JP2001269657A - Soil cleaning method - Google Patents

Soil cleaning method

Info

Publication number
JP2001269657A
JP2001269657A JP2000088464A JP2000088464A JP2001269657A JP 2001269657 A JP2001269657 A JP 2001269657A JP 2000088464 A JP2000088464 A JP 2000088464A JP 2000088464 A JP2000088464 A JP 2000088464A JP 2001269657 A JP2001269657 A JP 2001269657A
Authority
JP
Japan
Prior art keywords
soil
catalyst
hydrogen peroxide
cation
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000088464A
Other languages
Japanese (ja)
Other versions
JP4462702B2 (en
Inventor
Shojiro Osumi
省二郎 大隅
Jun Tsubota
潤 坪田
Masabumi Shinohara
正文 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000088464A priority Critical patent/JP4462702B2/en
Publication of JP2001269657A publication Critical patent/JP2001269657A/en
Application granted granted Critical
Publication of JP4462702B2 publication Critical patent/JP4462702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the decomposition efficiency of organic matter in treating a soil for treatment containing organic matter with hydrogen peroxide in the presence of a catalyst which is a metal ion capable of attaining >=2 kinds of valences. SOLUTION: The soil cleaning method for decomposing organic matter by treating a soil for treatment containing organic matter with hydrogen peroxide in the presence of a catalyst which is a metal ion capable of attaining >=2 kinds of valences consists of adding an assistant capable of supplying at least either of the cation which is more easily adsorbable on the cation exchange seat of the soil for treatment as compared to the catalyst described above and the cation which produces a product by more easily reacting with phosphoric acid as compared with the catalysts described above to the soil prior to the treatment by hydrogen peroxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機物を含む処理
対象土壌を、2種以上の価数をとり得る金属イオンであ
る触媒の存在下で、過酸化水素により処理して、前記有
機物を分解する土壌浄化方法に関するものである。
[0001] The present invention relates to a method for decomposing organic matter by treating the soil to be treated with hydrogen peroxide in the presence of a catalyst which is a metal ion having two or more valences. The soil purification method.

【0002】[0002]

【従来の技術】従来、排水中に含まれる有機物を分解す
るに際し、前記排水に、過酸化水素と、触媒として2種
以上の価数をとり得る金属イオンである鉄イオンを供給
可能な化合物(硫酸第一鉄・七水和物、いわゆるフェン
トン試薬)とを添加することによって、ヒドロキシラジ
カル(OH・ )を発生させ、このラジカルと前記有機物
とを反応させることによって、前記有機物を酸化分解す
る方法が知られていた。そして、この方法を、有機物を
含有する土壌の浄化に応用することが試みられていた
(特開平7−75772号公報参照)。尚、前記有機物
とは、主に生物による分解が困難な難分解性有機物をい
い、農薬、防腐剤、石油及びその留分に含まれる芳香族
化合物、特に多環芳香族炭化水素(Polynucle
ar Aromatic Hydrocarbon;P
AH)、塩素化有機物などが該当する。
2. Description of the Related Art Conventionally, when decomposing organic substances contained in wastewater, a compound capable of supplying hydrogen peroxide and iron ion which is a metal ion capable of taking two or more valences as a catalyst to the wastewater ( A method of generating a hydroxyl radical (OH.) By adding ferrous sulfate heptahydrate (so-called Fenton's reagent) and reacting the radical with the organic material to oxidatively decompose the organic material. Was known. Attempts have been made to apply this method to the purification of soil containing organic matter (see JP-A-7-75772). In addition, the said organic substance mainly refers to a hardly decomposable organic substance which is difficult to be decomposed by living organisms, and is an aromatic compound contained in agrochemicals, preservatives, petroleum and its fractions, especially polycyclic aromatic hydrocarbons (Polynucleic acid).
ar Aromatic Hydrocarbon; P
AH) and chlorinated organic substances.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この土
壌浄化方法を実施するにあたっては、下記の問題点があ
った。 処理対象土壌に存在する陽イオン交換座に、前記鉄
イオンが吸着して不活性化し、前記過酸化水素と反応可
能な前記鉄イオンが減少する。これに伴なって、前記ヒ
ドロキシラジカルの発生が減少し、前記有機物の酸化分
解効率が低下する。 処理対象土壌に含まれるリン酸に、前記鉄イオンが
結合して難溶性のリン酸塩を形成する。これによって前
記触媒が不活性化し、前記過酸化水素と反応可能な前記
鉄イオンが減少する。これに伴なって、前記ヒドロキシ
ラジカルの発生が減少し、前記有機物の酸化分解効率が
低下する。 前記有機物は水に難溶性のものが多く、前記ヒドロ
キシラジカルと接触する機会が得られにくい。従って、
反応の進行が遅く、前記有機物の酸化分解効率が低下す
る。特に、我が国の土壌は、陽イオン交換能(Cati
on ExchangeCapacity;CEC)が
比較的高いものが多いので、前記陽イオン交換座への前
記鉄イオンの吸着量が多い。また、リン酸含有量の高い
土壌も多くみられ、このような土壌にあっては、前記鉄
イオンとリン酸が、リン酸と結合して難溶性のリン酸塩
を形成する。従って、従来の土壌浄化方法を実施すると
すれば、前記触媒の不活性化によって分解効率が低く抑
えられ易いので、前記触媒を大量に添加する必要があっ
た。
However, in carrying out this soil purification method, there are the following problems. The iron ions are adsorbed and inactivated on the cation exchange sites present in the soil to be treated, and the iron ions capable of reacting with the hydrogen peroxide decrease. Accompanying this, the generation of the hydroxyl radical is reduced, and the efficiency of oxidative decomposition of the organic substance is reduced. The iron ions combine with the phosphoric acid contained in the soil to be treated to form a sparingly soluble phosphate. This deactivates the catalyst and reduces the iron ions that can react with the hydrogen peroxide. Accompanying this, the generation of the hydroxyl radical is reduced, and the efficiency of oxidative decomposition of the organic substance is reduced. Many of the organic substances are hardly soluble in water, and it is difficult to obtain an opportunity to come into contact with the hydroxyl radical. Therefore,
The progress of the reaction is slow, and the efficiency of oxidative decomposition of the organic substance is reduced. In particular, the soil in Japan has a cation exchange capacity (Cati
On exchange capacity (CEC) is relatively high in many cases, so that the amount of iron ions adsorbed on the cation exchange site is large. In addition, there are many soils having a high phosphoric acid content. In such soils, the iron ions and the phosphoric acid combine with the phosphoric acid to form a sparingly soluble phosphate. Therefore, if the conventional soil purification method is carried out, the decomposition efficiency is likely to be suppressed low by inactivation of the catalyst, so that it was necessary to add a large amount of the catalyst.

【0004】ところが、本発明者らは、鋭意研究の結
果、前記触媒として含鉄化合物を大量に添加して酸化分
解処理を施すと、この後に生物処理を施しても、生分解
性酸化分解産物の分解が極度に抑制されることを明らか
にした。従って、前記処理対象土壌に元来存在する微生
物を利用する、或いは前記酸化分解産物を分解可能な微
生物を添加することによって、前記分解産物の生分解を
期待する場合には、前記触媒の添加量を制限する必要が
あるという問題点があった。
However, as a result of intensive studies, the present inventors have found that, when a large amount of an iron-containing compound is added as the catalyst and oxidative decomposition treatment is performed, biodegradable oxidative decomposition products are obtained even after biological treatment. It was revealed that decomposition was extremely suppressed. Therefore, when biodegradation of the decomposition product is expected by utilizing microorganisms originally existing in the soil to be treated or by adding microorganisms capable of decomposing the oxidative decomposition product, the amount of the catalyst added is Has to be restricted.

【0005】従って、本発明の目的は、上記欠点に鑑
み、前記有機物を含む処理対象土壌を、2種以上の価数
をとり得る金属イオンである触媒の存在下で過酸化水素
により処理するにあたって、前記有機物の分解効率を向
上させることを目的とする。
Accordingly, an object of the present invention is to provide a method for treating a soil to be treated containing the organic matter with hydrogen peroxide in the presence of a catalyst which is a metal ion capable of taking two or more valences in view of the above-mentioned drawbacks. It is an object of the present invention to improve the decomposition efficiency of the organic matter.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
の本発明の土壌浄化方法の第一特徴手段は、請求項1に
記載されているように、有機物を含む処理対象土壌を、
2種以上の価数をとり得る金属イオンである触媒の存在
下で過酸化水素により処理して、前記有機物を分解する
土壌浄化方法において、前記過酸化水素による処理前
に、前記触媒と比して前記処理対象土壌の陽イオン交換
座に吸着容易な陽イオン又は前記触媒と比してリン酸と
容易に反応して生成物を生じる陽イオンの少なくとも何
れか一方を供給可能な助剤を添加する点にある。この目
的を達成するための本発明の土壌浄化方法の第二特徴手
段は、請求項2に記載されているように、有機物を含む
処理対象土壌を、2種以上の価数をとり得る金属イオン
である触媒の存在下で過酸化水素により処理して、前記
有機物を分解する土壌浄化方法において、前記触媒を添
加する前に、前記触媒と比して前記処理対象土壌の陽イ
オン交換座に吸着容易な陽イオン又はリン酸と反応して
容易に生成物を生じる陽イオンの少なくとも何れか一方
を供給可能な助剤を添加する点にある。更に、前記第
一、第二特徴手段において請求項3に記載されているよ
うに、前記過酸化水素による処理後に、さらに前記有機
物の分解産物を分解可能な微生物を添加しても良く、請
求項4に記載されているように、前記助剤がカルシウム
イオンを供給可能であることが好ましく、更に、請求項
5に記載されているように、前記過酸化水素による処理
前に、前記処理対象土壌に、前記有機物を可溶化する界
面活性剤を添加することが好ましい。そして、これらの
作用効果は、以下の通りである。
According to a first aspect of the present invention, there is provided a soil purification method comprising the steps of:
In the soil purification method of decomposing the organic matter by treating with hydrogen peroxide in the presence of a catalyst that is a metal ion capable of taking two or more valences, the treatment with the catalyst is performed before the treatment with the hydrogen peroxide. An auxiliary agent capable of supplying at least one of a cation easily adsorbed to the cation exchange site of the soil to be treated and a cation which easily reacts with phosphoric acid to produce a product as compared with the catalyst is added. Is to do. To achieve this object, the second characteristic means of the soil purification method of the present invention, as described in claim 2, is to treat the soil to be treated containing organic matter with a metal ion capable of taking two or more valences. In the soil purification method of decomposing the organic matter by treating with hydrogen peroxide in the presence of a catalyst that is, before adding the catalyst, adsorb to a cation exchange site of the treatment target soil as compared with the catalyst. The point is to add an auxiliary agent capable of supplying at least one of a cation which easily reacts with phosphoric acid or a phosphoric acid to easily produce a product. Further, as described in claim 3 in the first and second feature means, after the treatment with the hydrogen peroxide, a microorganism capable of decomposing the decomposition product of the organic substance may be further added. Preferably, the auxiliary is capable of supplying calcium ions, as described in claim 4, and further, as described in claim 5, before the treatment with the hydrogen peroxide, It is preferable to add a surfactant for solubilizing the organic substance. And these effects are as follows.

【0007】つまり、請求項1に記載されているよう
に、有機物を含む処理対象土壌を、2種以上の価数をと
り得る金属イオンである触媒の存在下で過酸化水素によ
り処理して、前記有機物を分解する土壌浄化方法におい
て、前記過酸化水素による処理前(前記触媒の働きによ
り前記過酸化水素から前記ヒドロキシラジカルを発生さ
せる前の段階)に、前記処理対象土壌に、前記触媒と比
して前記処理対象土壌の陽イオン交換座に吸着容易な陽
イオンを添加してあれば、前記陽イオン交換座に前記陽
イオンが吸着することとなる。このように、前記陽イオ
ン交換座に前記陽イオンを充填してあれば、前記触媒
は、前記陽イオンと比して前記陽イオン交換座に対して
親和性が低いので、前記陽イオンが吸着している前記陽
イオン交換座には、置換・吸着され難い。また、前記処
理対象土壌には、触媒活性を有する2種以上の価数を取
り得る金属イオンが含まれていることもあり、前記陽イ
オンは、これらの金属イオンをも、交換反応によって前
記陽イオン交換座から離脱させて、触媒として機能し得
る状態とすることができる。従って、前記触媒を、その
触媒活性を発揮し得る状態で前記処理対象土壌に存在さ
せることによって、前記過酸化水素から前記ヒドロキシ
ラジカルを効率良く生成することができる。また、同様
に、前記触媒と比してリン酸と容易に反応して生成物
(難溶性・難分解性のリン酸塩としての固形物(沈殿)
が得られ易い。)を生じる陽イオンを、前記過酸化水素
による処理前に、前記処理対象土壌に添加してあれば、
前記リン酸の結合部位が前記触媒より親和性の高い前記
陽イオンで塞がれているので、前記リン酸と前記触媒と
の反応が阻害され、前記触媒は、その触媒活性を発揮し
得る状態で前記処理対象土壌に存在し、前記過酸化水素
から前記ヒドロキシラジカルを効率良く生成することが
できる。従って、前記触媒と比して前記処理対象土壌の
陽イオン交換座に吸着容易な陽イオン又は前記触媒と比
してリン酸と容易に反応して生成物を生じる陽イオンの
少なくとも何れか一方を供給可能な化合物又は溶液を助
剤として前記処理対象土壌に添加して、前記過酸化水素
によって処理すれば、前記CECが高い土壌やリン酸含
量の高い土壌であっても、前記触媒を活性発現可能な状
態に保持することができるので、効率よく前記ヒドロキ
シラジカルを発生させることができ、少ない触媒添加量
で前記有機物を分解することができる。また、前記陽イ
オンの添加によって、前記処理対象土壌に存在していた
触媒となり得る金属イオンに代わって、前記陽イオンが
前記陽イオン交換座に吸着、或いは前記リン酸の結合部
位に結合することによって、内在していた触媒を活性化
して、前記有機物の酸化分解効率を向上させることも可
能であると考えられる。ここで、前記触媒としては、前
記鉄イオンを供給可能な化合物を代表的なものとして挙
げることができるが、前記過酸化水素からのヒドロキシ
ラジカル生成を促進する作用を有するものとして、2種
以上の価数をとり得る金属イオン(クロム、チタン、バ
ナジウム、スズ、銅、マンガン、コバルト等の金属イオ
ン)を供給可能な化合物を用いることもできる。また、
電解質溶液として、金属イオンを直接供給することも可
能である。また、前記陽イオン交換座への陽イオンの吸
着し易さは、イオン種によって異なるものであり、発明
者らの研究の結果、アンモニウムイオン、カルシウムイ
オン、カリウムイオンが、前記触媒と比して吸着容易な
陽イオンであることを明らかとした。同様に、発明者ら
は、前記触媒と比して前記リン酸と容易に反応して生成
物を生じる陽イオン種について検討した結果、カルシウ
ムイオン、マグネシウムイオンが該当することを明らか
とした。
That is, as described in claim 1, the soil to be treated containing an organic substance is treated with hydrogen peroxide in the presence of a catalyst which is a metal ion having two or more valences, In the soil purification method for decomposing organic substances, before the treatment with the hydrogen peroxide (before the hydroxyl radical is generated from the hydrogen peroxide by the action of the catalyst), the soil to be treated is compared with the catalyst in a ratio of the catalyst. If a cation that can be easily adsorbed is added to the cation exchange site of the soil to be treated, the cation will be adsorbed to the cation exchange site. As described above, if the cation exchange site is filled with the cation, the catalyst has a lower affinity for the cation exchange site than the cation, so that the cation is adsorbed. The cation exchange sites are not easily displaced and adsorbed. In addition, the treatment target soil may contain metal ions having two or more valences having catalytic activity, and the cations may be converted to the metal ions by an exchange reaction. It can be released from the ion exchange site and brought into a state where it can function as a catalyst. Therefore, the hydroxyl radical can be efficiently generated from the hydrogen peroxide by causing the catalyst to be present in the soil to be treated in a state capable of exhibiting its catalytic activity. Similarly, the product easily reacts with phosphoric acid as compared with the catalyst to form a product (solid (precipitation) as a hardly soluble / hardly decomposable phosphate).
Is easily obtained. ) Is added to the soil to be treated before the treatment with the hydrogen peroxide,
Since the binding site of the phosphoric acid is blocked by the cation having a higher affinity than the catalyst, the reaction between the phosphoric acid and the catalyst is inhibited, and the catalyst can exhibit its catalytic activity. And the hydroxyl radical can be efficiently produced from the hydrogen peroxide. Therefore, at least one of a cation which is easily adsorbed to the cation exchange site of the soil to be treated as compared with the catalyst or a cation which easily reacts with phosphoric acid as compared with the catalyst to generate a product. If a compound or solution that can be supplied is added to the soil to be treated as an auxiliary and treated with the hydrogen peroxide, the catalyst exhibits activity even in a soil with a high CEC or a soil with a high phosphoric acid content. Since the state can be maintained, the hydroxyl radical can be efficiently generated, and the organic substance can be decomposed with a small amount of catalyst. The addition of the cation may cause the cation to be adsorbed to the cation exchange site or to bind to the phosphate binding site, instead of the metal ion which may be a catalyst existing in the treatment target soil. Thus, it is considered that the intrinsic catalyst can be activated to improve the efficiency of oxidative decomposition of the organic substance. Here, as the catalyst, a compound capable of supplying the iron ion can be mentioned as a typical example, and two or more compounds having an action of promoting the generation of a hydroxyl radical from the hydrogen peroxide can be mentioned. A compound that can supply a metal ion that can take a valence (metal ion such as chromium, titanium, vanadium, tin, copper, manganese, and cobalt) can also be used. Also,
It is also possible to directly supply metal ions as an electrolyte solution. In addition, the ease with which cations are adsorbed to the cation exchange site varies depending on the ionic species, and as a result of research by the inventors, ammonium ions, calcium ions, and potassium ions were compared with the catalyst. It was revealed that the cation was easily adsorbed. Similarly, the present inventors have studied cation species that easily react with the phosphoric acid as compared with the catalyst to generate a product, and as a result, have found that calcium ions and magnesium ions are applicable.

【0008】また、請求項2に記載されているように、
有機物を含む処理対象土壌を、2種以上の価数をとり得
る金属イオンである触媒の存在下で過酸化水素により処
理して、前記有機物を分解する土壌浄化方法において、
前記触媒を添加する前に、前記処理対象土壌に、前記触
媒と比して前記処理対象土壌の陽イオン交換座に吸着容
易な陽イオン含む助剤を添加してあれば、前記陽イオン
交換座が、前記陽イオンによって前もって十分に置換さ
れることになる。このような状態とした上で、前記触媒
を添加すれば、前記陽イオンが吸着している前記陽イオ
ン交換座には、前記触媒がほとんど置換・吸着されなく
なる。また、前記処理対象土壌に含まれる触媒活性を有
する2種以上の価数を取り得る金属イオンも、触媒とし
て機能し得る状態とすることができる。従って、前記触
媒を、その触媒活性を発揮し得る状態で前記処理対象土
壌に存在させることによって、前記過酸化水素から前記
ヒドロキシラジカルを効率良く生成することができる。
また、同様に、リン酸と反応して容易に生成物を生じさ
せる陽イオンを含む助剤を、前記触媒を添加する前に、
前記処理対象土壌に添加してあれば、前記リン酸の結合
部位に前記陽イオンが十分に結合して、多くのリン酸を
難溶性の塩の形態にすることができる。このような状態
にした上で、後から前記触媒を添加すれば、前記リン酸
には強固に前記陽イオンが結合しているので、前記触媒
がリン酸と反応することができなくなる。こうして、前
記触媒は、その触媒活性を発揮し得る状態で前記処理対
象土壌に存在し、前記過酸化水素から前記ヒドロキシラ
ジカルを効率良く生成することができる。ここで、前記
陽イオンは、前記触媒との関係において、必ずしも、こ
れより前記リン酸に対して親和性が高いものである必要
はない。なぜなら、前記触媒に比してリン酸に対して親
和性が低く、触媒と競合すればリン酸と結合し難いよう
なものであったとしても、先に添加することによって難
溶性・難分解性のリン酸塩を形成すれば、後から添加さ
れた前記触媒との交換反応が起こり難いからである(逆
に、前記陽イオンと前記触媒との関係は、リン酸塩を形
成した陽イオンが前記触媒と置換しない程度にリン酸に
対して親和性を有していれば良いと考える。)。このよ
うにすることで、前記CECが高い土壌やリン酸含量の
高い土壌であっても、前記触媒を活性発現可能な状態に
保持することができるので、効率よく前記ヒドロキシラ
ジカルを発生させることができ、少ない触媒添加量で前
記有機物を分解することができる。また、前記陽イオン
の添加によって、前記処理対象土壌に存在していた触媒
となり得る金属イオンに代わって、前記陽イオンが前記
陽イオン交換座に吸着、或いは前記リン酸の結合部位に
結合することによって、内在していた触媒を活性化し
て、前記有機物の酸化分解効率を向上させることも可能
であると考えられる。
Further, as described in claim 2,
A soil purification method for treating a soil to be treated containing organic matter with hydrogen peroxide in the presence of a catalyst that is a metal ion capable of taking two or more valences to decompose the organic matter,
Before adding the catalyst, if an auxiliary agent containing a cation that is easily adsorbed to a cation exchange site of the soil to be treated as compared with the catalyst is added to the soil to be treated, the cation exchange site Will be sufficiently replaced in advance by the cation. In such a state, if the catalyst is added, the catalyst is hardly displaced or adsorbed on the cation exchange site where the cation is adsorbed. Further, metal ions having two or more valencies having catalytic activity and contained in the soil to be treated can also be brought into a state capable of functioning as a catalyst. Therefore, the hydroxyl radical can be efficiently generated from the hydrogen peroxide by causing the catalyst to be present in the soil to be treated in a state capable of exhibiting its catalytic activity.
Similarly, before the addition of the catalyst, an auxiliary containing a cation which easily reacts with phosphoric acid to produce a product,
When added to the soil to be treated, the cation is sufficiently bonded to the binding site of the phosphoric acid, so that a large amount of the phosphoric acid can be converted to a hardly soluble salt form. In such a state, if the catalyst is added later, the cation is firmly bound to the phosphoric acid, so that the catalyst cannot react with the phosphoric acid. Thus, the catalyst is present in the soil to be treated in a state where it can exhibit its catalytic activity, and can efficiently generate the hydroxyl radical from the hydrogen peroxide. Here, the cation does not necessarily have to have a higher affinity for the phosphoric acid in relation to the catalyst. The reason is that even if it has a lower affinity for phosphoric acid than the above-mentioned catalyst and it is difficult to bind to phosphoric acid if it competes with the catalyst, it is hardly soluble and hardly decomposable by adding it first. This is because, if the phosphate is formed, the exchange reaction with the catalyst added later is unlikely to occur (conversely, the relationship between the cation and the catalyst is that the cation forming the phosphate is It is only necessary to have an affinity for phosphoric acid to such an extent that it does not displace the catalyst.) By doing so, the catalyst can be maintained in a state where the activity can be expressed even in a soil where the CEC is high or a soil where the phosphoric acid content is high, so that the hydroxyl radical can be efficiently generated. The organic substance can be decomposed with a small amount of catalyst. The addition of the cation may cause the cation to be adsorbed to the cation exchange site or to bind to the phosphate binding site, instead of the metal ion which may be a catalyst existing in the treatment target soil. Thus, it is considered that the intrinsic catalyst can be activated to improve the efficiency of oxidative decomposition of the organic substance.

【0009】上述した処理を施した後の前記処理対象土
壌は、前記触媒の活性化を促進することで触媒の添加量
を減少することができるので、従来法で処理したものと
比べて、土壌に生息する微生物への影響が抑えられる。
また、上記処理を施すことによって、前記有機物は環状
構造の開裂、ハロゲンの除去などを受けて分解する。こ
こで、この分解産物の中には、生分解性のものが含まれ
ているので、請求項3に記載されているように、上記処
理の後に、前記有機物の分解産物を分解可能な微生物を
添加すれば、さらに低分子にまで分解して自然に近い状
態にまで改質することも可能である。特に、前記分解産
物を分解可能な微生物が広く自然界に分布しているもの
ではない場合、かかる微生物を前記処理対象土壌に添加
してさらに低分子にまで分解すれば、土着性微生物でも
資化することができるようになる。
[0009] The soil to be treated after the above-mentioned treatment can be reduced in the amount of the catalyst to be added by promoting the activation of the catalyst. The effect on microorganisms inhabiting is reduced.
Further, by performing the above treatment, the organic substance is decomposed by cleavage of the cyclic structure, removal of halogen, and the like. Here, since biodegradable products are included in the decomposition products, microorganisms capable of decomposing the decomposition products of the organic substances after the above-mentioned treatment are used as described in claim 3. If added, it can be further decomposed to low molecules and reformed to a state close to nature. In particular, when microorganisms capable of decomposing the decomposition products are not widely distributed in nature, if such microorganisms are further decomposed to low molecular weight by adding them to the soil to be treated, indigenous microorganisms can also be used. Will be able to do it.

【0010】請求項4に記載されているように、前記助
剤が、前記処理対象土壌に対して、カルシウムイオンを
供給可能であると、前記カルシウムイオンが、前記触媒
由来の金属イオンより前記処理対象土壌の陽イオン交換
座に吸着し易いので、前記陽イオン交換座への前記触媒
の吸着を抑制することが可能である。更に、前記カルシ
ウムイオンは、前記触媒由来の金属イオンよりリン酸に
対する反応性が高いので、前記リン酸と反応して難溶性
の塩を形成して、前記触媒と前記リン酸との結合をも阻
害することができる。従って、前記処理対象土壌に供給
された前記触媒を、触媒機能発現可能な形態で保持する
ことができるので、前記有機物の分解効率を高めるの
に、特に好適である。
According to a fourth aspect of the present invention, when the auxiliary agent is capable of supplying calcium ions to the soil to be treated, the calcium ions are treated more efficiently than metal ions derived from the catalyst. Since the catalyst is easily adsorbed to the cation exchange site of the target soil, it is possible to suppress the adsorption of the catalyst to the cation exchange site. Furthermore, since the calcium ion has higher reactivity to phosphoric acid than the metal ion derived from the catalyst, the calcium ion reacts with the phosphoric acid to form a sparingly soluble salt, and also binds the catalyst to the phosphoric acid. Can be inhibited. Therefore, the catalyst supplied to the soil to be treated can be maintained in a form capable of expressing a catalytic function, which is particularly suitable for increasing the efficiency of decomposing the organic matter.

【0011】請求項5に記載されているように、前記過
酸化水素を用いた処理前に、前記処理対象土壌に、前記
有機物を可溶化する界面活性剤を添加すると、前記有機
物を可溶化することができ、続いて前記触媒の作用によ
り過酸化水素から前記ヒドロキシラジカルが生成したと
きに、このヒドロキシラジカルと前記有機物との接触が
容易となるので、前記有機物の酸化分解を促進すること
ができる。ここで、前記界面活性剤としては、構造式4
−(C8 17)C6 4 O(CH 2 CH2 O)11・CH
2 CH2 OHで表わされる界面活性剤である「Igep
al CA−720」(アルドリッチ・ケミカル・カン
パニー社から入手可能)が、好適である。
According to a fifth aspect of the present invention,
Before the treatment with hydrogen oxide, the soil to be treated is
When a surfactant that solubilizes organic substances is added,
Can be solubilized, and subsequently by the action of the catalyst
That the hydroxyl radical was generated from hydrogen peroxide
The contact between the hydroxyl radical and the organic substance
Promote the oxidative decomposition of the organic matter
Can be. Here, as the surfactant, structural formula 4
− (C8H17) C6HFourO (CH TwoCHTwoO)11・ CH
TwoCHTwo“Igep,” a surfactant represented by OH
al CA-720 ”(Aldrich Chemical Can
(Available from Pany) is preferred.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。有機物を含む処理対象土壌に前記助剤、過酸化水
素(例えば、過酸化水素水)、触媒を添加する方法とし
ては、前記処理対象土壌の表面から散布しても良く、ス
ラリー法により混和しても良い。また、前記処理対象土
壌中に供給管を張り巡らせて、この供給管から前記助
剤、過酸化水素、触媒を供給可能としても良い。また、
この他にも、従来の土壌浄化方法に適用可能な添加方法
を適用することができる。前記助剤、過酸化水素、触媒
の供給順序としては、前記過酸化水素による処理前、即
ち、前記触媒の働きにより前記過酸化水素から前記ヒド
ロキシラジカルを発生させる前の段階で、前記触媒を、
その活性を発揮可能な形態とすることができれば、特に
制限はない。従って、前記触媒と前記過酸化水素の添加
順序は同時でも良く、またどちらかを前後にして添加し
ても良いが、これらの大多数が接触して前記ヒドロキシ
ラジカルを発生させる前に、前記助剤を前記処理対象土
壌に添加する必要がある。よって、この助剤に含まれる
陽イオンが前記陽イオン交換座に十分に吸着する、又は
前記陽イオンが前記リン酸の反応部位に結合して難溶性
の塩を十分に形成するまでの時間を確保するため、前記
助剤を添加してから、前記触媒と前記過酸化水素とを反
応させるまでの間、1〜7日間程度放置することが好ま
しい。このようにすると、前記触媒が触媒作用を発揮可
能な形態で前記処理対象土壌に存在するので、前記過酸
化水素から効率よく前記ヒドロキシラジカルを発生させ
ることができ、前記難溶性有機物が効率よく酸化分解さ
れる。また、このときの前記助剤の添加量は、前記助剤
に含まれる前記陽イオンが50mM/g乾土以上となる
ようにすることが好ましい。ここで、前記陽イオンとし
ては、カルシウムイオンが、前記触媒と比べて前記陽イ
オン交換座に対して親和性が高く、また、前記触媒と比
べて前記リン酸とも容易に反応して難溶性の塩を形成し
易いので好ましい。
Embodiments of the present invention will be described below. As a method of adding the auxiliary agent, hydrogen peroxide (for example, hydrogen peroxide solution), and a catalyst to the soil to be treated containing organic matter, the method may be applied by spraying from the surface of the soil to be treated or by mixing with a slurry method. Is also good. Further, a supply pipe may be stretched around the soil to be treated, and the auxiliary agent, hydrogen peroxide, and catalyst may be supplied from the supply pipe. Also,
In addition, an addition method applicable to a conventional soil purification method can be applied. As the supply order of the auxiliary agent, hydrogen peroxide, and the catalyst, before the treatment with the hydrogen peroxide, that is, at the stage before generating the hydroxyl radical from the hydrogen peroxide by the action of the catalyst,
There is no particular limitation as long as the form can exhibit its activity. Therefore, the order of addition of the catalyst and the hydrogen peroxide may be simultaneous or they may be added before or after any one of them. It is necessary to add an agent to the soil to be treated. Therefore, the time required for the cations contained in this auxiliary agent to be sufficiently adsorbed to the cation exchange site or for the cations to bind to the reaction site of the phosphoric acid sufficiently to form a poorly soluble salt is reduced. In order to ensure this, it is preferable to leave the mixture for about 1 to 7 days after the addition of the auxiliary agent until the reaction between the catalyst and the hydrogen peroxide. In this case, the catalyst is present in the soil to be treated in a form capable of exerting a catalytic action, so that the hydroxyl radical can be efficiently generated from the hydrogen peroxide, and the hardly soluble organic substance is efficiently oxidized. Decomposed. In addition, it is preferable that the amount of the auxiliary added at this time is such that the cation contained in the auxiliary is 50 mM / g or more in dry soil. Here, as the cation, calcium ion has a higher affinity for the cation exchange site than the catalyst, and also easily reacts with the phosphoric acid as compared with the catalyst to have a poor solubility. It is preferable because a salt is easily formed.

【0013】なお、前記難溶性有機化合物を可溶化し
て、前記ヒドロキシラジカルが接近容易になるように、
前記ヒドロキシラジカルを発生させる前の段階で、前記
有機物を可溶化する界面活性剤を、前記処理対象土壌に
対して、前記同様の方法で添加しても良い。
The solubilized organic compound is solubilized so that the hydroxyl radical can be easily accessed.
Before the generation of the hydroxyl radical, a surfactant that solubilizes the organic matter may be added to the soil to be treated in the same manner as described above.

【0014】ここで、前記酸化分解処理を施した処理対
象土壌には、前記有機物の分解産物が残留するわけであ
るが、最終的には、前記分解産物は、前記処理対象土壌
に土着の微生物により分解され、自然界に遍在する化合
物に変換される。また、前記分解産物のうち、前記土着
性微生物によっては分解困難な化合物は、これを分解可
能な微生物を添加(散布、混和)することによって、前
記土着性微生物が資化可能な物質にまで分解(変換)す
ることができる。
Here, the decomposition product of the organic matter remains in the soil to be treated after the oxidative decomposition treatment, and finally, the decomposition product is a microorganism indigenous to the soil to be treated. And is converted into a compound ubiquitous in nature. In addition, among the decomposition products, compounds that are difficult to decompose by the indigenous microorganisms can be decomposed into substances that the indigenous microorganisms can assimilate by adding (spraying and mixing) microorganisms capable of decomposing the compound. (Conversion).

【0015】[0015]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。実施例1 アセトニトリルと蒸留水を1:1で混和した液5ml
に、前記有機物としてベンゾ(a)ピレンを100mg
/Lとなるように溶解した溶液を調製した。市街地にて
採取した前記CEC及びリン酸含有量が高い土壌2g
を、前記溶液と混和して、模擬土壌Aを得た。この模擬
土壌Aに、前記助剤として、アンモニウムイオン(塩化
アンモニウム)又はカルシウムイオン(塩化カルシウ
ム)を、0mM(従来例)〜100mM/g土壌となる
ように添加して、15時間静置した。この後、触媒とし
ての鉄イオンを含む硫酸第一鉄七水和物 (FeSO4
・7H2 O)を400mg/Lとなるように、前記模擬
土壌Aに添加し、更に過酸化水素水を過酸化水素濃度が
0.3重量%となるように添加した。この模擬土壌Aを
24時間放置した後の前記ベンゾ(a)ピレンの含有量
を測定した結果を、図1に示す。なお、前記ベンゾ
(a)ピレンの定量は、逆相高速液体クロマトグラフィ
ー(HPLC)によって行なった。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 5 ml of a 1: 1 mixture of acetonitrile and distilled water
100 mg of benzo (a) pyrene as the organic substance
/ L was prepared by dissolving the solution. 2g of soil with high CEC and phosphoric acid content collected in urban area
Was mixed with the above solution to obtain a simulated soil A. To this simulated soil A, ammonium ion (ammonium chloride) or calcium ion (calcium chloride) was added as the auxiliary agent so that the soil became 0 mM (conventional example) to 100 mM / g soil, and the mixture was allowed to stand for 15 hours. Thereafter, ferrous sulfate heptahydrate containing iron ions as a catalyst (FeSO 4
7H 2 O) was added to the simulated soil A so as to be 400 mg / L, and hydrogen peroxide solution was further added so that the hydrogen peroxide concentration became 0.3% by weight. FIG. 1 shows the result of measuring the content of the benzo (a) pyrene after leaving the simulated soil A for 24 hours. The benzo (a) pyrene was quantified by reversed-phase high performance liquid chromatography (HPLC).

【0016】図1から明らかなように、前記陽イオンを
添加しなかった従来例では、前記ベンゾ(a)ピレンは
20%程度しか分解されていなかった。これに対して、
前記2種の陽イオンのうち、何れかを添加することによ
って、前記溶液に溶解した(可溶化した)前記ベンゾ
(a)ピレンの分解率が高まり、特にカルシウムイオン
の添加により約60%の分解率が得られ、効果が高いこ
とが明らかとなった。そして、前記分解率の向上は、カ
ルシウムイオンの添加にあっては、50mM/g土壌以
上添加してもほとんど変化せず、アンモニウムイオンに
あっては、100mM/g土壌添加してもなお分解率は
増加傾向にあり、この濃度以上のアンモニウムイオンの
添加により更なる効果が見込まれる。
As is clear from FIG. 1, in the conventional example in which the cation was not added, the benzo (a) pyrene was decomposed only by about 20%. On the contrary,
The addition of either of the two cations increases the decomposition rate of the benzo (a) pyrene dissolved (solubilized) in the solution, and in particular, the addition of calcium ions leads to the decomposition of about 60%. Rate was obtained, and it became clear that the effect was high. The improvement of the decomposition rate is hardly changed even when adding 50 mM / g soil or more in the case of adding calcium ions, and the decomposition rate is not changed even when adding 100 mM / g soil in the case of ammonium ions. Tends to increase, and further effects can be expected by adding ammonium ions at or above this concentration.

【0017】実施例2 アセトニトリルと蒸留水を1:1で混和した液5ml
に、前記有機物としてベンゾ(a)ピレンを100mg
/Lとなるように溶解した溶液を調製した。市街地にて
採取した前記CEC及びリン酸含有量が高い土壌1g
を、前記溶液と混和して、模擬土壌Bを得た。前記模擬
土壌Bに、前記助剤として、塩化マグネシウム、硝酸ア
ンモニウム、塩化カリウム、又は塩化カルシウムを、夫
々5mMになるように添加して、7時間静置した。この
後、夫々の前記模擬土壌Bに、前記硫酸第一鉄七水和物
を400mg/Lとなるように添加し、更に過酸化水素
が0.3重量%となるように、過酸化水素水を添加し
た。なお、対照(従来例)として、前記模擬土壌Bに、
前記助剤を添加しなかった以外は同様に処理したものを
準備した。これらの模擬土壌Bを24時間放置した後の
前記ベンゾ(a)ピレンの含有量を測定した結果を、図
2に示す。
Example 2 5 ml of a 1: 1 mixture of acetonitrile and distilled water
100 mg of benzo (a) pyrene as the organic substance
/ L was prepared by dissolving the solution. 1g of soil with high CEC and phosphoric acid content collected in urban area
Was mixed with the above solution to obtain a simulated soil B. Magnesium chloride, ammonium nitrate, potassium chloride, or calcium chloride was added to the simulated soil B as the auxiliary agent to a concentration of 5 mM, and the mixture was allowed to stand for 7 hours. Thereafter, to each of the simulated soils B, the ferrous sulfate heptahydrate was added so as to have a concentration of 400 mg / L, and a hydrogen peroxide solution was further added so that the hydrogen peroxide was 0.3% by weight. Was added. In addition, as a control (conventional example), in the said simulated soil B,
What was processed similarly except not having added the said auxiliary agent was prepared. The result of measuring the content of the benzo (a) pyrene after leaving these simulated soils B for 24 hours is shown in FIG.

【0018】図2から明らかなように、従来例では、前
記ベンゾ(a)ピレンの分化率は33%程度であった。
一方、前記助剤として、塩化マグネシウム、硝酸アンモ
ニウム、塩化カリウム、又は塩化カルシウムを添加した
場合、前記ベンゾ(a)ピレンの分解率は、夫々42、
42、44、47%程度にまで上昇しており、マグネシ
ウムイオン、アンモニウムイオン、カリウムイオン、又
はカルシウムイオンを供給可能な助剤を添加することに
よって、前記ベンゾ (a)ピレンの分解率が向上する
ことがわかった。なお、本実施例においても、カルシウ
ムイオンの添加により得られる効果が一番高かった。
As apparent from FIG. 2, in the conventional example, the differentiation rate of the benzo (a) pyrene was about 33%.
On the other hand, when magnesium chloride, ammonium nitrate, potassium chloride, or calcium chloride is added as the auxiliary, the decomposition rate of the benzo (a) pyrene is 42, respectively.
The decomposition rate of the benzo (a) pyrene is improved by adding an auxiliary agent capable of supplying magnesium ions, ammonium ions, potassium ions, or calcium ions. I understand. In this example, the effect obtained by adding calcium ions was the highest.

【0019】実施例3 市街地にて採取した前記CEC及びリン酸含有量が高い
土壌1gに、前記有機物としてベンゾ(a)ピレンを1
重量%となるように吸着させて、模擬土壌Cを得た。前
記模擬土壌Cに、蒸留水5mlを添加し、続いて界面活
性剤としてIgepal CA−720(アルドリッチ
・ケミカル・カンパニー製)を0〜1.0重量%添加し
た。この後、夫々の前記模擬土壌Cに、前記硫酸第一鉄
七水和物を400mg/Lとなるように添加し、更に過
酸化水素が0.3重量%となるように、過酸化水素水を
添加した。これらの模擬土壌Cを3.5日間放置した後
の前記ベンゾ(a)ピレンの含有量を測定した結果を、
図3に示す。
Example 3 1 g of soil having a high content of CEC and phosphoric acid collected in an urban area was mixed with 1 benzo (a) pyrene as the organic substance.
Simulated soil C was obtained by adsorbing so as to obtain a weight%. 5 ml of distilled water was added to the simulated soil C, followed by 0 to 1.0% by weight of Igepal CA-720 (manufactured by Aldrich Chemical Company) as a surfactant. Thereafter, to each of the simulated soils C, the ferrous sulfate heptahydrate was added so as to have a concentration of 400 mg / L, and hydrogen peroxide solution was further added so that the hydrogen peroxide was 0.3% by weight. Was added. The results of measuring the content of the benzo (a) pyrene after leaving these simulated soils C for 3.5 days are as follows:
As shown in FIG.

【0020】図3から明らかなように、前記界面活性剤
を添加しなかった場合、前記ベンゾ(a)ピレンの分解
率は約3%にしか過ぎなかった。これは、前記ベンゾ
(a)ピレンが水に溶け難いために、ヒドロキシラジカ
ルとの接触が起こり難いためであると考えられる。一
方、前記界面活性剤を添加した場合には、前記ベンゾ
(a)ピレンの分解率は、44%まで上昇した。このこ
とから、前記有機物が芳香族化合物等の水に難溶性の物
質であるときには、前記界面活性剤により可溶化するこ
とによって、その分解効率が向上することがわかる。
As apparent from FIG. 3, when the surfactant was not added, the decomposition rate of the benzo (a) pyrene was only about 3%. This is considered to be because the benzo (a) pyrene is hardly soluble in water, so that contact with a hydroxyl radical hardly occurs. On the other hand, when the surfactant was added, the decomposition rate of the benzo (a) pyrene increased to 44%. This indicates that when the organic substance is a substance that is hardly soluble in water such as an aromatic compound, the decomposition efficiency is improved by solubilization with the surfactant.

【0021】実施例4 市街地にて採取した前記CEC及びリン酸含有量が高い
土壌に、前記有機物としてタールを1重量%となるよう
に吸着させて、模擬土壌Dを得た。前記模擬土壌Dを5
0gとり、これに0〜100g/kg土壌の塩化カルシ
ウム2水和物と10重量%の前記Igepal CA−
720を含む溶液を2ml添加して、よく攪拌した後2
4時間静置した。この後、夫々の前記模擬土壌Dに、前
記硫酸第一鉄七水和物を3重量%となるように添加して
よく攪拌し、更に30重量%過酸化水素水を5ml添加
した。これらの模擬土壌Dを10日間放置した後の前記
タールの含有量を測定した結果を、図4に示す。なお、
前記タールには、芳香環が3〜6個縮合した10種のP
HAが、有機物として含まれており、これらの含有量を
逆相HPLCにより分析し、この結果を環数毎にまとめ
た。
Example 4 A simulated soil D was obtained by adsorbing tar as an organic substance at a concentration of 1% by weight on the soil having a high CEC and phosphoric acid content collected in an urban area. The simulated soil D is 5
0 g of this, 0-100 g / kg soil calcium chloride dihydrate and 10% by weight of the above Igepal CA-
After adding 2 ml of a solution containing 720 and stirring well,
It was left for 4 hours. Thereafter, to each of the simulated soils D, the ferrous sulfate heptahydrate was added so as to be 3% by weight, stirred well, and 5 ml of 30% by weight hydrogen peroxide solution was further added. FIG. 4 shows the result of measuring the content of the tar after leaving the simulated soil D for 10 days. In addition,
The tar contains 10 kinds of Ps in which 3 to 6 aromatic rings are condensed.
HA was contained as an organic substance, and its content was analyzed by reverse-phase HPLC, and the results were summarized for each ring number.

【0022】図4に示すように、前記塩化カルシウムの
添加量の増加に伴なって、前記PAHの分解率が向上
し、3環のPAHにあっては約25%(無添加)から4
5%(100g/kg土壌)、4、5、6環のPAHに
あっては、3%(無添加)から33%(100g/kg
土壌)にまで向上した。特に、5、6環のPAHは従来
法では分解が困難であったが、本発明に係る土壌浄化方
法を適用することによって、効率よく除去することがで
きることが明らかとなった。
As shown in FIG. 4, as the amount of the calcium chloride added increases, the decomposition rate of the PAH increases, and in the case of a three-ring PAH, about 25% (no addition) to 4%.
For 5% (100 g / kg soil), 4, 5, and 6-ring PAH, 3% (no addition) to 33% (100 g / kg soil)
Soil). In particular, it was found that the 5- or 6-ring PAH was difficult to decompose by the conventional method, but could be efficiently removed by applying the soil purification method according to the present invention.

【0023】上記実施例1〜4の結果から、従来法では
効果が得られにくい前記CEC及びリン酸含有量が高い
土壌であっても、本発明に係る土壌浄化方法を用いる
と、効率よく前記有機物を分解除去することができるこ
とがわかる。
From the results of Examples 1 to 4, the soil purification method according to the present invention is effective for the soil having a high CEC and phosphoric acid content, which is difficult to obtain the effect by the conventional method. It can be seen that organic substances can be decomposed and removed.

【0024】実施例5 市街地にて採取した前記CEC及びリン酸含有量が高い
土壌に、主に、アメリカ環境保護局(EPA)により作
成されたEPAスタンダードに含まれる16種のPAH
群を約3700mg/kg土壌となるように添加した模
擬土壌Eを作成した。この模擬土壌Eに、前記触媒とし
ての硫酸第一鉄を0〜560g/kg土壌となるように
添加し、さらに土着性微生物によるPAH分解を促進す
るため、酸素(空気)と栄養分を供給して3週間培養し
た。図5に、硫酸第一鉄の添加量と、前記微生物による
前記PAH群の分解率との関係を表わすグラフを示す。
Example 5 Sixteen kinds of PAHs contained in the EPA standard prepared by the United States Environmental Protection Agency (EPA) were mainly placed on the soil having a high CEC and phosphoric acid content collected in an urban area.
Simulated soil E was prepared by adding the group to about 3700 mg / kg soil. To this simulated soil E, ferrous sulfate as the catalyst was added so as to be 0 to 560 g / kg soil, and oxygen (air) and nutrients were supplied to promote PAH degradation by indigenous microorganisms. Cultured for 3 weeks. FIG. 5 is a graph showing the relationship between the amount of ferrous sulfate added and the rate of degradation of the PAH group by the microorganism.

【0025】図5に示すように、触媒として添加される
硫酸第一鉄の濃度が上昇するほど、前記PAH群の生物
分解が抑制され、その添加量が280g/kg土壌を超
えると、ほとんど微生物による分解が進行しないことが
明らかとなった。従来の土壌浄化方法においては、有機
物の分解効率をあげるために、前記触媒の添加量を増や
さなければならなかったが、前記有機物の酸化分解産物
の生物学的分解が抑制されて、処理対象土壌中に残留す
る恐れがあった。しかし、本法にあっては、前記触媒の
添加量を削減することによって、ヒドロキシラジカルに
よる有機物の酸化分解の後処理として、生物的処理を導
入可能であり、前記酸化分解産物をさらに低分子化して
普遍的に存在する有機物あるいは二酸化炭素と窒素ガス
にまで分解して、高度に土壌性状を改質することが可能
となる。
As shown in FIG. 5, as the concentration of ferrous sulfate added as a catalyst increases, the biodegradation of the PAH group is suppressed, and when the added amount exceeds 280 g / kg soil, almost no microorganisms are added. It was clarified that decomposition did not progress. In the conventional soil purification method, the amount of the catalyst added had to be increased in order to increase the decomposition efficiency of organic substances.However, biological decomposition of oxidative decomposition products of the organic substances was suppressed, and There was a risk of remaining inside. However, in the present method, by reducing the amount of the catalyst added, a biological treatment can be introduced as a post-treatment of oxidative decomposition of an organic substance by a hydroxyl radical, and the oxidative decomposition product is further reduced in molecular weight. It can be decomposed into organic substances or carbon dioxide and nitrogen gas that are present universally, and the soil properties can be highly modified.

【0026】〔別実施形態〕以下に別実施形態を説明す
る。本発明に土壌処理方法を用いた土壌改質をさらに効
果的に行なうために、前処理として、土着の微生物に酸
素、栄養分を供給して活性化する、或いは一部の有機物
を分解可能な特定の微生物を添加するなどの微生物処理
を施しても良い。これによって、酸化分解処理に供する
有機物量を削減し、さらに前記有機物の分解効率を向上
させることができる。また、同様の目的から、前記酸化
分解処理の前後に微生物処理を施すこともできる。
[Another Embodiment] Another embodiment will be described below. In order to more effectively perform the soil modification using the soil treatment method according to the present invention, as a pretreatment, oxygen and nutrients are supplied to the indigenous microorganisms to activate them, or a specific substance capable of decomposing some organic substances is provided. Microbial treatment such as addition of the above microorganism may be performed. Thereby, the amount of organic substances to be subjected to the oxidative decomposition treatment can be reduced, and the decomposition efficiency of the organic substances can be further improved. For the same purpose, a microbial treatment can be performed before and after the oxidative decomposition treatment.

【0027】上記実施例において、前記有機物として、
ベンゾ(a)ピレン、PAHを含有するタールを例示し
たが、前記触媒と過酸化水素とにより酸化分解処理を施
すことができる有機物であれば、本発明に係る土壌浄化
方法を適用して分解することが可能である。なお、前記
処理対象土壌への前記触媒、過酸化水素、陽イオン、界
面活性剤の添加量は、上記実施例に限定されず、作用対
象である処理対象土壌の有機物含有量、CEC、リン酸
含有量を考慮して決定することが好ましい。
In the above embodiment, as the organic substance,
Although tar containing benzo (a) pyrene and PAH has been exemplified, any organic substance which can be subjected to oxidative decomposition treatment with the catalyst and hydrogen peroxide is decomposed by applying the soil purification method according to the present invention. It is possible. The amounts of the catalyst, hydrogen peroxide, cations, and surfactants added to the soil to be treated are not limited to those in the above-described embodiment. It is preferable to determine in consideration of the content.

【0028】また、前記実施例において、触媒としての
鉄イオンを供給可能な化合物として硫酸第一鉄を使用し
たが、前記鉄イオンを供給可能な化合物或いは溶液であ
れば、その供給源は限定されるものではない。ここで、
前記2種以上の価数をとり得る金属イオンとしてクロ
ム、チタン、バナジウム、スズ、銅、マンガン、コバル
ト等の金属イオンを供給可能な化合物も、前記触媒の供
給源として使用することができる。
In the above embodiment, ferrous sulfate was used as a compound capable of supplying iron ions as a catalyst. However, as long as the compound or solution can supply the iron ions, the supply source is limited. Not something. here,
Compounds capable of supplying metal ions such as chromium, titanium, vanadium, tin, copper, manganese, and cobalt as the metal ions having two or more valences can also be used as the supply source of the catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】陽イオン添加量と有機物の分解率の関係を表わ
すグラフ
FIG. 1 is a graph showing the relationship between the amount of added cations and the decomposition rate of organic substances.

【図2】添加した陽イオン種と有機物の分解率の関係を
表わすグラフ
FIG. 2 is a graph showing the relationship between the added cationic species and the decomposition rate of organic substances.

【図3】界面活性剤添加量と有機物の分解率の関係を表
わすグラフ
FIG. 3 is a graph showing the relationship between the amount of surfactant added and the decomposition rate of organic substances.

【図4】カルシウム添加量と難分解性PAHの分解率の
関係を表わすグラフ
FIG. 4 is a graph showing the relationship between the amount of calcium added and the decomposition rate of hardly decomposable PAH.

【図5】触媒添加量とPAHの分解率の関係を表わすグ
ラフ
FIG. 5 is a graph showing a relationship between a catalyst addition amount and a PAH decomposition rate.

