JP2001270900A - Method for inactivating virus in fibrinogen - Google Patents
Method for inactivating virus in fibrinogenInfo
- Publication number
- JP2001270900A JP2001270900A JP2000082066A JP2000082066A JP2001270900A JP 2001270900 A JP2001270900 A JP 2001270900A JP 2000082066 A JP2000082066 A JP 2000082066A JP 2000082066 A JP2000082066 A JP 2000082066A JP 2001270900 A JP2001270900 A JP 2001270900A
- Authority
- JP
- Japan
- Prior art keywords
- fibrinogen
- virus
- solution
- heating
- basic amino
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ウイルス夾雑の危
惧のあるフィブリノゲン水溶液を乾燥し、乾燥状態で加
熱してウイルスを不活化する方法に関する。さらに詳し
くは、乾燥加熱によるウイルス不活化の際、フィブリノ
ゲンの変性、失活の割合が極めて低く、ウイルス不活化
後のフィブリノゲンの水に対する溶解性が良好で、且つ
其の溶状も安定したものとなる、フィブリノゲンのウイ
ルス不活化法に関する。[0001] The present invention relates to a method for drying a fibrinogen aqueous solution which is likely to be contaminated with a virus and heating the dried fibrinogen aqueous solution to inactivate the virus. More specifically, upon virus inactivation by drying and heating, the rate of fibrinogen denaturation and inactivation is extremely low, fibrinogen after virus inactivation has good solubility in water, and its dissolved state is also stable. And a method for inactivating fibrinogen virus.
【0002】[0002]
【従来の技術】ヒト血漿、その誘導画分等の血液製剤
は、エイズウイルス、各種肝炎ウイルス、ヒトパルボウ
イルスB19などのウイルスにより汚染されている可能
性がある。したがって、これらを使用した治療用薬剤の
製造に際しては、ウイルスを充分に不活化する工程を組
み込むことが必須である。血液製剤中に夾雑してくる危
惧のあるウイルスを不活化する方法としては、水溶液状
態での加熱処理方法(以下、液状加熱法という。)がMu
rrayら(The NewYork Academy of Medicine,31
巻(5),341〜358(1955))により提案さ
れ、以来この方法は血液製剤のウイルス不活化法として
広く使用されている。しかしこの液状加熱法に耐え得る
熱に対する安定性の高い血漿蛋白としては、アルブミン
など極く一部に限られ、他の多くの血漿蛋白は熱に不安
定で、この方法によっては変性,失活する割合が高い。
そこで液状加熱法とは別に、乾燥状態で血漿蛋白を加熱
処理してウイルスを不活化する方法(以下、乾燥加熱法
という。)が提案された(特表昭58−50054
8)。この方法は、液状加熱法に比して血漿蛋白の変
性、失活が多少低く抑えられるものの、未だ充分なもの
ではない。また、乾燥加熱時に或る種の安定化剤を添加
する方法も試みられているが満足の行く結果は得られて
いない。さらに、加熱後フィブリノゲンの水に対する溶
解性が悪くなったり、一旦溶解した後、時間の経過とと
もに一部再凝集が起こるなど溶状が不安定になるという
問題があった。2. Description of the Related Art Blood products such as human plasma and derivatives thereof may be contaminated with viruses such as AIDS virus, various hepatitis viruses, and human parvovirus B19. Therefore, in the production of therapeutic drugs using these, it is essential to incorporate a step of sufficiently inactivating the virus. As a method for inactivating viruses that may be contaminated in blood products, a heat treatment method in an aqueous solution state (hereinafter, referred to as a liquid heating method) is Mu.
rray et al. (The New York Academy of Medicine, 31
(5), 341-358 (1955)), and since then this method has been widely used as a virus inactivation method for blood products. However, plasma proteins with high heat stability that can withstand this liquid heating method are limited to a very small portion, such as albumin, and many other plasma proteins are unstable to heat, and are denatured or inactivated by this method. High rate.
Therefore, apart from the liquid heating method, a method of inactivating the virus by heat-treating the plasma protein in a dry state (hereinafter referred to as a dry heating method) has been proposed (Japanese Patent Publication No. 58-50054).
8). Although this method can suppress denaturation and deactivation of plasma protein to some extent as compared with the liquid heating method, it is not yet sufficient. Further, a method of adding a certain stabilizer at the time of drying and heating has been attempted, but no satisfactory result has been obtained. Further, there is a problem that the solubility of fibrinogen in water is deteriorated after heating, or the fibrinogen is once dissolved, and becomes unstable due to partial reaggregation with the passage of time.
【0003】[0003]
【発明が解決しようとする課題】フィブリノゲンは、他
の血漿蛋白製剤に比べてウイルス夾雑の危険性が高いと
云われている。このためウイルスの不活化については他
の血液製剤より更に厳重に処理する必要がある。ウイル
スの不活化法としては、上述の液状加熱法、乾燥加熱法
やソルベント・デタージエント(SD)法などがあり、
また、ウイルス除去法としては、ウイルス除去フィルタ
ーによるウイルス除去処理などが知られている。これら
の方法を複数組み合わせることはウイルス不活化の完璧
を期すための有効な手段と考えられるが、そのためには
各処理工程におけるフィブリノゲンの変性、失活を極力
抑えること、およびそれら一連の工程におけるフィブリ
ノゲンの溶解性が常に良好に保たれることが重要となっ
てくる。本発明の課題は、ウイルス夾雑の危惧のあるフ
ィブリノゲンのウイルス不活化法において、これまでの
どの方法よりも、変性、失活率を低く抑えることができ
る方法を提供することにある。さらに他の課題はウイル
ス不活化後も、水に対する溶解性や溶解状態が良好なフ
ィブリノゲンを提供することにある。It is said that fibrinogen has a higher risk of viral contamination than other plasma protein preparations. For this reason, it is necessary to treat the virus inactivation more strictly than other blood products. Examples of the virus inactivation method include the above-described liquid heating method, dry heating method, and solvent detergent (SD) method.
As a virus removal method, a virus removal process using a virus removal filter or the like is known. Combining a plurality of these methods is considered to be an effective means for achieving perfect virus inactivation.To do so, it is necessary to minimize the denaturation and inactivation of fibrinogen in each treatment step, and to reduce the fibrinogen in these series of steps. It is important that the solubility is always kept good. It is an object of the present invention to provide a method for inactivating a fibrinogen that is likely to be contaminated with a virus, in which the denaturation and inactivation rates can be kept lower than any of the conventional methods. Still another object is to provide a fibrinogen having good solubility and dissolved state in water even after virus inactivation.
【0004】[0004]
【課題を解決するための手段】本発明者らは、前記課題
を解決するため種々研究を重ねた結果、フィブリノゲン
水溶液の凍結乾燥およびそれに続く加熱処理時に、塩基
性アミノ酸、特にリジンおよび/またはアルギニンと塩
化ナトリウムを共存させておくと、フィブリノゲンは凍
結乾燥や長時間の加熱処理に対しても極めて高い安定性
を示し、且つ加熱処理によりウイルスが不活化されたフ
ィブリノゲンは水に対する溶解性及び溶状が極めて良好
なことを見出し、さらに検討を重ねて本発明を完成し
た。すなわち、本発明は、(1)ウイルス夾雑の危惧の
あるフィブリノゲン、塩基性アミノ酸および塩化ナトリ
ウムを含む水溶液を乾燥した後、ウイルスが不活化され
るまで加熱するフィブリノゲンのウイルス不活化法、
(2)塩基性アミノ酸がリジンまたはアルギニンである
前記(1)記載のウイルス不活化法、(3)塩基性アミ
ノ酸がリジンである前記(1)記載のウイルス不活化
法、(4)塩基性アミノ酸がリジンおよびアルギニンで
ある前記(1)記載のウイルス不活化法、(5)水溶液
がフィブリノゲンと、フィブリノゲンに対し4〜40w
/w%の塩基性アミノ酸および5〜25w/w%の塩化
ナトリウムを含有するものである前記(1)記載のウイ
ルス不活化法、(6)水溶液がフィブリノゲンと、フィ
ブリノゲンに対し、2〜20w/w%のリジンおよび5
〜25w/w%の塩化ナトリウムを含有する前記(1)
記載のウイルス不活化法、(7)水溶液がフィブリノゲ
ンと、フィブリノゲンに対し、2〜20w/w%のリジ
ン、2〜20w/w%のアルギニンおよび5〜25w/
w%の塩化ナトリウムを含有する前記(1)記載のウイ
ルス不活化法、(8)加熱を50〜80℃、24〜19
2時間行う前記(1)記載のウイルス不活化法、(9)
乾燥したフィブリノゲンが水分3w/w%以下のもので
ある前記(1)記載のウイルス不活化法、および(1
0)前記(1)〜(9)のいずれかに記載のウイルス不
活化法によりウイルスが不活化されたフィブリノゲン、
である。The present inventors have conducted various studies to solve the above-mentioned problems. As a result, during freeze-drying and subsequent heat treatment of an aqueous fibrinogen solution, basic amino acids, particularly lysine and / or arginine, were obtained. When coexisting with sodium chloride, fibrinogen exhibits extremely high stability against freeze-drying and long-term heat treatment, and fibrinogen whose virus has been inactivated by heat treatment has poor solubility and dissolution in water. The inventors have found that the present invention is very good, and have further studied and completed the present invention. That is, the present invention provides (1) a method for inactivating fibrinogen, which comprises heating an aqueous solution containing fibrinogen, basic amino acid, and sodium chloride which may be contaminated with virus, and then heating until the virus is inactivated.
(2) the virus inactivation method according to (1), wherein the basic amino acid is lysine or arginine; (3) the virus inactivation method according to (1), wherein the basic amino acid is lysine; (4) the basic amino acid Is the lysine and arginine, (5) the aqueous solution is fibrinogen and 4 to 40 w of fibrinogen with respect to fibrinogen.
/ W% of a basic amino acid and 5 to 25 w / w% of sodium chloride, wherein the virus inactivation method according to the above (1), (6) the aqueous solution is 2 to 20 w / w with respect to fibrinogen and fibrinogen. w% lysine and 5%
(1) containing 2525 w / w% sodium chloride
The virus inactivation method as described in (7), wherein the aqueous solution is fibrinogen and 2-20 w / w% lysine, 2-20 w / w% arginine and 5-25 w / w with respect to fibrinogen.
the virus inactivation method according to the above (1) containing w% sodium chloride; (8) heating at 50 to 80 ° C. and 24 to 19;
The virus inactivation method according to the above (1), which is performed for 2 hours, (9)
The virus inactivation method according to the above (1), wherein the dried fibrinogen has a water content of 3 w / w% or less;
0) fibrinogen in which the virus has been inactivated by the virus inactivation method according to any of (1) to (9),
It is.
【0005】[0005]
【発明の実施の形態】本発明のウイルス不活化の対象と
なるフィブリノゲン水溶液は、たとえば、ヒト血漿由来
のコーンフラクションIまたはクリオペーストをクエン
酸ナトリウム水溶液に溶解し、必要により濾過助剤を使
用した濾過、濃度の異なるエタノールによる精製、ウイ
ルス除去フィルターによるウイルス除去処理などを行っ
て得られた精製フィブリノゲンであることが好ましい。
このフィブリノゲンは、上述の特殊な濾過、精製法によ
りウイルス夾雑の可能性は低くはなっているものの、そ
の存在を完全に否定することはできない。本発明におい
ては、フィブリノゲン水溶液に、塩基性アミノ酸および
塩化ナトリウムを添加し、必要によりウイルス除去フイ
ルターよるウイルス除去処理や限外濾過濃縮を行った
後、好ましくは室温以下の低温で乾燥、さらに好ましく
は凍結乾燥する。塩基性アミノ酸としては、リジン、ア
ルギニンなどが挙げられる。フィブリノゲンに対する塩
基性アミノ酸の添加率は4〜40w/w%、好ましくは
6〜35w/w%である。特に、リジン、アルギニンを
用いる場合、それぞれを2〜20w/w%、好ましくは
3〜17.5w/w%配合するのがよい。またフィブリ
ノゲンに対する塩化ナトリウムの添加率は5〜25w/
w%、好ましくは8〜18w/w%である。塩基性アミ
ノ酸および食塩を添加する時期は、加熱する前のどの工
程でもかまわないが、濃度の異なるエタノールによる精
製後で、ウイルス除去フィルターによる処理の前が好ま
しい。BEST MODE FOR CARRYING OUT THE INVENTION The aqueous fibrinogen solution to be inactivated in the virus of the present invention is prepared by, for example, dissolving corn fraction I or cryopaste derived from human plasma in an aqueous sodium citrate solution, and using a filter aid as necessary. It is preferably a purified fibrinogen obtained by filtration, purification with ethanol having different concentrations, virus removal treatment with a virus removal filter, and the like.
Although this fibrinogen has a low possibility of virus contamination due to the above-mentioned special filtration and purification methods, its presence cannot be completely ruled out. In the present invention, a basic amino acid and sodium chloride are added to an aqueous fibrinogen solution, and if necessary, a virus removal treatment by a virus removal filter or ultrafiltration concentration is performed. Lyophilize. Basic amino acids include lysine, arginine and the like. The addition ratio of the basic amino acid to fibrinogen is 4 to 40 w / w%, preferably 6 to 35 w / w%. In particular, when lysine and arginine are used, the content of each is preferably 2 to 20 w / w%, preferably 3 to 17.5 w / w%. The addition rate of sodium chloride to fibrinogen is 5 to 25 w /
w%, preferably 8 to 18 w / w%. The basic amino acid and the salt may be added at any stage before heating, but it is preferably after purification with ethanol having different concentrations and before treatment with a virus removal filter.
【0006】より具体的には、溶液中の精製フィブリノ
ゲンの濃度が9〜11w/v%、塩基性アミノ酸の濃度
が0.7〜3.5w/v%、塩化ナトリウムの濃度が
0.7〜1.6w/v%となるよう調製するのがよい。
このフィブリノゲン、塩基性アミノ酸および塩化ナトリ
ウムを含む水溶液は、水分が3w/w%以下、好ましく
は1.5w/w%以下となるよう乾燥する。乾燥条件は
低温における乾燥が望ましく、特に凍結乾燥が好まし
い。乾燥により得られる組成物の形状は粉末状、塊状、
鱗片状などがあるがそのいずれでもよい。このようにし
て得られた乾燥フィブリノゲンを、ウイルスが不活化さ
れるまで加熱する。加熱の方法はどのような手段でもよ
いが、赤外線照射、砂浴、水浴、オーブンによる加熱等
が挙げられる。加熱時の雰囲気は通常大気圧の空気が用
いられるが、必要により減圧空気、窒素、その他の不活
性ガスであっても差し支えない。加熱温度は通常50〜
80℃、好ましくは55〜75℃、さらに好ましくは6
0〜70℃である。加熱時間は通常24〜192時間、
好ましくは48〜168時間、さらに好ましくは72〜
144時間である。More specifically, the concentration of purified fibrinogen in the solution is 9-11 w / v%, the concentration of basic amino acid is 0.7-3.5 w / v%, and the concentration of sodium chloride is 0.7-w / v%. It is preferable to prepare it to be 1.6 w / v%.
The aqueous solution containing fibrinogen, basic amino acid and sodium chloride is dried so that the water content is 3 w / w% or less, preferably 1.5 w / w% or less. Drying conditions are desirably low-temperature drying, particularly freeze-drying. The shape of the composition obtained by drying is powdery, massive,
There is a scaly shape, but any of them may be used. The dried fibrinogen thus obtained is heated until the virus is inactivated. The method of heating may be any method, and examples include infrared irradiation, sand bath, water bath, and heating with an oven. The atmosphere at the time of heating is usually air at atmospheric pressure. However, if necessary, reduced-pressure air, nitrogen, or other inert gas may be used. Heating temperature is usually 50 ~
80 ° C, preferably 55-75 ° C, more preferably 6 ° C
0-70 ° C. Heating time is usually 24-192 hours,
Preferably from 48 to 168 hours, more preferably from 72 to 168 hours.
144 hours.
【0007】このようにして加熱した乾燥フィブリノゲ
ンは、夾雑するウイルスを完全に不活化し、しかも加熱
前のフィブリノゲンの生物活性、すなわち血液凝固能は
加熱後も殆どそのまま維持されており、活性の残存率は
98%以上である。また得られたウイルス不活化フィブ
リノゲンは、特に塩基性アミノ酸としてリジンまたはリ
ジンとアルギニンを含むものは水に溶け易く、したがっ
てたとえば8w/v%以上といった極めて高濃度のフィ
ブリノゲン水溶液の調製が可能であり、溶解後の溶状も
安定している。[0007] The dried fibrinogen thus heated completely inactivates contaminating viruses, and the biological activity of fibrinogen before heating, that is, the blood coagulation ability is almost maintained even after heating, and the remaining activity remains. The rate is over 98%. In addition, the obtained virus-inactivated fibrinogen, particularly those containing lysine or lysine and arginine as basic amino acids, are easily soluble in water, so that a very high concentration aqueous solution of fibrinogen such as 8 w / v% or more can be prepared, The dissolved state after dissolution is also stable.
【0008】[0008]
【実施例】以下実施例および試験例をあげて本発明を具
体的に説明する。 実施例1 ヒト血漿由来のコーンフラクションI 1.6kgを5
5mMのクエン酸ソーダ水溶液(pH7.0)33リッ
トルに溶解して得られた溶液(A280の吸光度=約1
4)に硫酸バリウム3.8kgを添加し、25℃で90
分間撹拌した後不溶物を除去した。得られた液に55m
Mクエン酸水溶液を加えてpHを6.4に調整し、さら
に塩化ナトリウムを濃度が0.9w/v%となるように
添加した。ついで液を0℃まで冷却し、エタノール濃度
が7.5v/v%となるように25v/v%エタノール
を24kg添加した。そのまま1時間静置し、生じた沈
澱を再度0.9w/v%塩化ナトリウムを含む55mM
クエン酸ソーダ水溶液(pH7.0)22リットルに溶
解した。その後エタノール濃度が2v/v%となるよう
に、15v/v%エタノールを36kg添加し、10分
間静置した後、沈澱を除去し、エタノール濃度が8v/
v%になるように25v/v%エタノールを9.9kg
添加し、精製フィブリノゲンの8v/v%エタノール沈
殿物0.6kgを得た。上記8v/v%エタノール沈殿
物0.6kgを1.2w/v%リジンおよび0.9w/
v%塩化ナトリウムを含んだ溶液21リットル(沈澱物
の35倍量)で溶解して得られたフィブリノゲン溶液
(5.4mg/ml)22リットルを1.2μ及び0.
2μのフィルターで順次濾過した後、0.8kgf/c
mの一次圧でウイルス除去フィルター(プラノバ35
N、旭化成(株)製)を通過させた。得られたウイルス
除去フイルター通過液を限外濾過器を用いて濃縮して9
3mg/mlの精製フィブリノゲン溶液を得た。この溶
液を二つに分け、それぞれ凍結乾燥して得られた凍結乾
燥粉末(いずれも水分含有率1w/w%)を、65℃で
120時間加熱処理して、試料(1−1)及び(1−
2)とした。The present invention will be specifically described below with reference to examples and test examples. Example 1 1.6 kg of corn fraction I derived from human plasma
A solution obtained by dissolving in 33 liters of a 5 mM aqueous sodium citrate solution (pH 7.0) (absorbance of A280 = about 1)
To 4), 3.8 kg of barium sulfate was added, and 90 ° C. was added at 25 ° C.
After stirring for minutes, insolubles were removed. 55 m in the obtained liquid
The pH was adjusted to 6.4 by adding an aqueous solution of citric acid M, and sodium chloride was further added to a concentration of 0.9 w / v%. Next, the liquid was cooled to 0 ° C., and 24 kg of 25 v / v% ethanol was added so that the ethanol concentration became 7.5 v / v%. The mixture was allowed to stand still for 1 hour, and the resulting precipitate was again subjected to 55 mM containing 0.9% w / v sodium chloride.
It was dissolved in 22 liters of aqueous sodium citrate solution (pH 7.0). Thereafter, 36 kg of 15 v / v% ethanol was added so that the ethanol concentration became 2 v / v%, and the mixture was allowed to stand for 10 minutes. Then, the precipitate was removed, and the ethanol concentration was changed to 8 v / v%.
9.9 kg of 25 v / v% ethanol so as to be v%
After addition, 0.6 kg of an 8 v / v% ethanol precipitate of purified fibrinogen was obtained. 0.6 kg of the above 8 v / v% ethanol precipitate was added to 1.2 w / v% lysine and 0.9 w / v
v. 22% of a fibrinogen solution (5.4 mg / ml) obtained by dissolving with 21 liters of a solution containing sodium chloride (35 times the amount of the precipitate) at 1.2 μm and 0.2 μl.
After successively filtering through a 2μ filter, 0.8 kgf / c
m with a primary pressure of virus removal filter (Planova 35
N, manufactured by Asahi Kasei Corporation). The obtained virus-removed filter-passed solution was concentrated using an ultrafilter to obtain 9%.
A 3 mg / ml purified fibrinogen solution was obtained. This solution was divided into two parts, and the freeze-dried powders obtained by freeze-drying (all water contents were 1 w / w%) were heat-treated at 65 ° C. for 120 hours to obtain samples (1-1) and ( 1-
2).
【0009】実施例2 ロットを異にするコーンフラクションIを使用し、実施
例1と同様の方法で得た4種類の8v/v%エタノール
沈殿物0.6kgを、〔表1〕に示す濃度のアルギニン
および塩化ナトリウム溶液21リットル(沈殿物の35
倍量)で溶解し、5.1〜5.5mg/mlのフィブリ
ノゲン溶液各21.5リットルを得た。各溶液を1.2
μ及び0.2μのフィルターで順次濾過した後、0.8
kgf/cmの一次圧でウイルス除去フィルター(プラ
ノバ35N、旭化成(株)製)を通過させた後、限外濾
過器により濃縮してそれぞれ85,93,99及び10
1mg/ml精製フィブリノゲン溶液を調製した。これ
らの試料を凍結乾燥して得られた凍結乾燥粉末(いずれ
も水分含有率1w/w%)を、65℃で120時間加熱
処理し、試料(2−1)〜(2−4)とした。Example 2 Four kinds of 8 v / v% ethanol precipitates (0.6 kg) obtained in the same manner as in Example 1 using corn fraction I of different lots were subjected to the concentration shown in [Table 1]. 21 liters of arginine and sodium chloride solution (35
(2 times the volume) to obtain 21.5 liters of a 5.1 to 5.5 mg / ml fibrinogen solution. Each solution was added to 1.2
μ and 0.2μ filter sequentially, after 0.8
After passing through a virus removal filter (Planova 35N, manufactured by Asahi Kasei Corporation) at a primary pressure of kgf / cm, the solution was concentrated by an ultrafilter to obtain 85, 93, 99 and 10 respectively.
A 1 mg / ml purified fibrinogen solution was prepared. The freeze-dried powders obtained by freeze-drying these samples (each having a water content of 1 w / w%) were subjected to heat treatment at 65 ° C. for 120 hours to obtain samples (2-1) to (2-4). .
【0010】比較例1 実施例1と同様の方法で得た精製フィブリノゲンの8v
/v%エタノール沈殿物をフィブリノゲンに対して1
2.9w/w%のリジンのみ、11.8w/w%のアル
ギニンのみおよび9.68w/w%の塩化ナトリウムの
みを含んだ水溶液に溶かし、フィブリノゲンを9.3w
/v%含む液を調製したが、溶解後の安定性が低く、
1.2μ及び0.2μのフィルターによる濾過が困難に
なったため以後の実験を行わなかった。Comparative Example 1 8v of purified fibrinogen obtained in the same manner as in Example 1
/ V% ethanol precipitate with respect to fibrinogen
Dissolved in an aqueous solution containing only 2.9 w / w% lysine, only 11.8 w / w% arginine, and only 9.68 w / w% sodium chloride to remove 9.3 w / w fibrinogen.
/ V% was prepared, but the stability after dissolution was low,
No further experiments were performed due to the difficulty in filtering through 1.2 μ and 0.2 μ filters.
【0011】試験例1 フィブリノゲンの濃度及び純度
の測定 Laki法及びBlomback法を組み合わせて実施
例1および2で得られた試料中に含まれるフィブリノゲ
ンの濃度を測定した。すなわち、試料No.(1−1)
〜(2−4)を希釈してフィブリノゲン濃度を3〜5m
g/mlに調整し、これを試料液とした。試料液2.0
mlに0.5Mリン酸緩衝液(pH7.0)を0.1m
l、0.2M塩化カリウム溶液を1.25mlおよび精
製水を0.25ml加えた。次いで250NIH UN
ITS/mlトロンビン(生理的食塩水)溶液を0.1
ml加えて混和し、37℃で1時間静置すると凝固塊が
生成した。この凝固塊を濾取し精製水で2回洗浄し、
2.5M水酸化ナトリウム溶液2.0mlを含んだ20
ml容メスフラスコに加え、60℃に加温して溶解後、
精製水で正確に20mlとし、287nm及び325n
mの吸光度を測定し、それぞれの値をA278及びA3
25とした。得られた各値から、以下の計算式に従って
各試料中のフィブリノゲンの濃度(mg/ml)を算出
した。Test Example 1 Measurement of Fibrinogen Concentration and Purity The concentration of fibrinogen contained in the samples obtained in Examples 1 and 2 was measured by combining the Laki method and the Blomback method. That is, the sample No. (1-1)
~ (2-4) to reduce the fibrinogen concentration to 3-5 m
g / ml, and this was used as a sample solution. Sample liquid 2.0
0.1 M of 0.5 M phosphate buffer (pH 7.0) per ml
1, 1.25 ml of 0.2 M potassium chloride solution and 0.25 ml of purified water were added. Then 250 NIH UN
0.1% ITS / ml thrombin (physiological saline) solution
Then, the mixture was added and mixed, and allowed to stand at 37 ° C. for 1 hour to form a coagulated mass. This coagulated mass is collected by filtration and washed twice with purified water,
20 containing 2.0 ml of 2.5 M sodium hydroxide solution
Add to a volumetric volumetric flask, dissolve by heating to 60 ° C,
Make exactly 20 ml with purified water, 287 nm and 325 n
m were measured and the respective values were taken as A278 and A3.
25. From the obtained values, the concentration (mg / ml) of fibrinogen in each sample was calculated according to the following formula.
【数1】 また、凝固塊を除去した残液(以下、残液という。)
と、試料液2.0mlに0.5Mリン酸緩衝液(pH
7.0)0.1mlとを加えて37℃で1時間静置して
得た溶液(以下、対照液と云う)のそれぞれの278n
mおよび325nmの吸光度を測定し、残液からの値を
B278とB325とし、対照液からの値をそれぞれC
278とC325とした。得られたそれぞれの値から以
下の計算式に従って、試料中のフィブリノゲンの純度を
算出した。(Equation 1) In addition, the residual liquid from which the coagulated mass has been removed (hereinafter, referred to as residual liquid).
And 2.0 ml of sample solution in 0.5 M phosphate buffer (pH
7.0) and 278 n of each of the solutions (hereinafter referred to as control solutions) obtained by adding 0.1 ml and allowing to stand at 37 ° C. for 1 hour.
The absorbance at m and 325 nm was measured, the values from the residual solution were designated as B278 and B325, and the values from the control solution were
278 and C325. From the obtained values, the purity of fibrinogen in the sample was calculated according to the following formula.
【数2】 以上の結果を〔表1〕に示す。(Equation 2) The above results are shown in [Table 1].
【0012】[0012]
【表1】 〔表1〕から明らかなように、本発明の方法により得ら
れた実施例1及び2の試料はいずれも65℃、120時
間の加熱処理の後のフィブリノゲンの純度、つまり凝固
能は加熱前と殆ど変化がなく、このことからフィブリノ
ゲンは非常に熱に対して安定であることが証明された。
またこれらの試料はいずれも、日本薬局方注射用水に溶
かして約8w/v%のフィブリノゲン溶液を調製するこ
とができ、溶状は安定していた。[Table 1] As is clear from Table 1, the samples of Examples 1 and 2 obtained by the method of the present invention both have a purity of fibrinogen after heat treatment at 65 ° C. for 120 hours, that is, a solidification ability that is equal to that before heating. There was little change, which proved that fibrinogen was very heat-stable.
In addition, all of these samples could be dissolved in water for injection in the Japanese Pharmacopoeia to prepare a fibrinogen solution of about 8% w / v, and the solutions were stable.
【0013】試験例2 ウイルスの感染価の測定 マイクロプレートを用い、37℃、5%炭酸ガス培養液
で培養したESK(Embryonic Swine Kidney)細胞で
ブタパルボウイルスの感染価の測定を行った。試料は日
本薬局方注射用水で溶解した。ウイルス感染価の測定と
してはブタパルボウイルスのESK細胞に対する細胞変
性効果を確認することにより行った。すなわち、ウイル
スを含む試料をESK細胞培養用培地で10倍段階希釈
してESK細胞に接種した。引き続き炭酸ガス培養器で
7日間培養し細胞変性効果(CPE)を観察してウイル
ス感染価(TCID50/ml)を算出した。またウイ
ルスの不活化効果を次式によりLRV(Log Reduction
Value)として示した。Test Example 2 Measurement of Virus Infectivity Using a microplate, porcine parvovirus infectivity was measured on ESK (Embryonic Swine Kidney) cells cultured at 37 ° C. in a 5% carbon dioxide gas culture solution. The sample was dissolved in water for injection in the Japanese Pharmacopoeia. The virus infectivity was measured by confirming the cytopathic effect of porcine parvovirus on ESK cells. That is, a sample containing a virus was serially diluted 10-fold with an ESK cell culture medium and inoculated to ESK cells. Continued to observe the 7 days of culture and cytopathic effects with carbon dioxide gas incubator (CPE) was calculated viral infectivity titer (TCID 50 / ml). The virus inactivation effect is calculated by the following formula using LRV (Log Reduction).
Value).
【数3】 (Equation 3)
【0014】試験例3 乾燥フィブリノゲンの加熱によ
るブタパルボウイルス(PPV)の不活化実験 実施例1で調製した凍結乾燥前の精製フィブリノゲン溶
液9容にブタパルボウイルス液1容を加えて少量のモデ
ル実験を実施した。すなわち、ウイルス含有試料(ウイ
ルス感染価106.25)を凍結乾燥した後、加熱処理
を施し、前述のウイルス感染価の測定方法に従って試料
中のウイルス感染価およびLRVを算出した。その結果
を〔表2〕に示す。Test Example 3 Inactivation experiment of swine parvovirus (PPV) by heating dried fibrinogen A small amount of model experiment by adding 1 volume of swine parvovirus solution to 9 volumes of purified fibrinogen solution before freeze-drying prepared in Example 1 Was carried out. That is, the virus-containing sample (virus infectivity titer 10 6.25 ) was freeze-dried, and then subjected to heat treatment, and the virus infectivity titer and LRV in the sample were calculated according to the aforementioned virus infectivity titer measurement method. The results are shown in [Table 2].
【0015】[0015]
【表2】 〔表2〕から明らかなように、フィブリノゲンは凍結乾
燥により1.0のLRVが得られ、その後の96時間の
加熱処理により3.0、120時間加熱処理により3.
5のLRVが得られた。このことよりすでに発病のない
ことが認められているアルブミンの60℃、10時間の
液状加熱処理と比較して、同等以上のウイルス不活化効
果が確認された。[Table 2] As is clear from Table 2, fibrinogen gives an LRV of 1.0 by freeze-drying, and then is subjected to a heat treatment of 96 hours for 3.0 and a heat treatment of 3.0 for 120 hours.
An LRV of 5 was obtained. From this, it was confirmed that the virus inactivation effect was equal to or higher than that of the liquid heat treatment of albumin at 60 ° C. for 10 hours, which was already confirmed not to cause disease.
【0016】実施例3 実施例1で得られた試料に、アルギニンを添加して、フ
ィブリノゲン9.3w/v%、リジン1.2w/v%、
アルギニン1.2w/v%および塩化ナトリウム0.9
w/v%を含む精製フィブリノゲン溶液を調製した。こ
の溶液を凍結乾燥し、得られた粉末(水分含有率1.0
w/w%)を65℃、120時間加熱処理した。フィブ
リノゲンの純度は、加熱前が95.2%、加熱後が9
5.0%であった。また、加熱後の粉末1.25gを試
験管内で日本薬局方注射用水8mlに溶解し、25℃で
撹拌を続けたところ約30分で完全に溶解して澄明な液
となり、溶状は安定していた。Example 3 Arginine was added to the sample obtained in Example 1 to give 9.3 w / v% of fibrinogen, 1.2 w / v% of lysine,
Arginine 1.2% w / v and sodium chloride 0.9
A purified fibrinogen solution containing w / v% was prepared. This solution was freeze-dried to obtain a powder (water content: 1.0%).
(w / w%) at 65 ° C. for 120 hours. The purity of fibrinogen was 95.2% before heating and 9 after heating.
It was 5.0%. Further, 1.25 g of the powder after heating was dissolved in 8 ml of water for injection in the Japanese Pharmacopoeia in a test tube, and when the mixture was continuously stirred at 25 ° C., it was completely dissolved in about 30 minutes to form a clear liquid, and the solution was stable. Was.
【0017】[0017]
【発明の効果】本発明によれば、フィブリノゲンの変
性、失活をほとんど伴うことなく、夾雑するウイルスを
不活化することができる。また得られたウイルス不活化
フィブリノゲンは、フィブリノゲンを8w/v%以上の
高濃度溶液とすることができ、且つ溶解後の溶状も安定
している。According to the present invention, contaminating viruses can be inactivated with almost no denaturation or inactivation of fibrinogen. The obtained virus-inactivated fibrinogen can be used as a high-concentration solution of fibrinogen at 8 w / v% or more, and the dissolved state after dissolution is stable.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 健二 千葉県成田市新泉3番地の1 日本製薬株 式会社成田工場内 Fターム(参考) 4B065 AA95X BD08 BD13 BD22 BD33 BD39 CA44 CA56 4C084 AA02 AA06 BA44 DC11 NA06 ZA542 ZC022 4H045 AA10 AA30 BA10 CA40 DA65 EA29 GA01 GA05 GA10 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenji Kaneko 3-1, Shinizumi, Narita City, Chiba Prefecture Nippon Pharmaceutical Co., Ltd. Narita Factory F-term (reference) 4B065 AA95X BD08 BD13 BD22 BD33 BD39 CA44 CA56 4C084 AA02 AA06 BA44 DC11 NA06 ZA542 ZC022 4H045 AA10 AA30 BA10 CA40 DA65 EA29 GA01 GA05 GA10
Claims (10)
ン、塩基性アミノ酸および塩化ナトリウムを含む水溶液
を乾燥した後、ウイルスが不活化されるまで加熱するフ
ィブリノゲンのウイルス不活化法。1. A method for inactivating fibrinogen virus, comprising drying an aqueous solution containing fibrinogen, basic amino acid and sodium chloride which may be contaminated with virus, and heating until the virus is inactivated.
である請求項1記載のウイルス不活化法。2. The method according to claim 1, wherein the basic amino acid is lysine or arginine.
載のウイルス不活化法。3. The method according to claim 1, wherein the basic amino acid is lysine.
である請求項1記載のウイルス不活化法。4. The method according to claim 1, wherein the basic amino acids are lysine and arginine.
ンに対し4〜40w/w%の塩基性アミノ酸および5〜
25w/w%の塩化ナトリウムを含有するものである請
求項1記載のウイルス不活化法。5. An aqueous solution comprising fibrinogen, 4-40% w / w of basic amino acid and 5-5% w / w fibrinogen.
The method for inactivating a virus according to claim 1, wherein the method comprises 25 w / w% of sodium chloride.
ンに対し、2〜20w/w%のリジンおよび5〜25w
/w%の塩化ナトリウムを含有する請求項1記載のウイ
ルス不活化法。6. An aqueous solution comprising fibrinogen, 2-20 w / w% lysine and 5-25 w / w% fibrinogen.
2. The method for inactivating virus according to claim 1, wherein the method comprises 1 / w% of sodium chloride.
ンに対し、2〜20w/w%のリジン、2〜20w/w
%のアルギニンおよび5〜25w/w%の塩化ナトリウ
ムを含有する請求項1記載のウイルス不活化法。7. An aqueous solution comprising fibrinogen and 2-20 w / w% lysine, 2-20 w / w relative to fibrinogen.
The virus inactivation method according to claim 1, comprising 5% arginine and 5 to 25% w / w sodium chloride.
う請求項1記載のウイルス不活化法。8. The method according to claim 1, wherein the heating is performed at 50 to 80 ° C. for 24 to 192 hours.
以下のものである請求項1記載のウイルス不活化法。9. The dried fibrinogen having a water content of 3% w / w.
The method for inactivating a virus according to claim 1, which is as follows.
ス不活化法によりウイルスが不活化されたフィブリノゲ
ン。10. A fibrinogen whose virus has been inactivated by the virus inactivation method according to any one of claims 1 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000082066A JP2001270900A (en) | 2000-03-23 | 2000-03-23 | Method for inactivating virus in fibrinogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000082066A JP2001270900A (en) | 2000-03-23 | 2000-03-23 | Method for inactivating virus in fibrinogen |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001270900A true JP2001270900A (en) | 2001-10-02 |
Family
ID=18598914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000082066A Pending JP2001270900A (en) | 2000-03-23 | 2000-03-23 | Method for inactivating virus in fibrinogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001270900A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002112765A (en) * | 2000-08-01 | 2002-04-16 | Nihon Pharmaceutical Co Ltd | Method for virus inactivation |
JP2007516187A (en) * | 2003-07-09 | 2007-06-21 | ラボラトワール、フランセ、デュ、フラクショヌマン、エ、デ、ビオテクノロジ | Method for stabilizing plasma protein cryoprecipitates for use in virus-inactivated heat treatment |
US7816495B2 (en) | 2002-07-10 | 2010-10-19 | Nhs Blood And Transplant | Processes for the preparation of fibrinogen |
CN113577295A (en) * | 2021-09-06 | 2021-11-02 | 成都蓉生药业有限责任公司 | Human fibrinogen dry heat treatment stabilizer and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6089428A (en) * | 1983-10-19 | 1985-05-20 | Green Cross Corp:The | Heat treatment of plasma protein |
JPS6122022A (en) * | 1983-12-28 | 1986-01-30 | Green Cross Corp:The | Method for heat-treating blood plasma protein |
JPH10510257A (en) * | 1994-12-08 | 1998-10-06 | コモン サーヴィシス エージェンシー | Heat-treated plasma protein |
WO1999010011A1 (en) * | 1997-08-25 | 1999-03-04 | Csl Limited | Dried biologically or therapeutically active preparations |
-
2000
- 2000-03-23 JP JP2000082066A patent/JP2001270900A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6089428A (en) * | 1983-10-19 | 1985-05-20 | Green Cross Corp:The | Heat treatment of plasma protein |
JPS6122022A (en) * | 1983-12-28 | 1986-01-30 | Green Cross Corp:The | Method for heat-treating blood plasma protein |
JPH10510257A (en) * | 1994-12-08 | 1998-10-06 | コモン サーヴィシス エージェンシー | Heat-treated plasma protein |
WO1999010011A1 (en) * | 1997-08-25 | 1999-03-04 | Csl Limited | Dried biologically or therapeutically active preparations |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002112765A (en) * | 2000-08-01 | 2002-04-16 | Nihon Pharmaceutical Co Ltd | Method for virus inactivation |
US7816495B2 (en) | 2002-07-10 | 2010-10-19 | Nhs Blood And Transplant | Processes for the preparation of fibrinogen |
JP2007516187A (en) * | 2003-07-09 | 2007-06-21 | ラボラトワール、フランセ、デュ、フラクショヌマン、エ、デ、ビオテクノロジ | Method for stabilizing plasma protein cryoprecipitates for use in virus-inactivated heat treatment |
JP2012051895A (en) * | 2003-07-09 | 2012-03-15 | Lab Francais Du Fractionnement & Des Biotechnologies | Method for stabilizing cryoprecipitate of plasmatic protein for being subjected to viral inactivation thermal treatment |
JP4925822B2 (en) * | 2003-07-09 | 2012-05-09 | ラボラトワール、フランセ、デュ、フラクショヌマン、エ、デ、ビオテクノロジ | Method for stabilizing plasma protein cryoprecipitates for use in virus-inactivated heat treatment |
CN113577295A (en) * | 2021-09-06 | 2021-11-02 | 成都蓉生药业有限责任公司 | Human fibrinogen dry heat treatment stabilizer and application thereof |
CN113577295B (en) * | 2021-09-06 | 2023-02-28 | 成都蓉生药业有限责任公司 | Human fibrinogen dry heat treatment stabilizer and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5105734B2 (en) | Stable thrombin composition | |
JP4278861B2 (en) | Method for producing fibrin glue-forming component with high safety against virus contamination from human plasma pool | |
US4876241A (en) | Stabilization of biological and pharmaceutical products during thermal inactivation of viral and bacterial contaminants | |
JPS63243032A (en) | Method for heat-treating thrombin | |
JPS60132919A (en) | Heat treatment for biological medicine | |
JP2605102B2 (en) | Stabilization of biological and pharmaceutical products during thermal inactivation of viral and bacterial contaminants | |
SK280665B6 (en) | Composition for stabilising blood plasma during pasteurisation and method of bloodplasma pasteurisation | |
KR950010321B1 (en) | Method of heating treatment of human thrombin preparation | |
JP2001270900A (en) | Method for inactivating virus in fibrinogen | |
KR101798386B1 (en) | Caprylate viral deactivation | |
JPS6089428A (en) | Heat treatment of plasma protein | |
JPS6122022A (en) | Method for heat-treating blood plasma protein | |
JPH09187273A (en) | Inactivation of virus in protein | |
SK7582000A3 (en) | Use of tranexamic acid for the preparation of a human fibrinogen composition | |
JPS62289523A (en) | Heat treatment of immunoglobulin for intravenous administration | |
JPH05501417A (en) | Formulations for plasma stabilization during pasteurization | |
JPS6289628A (en) | Heat treatment of human fibrinogen pharmaceutical | |
US20020146409A1 (en) | Methods for stabilizing lyophilized blood proteins | |
JP2002518462A (en) | A method for preparing an immunoglobulin for intravenous injection by a double inactivation treatment without adding a protective agent. | |
DK175644B1 (en) | Process for stabilizing biological and pharmaceutical agents during inactivation of viral and bacterial contaminants | |
JPS6210019A (en) | Heat-treatment of drug preparation containing human blood coagulation factor ix | |
JP2002114799A (en) | Method for removing virus | |
CN113577295A (en) | Human fibrinogen dry heat treatment stabilizer and application thereof | |
JPS63317084A (en) | Suppression of formation of low-molecular weight urokinase by heating | |
JP2002112765A (en) | Method for virus inactivation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100331 |