be commonly used for the correction integration. Therefore, the correction integration in the second and subsequent ranging operations may be omitted. In the distance measuring apparatus according to the present embodiment, since the control process proceeds in accordance with the pulse input of the control signal, the time of the correction integration is shortened in the second and subsequent distance measuring operations.

【0054】また、一回目の測距動作における急速充電
(図9中の時間ta1の充電)により、積分コンデンサ
6の誘電体吸収は除去されている。このため、二回目以
降の測距動作における急速充電を省略してもよい。本実
施形態に係る測距装置では、コントロール信号のパルス
に従ってシーケンスが進行するため、二回目以降の測距
動作では急速充電の時間(ta2、ta3)を短くして
いる。
The dielectric absorption of the integrating capacitor 6 has been eliminated by the quick charging (charging at the time ta1 in FIG. 9) in the first distance measuring operation. For this reason, the rapid charging in the second and subsequent ranging operations may be omitted. In the distance measuring apparatus according to the present embodiment, the sequence proceeds in accordance with the pulse of the control signal, so that the quick charging time (ta2, ta3) is shortened in the second and subsequent distance measuring operations.

【0055】[0055]

【発明の効果】以上説明したように、本発明によれば、
各測距動作における繰り返し回数を異ならせることによ
り、A/D変換の際に生ずる変換誤差がばらつくため、
変換誤差が大きくなることを防止できる。従って、測距
精度の向上が図れる。
As described above, according to the present invention,
By making the number of repetitions in each ranging operation different, a conversion error generated at the time of A / D conversion varies.
The conversion error can be prevented from increasing. Therefore, the distance measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る測距装置の構成図であ
る。
FIG. 1 is a configuration diagram of a distance measuring apparatus according to an embodiment of the present invention.

【図2】図1の測距装置における信号処理回路等の説明
図である。
FIG. 2 is an explanatory diagram of a signal processing circuit and the like in the distance measuring device of FIG. 1;

【図3】図1の測距装置の動作に係るタイミングチャー
トである。
FIG. 3 is a timing chart related to the operation of the distance measuring apparatus in FIG. 1;

【図4】測距装置の動作時における積分コンデンサの電
圧の説明図である。
FIG. 4 is an explanatory diagram of a voltage of an integrating capacitor during operation of the distance measuring device.

【図5】本実施形態に係る測距装置における測距結果の
説明図である。
FIG. 5 is an explanatory diagram of a distance measurement result in the distance measurement device according to the embodiment.

【図6】各測距動作の繰り返し回数を同じにした場合の
測距結果の説明図である。
FIG. 6 is an explanatory diagram of a distance measurement result when the number of repetitions of each distance measurement operation is the same.

【図7】各測距動作の繰り返し回数を同じにした場合の
測距誤差の説明図である。
FIG. 7 is an explanatory diagram of a distance measurement error when the number of repetitions of each distance measurement operation is the same.

【図8】本実施形態に係る測距装置における測距誤差の
説明図である。
FIG. 8 is an explanatory diagram of a distance measurement error in the distance measurement device according to the present embodiment.

【図9】本実施形態に係る測距装置の変形例の説明図で
ある。
FIG. 9 is an explanatory diagram of a modified example of the distance measuring apparatus according to the embodiment.

【符号の説明】[Explanation of symbols]