フロントページの続き Fターム(参考) 2E191 BA11 BA12 BB01 BC01 BC05 BD11 BD13 BD20 4D004 AA41 AB05 AB06 CA15 CA18 CA34 CA36 CA47 CC05 CC09 CC11 CC12 4G069 AA02 BA36A BB10A BB10B BC22A BC31A BC50A BC54A BC58A BC62A BC66A BC67A CA01 CA04 CA10 CA11 Continued on front page F-term (reference) 2E191 BA11 BA12 BB01 BC01 BC05 BD11 BD13 BD20 4D004 AA41 AB05 AB06 CA15 CA18 CA34 CA36 CA47 CC05 CC09 CC11 CC12 4G069 AA02 BA36A BB10A BB10B BC22A BC31A BC50A BC54A BC58 CA67CABCA13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機物を含む処理対象土壌を、2種以上
の価数をとり得る金属イオンである触媒の存在下で過酸
化水素により処理して、前記有機物を分解する土壌浄化
方法において、 前記過酸化水素による処理前に、前記触媒と比して前記
処理対象土壌の陽イオン交換座に吸着容易な陽イオン又
は前記触媒と比してリン酸と容易に反応して生成物を生
じる陽イオンの少なくとも何れか一方を供給可能な助剤
を添加する土壌浄化方法。
1. A soil purification method for treating a soil to be treated containing organic matter with hydrogen peroxide in the presence of a catalyst which is a metal ion capable of taking two or more valences to decompose the organic matter, Prior to treatment with hydrogen peroxide, a cation that is easily adsorbed to the cation exchange site of the soil to be treated as compared with the catalyst or a cation that easily reacts with phosphoric acid as compared to the catalyst to produce a product A soil purification method comprising adding an auxiliary agent capable of supplying at least one of the above.
【請求項2】 有機物を含む処理対象土壌を、2種以上
の価数をとり得る金属イオンである触媒の存在下で過酸
化水素により処理して、前記有機物を分解する土壌浄化
方法において、 前記触媒を添加する前に、前記触媒と比して前記処理対
象土壌の陽イオン交換座に吸着容易な陽イオン又はリン
酸と容易に反応して生成物を生じる陽イオンの少なくと
も何れか一方を供給可能な助剤を添加する土壌浄化方
法。
2. A soil purification method for treating a soil to be treated containing organic matter with hydrogen peroxide in the presence of a catalyst which is a metal ion capable of taking two or more valences to decompose the organic matter, Before adding the catalyst, at least one of a cation which easily reacts with phosphoric acid or a phosphoric acid which easily reacts with phosphoric acid at a cation exchange site of the soil to be treated as compared with the catalyst to produce a product is supplied. A soil purification method with the addition of possible auxiliaries.
【請求項3】 前記過酸化水素による処理後に、さらに
前記有機物の分解産物を分解可能な微生物を添加する請
求項1または2に記載の土壌浄化方法。
3. The soil purification method according to claim 1, wherein after the treatment with the hydrogen peroxide, a microorganism capable of decomposing the decomposition product of the organic substance is further added.
【請求項4】 前記助剤がカルシウムイオンを供給可能
である請求項1〜3の何れか1項に記載の土壌浄化方
法。
4. The soil purification method according to claim 1, wherein the auxiliary is capable of supplying calcium ions.
【請求項5】 前記過酸化水素による処理前に、前記処
理対象土壌に、前記有機物を可溶化する界面活性剤を添
加する請求項1〜4の何れか1項に記載の土壌浄化方
法。
5. The soil purification method according to claim 1, wherein a surfactant that solubilizes the organic matter is added to the soil to be treated before the treatment with the hydrogen peroxide.
JP2000088464A 2000-03-28 2000-03-28 Soil purification method Expired - Fee Related JP4462702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088464A JP4462702B2 (en) 2000-03-28 2000-03-28 Soil purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088464A JP4462702B2 (en) 2000-03-28 2000-03-28 Soil purification method

Publications (2)

Publication Number Publication Date
JP2001269657A true JP2001269657A (en) 2001-10-02
JP4462702B2 JP4462702B2 (en) 2010-05-12

Family

ID=18604339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088464A Expired - Fee Related JP4462702B2 (en) 2000-03-28 2000-03-28 Soil purification method

Country Status (1)

Country Link
JP (1) JP4462702B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019084493A (en) * 2017-11-07 2019-06-06 前田建設工業株式会社 Decomposition purification method of hardly decomposable organic compound
JP2020195970A (en) * 2019-06-04 2020-12-10 ジオテクノス株式会社 Method of purifying contaminated soil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019084493A (en) * 2017-11-07 2019-06-06 前田建設工業株式会社 Decomposition purification method of hardly decomposable organic compound
JP2020195970A (en) * 2019-06-04 2020-12-10 ジオテクノス株式会社 Method of purifying contaminated soil
JP7267112B2 (en) 2019-06-04 2023-05-01 ジオテクノス株式会社 Method for remediation of contaminated soil

Also Published As

Publication number Publication date
JP4462702B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
Tran et al. Synergistic effects of biogenic manganese oxide and Mn (II)-oxidizing bacterium Pseudomonas putida strain MnB1 on the degradation of 17 α-ethinylestradiol
Pereira et al. Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction
Zhang et al. Enhanced ferrate (VI)) oxidation of sulfamethoxazole in water by CaO2: The role of Fe (IV) and Fe (V
Wu et al. Anoxic and oxic removal of humic acids with Fe@ Fe2O3 core–shell nanowires: A comparative study
Zhang et al. Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide
Xie et al. Heterogeneous fenton-like degradation of amoxicillin using MOF-derived Fe0 embedded in mesoporous carbon as an effective catalyst
Mishra et al. Synthesis of calcite-based bio-composite biochar for enhanced biosorption and detoxification of chromium Cr (VI) by Zhihengliuella sp. ISTPL4
Xiong et al. A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems
He et al. Mechanism of efficient remediation of U (VI) using biogenic CMC-FeS complex produced by sulfate-reducing bacteria
CA2776869A1 (en) Method for oxidising organic compounds
Sun et al. The formation of• OH with Fe-bearing smectite clays and low-molecular-weight thiols: Implication of As (III) removal
US5468628A (en) Compounds and methods for generating oxygen and free radicals used in general oxidation and reduction reactions
Cheng et al. Molybdenum disulfide co-catalysis boosting nanoscale zero-valent iron based Fenton-like process: performance and mechanism
WO2006062803A2 (en) Enhanced oxidation process for removal of water and soil contaminants
WO2020028149A1 (en) Compositions and methods for removing chlorinated hydrocarbons
Peng et al. Degradation of 2, 2′, 4, 4′-Tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1
Xie et al. Insight into n-CaO2/SBC/Fe (II) Fenton-like system for glyphosate degradation: pH change, iron conversion, and mechanism
Mora et al. Treatment of PAH-contaminated soil by persulfate: a review
Yu et al. Investigating adsorption mechanism and surface complex formation modeling for aqueous sulfadiazine bonding on Fe/Mn binary oxides
Ambaye et al. Treatment of petroleum hydrocarbon contaminated soil by combination of electro-Fenton and biosurfactant-assisted bioslurry process
Fukushima et al. Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra (p-sulfophenyl) porphineiron (III) and hydroxypropyl-β-cyclodextrin
CN113072164A (en) Activated carbon for enhancing Fenton-like reaction removal efficiency and preparation and use methods thereof
JP4462702B2 (en) Soil purification method
Do et al. Insights into heterogeneous Fenton-like systems catalyzed by novel magnetic yolk-shell structures for the removal of acetaminophen from aquatic environments
Chen et al. A composite Fe–C/layered double oxides (Fe–C/LDO) carrier fabrication and application for enhanced removal of nitrate and phosphate from polluted water with a low carbon/nitrogen ratio

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees