JP2001268583A - Image pickup device and image pickup optical system - Google Patents

Image pickup device and image pickup optical system

Info

Publication number
JP2001268583A
JP2001268583A JP2000075690A JP2000075690A JP2001268583A JP 2001268583 A JP2001268583 A JP 2001268583A JP 2000075690 A JP2000075690 A JP 2000075690A JP 2000075690 A JP2000075690 A JP 2000075690A JP 2001268583 A JP2001268583 A JP 2001268583A
Authority
JP
Japan
Prior art keywords
lens
image pickup
color filter
optical system
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000075690A
Other languages
Japanese (ja)
Inventor
Toyoji Hanzawa
豊治 榛澤
Toshihide Nozawa
敏秀 野沢
Shinichi Mihara
伸一 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2000075690A priority Critical patent/JP2001268583A/en
Priority to US09/612,597 priority patent/US7057659B1/en
Publication of JP2001268583A publication Critical patent/JP2001268583A/en
Priority to US11/400,199 priority patent/US7564497B2/en
Priority to US11/543,856 priority patent/US7432974B2/en
Priority to US11/543,855 priority patent/US7605859B2/en
Priority to US11/545,585 priority patent/US7567288B2/en
Priority to US11/583,059 priority patent/US7602437B2/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical system capable of reproducing a satisfactory image including colors with a simple configuration and especially suitable for making a digital camera high in the number of pixels, low in cost and small in size. SOLUTION: The image pickup device is provided with an electronic image pickup device 3 satisfying the following conditional expression (1) when diagonal length of effective image pickup area is defined as d, a center interval of horizontal pixels is defined as p and having a complementary color filter composed of at least four kinds of color filters, an image pickup optical system 1 having the following spectral characteristics (2), (3) when transmittance of 400 nm is defined as T400, transmittance of 600 nm is defined as T600, transmittance of 700 nm is defined as T700 and guiding a light flux from the side of an object to the electronic image pickup device 3 and a controller 4 for performing a signal processing and an image processing based on output from the electronic image pickup device 3. (1) 1.0×10-4<p/d<6.0×10-4, (2) 8×T700<T600, (3) T400<T600.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、撮像装置及び撮像
光学系に関し、特に、CCD等の電子撮像素子を用いた
撮像装置及び撮像光学系に関するものである。
The present invention relates to an image pickup apparatus and an image pickup optical system, and more particularly to an image pickup apparatus and an image pickup optical system using an electronic image pickup device such as a CCD.

【0002】[0002]

【従来の技術】近年のデジタルカメラの高画素化と低価
格化と小型化が進み、撮像光学系も、高性能化、小型
化、ズーム等の高機能化、低コスト化の要求が高まって
いる。特に高画素化と小型化は、撮像素子の一つ一つの
画素面積を小さくすることが必要になる。これは、単位
面積当たりの撮像素子で光電変換される光量を増やすと
いう要求になる。すなわち、S/N比を有利にしたり、
暗い被写体に対する感度を維持したり、露光時間を短く
するための要求である。
2. Description of the Related Art In recent years, digital cameras have become higher in pixel count, lower in price and smaller in size, and the demand for higher performance, smaller size, higher functions such as zooming, and lower cost of imaging optical systems has increased. I have. In particular, to increase the number of pixels and reduce the size, it is necessary to reduce the area of each pixel of the image sensor. This requires increasing the amount of light photoelectrically converted by the image sensor per unit area. That is, the S / N ratio is made advantageous,
This is a requirement to maintain sensitivity to a dark subject and to shorten the exposure time.

【0003】ところで、カラー画像を得るには、3つ以
上の異なる波長特性の光電変換素子を有するよう、撮像
素子に図2や図3に示したようなフィルター配置のカラ
ーフィルターを配置する。図2は、原色フィルターと呼
ばれるタイプで、赤(R)、緑(G)、青(B)のフィ
ルターからなる。それぞれの波長特性を図4に示す。図
3は、補色フィルターと呼ばれるタイプで、シアン
(C)、マゼンタ(M)、イエロー(Ye )、緑(G)
のフィルターからなる。それぞれの波長特性の一例を図
5に示す。補色フィルターの場合、コントローラ4(図
1)で、次のような処理を行い、 輝度信号 Y=|G+M+Ye +C|*1/4 色信号 R−Y=|(M+Ye )−(G+C)| B−Y=|(M+C)−(G+Ye )| R,G,Bに変換される。
In order to obtain a color image, a color filter having a filter arrangement as shown in FIGS. 2 and 3 is arranged on an image sensor so as to have three or more photoelectric conversion elements having different wavelength characteristics. FIG. 2 shows a type called a primary color filter, which includes red (R), green (G), and blue (B) filters. FIG. 4 shows the respective wavelength characteristics. FIG. 3 shows a type called a complementary color filter, which includes cyan (C), magenta (M), yellow (Y e ), and green (G).
Consisting of filters. FIG. 5 shows an example of each wavelength characteristic. In the case of a complementary color filter, the following processing is performed by the controller 4 (FIG. 1), and a luminance signal Y = | G + M + Ye + C | * 1/4 color signal RY = | (M + Ye )-(G + C) | BY = | (M + C)-(G + Y e ) |