1…CPU(変換手段)、2…EEPROM、4…IR
ED(投光手段)、5…PSD(受光手段)、6…積分
コンデンサ、10…AFIC、15…出力回路(積分手
段)。
1 CPU (conversion means), 2 EEPROM, 4 IR
ED (light emitting means), 5 ... PSD (light receiving means), 6 ... integrating capacitor, 10 ... AFIC, 15 ... output circuit (integrating means).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測距対象物に向けて光束を投光する投光
手段と、 前記測距対象物に投光された前記光束の反射光を受光し
前記測距対象物までの距離に応じた出力信号を出力する
受光手段と、 前記受光手段の前記出力信号に応じて積分コンデンサに
対し充電又は放電を行う積分手段と、 前記投光手段による投光、前記受光手段による受光及び
前記積分手段による積分を一定回数繰り返す測距動作の
終了後、前記積分コンデンサの電圧をA/D変換する変
換手段と、を備えて構成され、 前記測距動作の繰り返し回数を異ならせて前記測距動作
を複数回繰り返して行い、前記各測距動作の終了後の前
記A/D変換にて得られた各A/D変換値に基づいて前
記距離を検出すること、を特徴とする測距装置。
1. A light projecting means for projecting a light beam toward an object to be measured, and receiving reflected light of the light beam projected on the object to be measured according to a distance to the object to be measured. Light receiving means for outputting an output signal obtained by the light receiving means; integrating means for charging or discharging an integrating capacitor according to the output signal of the light receiving means; light emitting by the light emitting means; light receiving by the light receiving means; and the integrating means. And a conversion means for A / D-converting the voltage of the integrating capacitor after the end of the distance measurement operation in which the integration is repeated a certain number of times. The distance measurement operation is performed by changing the number of repetitions of the distance measurement operation. A distance measurement device that performs the measurement repeatedly a plurality of times and detects the distance based on each A / D conversion value obtained by the A / D conversion after the end of each distance measurement operation.
【請求項2】 前記各測距動作における前記投光手段に
よる投光、前記受光手段による受光及び前記積分手段に
よる積分の繰り返し回数は、前記A/D変換値が異なる
値となるように設定されていること、を特徴とする請求
項1に記載の測距装置。
2. The number of repetitions of light emission by the light emitting means, light reception by the light receiving means, and integration by the integrating means in each of the distance measuring operations is set so that the A / D converted values are different. The distance measuring apparatus according to claim 1, wherein
【請求項3】 前記各測距動作における前記投光手段に
よる投光、前記受光手段による受光及び前記積分手段に
よる積分の繰り返し回数は、前記A/D変換値における
変換誤差が異なる値となるように設定されていること、
を特徴とする請求項1又は2に記載の測距装置。
3. The number of repetitions of light emission by the light emitting means, light reception by the light receiving means, and integration by the integrating means in each of the distance measuring operations is such that conversion errors in the A / D conversion values are different. Is set to
The distance measuring apparatus according to claim 1 or 2, wherein:
JP2001010815A 2000-01-19 2001-01-18 Ranging device Expired - Fee Related JP3962546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001010815A JP3962546B2 (en) 2000-01-19 2001-01-18 Ranging device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-10863 2000-01-19
JP2000010863 2000-01-19
JP2001010815A JP3962546B2 (en) 2000-01-19 2001-01-18 Ranging device

Publications (2)

Publication Number Publication Date
JP2001272225A true JP2001272225A (en) 2001-10-05
JP3962546B2 JP3962546B2 (en) 2007-08-22

Family

ID=26583806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001010815A Expired - Fee Related JP3962546B2 (en) 2000-01-19 2001-01-18 Ranging device

Country Status (1)

Country Link
JP (1) JP3962546B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129669A (en) * 2014-01-07 2015-07-16 国立大学法人九州工業大学 Parallax sensor and correlation signal generation method
JPWO2014207992A1 (en) * 2013-06-26 2017-02-23 パナソニックIpマネジメント株式会社 Ranging imaging apparatus, ranging method thereof, solid-state imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014207992A1 (en) * 2013-06-26 2017-02-23 パナソニックIpマネジメント株式会社 Ranging imaging apparatus, ranging method thereof, solid-state imaging device
JP2015129669A (en) * 2014-01-07 2015-07-16 国立大学法人九州工業大学 Parallax sensor and correlation signal generation method

Also Published As

Publication number Publication date
JP3962546B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
JP2001272225A (en) Range finder
US6452664B2 (en) Rangefinder apparatus
US6944397B2 (en) Distance measuring device
JPH0894920A (en) Range finder
US6501085B2 (en) Distance-measuring apparatus
JP3051031B2 (en) Distance measuring device
US6292257B1 (en) Distance measurement system
JP3594816B2 (en) Distance measuring device
US6621583B1 (en) Distance-measuring apparatus
US6421115B2 (en) Distance measuring apparatus
JP2000162493A (en) Distance measuring equipment
JPH10274524A (en) Range finding device
JP2001272596A (en) Ranging device
JP2001272224A (en) Range finder
US6456367B2 (en) Rangefinder apparatus
JP3482097B2 (en) Distance measuring device
JP4738656B2 (en) Ranging device
US6333782B2 (en) Distance measuring apparatus
JP2001153647A (en) Distance measuring device
US6583861B2 (en) Rangefinder apparatus
JP2007232730A (en) Range finder
JP2000105333A (en) Range-finding device
JP2000180713A (en) Range finder adjusting method
JP2000121923A (en) Range finder
JP2000180710A (en) Range finder

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041102

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Effective date: 20070521

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110525

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110525

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120525

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees