JP2001271107A - Method for treating iron manufacturing dust in vertical smelting furnace - Google Patents

Method for treating iron manufacturing dust in vertical smelting furnace

Info

Publication number
JP2001271107A
JP2001271107A JP2000086297A JP2000086297A JP2001271107A JP 2001271107 A JP2001271107 A JP 2001271107A JP 2000086297 A JP2000086297 A JP 2000086297A JP 2000086297 A JP2000086297 A JP 2000086297A JP 2001271107 A JP2001271107 A JP 2001271107A
Authority
JP
Japan
Prior art keywords
furnace
dust
carbon
exhaust gas
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000086297A
Other languages
Japanese (ja)
Inventor
Takashi Matsui
貴 松井
Yoshiaki Hara
義明 原
Takeshi Uchiyama
武 内山
Natsuo Ishiwatari
夏生 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000086297A priority Critical patent/JP2001271107A/en
Publication of JP2001271107A publication Critical patent/JP2001271107A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of piled powder in a furnace caused by solid material mainly composed of carbon contained in iron manufacturing dust blown from an upper step tuyere into a coke packed layer in a vertical smelting furnace. SOLUTION: The solid mainly composed of carbon in the iron manufacturing dust blown from the upper step tuyere 1A is supplied by controlling the grain diameter to be not larger than the upper limit grain diameter by which the grains are ascended together with exhaust gas in a furnace top space formed on the packing layer 3 of the verticals melting furnace 1 and able to be exhausted out of the furnace top. The piling of the powdery carbon solid in the packing layer 3 of the vertical smelting furnace 1 is prevented and the gas ventilation in the furnace is improved and since the gas is smoothly exhausted out of the furnace accompanied with the ascended exhaust gas in a space of the furnace top formed on the stock line of the packing layer 3, the good operation is secured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上下2段の羽口を
有する竪型溶融炉を用い、その炉内に炭素質固体還元材
の充填層を形成するとともに上段羽口より製鉄ダストを
供給する竪型溶融炉による製鉄ダストの処理方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a vertical melting furnace having two upper and lower tuyeres, forming a packed layer of carbonaceous solid reducing material in the furnace and supplying iron-making dust from the upper tuyeres. The present invention relates to a method for treating iron-making dust by a vertical melting furnace.

【0002】[0002]

【従来の技術】製鉄所の鉄鋼製造過程で発生する自家発
生スクラップは、その素性が明確で不純物の混入が少な
いため大部分は発生工場内で鉄源として転炉などにリサ
イクル使用される。これに対して鉄鋼製品の二次加工や
最終製品に至るまでの過程で分別回収される二次加工ス
クラップまたは廃棄スクラップには、表面処理鋼板や特
殊鋼スクラップなどを多く含んでいるため、素性が不明
確でしかも不純物の混入が多い。これらの多くは、通
常、電気炉で精錬され、再利用されている。
2. Description of the Related Art Self-generated scrap generated in the steel making process of steelworks has a clear nature and contains a small amount of impurities, so that most of the scrap is recycled to a converter or the like as an iron source in a generating plant. On the other hand, secondary processing scrap or waste scrap separated and collected in the process of secondary processing of steel products and final products contains a large amount of surface-treated steel sheets and special steel scraps, so their characteristics are low. It is unclear and contains many impurities. Many of these are usually refined in electric furnaces and reused.

【0003】電気炉でスクラップを精錬する際に発生す
る電気炉ダスト中には、クロム、カドミウム、鉛など埋
め立て廃棄した場合には溶出して環境汚染を引き起こす
元素が数%程度含まれている。そこで、クロム、カドミ
ウム、鉛などの有害金属を安価に固定化して亜鉛や鉄な
どの有価金属の回収、再資源化する技術として、上下二
段の羽口を有する竪型溶融炉を用いる方法が知られてい
る。
[0003] Electric furnace dust generated when refining scrap in an electric furnace contains about several percent of elements, such as chromium, cadmium, and lead, which are eluted when landfilled and disposed and cause environmental pollution. Therefore, as a technology for inexpensively fixing harmful metals such as chromium, cadmium and lead to recover and recycle valuable metals such as zinc and iron, a method using a vertical melting furnace with two upper and lower tuyeres is known. Are known.

【0004】例えば、特開平8-325646号公報には、上下
二段の羽口を備えた竪型溶融炉に炭素質固体還元材の充
填層を形成し、少なくとも上段羽口から電気炉ダストを
吹込み、該電気炉ダスト中に含まれる亜鉛分を還元、蒸
発させる一方、この蒸発した亜鉛を含む排ガスを炉外で
冷却することにより亜鉛を回収する竪型溶融炉による電
気炉ダストの処理方法が開示されている。
For example, Japanese Patent Application Laid-Open No. 8-325646 discloses that a packed bed of a carbonaceous solid reducing material is formed in a vertical melting furnace having two upper and lower tuyeres and at least electric furnace dust is discharged from the upper tuyeres. Blowing, reducing and evaporating zinc contained in the electric furnace dust, and collecting the zinc by cooling the exhaust gas containing the evaporated zinc outside the furnace, thereby recovering zinc. Is disclosed.

【0005】また、前記電気炉ダストの他、製鋼ダス
ト、転炉ダスト、高炉ダストおよびスラッジ(以下、こ
れらを主として製鉄所で発生する金属酸化物のダスト、
スラッジを単に製鉄ダストという)を吹込み、溶融メタ
ルとして回収することも試みられている。
In addition to the electric furnace dust, steelmaking dust, converter dust, blast furnace dust, and sludge (hereinafter referred to as metal oxide dust mainly generated in steel works,
Attempts have also been made to inject sludge (simply called steelmaking dust) and recover it as molten metal.

【0006】[0006]

【発明が解決しようとする課題】製鉄ダストには、多量
(20質量%前後)の炭素粉を含んでいるものがある。こ
のような製鉄ダストを竪型溶融炉の上段羽口から供給す
る場合、この炭素粉が補助燃料として利用でき、竪型溶
融炉の炉内を高温に維持するのに好都合である。そこ
で、前記特開平8-325646号公報に開示された竪型溶融炉
による電気炉ダストの処理方法に準じて、竪型溶融炉の
上段羽口から炭素粉を20質量%程度含む製鉄ダストを供
給することを試みた。
Some iron-making dusts contain a large amount (about 20% by mass) of carbon powder. When such ironmaking dust is supplied from the upper tuyere of the vertical melting furnace, this carbon powder can be used as an auxiliary fuel, which is advantageous for maintaining the inside of the vertical melting furnace at a high temperature. Therefore, in accordance with the method for treating electric furnace dust using a vertical melting furnace disclosed in Japanese Patent Application Laid-Open No. 8-325646, ironmaking dust containing about 20% by mass of carbon powder is supplied from the upper tuyere of the vertical melting furnace. Tried to do.

【0007】その結果、竪型溶融炉内に充填された塊状
の炭素質固体還元材充填層に製鉄ダスト粉に起因すると
思われる堆積粉が形成され、この堆積粉により炉内の通
気性を阻害することが確認された。炉内に形成された堆
積粉をサンプリングして工業分析した結果、堆積粉は、
表1に示すように主成分は炭素系固体であることが判明
した。
[0007] As a result, sedimentary powder which is considered to be caused by iron-making dust powder is formed in the massive carbonaceous solid reducing material packed bed filled in the vertical melting furnace, and this sedimentary powder impairs air permeability in the furnace. It was confirmed that. As a result of industrial analysis by sampling the deposited powder formed in the furnace,
As shown in Table 1, the main component was found to be a carbon-based solid.

【0008】[0008]

【表1】 [Table 1]

【0009】堆積粉の生成原因を解明するため、使用し
た製鉄ダスト、竪型溶融炉の炉内堆積粉および炉外排出
粉の中に含まれる炭素系固体の粒径分布をそれぞれ調査
した。その結果、炭素系固体粒子の粒径(mm)とその質
量割合(mass%)とから、図2に示すような各粒径分布
が得られ、炉内堆積粉中の炭素系固体の粒径が他の製鉄
ダストおよび炉外排出粉のものより大きい粒径であるこ
とが確認された。これより、炭素粉を含有する製鉄ダス
トを上段羽口から炉内に供給する場合、製鉄ダスト中に
存在する炭素系固体のうち粒径の大きいものが炉内に残
留して堆積粉を形成していると推定された。
[0009] In order to elucidate the cause of the formation of the sedimentary powder, the particle size distribution of the carbon-based solids contained in the used steelmaking dust, the sedimentary powder inside the furnace of the vertical melting furnace and the powder discharged outside the furnace was investigated. As a result, from the particle size (mm) of the carbon-based solid particles and the mass ratio (mass%), each particle size distribution as shown in FIG. 2 was obtained, and the particle size of the carbon-based solid in the powder deposited in the furnace was obtained. Has a particle size larger than that of other steelmaking dusts and powders discharged outside the furnace. Thus, when ironmaking dust containing carbon powder is supplied into the furnace from the upper tuyere, carbon-based solids present in the ironmaking dust having a large particle size remain in the furnace and form sedimentary powder. It was estimated that.

【0010】本発明は、炭素系固体を含む製鉄ダストを
竪型溶融炉の少なくとも上段羽口より供給するに際し、
竪型溶融炉内の炭素質固体還元材充填層に、製鉄ダスト
中の粒径の大きな炭素系固体に起因した堆積粉の形成を
防止することを目的としてなされたものである。
According to the present invention, when ironmaking dust containing a carbon-based solid is supplied from at least the upper tuyere of a vertical melting furnace,
The purpose of the present invention is to prevent the formation of sedimentary powder due to a carbon-based solid having a large particle diameter in ironmaking dust in a carbonaceous solid reducing material packed bed in a vertical melting furnace.

【0011】[0011]

【課題を解決するための手段】本発明者は、前記目的を
達成するため、鋭意研究を行い、竪型溶融炉の充填層上
に形成される炉頂空間内における炭素系固体粒子の終末
速度に基づいて炉内に滞留することなく炉頂から排ガス
と共に炉外へ排出できる炭素系固体の上限粒径を推定で
きることを知見し、本発明を完成させるに至った。
Means for Solving the Problems In order to achieve the above object, the present inventor has conducted intensive studies and has studied the terminal velocity of carbon-based solid particles in a furnace top space formed on a packed bed of a vertical melting furnace. It was found that the maximum particle size of the carbon-based solid that can be discharged from the furnace top together with the exhaust gas to the outside of the furnace without staying in the furnace can be estimated based on the above, and the present invention has been completed.

【0012】前記目的を達成するための本発明は、上下
2段の羽口を有する竪型溶融炉を用い、その炉内に塊状
の炭素質固体還元材からなる充填層を形成すると共に少
なくとも上段羽口より製鉄ダストを供給する竪型溶融炉
による製鉄ダストの処理方法において、製鉄ダスト中に
含まれる粉状の炭素系固体の粒径を、前記竪型溶融炉の
充填層上に形成される炉頂空間内を排ガスに随伴して上
昇し炉頂から炉外へ排出可能な上限粒径以下として供給
することを特徴とする竪型溶融炉による製鉄ダストの処
理方法である。
In order to achieve the above object, the present invention uses a vertical melting furnace having two upper and lower tuyeres, in which a packed bed made of massive carbonaceous solid reducing material is formed, and at least an upper stage is formed. In the method for treating iron-making dust by a vertical melting furnace for supplying iron-making dust from tuyeres, the particle size of the powdery carbon-based solid contained in the iron-making dust is formed on a packed bed of the vertical melting furnace. This is a method for treating iron-making dust in a vertical melting furnace, characterized in that the inside of the furnace top space is raised along with the exhaust gas and supplied to the furnace at a particle size equal to or less than an upper limit particle size that can be discharged from the furnace top to the outside of the furnace.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて詳細に説明する。図1に本発明により製鉄ダス
トを処理するのに適した竪型溶融炉の構成を示す。図1
に示す竪型溶融炉1の仕様は、炉内径:1.2 mφ、炉
高:8.0 m、羽口数:上段3本、下段3本、羽口径: 1
00mmである。竪型溶融炉1には、炭材ホッパ2から塊状
の炭素質固体還元材として平均粒径15mmのコークスが供
給されて充填層3が形成されている。粉状の炭素系固体
を15〜20質量%程度で含有する表2に示すような化学組
成の製鉄ダストには、スラグの粘度や融点を調整する目
的で添加される石灰石と珪石からなる製錬用溶材が予め
所定の割合で混合されていて粉体吹込装置4から竪型溶
融炉1の上段羽口1Aを通して炉内に吹き込まれる。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows the configuration of a vertical melting furnace suitable for treating ironmaking dust according to the present invention. FIG.
The specifications of the vertical melting furnace 1 are as follows: furnace inner diameter: 1.2 mφ, furnace height: 8.0 m, number of tuyeres: upper three, lower three, tuyere diameter: 1
00 mm. In the vertical melting furnace 1, a packed bed 3 is formed by supplying coke having an average particle size of 15 mm as a massive carbonaceous solid reducing material from a carbonaceous material hopper 2. Ironmaking dust having a chemical composition as shown in Table 2 containing a powdery carbon-based solid at about 15 to 20% by mass includes smelting of limestone and silica stone added for the purpose of adjusting the viscosity and melting point of slag. The molten material is previously mixed at a predetermined ratio, and is blown into the furnace from the powder blowing device 4 through the upper tuyere 1A of the vertical melting furnace 1.

【0014】[0014]

【表2】 [Table 2]

【0015】送風空気は800 〜1000℃程度に加熱され、
送風管を通し熱風として上段羽口1Aおよび下段羽口1Bか
らそれぞれ炉内に吹き込まれる。その際、必要に応じて
適量の酸素ガスが熱風中に供給され、竪型溶融炉1内に
おいてコークスを燃焼させるが、その際の燃焼熱と還元
ガスにより上段羽口1Aから吹き込まれた製鉄ダストが溶
融される。
The blast air is heated to about 800 to 1000 ° C.
Hot air is blown into the furnace from the upper tuyere 1A and the lower tuyere 1B through a blower tube. At that time, an appropriate amount of oxygen gas is supplied into the hot air as needed, and coke is burned in the vertical melting furnace 1. The iron oxide dust blown from the upper tuyere 1A by the combustion heat and the reducing gas at that time. Is melted.

【0016】この場合、表3に示す操業条件下で、上段
羽口1Aを通して吹き込まれた製鉄ダスト中の未燃焼の炭
素系固体はコークスの充填層3内を上向きに通過し、さ
らに充填層3のストックライン上に形成される炉頂空間
内を排ガスとともに上昇する。
In this case, under the operating conditions shown in Table 3, the unburned carbon-based solids in the iron-making dust blown through the upper tuyere 1A pass upward through the packed bed 3 of coke. Rises in the furnace top space formed on the stock line with the exhaust gas.

【0017】[0017]

【表3】 [Table 3]

【0018】製鉄ダスト中の金属酸化物(Fe、Cr、Ni、
Zn、Pd等を含む)はコークスの燃焼熱により上段羽口1A
の羽口先レースウエイ内で溶融し生成した融体は充填層
3を下段羽口1Bに向かって下降し、その過程で下段羽口
1Bの羽口先で生成した還元ガスと向流接触して還元され
るとともに、滴下途中で充填層3のコークスと接触して
溶融メタル( 溶銑)14 とスラグ15に分離する。最終的に
炉床に溜まった溶融メタル14は出銑口6から、また、ス
ラグ15は出滓口7からそれぞれ排出され、その際、Crな
どは溶融メタル14中に固定されて無害化される。
Metal oxides (Fe, Cr, Ni,
(Including Zn, Pd, etc.) is the upper tuyere 1A due to the combustion heat of coke
The melt produced by melting in the tuyere tip raceway descends the packed layer 3 toward the lower tuyere 1B, and in the process, the lower tuyere
While being reduced in countercurrent contact with the reducing gas generated at the tuyere of 1B, the gas is brought into contact with the coke of the packed bed 3 during the dropping and is separated into molten metal (hot metal) 14 and slag 15. The molten metal 14 finally collected in the hearth is discharged from the tap hole 6 and the slag 15 is discharged from the slag port 7, and at this time, Cr and the like are fixed in the molten metal 14 and made harmless. .

【0019】上段羽口1Aから竪型溶融炉1内に吹き込ま
れた製鉄ダスト中に含まれる酸化Znは、還元されてZn蒸
気となりコークスの充填層3を通過して炉頂部の空間か
ら排ガスと共に排ガスダクト10に排出される。製鉄ダス
ト中のZnは微量(表2参照)であるのでZn処理について
は後述のZnの多い電気炉ダストの処理を行う場合に準じ
て行うのでここでは説明を省略する。
[0019] Zn oxide contained in the iron-making dust blown into the vertical melting furnace 1 from the upper tuyere 1A is reduced to Zn vapor, passes through the coke packed bed 3, and passes through the space at the furnace top together with the exhaust gas. It is discharged to the exhaust gas duct 10. Since the amount of Zn in the iron-making dust is very small (see Table 2), the Zn treatment is performed in accordance with the later-described treatment of an electric furnace dust with a large amount of Zn, and therefore the description thereof is omitted here.

【0020】炭素系固体を含有する製鉄ダストを上段羽
口1Aから炉内に吹き込んで製錬を行うと、前述の通り充
填層3内に前記表1に示すような炭素系固体を主とする
堆積粉により炉内の通気性が低下する。炭素系固体は全
量が炉内での燃焼や反応で消費されると考えていたが、
未反応のものが存在することが分かった。前記図2に示
すように、製鉄ダスト中の炭素系固体は二点鎖線で示す
ように粒径がほぼ1.4mm 以下の範囲に分布し、微細なも
のの質量割合(mass%)が非常に高く、残りは粒径0.5m
m より小さいものが大きいものより少し多いなだらかな
粒径分布となっている。また、炉内堆積粉中の炭素系固
体は実線で示すように、1.4mm 以下の範囲に粒径が分布
し、粒径0.8mm をピークとする山形分布であり、さらに
炉外排出粉の炭素系固体は一点鎖線で示すように、0.6m
m 以下が大部分で0.2mm をピークとする粒径が小さい側
に偏った山形分布を示している。
When ironmaking dust containing a carbon-based solid is blown into the furnace from the upper tuyere 1A to perform smelting, the carbon-based solid as shown in Table 1 is mainly contained in the packed bed 3 as described above. The air permeability in the furnace is reduced by the deposited powder. We thought that all carbon-based solids would be consumed by combustion and reactions in the furnace,
It was found that there was unreacted one. As shown in FIG. 2, the carbon-based solids in the iron-making dust have a particle size of approximately 1.4 mm or less as shown by a two-dot chain line, and the mass ratio (mass%) of the fine particles is very high. The rest is 0.5m particle size
Those smaller than m have a gentle particle size distribution slightly larger than those larger. As shown by the solid line, the carbon-based solids in the powder deposited in the furnace have a particle size distribution within a range of 1.4 mm or less, and have a mountain-shaped distribution with a peak of 0.8 mm in particle size. The solid is 0.6 m
The peaks below 0.2 m indicate a mountain-shaped distribution with a peak at 0.2 mm and biased to the smaller particle size side.

【0021】このように炉内堆積粉の炭素系固体はその
粒径が、製鉄ダストおよび炉外排出粉の炭素系固体の粒
径よりも大きい分布を有している。そこで、前記表3に
示す操業条件で、竪型溶融炉1の充填層3上に形成され
る炉頂空間内を排ガスとともに上昇する炭素系固体粒子
が炉頂から炉外へ排出可能な終末速度Ut を下記式(1)
にしたがって計算し、また、その終末速度Ut で炉頂か
ら炉外へ排出可能な炭素系固体粒子の上限粒径Dt を下
記式(2) に従ってそれぞれ計算した。
As described above, the particle diameter of the carbonaceous solid deposited in the furnace has a distribution larger than the particle diameter of the carbonaceous solid of the ironmaking dust and the powder discharged outside the furnace. Under the operating conditions shown in Table 3 above, the terminal speed at which the carbon-based solid particles rising along with the exhaust gas in the furnace top space formed on the packed bed 3 of the vertical melting furnace 1 can be discharged from the furnace top to the outside of the furnace. Ut is given by the following equation (1)
Calculated according to, it was also calculated respectively according to the equation the maximum particle diameter D t of the terminal velocity U t possible discharged from the furnace top out of the furnace a carbonaceous solid particles (2).

