JP2001269501A - Film-like lithium adsorbing material, method for manufacturing the same and lithium recovering method using the same - Google Patents

Film-like lithium adsorbing material, method for manufacturing the same and lithium recovering method using the same

Info

Publication number
JP2001269501A
JP2001269501A JP2000085880A JP2000085880A JP2001269501A JP 2001269501 A JP2001269501 A JP 2001269501A JP 2000085880 A JP2000085880 A JP 2000085880A JP 2000085880 A JP2000085880 A JP 2000085880A JP 2001269501 A JP2001269501 A JP 2001269501A
Authority
JP
Japan
Prior art keywords
lithium
film
adsorbing material
adsorbing
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000085880A
Other languages
Japanese (ja)
Other versions
JP3646156B2 (en
Inventor
Kenta Oi
健太 大井
Hirobumi Kano
博文 加納
Yoshitaka Miyai
良孝 宮井
Ramesh Chitorakaa
ラメシュ チトラカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000085880A priority Critical patent/JP3646156B2/en
Publication of JP2001269501A publication Critical patent/JP2001269501A/en
Application granted granted Critical
Publication of JP3646156B2 publication Critical patent/JP3646156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive film-like lithium adsorbent having selective adsorbability of lithium, having large adsorbing capacity and high adsorbing speed and stable in an aqueous solution, and a lithium recovering method using the same. SOLUTION: Powdery particles of a lithium adsorbable substance are dispersed in an amphiphatic solvent, in which a water insoluble organic polymeric compound is dissolved, and the prepared dispersion is molded into a film shape and, subsequently, solvent substitution is performed to manufacture a film-like lithium adsorbing material. This film-like lithium adsorbing material is used to recover lithium from a lithium-containing aqueous solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れたリチウムに
対する選択吸着性をもち、吸着容量及び吸着速度が大き
く、水溶液中で安定な膜状リチウム吸着材料、その製造
方法及びこのものを用いて水溶液中のリチウムを効果的
に回収する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film-shaped lithium adsorbing material having excellent selective adsorption to lithium, having a large adsorption capacity and a high adsorption speed, and being stable in an aqueous solution, a method for producing the same, and an aqueous solution using the same. The present invention relates to a method for effectively recovering lithium therein.

【0002】[0002]

【従来の技術】近年、リチウムは、例えば、セラミック
ス、グリース、空調用冷媒、医薬品、電池などの原料と
して使用されており、また将来は、大容量電池、アルミ
ニウム合金材料、核融合燃料などに用いられる重要な物
質として注目されている。しかるに、我が国において
は、リチウム鉱石資源がなく、リチウム金属やその化合
物は全量輸入しているのが実状である。
2. Description of the Related Art In recent years, lithium has been used as a raw material for, for example, ceramics, grease, refrigerants for air conditioning, pharmaceuticals, batteries, and the like. In the future, lithium will be used for large-capacity batteries, aluminum alloy materials, nuclear fusion fuels, and the like. Is attracting attention as an important substance. However, Japan does not have lithium ore resources and imports all lithium metal and its compounds.

【0003】一方、海水、地熱水、温泉水の中には微量
ながらリチウムが含まれていることから、以前よりリチ
ウムの供給源として注目されていたが、希薄濃度のリチ
ウムを効率よく回収する技術が見出されていないため、
海水からリチウムを採取する方法はこれまで実用化され
ていない。
On the other hand, since seawater, geothermal water and hot spring water contain a small amount of lithium, they have been attracting attention as a supply source of lithium for a long time. Because no technology has been found,
A method for extracting lithium from seawater has not been put to practical use.

【0004】ところで、希薄溶液から金属を回収する一
般的な方法としては、共沈法、蒸発法、吸着法などが知
られているが、共沈法や蒸発法は効率や消費エネルギー
の点で工業的に実施するには大きな問題があるため、吸
着法が最も現実的であるとされている。
[0004] By the way, as a general method of recovering a metal from a dilute solution, a coprecipitation method, an evaporation method, an adsorption method and the like are known, but the coprecipitation method and the evaporation method are in terms of efficiency and energy consumption. The adsorption method is considered to be the most practical because of the great problems of industrial implementation.

【0005】したがって、海水からリチウムを回収する
場合にも、高い選択率でリチウムを吸着することがで
き、化学的に安定な吸着材料の開発が進められ、これま
で、加熱処理したリチウム含有マンガン酸化物の酸処理
物やマグネシウム含有マンガン−アルミニウム複合酸化
物の加熱処理物からマグネシウムを酸で溶出したものな
どをリチウム吸着剤として用いることが提案されている
(特開昭61−171535号公報、特開昭63−62
546号公報)。
[0005] Therefore, even when recovering lithium from seawater, development of a chemically stable adsorbent capable of adsorbing lithium with a high selectivity has been promoted, and a heat-treated lithium-containing manganese oxide has been hitherto developed. It is proposed to use, as a lithium adsorbent, an acid-treated product or a product obtained by eluted magnesium with an acid from a heat-treated product of a magnesium-containing manganese-aluminum composite oxide (Japanese Patent Application Laid-Open No. 61-171535; Kaisho 63-62
546).

【0006】しかしながら、これらの物質は、リチウム
吸着剤としての性能はかなり高いが、いずれも粉末状で
あるため、海水の流速が大きい場所で使用すると、急速
に逸散し、大量に消失するという欠点がある。
[0006] However, although these substances have considerably high performance as lithium adsorbents, all of them are powdery, so that when they are used in places where the flow rate of seawater is high, they quickly escape and disappear in large quantities. There are drawbacks.

【0007】したがって、通常は、粒状に成形し、カラ
ムに充填して使用されるが、このような方法では、十分
な圧力差が得られる流れの場合は、比較的円滑に海水が
通過するが、小さい圧力差しか得られない流れの場合に
は、充填層における粒子間の通水抵抗が大きくて海水が
通過しにくく、リチウムの吸着効率が低下するのを免れ
ない。
[0007] Therefore, it is usually used after being formed into granules and packed in a column. In such a method, in the case of a flow in which a sufficient pressure difference is obtained, seawater passes relatively smoothly. In the case of a flow in which only a small pressure can be obtained, the water flow resistance between particles in the packed bed is large, so that seawater is difficult to pass, and the adsorption efficiency of lithium is inevitably reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明は、圧力差の小
さい海水の流れにおいても、海水が円滑に通過すること
ができ、リチウム吸着性物質と接触して、海水中のリチ
ウムが効率よくこれに吸着されるようなリチウム吸着材
料を提供することを目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the problem that seawater can pass smoothly even in a flow of seawater with a small pressure difference, and the lithium in the seawater can be efficiently removed by contact with a lithium-adsorbing substance. The object of the present invention is to provide a lithium-adsorbing material that can be adsorbed on a substrate.

【0009】[0009]

【課題を解決するための手段】本発明者らは、従来の粒
状リチウム吸着材料の欠点を克服し、海水中のリチウム
の回収を効率よく行い得るリチウム吸着材料を開発する
ために鋭意研究を重ねた結果、リチウム吸着性物質粉末
は、特殊な手段で膜状に成形し得ること及びこの膜状の
リチウム吸着材料を用いれば、前記の目的を達成しうる
ことを見出し、この知見に基づいて本発明をなすに至っ
た。
Means for Solving the Problems The present inventors have made intensive studies to overcome the drawbacks of the conventional granular lithium adsorbing material and to develop a lithium adsorbing material capable of efficiently recovering lithium in seawater. As a result, it has been found that the lithium-adsorbing substance powder can be formed into a film by a special means, and that the above object can be achieved by using this film-shaped lithium-adsorbing material. Invented the invention.

【0010】すなわち、本発明は、リチウム吸着性物質
粉末粒子を分散した非水溶性有機高分子膜からなる膜状
リチウム吸着材料、非水溶性有機高分子化合物を溶解し
た両親媒性溶媒にリチウム吸着性物質粉末粒子を分散さ
せ、これを膜状に成形したのち、形状を保持したまま溶
媒置換を行って、該両親媒性溶媒を溶出させることを特
徴とする膜状リチウム吸着材料の製造方法、及びリチウ
ム含有水溶液中に、前記の膜状リチウム吸着材料を浸漬
し、該膜状リチウム吸着材料にリチウムを吸着させたの
ち、これを上記水溶液から取り出し、リチウムを脱着す
ることを特徴とするリチウムの回収方法を提供するもの
である。
That is, the present invention provides a film-like lithium adsorbing material comprising a water-insoluble organic polymer film in which lithium-adsorbing substance powder particles are dispersed, Dispersing the active substance powder particles, after forming this into a film shape, performing solvent replacement while maintaining the shape, the method for producing a film-like lithium adsorbing material characterized by eluting the amphiphilic solvent, And immersing the film-like lithium adsorbing material in a lithium-containing aqueous solution, adsorbing lithium on the film-like lithium adsorbing material, removing the lithium from the aqueous solution, and desorbing lithium. It provides a collection method.

【0011】[0011]

【発明の実施の形態】本発明で用いるリチウム吸着性物
質としては、リチウム吸着性能を有し、水溶液中で安定
であって、リチウム吸着剤として利用可能な物質なら
ば、どのようなものも用いることができる。このような
リチウム吸着性物質の例としては、チタン酸リチウムの
酸処理物、無定形水酸化アルミニウム、含水酸化スズ、
含水酸化ジルコニウム、含水酸化チタン、リン酸ビスマ
ス、アンチモン酸スズ、マンガン酸化物、リチウム・マ
グネシウム・マンガン複合酸化物、リチウム・亜鉛・マ
ンガン複合酸化物、チタン・マンガン複合含水酸化物、
チタン・鉄複合含水酸化物、マンガン・鉄複合含水酸化
物、マンガン・アルミニウム複合含水酸化物などを挙げ
ることができる。特に好ましいのは、前記した加熱処理
したリチウム含有マンガン酸化物の酸処理物及びマグネ
シウム含有マンガン・アルミニウム複合酸化物の加熱処
理物を酸で抽出処理したものである。これらのリチウム
吸着性物質は、単独で用いてもよいし、2種以上混合し
て用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION As the lithium-adsorbing substance used in the present invention, any substance which has lithium-adsorbing ability, is stable in an aqueous solution, and can be used as a lithium adsorbent is used. be able to. Examples of such a lithium-adsorbing substance include acid-treated lithium titanate, amorphous aluminum hydroxide, hydrous tin hydroxide,
Hydrous zirconium oxide, hydrous titanium oxide, bismuth phosphate, tin antimonate, manganese oxide, lithium / magnesium / manganese composite oxide, lithium / zinc / manganese composite oxide, titanium / manganese composite hydrous oxide,
Titanium / iron composite hydrated oxide, manganese / iron composite hydrated oxide, manganese / aluminum composite hydrated oxide, and the like can be given. Particularly preferred are those obtained by subjecting the heat-treated lithium-containing manganese oxide and the magnesium-containing manganese-aluminum composite oxide which have been subjected to the heat treatment to an extraction treatment with an acid. These lithium adsorbing substances may be used alone or in combination of two or more.

【0012】本発明においては、これらのリチウム吸着
性物質は、分散性を高めるために、粒径100μm以下
の粉末として用いるのが好ましいが、所望ならば目的と
する膜状リチウム吸着材料の膜厚を超えない範囲で、さ
らに大きい粒径のものを用いることもできる。
In the present invention, these lithium-adsorbing substances are preferably used as a powder having a particle size of 100 μm or less in order to enhance dispersibility. Can be used as long as it does not exceed the range.

【0013】次に、本発明において、前記のリチウム吸
着性物質粉末を分散させるマトリックスとして、有機高
分子化合物を用いる。この有機高分子化合物は、両親媒
性溶媒に溶解し、水溶液中で不溶なものであればよく、
特に制限はない。このような有機高分子化合物の例とし
ては、ポリ塩化ビニル、ポリアクリロニトリル、アセチ
ルセルロースなどを挙げることができる。この有機高分
子化合物は単独で用いてもよいし、2種以上混合して用
いてもよい。
Next, in the present invention, an organic polymer compound is used as a matrix in which the above-mentioned lithium adsorbing substance powder is dispersed. This organic polymer compound may be dissolved in an amphiphilic solvent and may be insoluble in an aqueous solution.
There is no particular limitation. Examples of such organic polymer compounds include polyvinyl chloride, polyacrylonitrile, acetylcellulose and the like. This organic polymer compound may be used alone or in combination of two or more.

【0014】前記のリチウム吸着性物質と有機高分子化
合物とは、重量比3:7ないし9:1、好ましくは7:
3ないし8:2の割合で用いられる。これよりもリチウ
ム吸着性物質の量が少ないと、リチウムに対する吸着性
能が低くなるし、またこれよりも有機高分子化合物の量
が少ないと得られる膜の強度が低下する。
The above-mentioned lithium-adsorbing substance and the organic polymer compound are in a weight ratio of 3: 7 to 9: 1, preferably 7: 9.
It is used in a ratio of 3 to 8: 2. If the amount of the lithium-adsorbing substance is smaller than this, the adsorption performance for lithium decreases, and if the amount of the organic polymer compound is smaller than this, the strength of the obtained film decreases.

【0015】本発明の膜状リチウム吸着材料の膜厚とし
ては、リチウム吸着性や海水の透過速度、膜の強度など
を考慮すると0.1〜3mm程度が望ましいが、所望な
らばより薄くすることもできるし、またより厚くするこ
ともできる。
The film thickness of the film-like lithium adsorbing material of the present invention is desirably about 0.1 to 3 mm in consideration of the lithium adsorbing property, the permeation speed of seawater, the strength of the membrane, and the like. And it can be thicker.

【0016】本発明方法に従えば、この膜状リチウム吸
着材料は、例えば以下のようにして製造することができ
る。すなわち、前記した有機高分子化合物を両親媒性溶
媒に溶解した溶液中へ、前記したリチウム吸着性物質の
所定量を加え、よくかきまぜて懸濁液又はスラリーを調
製する。この際用いる両親媒性溶媒としては、前記の有
機高分子化合物を溶解することができ、しかも水に対し
て混和性を有する溶媒が用いられる。このような溶媒の
例としては、ジメチルホルムアミド、ジメチルスルホキ
シド、テトラヒドロフラン、アセトンなどがある。これ
らは単独で用いてもよいし、また2種以上混合して用い
てもよい。
According to the method of the present invention, this film-like lithium adsorbing material can be produced, for example, as follows. That is, a predetermined amount of the above-mentioned lithium-adsorbing substance is added to a solution in which the above-mentioned organic polymer compound is dissolved in an amphipathic solvent, and the mixture is stirred well to prepare a suspension or slurry. As the amphiphilic solvent used at this time, a solvent that can dissolve the above-mentioned organic polymer compound and has miscibility with water is used. Examples of such solvents include dimethylformamide, dimethylsulfoxide, tetrahydrofuran, acetone and the like. These may be used alone or as a mixture of two or more.

【0017】有機高分子化合物の濃度は、用いる有機高
分子化合物の特性によって異なるが、3〜20重量%程
度が好ましい。また、吸着性物質粉末の添加量は、粉末
の表面積、粒径などによって左右されるが、有機高分子
化合物の重量のおおむね2〜5倍量が望ましい。
The concentration of the organic polymer compound varies depending on the characteristics of the organic polymer compound used, but is preferably about 3 to 20% by weight. The amount of the adsorptive substance powder to be added depends on the surface area, particle size and the like of the powder, but is desirably about 2 to 5 times the weight of the organic polymer compound.

【0018】このようにして調製された懸濁液あるいは
スラリーは、次に懸濁液やスラリーをガラス板など溶媒
に不活性な基板上に展開したのち溶媒を除去して膜状化
する。膜厚としては、使用目的によるリチウム吸着速度
や取り扱いの容易さなどを考慮して適宜選択されるが、
通常は0.1〜3mm程度が望ましい。また、この際の
膜状化は、例えば均一な幅の隙間をもつ容器を滑動して
隙間から適量の懸濁液やスラリーを漏出させて成形する
ことによって行うことができる。
The suspension or slurry thus prepared is then developed on a substrate inert to a solvent such as a glass plate, and then the solvent is removed to form a film. The film thickness is appropriately selected in consideration of the lithium adsorption speed and ease of handling depending on the purpose of use,
Usually, about 0.1 to 3 mm is desirable. Further, the formation of the film at this time can be performed, for example, by sliding a container having a gap having a uniform width to leak an appropriate amount of suspension or slurry from the gap to form the film.