【0022】 Ut = √(2m(ρP-ρg )g/(C・ρP ・ρg ・A)) ……………………(1) Dt = 〔2 √(2m(ρP-ρg)g /( π・C ・ρP ・ρg ))〕/Ut ……(2) ここで、m :粒子質量(kg/個) 、ρP :粒子密度 (kg/m
3)、ρg :ガス密度 (kg/m3)、 g:重力加速度(m/se
c2)、 A:粒子断面積 (m2) 、Re:レイノズル数
(−)、 C:抵抗係数 (−) を示し、 C値は、Re≦ 5.7
6 では 24/Re、5.76<Re≦517 では 10/Re0.5 、517 <
Reでは0.44とした。
U t = √ (2m (ρP-ρg) g / (C ・ ρ ・ ρg ・ A))…… (1 (1) D t = [2 〔(2m (ρP-Pg) g / (π · C · ρP · ρg)) ] / U t ...... (2) where, m: particle mass (kg / pieces), ρP: particle density (kg / m
3 ), ρg: gas density (kg / m 3 ), g: gravitational acceleration (m / se
c 2 ), A: particle cross-sectional area (m 2 ), Re: number of Reynolds nozzles (−), C: resistance coefficient (−), C value: Re ≦ 5.7
6/24 / Re, 5.76 <Re ≦ 517/10 / Re 0.5 , 517 <
Re was 0.44.

【0023】計算した結果、終末速度Ut = 1.47 m/se
c、粒子上限粒径Dt = 0.0006 mであった。終末速度U
t と炭素系固体粒子の上限粒径Dt との間には図3に示
すようなほぼ正比例の相関関係があり、炭素系固体粒子
の上限粒径Dt が大きくなるにつれて炭素系固体粒子の
終末速度Ut が上昇する。すなわち、前記式(1) に基づ
いて計算される炭素系固体粒子の終末速度Ut は、前記
表3に示す操業条件下では、図3に示すように、炉頂空
間のガス速度Ug =1.47m/secとなり、この値を用いて、
前記式(2) に基づいて計算される炉頂から炉外へ排出可
能な炭素系固体粒子の上限粒径はDt =0.6mm となる。
As a result of the calculation, the terminal speed U t = 1.47 m / se
c, the particle upper limit particle diameter D t was 0.0006 m. Terminal speed U
Between the upper diameter D t of t and the carbon-based solid particles correlates almost direct proportion as shown in FIG. 3, the carbon-based solid particles as an upper limit particle diameter D t of carbonaceous solid particles is increased The terminal speed Ut increases. That is, the terminal velocity U t of carbonaceous solid particles is calculated based on the equation (1), in the operating conditions shown in Table 3, as shown in FIG. 3, gas furnace top space velocity U g = 1.47m / sec, and using this value,
The upper limit particle diameter of the carbon-based solid particles that can be discharged from the furnace top to the outside of the furnace calculated based on the above equation (2) is D t = 0.6 mm.

【0024】したがって、上段羽口1Aから吹き込まれる
炭素系固体が上限粒径Dt =0.6mmを超える場合、充填
層3内をスムーズに通過できずに炉内に堆積するばかり
でなく、炉頂空間内に滞留して炉外に排出されるのが困
難となる。そこで、この条件下では炉頂空間のガス速度
g =1.47m/sec で炭素系固体粒子を炉頂から炉外へ確
実に排出させるべく、製鉄ダスト中の炭素系固体を粒径
0.6mm 以下として使用することにした。
Therefore, when the carbon-based solid blown from the upper tuyere 1A exceeds the upper limit particle diameter D t = 0.6 mm, it cannot smoothly pass through the packed bed 3 and accumulates in the furnace. It becomes difficult to stay in the space and be discharged out of the furnace. Under these conditions, the carbon-based solids in the iron-making dust were sized to reliably discharge the carbon-based solid particles from the furnace top to the outside at a gas velocity U g of the furnace top space of 1.47 m / sec.
We decided to use it below 0.6mm.

【0025】粒径0.6mm 以下の炭素系固体を含む製鉄ダ
ストは、スラグの粘度や融点を調整する目的で添加され
る石灰石と珪石からなる製錬用溶材が予め所定の割合で
混合されていて、前記表3に示す操業条件のもとに粉体
吹込装置4から竪型溶融炉1の上段羽口1Aを通して炉内
に吹き込む操業を実施した。竪型溶融炉1の上段羽口1A
から吹き込まれた製鉄ダスト中に存在する粉状の炭素系
固体が充填層3内に堆積するのが防止された。炉内の通
気性改善により炉内ガスの通気抵抗が低減され、さらに
充填層3のストックライン上に形成される炉頂空間内を
上昇する排ガス中に随伴される粒径0.6mm 以下の炭素系
固体は、炉内に滞留することなく炉頂から排ガスと共に
炉外へスムーズに排出された。
Ironmaking dust containing a carbon-based solid having a particle size of 0.6 mm or less has a smelting material composed of limestone and silica added in a predetermined ratio in advance to adjust the viscosity and melting point of slag. Under the operating conditions shown in Table 3, the operation of blowing the powder from the powder blowing device 4 into the furnace through the upper tuyere 1A of the vertical melting furnace 1 was performed. Upper tuyere 1A of vertical melting furnace 1
This prevents powdery carbon-based solids present in the iron-making dust blown from accumulating in the packed bed 3. The gas permeability in the furnace is reduced by improving the gas permeability in the furnace, and the carbon-based material having a particle size of 0.6 mm or less accompanying the exhaust gas rising in the furnace top space formed on the stock line of the packed bed 3 is reduced. The solid was smoothly discharged out of the furnace together with the exhaust gas from the furnace top without staying in the furnace.

【0026】上段羽口1Aから吹き込まれた製鉄ダスト中
に存在する炭素系固体は、補助燃料となって上段羽口4
から吹き込まれる熱風により燃焼して発熱し、その輻射
熱で製鉄ダストの加熱を促進する。また、この熱量は上
段羽口1Aより下方へ降下するコークスの補助熱量として
用いられ、製鉄ダストの酸化鉄還元を促進するととも
に、充填層3のコークスの代替えともなるのでコークス
比の低減が達成される。
The carbonaceous solids present in the steelmaking dust blown from the upper tuyere 1A serve as auxiliary fuel and serve as an auxiliary fuel.
It generates heat by burning due to the hot air blown from it, and the radiant heat promotes the heating of the steelmaking dust. Further, this heat amount is used as an auxiliary heat amount of coke that falls downward from the upper tuyere 1A, and promotes the reduction of iron oxide of iron-making dust and also serves as a substitute for coke in the packed bed 3, so that the coke ratio is reduced. You.

【0027】上段羽口1Aから製鉄ダストを吹き込む操業
は順調に行われ、充填層3内の温度上昇により溶銑温度
の上昇が見られ、溶銑14とスラグ15とを、出銑口6及び
出滓口7から安定して排出することができた。図4にお
いて実線で示すように本発明法によれば、一点鎖線で示
す粒径の大きな炭素系固体を含む製鉄ダストをそのまま
吹き込む従来法に比較して炉内の圧力損失(ΔP/V、
ここでΔP:圧力差、V:体積)が低減された。炉内の
圧力損失は、従来法ではΔP/V= 3.11 、標準偏差δ
=0.116 であったのに対し、本発明法ではΔP/V=
2.75 、標準偏差δ=0.030 に改善された。これにより
炭素系固体の炉内堆積が見られない竪型溶融炉の安定し
た操業を継続することが可能になった。
The operation of injecting ironmaking dust from the upper tuyere 1A is performed smoothly, and the temperature of the hot metal rises due to a rise in the temperature of the packed bed 3, so that the hot metal 14 and the slag 15 are removed from the taphole 6 and the slag. It was possible to discharge stably from the mouth 7. As shown by the solid line in FIG. 4, according to the method of the present invention, the pressure loss in the furnace (ΔP / V, ΔP / V,
Here, ΔP: pressure difference, V: volume) were reduced. The pressure loss in the furnace is ΔP / V = 3.11 and the standard deviation δ in the conventional method.
= 0.116, whereas in the method of the present invention, ΔP / V =
2.75, standard deviation δ = 0.030. As a result, it has become possible to continue stable operation of the vertical melting furnace in which deposition of carbon-based solids in the furnace is not observed.

【0028】電気炉ダストを使用する竪型溶融炉の操業
は、前記製鉄ダストを使用する場合と基本的に同様であ
る。電気炉ダストには、表4に示すように30質量%レベ
ルの多量のZnを含有しているので、竪型溶融炉による電
気炉ダストの処理では排ガス中に含まれるZnの処理が厳
重に行われる。
The operation of the vertical melting furnace using electric furnace dust is basically the same as the case of using the ironmaking dust. As shown in Table 4, electric furnace dust contains a large amount of Zn at the level of 30% by mass, so in the treatment of electric furnace dust with a vertical melting furnace, the treatment of Zn contained in the exhaust gas is strictly performed. Will be

【0029】[0029]

【表4】 [Table 4]

【0030】図1に示すように、上段羽口1Aから竪型溶
融炉1内に吹き込まれた電気炉ダスト中に含まれる酸化
Znは、還元されてZn蒸気となりコークスの充填層3を通
過して炉頂部の空間から排ガスと共に排ガスダクト10に
排出される。竪型溶融炉1の上部には二次燃焼ランス5
が配置されていて、排ガスを燃焼させることにより600
〜1000℃に保持される。
As shown in FIG. 1, oxidation contained in the electric furnace dust blown into the vertical melting furnace 1 from the upper tuyere 1A.
Zn is reduced to Zn vapor, passes through the coke packed bed 3, and is discharged from the space at the furnace top together with the exhaust gas to the exhaust gas duct 10. In the upper part of the vertical melting furnace 1, a secondary combustion lance 5 is provided.
Are arranged, and by burning exhaust gas, 600
Maintained at ~ 1000 ° C.

【0031】竪型溶融炉1の上部から排出されたZn分を
主体とするダスト(炭素分とアッシュ分を含む)を含む
排ガスは、排ガスダクト10の途中および端部に配設され
た二次燃焼バーナ8、9から供給される酸素または空気
により燃焼され、温度確保によりZnの存在形態をZn蒸気
としてダクト内面にZnO が付着するのを防ぎ、ダスト中
のZnを高濃度にして冷却槽11に導入する。
Exhaust gas containing dust mainly containing Zn (including carbon and ash) discharged from the upper part of the vertical melting furnace 1 is discharged from the secondary gas provided in the middle and at the end of the exhaust gas duct 10. The fuel is burned by oxygen or air supplied from the combustion burners 8 and 9, and the temperature is ensured to prevent ZnO from adhering to the inner surface of the duct as Zn vapor and to increase the concentration of Zn in the dust to increase the cooling tank 11. To be introduced.