【0019】次に、このようにして得た膜状成形体をそ
のまま水、あるいは水を含む混合溶媒に浸漬することに
より、膜中の両親媒性溶媒を、水と置換して液中に溶出
する。この処理により非水溶性の有機高分子化合物はそ
のまま残り、吸着性物質粉末と有機高分子化合物とから
なる安定な膜が得られる。この浸漬に要する時間は膜厚
に依存するが、通常10分以上、好ましくは1時間以上
である。
Next, the film-like molded body thus obtained is directly immersed in water or a mixed solvent containing water, whereby the amphiphilic solvent in the film is replaced with water and eluted into the liquid. I do. By this treatment, the water-insoluble organic polymer compound remains as it is, and a stable film composed of the adsorptive substance powder and the organic polymer compound is obtained. The time required for the immersion depends on the film thickness, but is usually 10 minutes or more, preferably 1 hour or more.

【0020】このようにして得られた膜状リチウム吸着
材料は十分な強度をもち、通常の使用に耐えることがで
きるが、より膜の機械的強度を高めるために、高強度の
高分子網状体とともに膜状化を行うのが有利である。高
分子網状体としては、ポリエチレン、ポリプロピレンな
どからなるものを用いることができるが、機械的強度が
強く、かつ耐酸性のものであればこれ以外のものを用い
ることもできる。
The film-like lithium adsorbing material thus obtained has sufficient strength and can withstand normal use. However, in order to further increase the mechanical strength of the film, a high-strength polymer network is required. In addition, it is advantageous to form a film. As the polymer network, those made of polyethylene, polypropylene and the like can be used, but other materials having high mechanical strength and acid resistance can also be used.

【0021】このようにして得られた膜状吸着材料を用
いて、リチウムを含む希薄溶液からリチウムを回収する
には、膜状吸着材料を該溶液に浸漬し、溶液中のリチウ
ムと接触させる。その際、複数の膜状吸着材料を一定間
隔で積層し、流れ方向に並べて接触させれば、通水抵抗
が小さくなり、効率的な処理を行うことができる。吸着
したリチウムの脱着は、膜状吸着材料を溶液から取り出
し、酸溶液に浸漬することによって行うことができる。
この際、酸溶液としては、0.05〜3モル/リットル
濃度の塩酸や硫酸などの鉱酸を含む水溶液を用いること
ができるが、脱着効率や膜の安定性などを考慮すると、
酸濃度は0.1〜1モル/リットルの範囲が好ましい。
In order to recover lithium from a dilute solution containing lithium using the thus obtained film-like adsorbent material, the film-like adsorbent material is immersed in the solution and brought into contact with lithium in the solution. At this time, if a plurality of film-like adsorbing materials are stacked at a constant interval and are arranged and contacted in the flow direction, the water flow resistance is reduced, and efficient treatment can be performed. Desorption of the adsorbed lithium can be performed by taking out the film-like adsorbed material from the solution and immersing it in an acid solution.
At this time, as the acid solution, an aqueous solution containing a mineral acid such as hydrochloric acid or sulfuric acid at a concentration of 0.05 to 3 mol / liter can be used, but considering the desorption efficiency and the stability of the film, etc.
The acid concentration is preferably in the range of 0.1 to 1 mol / liter.

【0022】[0022]

【発明の効果】本発明の膜状リチウム吸着材料は、吸着
時の圧力損失が小さく、かつリチウムに対する選択吸着
性に優れ、ナトリウムなどが大量に共存する溶液からで
もリチウムを効率よく回収することができる。また、吸
着速度及び吸着容量が極めて大きく、しかも水溶液中で
安定であり、実用的な吸着材料である。本発明の吸着材
料を用いることにより、海流など圧力差の小さな希薄溶
液からでもリチウムを極めて効率よく経済的に回収する
ことかできる。
The film-like lithium adsorbing material of the present invention has a small pressure loss at the time of adsorption, has excellent selective adsorption to lithium, and can efficiently recover lithium even from a solution containing a large amount of sodium and the like. it can. In addition, the adsorption rate and the adsorption capacity are extremely large, and are stable in an aqueous solution, so that it is a practical adsorption material. By using the adsorption material of the present invention, lithium can be extremely efficiently and economically recovered from a dilute solution having a small pressure difference such as an ocean current.

【0023】[0023]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの例によってなんら限定され
るものではない。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0024】実施例1 ポリ塩化ビニル5gをN,N‐ジメチルホルムアミド6
0mlに溶解してポリ塩化ビニル溶液を調製した。これ
にマンガン酸化物系リチウム吸着剤粉末20gを加え、
よくかきまぜて懸濁液を調製した。この懸濁液を0.5
mmの隙間をもつ容器に入れ、ガラス基板上を滑動させ
て、厚さ0.5mmの膜を作製した。得られた膜を水中
に2時間浸漬し、非水溶性の膜状リチウム吸着材料を得
た。得られた膜状リチウム吸着材料を10cm×10c
m平方に切り、海水に浸漬し、海水を200ml/分の
速度で流し、吸着実験を行った。15日後のリチウム吸
着量は吸着剤1g当り15mgとなった。この結果か
ら、本発明の膜状リチウム吸着材料がリチウムを効率よ
く吸着することが分る。
Example 1 5 g of polyvinyl chloride was added to N, N-dimethylformamide 6
The resultant was dissolved in 0 ml to prepare a polyvinyl chloride solution. 20 g of manganese oxide-based lithium adsorbent powder was added to this,
The suspension was prepared by stirring well. This suspension is added to 0.5
It was placed in a container having a gap of 2 mm and slid on a glass substrate to produce a film having a thickness of 0.5 mm. The obtained film was immersed in water for 2 hours to obtain a water-insoluble film-like lithium adsorbing material. 10 cm × 10 c of the obtained film-like lithium adsorbing material
It was cut into m squares, immersed in seawater, and allowed to flow at a rate of 200 ml / min to perform an adsorption experiment. After 15 days, the lithium adsorption amount was 15 mg per 1 g of the adsorbent. From this result, it is understood that the film-like lithium adsorbing material of the present invention adsorbs lithium efficiently.

【0025】実施例2 ポリ塩化ビニル5gをN,N‐ジメチルホルムアミド6
0mlに溶解し、ポリ塩化ビニル溶液を調製した。これ
にリン酸クロム系リチウム吸着剤粉末20gを加え、よ
くかきまぜて懸濁液を調製した。ガラス基板上に120
メッシュのポリエチレン製高分子網状体を敷き、その上
から懸濁液を塗布し、高分子網状体担持膜を製造した。
得られた膜を水中に2時間浸漬し、非水溶性の膜状リチ
ウム吸着材料を得た。得られた膜状リチウム吸着材料を
10cm×10cm平方に切り、海水を200ml/分
の速度で流し、吸着実験を行った。15日後のリチウム
吸着量は吸着性物質1g当り12mgとなった。この結
果から、本発明の膜状リチウム吸着材料がリチウムを効
率よく吸着することが分る。
Example 2 5 g of polyvinyl chloride was added to N, N-dimethylformamide 6
The solution was dissolved in 0 ml to prepare a polyvinyl chloride solution. 20 g of chromium phosphate-based lithium adsorbent powder was added thereto, and the mixture was stirred well to prepare a suspension. 120 on glass substrate
A mesh polymer network made of polyethylene was laid, and the suspension was applied thereon, thereby producing a polymer network-supporting membrane.
The obtained film was immersed in water for 2 hours to obtain a water-insoluble film-like lithium adsorbing material. The obtained film-like lithium adsorbing material was cut into a square of 10 cm × 10 cm, and seawater was flowed at a rate of 200 ml / min to perform an adsorption experiment. After 15 days, the amount of lithium adsorbed was 12 mg per 1 g of the adsorbent substance. From this result, it is understood that the film-like lithium adsorbing material of the present invention adsorbs lithium efficiently.

【0026】実施例3 実施例1でリチウムを吸着した吸着材料を0.5モル/
リットルの塩酸溶液200ml中に入れ、24時間振と
うした。振とう後、上澄みのリチウム濃度を測定し、リ
チウム脱着率を求めたところ80%となった。このこと
から、該吸着剤は吸着だけでなく脱着も容易に進むこと
が分る。
Example 3 In Example 1, the amount of the lithium-adsorbed adsorbent was 0.5 mol /
The solution was placed in a liter of hydrochloric acid solution (200 ml) and shaken for 24 hours. After shaking, the lithium concentration in the supernatant was measured, and the lithium desorption ratio was determined to be 80%. This indicates that the adsorbent easily proceeds not only in adsorption but also in desorption.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 26/12 C22B 3/00 K (72)発明者 宮井 良孝 香川県高松市林町2217番14 工業技術院四 国工業技術研究所内 (72)発明者 チトラカー ラメシュ 香川県高松市林町2217番14 工業技術院四 国工業技術研究所内 Fターム(参考) 4D017 AA01 BA12 CA04 CB05 CB10 DA01 DB02 DB10 4G066 AA13B AA16B AA18B AA20B AA21B AA23B AA26B AA27B AC13C AC15C BA03 CA45 DA08 DA20 FA03 FA14 FA28 FA37 4K001 AA34 BA24 DB35 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22B 26/12 C22B 3/00 K (72) Inventor Yoshitaka Miyai 2217-14 Hayashi-cho, Takamatsu-shi, Kagawa Industrial Technology In-Shikoku Institute of Industrial Technology (72) Inventor Chitracar Ramesh 22217-14, Hayashi-cho, Takamatsu-shi, Kagawa F-Term in Shikoku Institute of Industrial Technology (Reference) 4D017 AA01 BA12 CA04 CB05 CB10 DA01 DB02 DB10 4G066 AA13B AA16B AA18B AA20B AA21B AA23B AA26B AA27B AC13C AC15C BA03 CA45 DA08 DA20 FA03 FA14 FA28 FA37 4K001 AA34 BA24 DB35

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウム吸着性物質粉末粒子を分散した
非水溶性有機高分子膜からなる膜状リチウム吸着材料。
1. A film-like lithium adsorbing material comprising a water-insoluble organic polymer film in which lithium adsorbing substance powder particles are dispersed.
【請求項2】 非水溶性有機高分子化合物を溶解した両
親媒性溶媒にリチウム吸着性物質粉末粒子を分散させ、
これを膜状に成形したのち、形状を保持したまま溶媒置
換を行って、該両親媒性溶媒を溶出させることを特徴と
する膜状リチウム吸着材料の製造方法。
2. Lithium-adsorbing substance powder particles are dispersed in an amphipathic solvent in which a water-insoluble organic polymer compound is dissolved,
A method for producing a film-like lithium adsorbing material, comprising forming the film into a film, and performing solvent replacement while maintaining the shape to elute the amphiphilic solvent.
【請求項3】 リチウム含有水溶液中に、請求項1記載
の膜状リチウム吸着材料を浸漬し、該膜状リチウム吸着
材料にリチウムを吸着させたのち、これを上記水溶液か
ら取り出し、リチウムを脱着することを特徴とするリチ
ウムの回収方法。
3. The film-like lithium adsorbing material according to claim 1 is immersed in a lithium-containing aqueous solution, and lithium is adsorbed on the film-like lithium adsorbing material. Then, the lithium is adsorbed from the aqueous solution to desorb lithium. A method for recovering lithium.
JP2000085880A 2000-03-27 2000-03-27 Film-like lithium adsorbing material, method for producing the same, and method for recovering lithium using the same Expired - Lifetime JP3646156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000085880A JP3646156B2 (en) 2000-03-27 2000-03-27 Film-like lithium adsorbing material, method for producing the same, and method for recovering lithium using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000085880A JP3646156B2 (en) 2000-03-27 2000-03-27 Film-like lithium adsorbing material, method for producing the same, and method for recovering lithium using the same

Publications (2)

Publication Number Publication Date
JP2001269501A true JP2001269501A (en) 2001-10-02
JP3646156B2 JP3646156B2 (en) 2005-05-11

Family

ID=18602136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000085880A Expired - Lifetime JP3646156B2 (en) 2000-03-27 2000-03-27 Film-like lithium adsorbing material, method for producing the same, and method for recovering lithium using the same

Country Status (1)

Country Link
JP (1) JP3646156B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037125A (en) * 2004-07-22 2006-02-09 Gunma Prefecture Method for recovering metal from acidic bleeding water and resource circulation system
CN100408705C (en) * 2003-04-30 2008-08-06 中国科学院青海盐湖研究所 Nano-filtration method for separating magnesium and enriching lithium from salt lake brine
KR101536961B1 (en) * 2014-12-29 2015-07-16 한국지질자원연구원 Pressurized column device for ion recovery and method for recovering ion using thereof
CN110508234A (en) * 2019-08-07 2019-11-29 湖南雅城新材料有限公司 A kind of aluminium salt type nano fibrous membrane lithium adsorbent and the preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408705C (en) * 2003-04-30 2008-08-06 中国科学院青海盐湖研究所 Nano-filtration method for separating magnesium and enriching lithium from salt lake brine
JP2006037125A (en) * 2004-07-22 2006-02-09 Gunma Prefecture Method for recovering metal from acidic bleeding water and resource circulation system
KR101536961B1 (en) * 2014-12-29 2015-07-16 한국지질자원연구원 Pressurized column device for ion recovery and method for recovering ion using thereof
CN110508234A (en) * 2019-08-07 2019-11-29 湖南雅城新材料有限公司 A kind of aluminium salt type nano fibrous membrane lithium adsorbent and the preparation method and application thereof

Also Published As

Publication number Publication date
JP3646156B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
Afridi et al. Effect of phosphate concentration, anions, heavy metals, and organic matter on phosphate adsorption from wastewater using anodized iron oxide nanoflakes
Kamran et al. Chemically modified activated carbon decorated with MnO2 nanocomposites for improving lithium adsorption and recovery from aqueous media
Allahkarami et al. Removal of cerium from different aqueous solutions using different adsorbents: A review
US7807606B2 (en) High capacity adsorption media and method of producing
Zhu et al. Adsorption of Cd (II) and Pb (II) by in situ oxidized Fe3O4 membrane grafted on 316L porous stainless steel filter tube and its potential application for drinking water treatment
Lim et al. Removal of copper by calcium alginate encapsulated magnetic sorbent
Nguyen et al. Critical evaluation of hybrid metal–organic framework composites for efficient treatment of arsenic–contaminated solutions by adsorption and membrane–separation process
WO2010003267A1 (en) Water treatment system with adsorbent material based on mineral grains for removal of arsenic and methods of production, recycling and use
Raghav et al. Trimetallic oxide entrapped in alginate polymeric matrix employed for adsorption studies of fluoride
Hashemian MnFe2O4/bentonite nano composite as a novel magnetic material for adsorption of acid red 138
Ogata et al. Adsorption of phosphate ion in aqueous solutions by calcined cobalt hydroxide at different temperatures
US20200338526A1 (en) Sorbents from iron-rich and aluminium-rich starting materials
Cheng et al. Review of recently used adsorbents for antimony removal from contaminated water
Ijaz et al. Functionalization of chitosan biopolymer using two dimensional metal-organic frameworks and MXene for rapid, efficient, and selective removal of lead (II) and methyl blue from wastewater
Thomas et al. Application of graphene and graphene compounds for environmental remediation
Ogata et al. Adsorption of phosphate ions from an aqueous solution by calcined nickel-cobalt binary hydroxide
CN111330550A (en) Zr/La co-modified cross-linked chitosan, preparation method and application thereof
Wu et al. Electrified nanohybrid filter for enhanced phosphorus removal from water
JPH0626661B2 (en) Granular lithium adsorbent and lithium recovery method using the same
JP3706842B2 (en) Adsorption method of lithium ion from aqueous solution containing lithium by adsorbent
JP3210956B2 (en) Granular lithium adsorbent and method for producing the same
Jeon et al. Removal of cesium ions from waste solution using sericite incorporated into nickel hexacyanoferrate
US8975207B2 (en) Method for manufacturing adsorptive ball for recovering precious metals and flow through-continuous deionization (FT-CDI) apparatus using the same
JP2001269501A (en) Film-like lithium adsorbing material, method for manufacturing the same and lithium recovering method using the same
Ogata et al. Evaluation of phosphate ion adsorption from aqueous solution by nickel-aluminum complex hydroxides

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040525

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3646156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term