【0032】冷却槽11において排ガスは、環水を供給す
る水スプレーノズル12からの散水により冷却され、排ガ
ス中に含まれる高Zn濃度含有ダストをスラリー液13に回
収する。冷却槽11で冷却された排ガスは排ガス系へ導か
れ、冷却槽11の底部に沈殿したダストは冷却水との懸濁
によりスラリーダストなってスラリー処理系へ輸送され
る。
The exhaust gas is cooled in the cooling tank 11 by spraying water from a water spray nozzle 12 for supplying ring water, and the high Zn concentration-containing dust contained in the exhaust gas is collected in a slurry liquid 13. The exhaust gas cooled in the cooling tank 11 is led to an exhaust gas system, and the dust settled at the bottom of the cooling tank 11 is transported to a slurry processing system as slurry dust by suspension with cooling water.

【0033】本発明では、製鉄ダストと電気炉ダストを
混合した状態として処理することも可能であり、また粉
状炭素系固体を含む各種のダストを処理することもでき
る。さらに、補助燃料として微粉炭等の炭素系固体を使
用することもできる。いずれの場合にも、含有している
粉状の炭素系固体の粒径を、炉頂空間内を排ガスととも
に上昇し炉頂から炉外へ排出可能な上限粒径Dt 以下と
するのが必要であることは前述した通りである。
In the present invention, it is possible to treat as a mixture of ironmaking dust and electric furnace dust, and it is also possible to treat various dusts including powdered carbon-based solids. Further, a carbon-based solid such as pulverized coal can be used as an auxiliary fuel. In any case, necessary to the particle size of the powdery carbonaceous solid containing the furnace top space less elevated diameter outside the furnace to be discharged upper limit particle from the furnace top D t with the exhaust gas Is as described above.

【0034】また、必要であれば、上段羽口に加えて下
段羽口1Bからも同様にして補助燃料となる炭素系固体を
吹き込むようにすることもでき、ここでの粒径の調整も
上段羽口の場合と同様である。
If necessary, in addition to the upper tuyere, a carbon-based solid serving as an auxiliary fuel may be blown from the lower tuyere 1B in the same manner, and the particle size may be adjusted here. It is similar to the case of tuyeres.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、少
なくとも上段羽口から供給される製鉄ダスト中に含まれ
る粉状の炭素系固体の粒径を、竪型溶融炉の充填層上に
形成される炉頂空間内を排ガスとともに上昇し炉頂から
炉外へ排出可能な上限粒径以下として供給するので、竪
型溶融炉内に充填された塊状炭材の充填層内に粉状の炭
素系固体が堆積するのを防止でき、炉内の通気性が改善
される。充填層のストックライン上に形成される炉頂空
間内を上昇する排ガス中に随伴される炭素系固体は、炉
内に滞留することなく炉頂から排ガスと共に炉外へスム
ーズに排出されるので良好な操業が達成される。
As described above, according to the present invention, at least the particle size of the powdery carbon-based solid contained in the ironmaking dust supplied from the upper tuyere is reduced on the packed bed of the vertical melting furnace. Since the inside of the furnace top space that is formed rises together with the exhaust gas and is supplied with a particle size equal to or less than the upper limit particle size that can be discharged from the furnace top to the outside of the furnace, powdery powder is contained in the packed bed of massive carbon material filled in the vertical melting furnace. The deposition of carbon-based solids can be prevented, and the air permeability in the furnace is improved. Good because the carbon-based solids accompanying the exhaust gas rising in the furnace top space formed on the stock line of the packed bed are smoothly discharged out of the furnace together with the exhaust gas from the furnace top without staying in the furnace. Operation is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る製鉄ダストを吹き込む竪型溶融炉
を付帯装置と共に示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a vertical melting furnace for injecting steelmaking dust according to the present invention together with an auxiliary device.

【図2】従来法の炉内堆積粉、炉外排出粉および製鉄ダ
スト並びに本発明法に使用するダストの粒径分布を比較
して示すグラフである。
FIG. 2 is a graph showing a comparison of the particle size distributions of the in-furnace powder, out-of-furnace powder and iron-making dust according to the conventional method, and the dust used in the method of the present invention.

【図3】炉頂空間のガス速度Ug と炭素系固体粒子の上
限粒径Dt との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a gas velocity U g in a furnace top space and an upper limit particle diameter D t of carbon-based solid particles.

【図4】製鉄ダストをそのまま吹き込む従来法と本発明
法の炉内圧力損失(ΔP/V)の時間推移を比較して示
すグラフである。
FIG. 4 is a graph showing a comparison of a time transition of a furnace pressure loss (ΔP / V) between a conventional method in which ironmaking dust is directly blown and a method of the present invention.

【符号の説明】[Explanation of symbols]

1 竪型溶融炉 1A 上段羽口 1b 下段羽口 2 炭材ホッパ 3 充填層 4 粉体吹込装置 5 二次燃焼ランス 6 出銑口 7 出滓口 8、9 二次燃焼バーナ 10 排ガスダクト 11 冷却槽 12 水スプレーノズル 13 スラリー液 14 溶融メタル 15 スラグ DESCRIPTION OF SYMBOLS 1 Vertical melting furnace 1A Upper tuyere 1b Lower tuyere 2 Carbon material hopper 3 Packing bed 4 Powder injection device 5 Secondary combustion lance 6 Tap hole 7 Slag outlet 8, 9 Secondary combustion burner 10 Exhaust gas duct 11 Cooling Tank 12 Water spray nozzle 13 Slurry liquid 14 Molten metal 15 Slag

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内山 武 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 石渡 夏生 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K001 AA10 BA14 DA05 EA03 GA06 GB01 GB03 HA01 4K002 AA10 AB01 AB04 AC06 AD05 BA09 4K012 CA05 CA10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Uchiyama 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel Co., Ltd. 4K001 AA10 BA14 DA05 EA03 GA06 GB01 GB03 HA01 4K002 AA10 AB01 AB04 AC06 AD05 BA09 4K012 CA05 CA10

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上下2段の羽口を有する竪型溶融炉を用
い、その炉内に塊状の炭素質固体還元材からなる充填層
を形成すると共に少なくとも上段羽口より製鉄ダストを
供給する竪型溶融炉による製鉄ダストの処理方法におい
て、製鉄ダスト中に含まれる粉状の炭素系固体の粒径
を、前記竪型溶融炉の充填層上に形成される炉頂空間内
を排ガスに随伴して上昇し炉頂から炉外へ排出可能な上
限粒径以下として供給することを特徴とする竪型溶融炉
による製鉄ダストの処理方法。
1. A vertical melting furnace having two upper and lower tuyeres, in which a packed layer made of massive carbonaceous solid reducing material is formed, and at least ironmaking dust is supplied from at least the upper tuyeres. In the method of treating iron-making dust by a mold melting furnace, the particle size of the powdery carbon-based solid contained in the iron-making dust is accompanied by the exhaust gas in the furnace top space formed on the packed bed of the vertical melting furnace. A method for treating iron-making dust in a vertical melting furnace, wherein the iron-making dust is supplied with a particle diameter of not more than an upper limit particle size that can be raised and discharged from the furnace top to the outside of the furnace.
JP2000086297A 2000-03-27 2000-03-27 Method for treating iron manufacturing dust in vertical smelting furnace Pending JP2001271107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000086297A JP2001271107A (en) 2000-03-27 2000-03-27 Method for treating iron manufacturing dust in vertical smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000086297A JP2001271107A (en) 2000-03-27 2000-03-27 Method for treating iron manufacturing dust in vertical smelting furnace

Publications (1)

Publication Number Publication Date
JP2001271107A true JP2001271107A (en) 2001-10-02

Family

ID=18602489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000086297A Pending JP2001271107A (en) 2000-03-27 2000-03-27 Method for treating iron manufacturing dust in vertical smelting furnace

Country Status (1)

Country Link
JP (1) JP2001271107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936642A (en) * 2018-03-30 2020-11-13 塔塔钢铁荷兰科技有限责任公司 Direct smelting process with total combustion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936642A (en) * 2018-03-30 2020-11-13 塔塔钢铁荷兰科技有限责任公司 Direct smelting process with total combustion
US12018340B2 (en) 2018-03-30 2024-06-25 Tata Steel Nederland Technology B.V. Direct smelting process with full combustion

Similar Documents

Publication Publication Date Title
AU2006232236B2 (en) Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control
CA1244656A (en) Processes and appparatus for the smelting reduction of smeltable materials
AU6016801A (en) Process for manufacturing molten metal iron
JP3513832B2 (en) Operating method of movable hearth furnace and movable hearth furnace
US4963182A (en) Continuous feed shaft retort process for recovery of non-ferrous metals from process dust
US5728193A (en) Process for recovering metals from iron oxide bearing masses
US7740681B2 (en) Reductant addition in a channel induction furnace
US4756748A (en) Processes for the smelting reduction of smeltable materials
US7785389B2 (en) Feed material composition and handling in a channel induction furnace
KR19980041966A (en) Electric steelworks dust reduction method and apparatus
WO2009114159A2 (en) Feed material compostion and handling in a channel induction furnace
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
WO2009114157A2 (en) Feed material compostion and handling in a channel induction furnace
JP2001271107A (en) Method for treating iron manufacturing dust in vertical smelting furnace
JP2005126732A (en) Smelting-reduction method for material containing metallic oxide, and smelting-reduction apparatus
JP3823361B2 (en) Method for producing low phosphorous acid by smelting reduction furnace
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
RU2151197C1 (en) Method of iron smelting and unit for realization of this method
JP3852128B2 (en) Method for producing molten metal using carbonized material packed bed smelting reduction furnace
JPH07207313A (en) Method for melting tin-plated steel sheet scrap
JPH01247535A (en) Method for recovering valuable metal from by-product in production of stainless steel
US7776127B2 (en) Use of a channel induction furnace to process at least one of a molten metal product, a vapor phase metal product and a slag product from a variety of feed materials
JPH0726160B2 (en) Method for recovering valuable metals from by-products during stainless steel production
WO2011002466A1 (en) Reductant addition in a channel induction furnace
MXPA97008384A (en) Procedure to recover metals from mass queconenteen fie oxide