【0004】原色フィルター、補色フィルターの何れも
人の目に感度特性がなく、撮像素子に感度特性のある約
700nm以上の波長の光をカットするIRカットフィ
ルター(赤外カットフィルター)が、光学系に配置され
ている。多くのIRカットフィルターは700nm以上
の波長をカットするため、例えば、図9のように600
nm付近の透過率を劣化させていた。
Neither the primary color filter nor the complementary color filter has sensitivity characteristics to the human eye, and an IR cut filter (infrared cut filter) for cutting light having a wavelength of about 700 nm or more, which has sensitivity characteristics to an image sensor, is an optical system. Are located in Many IR cut filters cut a wavelength of 700 nm or more. For example, as shown in FIG.
The transmittance around nm was degraded.

【0005】原色フィルターは、色を再現するための処
理が容易である。補色フィルターは、R,G,Bに変換
するプロセスが加わり、また、補色フィルターからR,
G,Bに変換される際、青色の波長域(図11では40
0nmから430nm程度の波長域)の入力に対してR
信号(赤の発色をさせる信号)の出力が生まれる。
[0005] The primary color filter is easy to process for reproducing colors. The complementary color filter adds a process of converting to R, G, and B.
When converted into G and B, a blue wavelength range (40 in FIG. 11)
R for an input of about 0 nm to 430 nm).
An output of a signal (a signal that causes red coloring) is generated.

【0006】このため、高画素、高画質のデジタルカメ
ラには、主に原色フィルターが使われている。色収差が
発生し難い撮像装置では、補色フィルターが使われてい
る場合もある。色収差が発生し難いとは、画素の数が少
なく(高画素でなく)、撮影レンズの収差が画質に影響
し難い場合や、Fナンバーを暗くしたり、ズームレンズ
ならばズームレンズの倍率を下げたり、高価であったり
生産性の悪い(例えば蛍石)硝材を用いたり、撮影光学
系に用いるレンズ要素を増やしたり、また、光学系の長
さ等を大きくしたりすることにより、撮影光学系自体の
色収差を小さくする場合である。
[0006] For this reason, high-pixel, high-quality digital cameras mainly use primary color filters. In an imaging device in which chromatic aberration hardly occurs, a complementary color filter may be used. When chromatic aberration is unlikely to occur, the number of pixels is small (not high), and when the aberration of the taking lens is unlikely to affect image quality, or when the F-number is darkened, or when the zoom lens is used, the magnification of the zoom lens is reduced. The use of an expensive or poorly productive (eg, fluorite) glass material, an increase in the number of lens elements used in the imaging optical system, and an increase in the length of the optical system, etc. This is the case where the chromatic aberration of itself is reduced.

【0007】また、原色フィルターは、色を再現するた
めの処理が容易であるが、一つ一つの画素に入る光量が
少ない(一つ一つの画素に入る光の波長域が狭いた
め)。また、像の解像感を決定する大きな要因である緑
色(波長500nmから550nm程度の波長域の光)
に対する感度は、原色フィルターではGにのみあり、こ
のため、原色フィルターは、R,G,Bの画素の比率を
1:2:1とし、像の解像感の決定に大きな影響を与え
る画素の比率を50%とする工夫がされている。
Further, the primary color filter is easy to process for reproducing colors, but has a small amount of light entering each pixel (because the wavelength range of light entering each pixel is narrow). Green (light in a wavelength range of about 500 nm to 550 nm) is a major factor that determines the resolution of an image.
The primary color filter has a sensitivity to G only, and therefore the primary color filter sets the ratio of R, G, and B pixels to 1: 2: 1, and sets the ratio of pixels that greatly influence the determination of image resolution. The ratio is set to 50%.

【0008】一方、高性能化を達成するには、系の受光
感度の持つ波長域全体での結像性能を高くする必要があ
る。ここでは、波長による結像性能の変化を色収差と呼
ぶ。色収差は、一般に、材質毎に波長に対する屈折率の
変化の割合(分散)が異なることを利用して補正され
る。例えば正の焦点距離を持つ光学系の場合、正の屈折
力を持つ光学素子に分散の小さい材質を、負の屈折力を
持つ光学素子に分散の大きい材質を用いて色収差を補正
する。また、前述のように光学素子を組み合わせて色収
差を補正する場合、色収差だけではなく像面全体の結像
性能をも考慮しなければならず、光学素子の枚数を増や
す等の対応をとる。正の焦点距離を有するレンズ群と負
の焦点距離を有するレンズ群を含む複数のレンズ群の間
隔を変化させて全系の焦点距離を変化させるズームレン
ズ系では、さらに複雑な光学素子の組み合わせが必要と
なる。このとき、ガラスやプラスチックの材質で屈折型
光学素子(レンズ)を形成するとき、材質により差があ
るが、長波長から短波長に波長が変化するにつれて屈折
率が高くなり、さらにその変化の程度が激しくなる。
On the other hand, in order to achieve high performance, it is necessary to enhance the imaging performance over the entire wavelength range of the light receiving sensitivity of the system. Here, a change in the imaging performance due to the wavelength is referred to as chromatic aberration. In general, chromatic aberration is corrected using the fact that the rate of change (dispersion) of the refractive index with respect to wavelength differs for each material. For example, in the case of an optical system having a positive focal length, chromatic aberration is corrected by using a material having a small dispersion for an optical element having a positive refractive power and a material having a large dispersion for an optical element having a negative refractive power. When chromatic aberration is corrected by combining optical elements as described above, not only chromatic aberration but also the imaging performance of the entire image plane must be taken into account, and measures such as increasing the number of optical elements are taken. In a zoom lens system that changes the focal length of the entire system by changing the interval between a plurality of lens groups including a lens group having a positive focal length and a lens group having a negative focal length, a more complex combination of optical elements is required. Required. At this time, when a refractive optical element (lens) is formed of glass or plastic material, there is a difference depending on the material, but as the wavelength changes from a long wavelength to a short wavelength, the refractive index increases, and the degree of the change is further increased. Becomes intense.

【0009】ところで、図24は、550nmの波長で
屈折力(焦点距離の逆数)が1となる単レンズを代表的
な硝子材料と超低分散ガラスと呼ばれる材質で構成した
ときの、波長による屈折力の変化を示す図である。ま
た、図25は、500nmを基準にしたとき、一般的な
屈折型光学素子のみからなる光学系の波長に対する後側
焦点位置のずれ量を示す図で、横軸が波長で縦軸がずれ
量である。図24から分かるように、屈折型光学素子
は、普通の材質も超低分散の材質も波長に対するパワー
の変化は同じような傾向であるので、実用的な範囲の材
質よりなる屈折型光学素子で構成された撮像光学系の軸
上色収差は、図25に示すようにV字型になり、2つの
波長でのみ同じ点に結像し、短波長側と長波長側で色収
差が大になる。特に短波長側での色収差の変化は激し
い。この色収差の変化を緩和するために螢石や超低分散
ガラス等のような特殊なガラスを用いることが提案され
ているが、これらの特殊なガラスも図24で示したよう
な特性を持っており、短波長側の色収差の変化を十分少
なくすることは困難である。
FIG. 24 shows the refraction by wavelength when a single lens having a refractive power (reciprocal of the focal length) of 1 at a wavelength of 550 nm is made of a typical glass material and a material called ultra-low dispersion glass. It is a figure showing change of force. FIG. 25 is a diagram showing a shift amount of a rear focal position with respect to a wavelength of an optical system including only a general refraction optical element with reference to 500 nm, where the horizontal axis represents wavelength and the vertical axis represents shift amount. It is. As can be seen from FIG. 24, the refractive optical element is a refractive optical element made of a material within a practical range because the change in power with respect to wavelength is the same for both ordinary materials and ultra-low dispersion materials. The axial chromatic aberration of the configured imaging optical system is V-shaped as shown in FIG. 25, and an image is formed at the same point only at two wavelengths, and the chromatic aberration is large on the short wavelength side and the long wavelength side. In particular, the chromatic aberration changes drastically on the short wavelength side. It has been proposed to use special glasses such as fluorite or ultra-low dispersion glass in order to alleviate this change in chromatic aberration. However, these special glasses also have the characteristics shown in FIG. Therefore, it is difficult to sufficiently reduce the change in chromatic aberration on the short wavelength side.

【0010】[0010]

【発明が解決しようとする課題】原色フィルターを用い
た場合、画素一つ一つに入る光量が少なく、画素が小さ
くなるとS/N比の問題や露光時間の問題が生じる。ま
た、解像感に影響のある画素が有効画素の50%であ
り、十分高画素の効果を画質に生かしきれていないとい
う問題点がある。
When a primary color filter is used, the amount of light entering each pixel is small. When the size of the pixel becomes small, a problem of an S / N ratio and a problem of an exposure time occur. Further, there is a problem that pixels that affect the resolution are 50% of the effective pixels, and the effect of sufficiently high pixels cannot be fully utilized in image quality.

【0011】本発明は従来技術のこのような問題点に鑑
みてなされたものであり、その目的は、簡易な構成で色
を含め良好な像の再現を可能とする光学系を提供するこ
とである。特に、デジタルカメラの高画素化と低価格化
と小型化を達成するのに好適な光学系を提供することで
ある。
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide an optical system capable of reproducing good images including colors with a simple configuration. is there. In particular, it is an object of the present invention to provide an optical system suitable for achieving high pixel count, low cost, and miniaturization of a digital camera.

【0012】[0012]

【課題を解決するための手段】上記目的を達成する本発
明の第1の撮像装置は、少なくとも、有効撮像領域の対
角長をd、水平画素の中心間隔をpとしたとき、以下の
条件式(1)を満足し、かつ、少なくとも4種類の色フ
ィルターから構成される補色フィルターを有する電子撮
像素子と、400nmの透過率をT400 、600nmの
透過率をT600 、700nmの透過率をT700 としたと
き、以下の分光特性(2)、(3)を有し、前記電子撮
像素子に物体側からの光束を導く撮像光学系と、前記電
子撮像素子からの出力を基に信号処理と画像処理を行う
コントローラとを有することを特徴とするものである。
According to the first image pickup apparatus of the present invention which achieves the above object, at least the following conditions are satisfied when the diagonal length of the effective image pickup area is d and the center interval between horizontal pixels is p. An electronic imaging device that satisfies the formula (1) and has a complementary color filter composed of at least four types of color filters, a transmittance at 400 nm of T 400 , a transmittance of 600 nm of T 600 , and a transmittance of 700 nm An imaging optical system that has the following spectral characteristics (2) and (3) and guides a light beam from the object side to the electronic imaging device when T 700 is set, and performs signal processing based on an output from the electronic imaging device And a controller for performing image processing.

【0013】 1.0×10-4<p/d<6.0×10-4 ・・・(1) 8×T700 <T600 ・・・(2) T400 <T600 ・・・(3) 以下、この第1の撮像装置の作用・効果を説明する。1.0 × 10 −4 <p / d <6.0 × 10 −4 (1) 8 × T 700 <T 600 (2) T 400 <T 600 ( 3) The operation and effect of the first imaging device will be described below.

【0014】条件式(1)は、高画質を得るための水平
方向の画素数の条件である。人間の目の分解能は、特に
水平方向に高いとされている。条件式(1)の上限の
6.0×10-4を越えると、像が粗くなり高画質とは言
えなくなる。また、この上限を越えた場合、特に本発明
の他の構成要素を用いることによる後述の効果を得る必
要が少なくなる。(1)の下限の1.0×10-4を越え
ると、画素が小さくなりすぎ、光量が十分に取れなくな
り望ましくない。また、回折の影響により画質が向上す
る効果が得られなくなる。あるいは、撮像素子全体が大
きくなり、それに伴い撮影光学系が大きくなり、小型化
に反する。また、CCD等の撮像素子全体の大きさはC
CD等の撮像素子のコストに大きな影響を与え、コスト
上も望ましくない。
Conditional expression (1) is a condition for the number of pixels in the horizontal direction for obtaining high image quality. It is said that the resolution of the human eye is particularly high in the horizontal direction. When the value exceeds the upper limit of 6.0 × 10 −4 of the conditional expression (1), the image becomes coarse and high image quality cannot be said. In addition, when the upper limit is exceeded, it is less necessary to obtain the effects described later particularly by using other components of the present invention. Exceeding the lower limit of 1.0 × 10 −4 in (1) is not desirable because the pixels become too small and the light quantity cannot be sufficiently obtained. Further, the effect of improving image quality cannot be obtained due to the influence of diffraction. Alternatively, the entire image sensor becomes large, and accordingly, the photographing optical system becomes large, which is contrary to miniaturization. Also, the size of the entire image pickup device such as a CCD is C
This has a significant effect on the cost of an imaging device such as a CD, and is undesirable in terms of cost.

【0015】また、補色フィルターを用いることによ
り、単位面積当たりの光量を確保することができる。4
色の色フィルターは、いわゆるマゼンタ(M)、シアン
(C)、イエロー(Ye )、グリーン(G)からなる
が、この中、シアン(C)、イエロー(Ye )、グリー
ン(G)は、像の解像感を決定する大きな要因である緑
色(波長500nmから550nm程度の波長域の光)
に対する感度を有しており、有効画素の中、少なくとも
75%が解像感に大きな影響を与え、条件式(1)で提
示した高画素化の効果を十分引き出すことができる。
In addition, by using a complementary color filter, the amount of light per unit area can be secured. 4
The color filters of so-called magenta (M), cyan (C), yellow (Y e ), and green (G) include cyan (C), yellow (Y e ), and green (G). Green (light in a wavelength range of about 500 nm to 550 nm), which is a major factor in determining the resolution of an image
, At least 75% of the effective pixels greatly affect the resolution, and the effect of increasing the number of pixels presented by the conditional expression (1) can be sufficiently obtained.

【0016】条件式(2)は、赤外カットに関する条件
である。この条件式を満足することにより、必然的に7
00nmの透過率は12.5%以下になり、赤外カット
の効果を得ることができる。条件式(2)の範囲から外
れると、人が色として認識しない赤外領域の光が、赤色
の発色に大きな影響を与え、また、露出のバランスを崩
し、好ましい色再現ができなくなる。
Conditional expression (2) is a condition relating to infrared cut. By satisfying this conditional expression, inevitably 7
The transmittance at 00 nm is 12.5% or less, and an infrared cut effect can be obtained. If the value is outside the range of the conditional expression (2), light in the infrared region which is not recognized as a color by a person has a large effect on the red color development, and also disturbs the exposure balance, making it impossible to reproduce a desirable color.

【0017】条件式(3)は、補色フィルターにおける
赤の発色に対する短波長側の影響に関するものである。
前述のように、補色フィルターからR,G,Bに変換さ
れる際、青色の波長域(図11では400nmから43
0nm程度の波長域)の入力に対してR信号(赤の発色
をさせる信号)の出力が生まれる。条件式(3)の範囲
を越えると、R信号の強さについて、本来の赤の入力に
対して短波長側の入力の影響が高くなり色の再現性が悪
くなる。特に、主要な可視域より短波長側の色収差が大
きく発生している撮影光学系の場合、本来目立たない短
波長側のスポットの広がり(いわゆる色の球面収差やコ
マ収差、倍率の色の収差等によって起こるフレアー)
が、赤という目立つ色で発色することにより画質を劣化
させる。
Conditional expression (3) relates to the influence on the short wavelength side on the color development of red in the complementary color filter.
As described above, when converted from the complementary color filter to R, G, and B, a blue wavelength range (from 400 nm to 43 in FIG. 11).
An output of an R signal (a signal that causes red coloring) is generated for an input of a wavelength range of about 0 nm. When the value exceeds the range of the conditional expression (3), the influence of the input on the short wavelength side with respect to the original red input increases the intensity of the R signal, and the color reproducibility deteriorates. In particular, in the case of a photographing optical system in which chromatic aberration on the short wavelength side is larger than the main visible range, the spread of spots on the short wavelength side which is originally inconspicuous (so-called spherical aberration of color, coma aberration, chromatic aberration of magnification, etc.) Flare caused by
However, the image quality is degraded by emitting a conspicuous red color.

【0018】補色フィルターを用いて、条件式(2)、
(3)を満足することにより、色の再現性を良好にし、
かつ、色収差が大きく発生している撮影光学系を用いて
も、人の目の感度を考慮すると、短波長側のフレアーは
可視域の像に比べ十分弱くなり、実質的に画質に影響す
ることはほとんどなくなる。
Using a complementary color filter, conditional expression (2):
By satisfying (3), color reproducibility is improved,
In addition, even when using an imaging optical system in which chromatic aberration is large, the flare on the short wavelength side is sufficiently weaker than the image in the visible region, considering the sensitivity of the human eye, which substantially affects the image quality. Is almost gone.

【0019】このような撮影光学系は、主要な可視域よ
り短波長側の色収差を発生させることにより、大きさを
コンパクトにしたり、製作の容易にしたり、構成レンズ
枚数を少なくしたり、Fナンバーを明るくしたり、画角
を標準に対して大きくしたり(軸外の色収差の発生と引
き換え)、画角を標準に対して小さくしたり(軸上の色
収差と引き換え)、ズームレンズの場合ズーム比を大き
くしたりすることができ、トータル的に好ましい撮影装
置が構成できる。
Such a photographing optical system generates a chromatic aberration on the shorter wavelength side than the main visible region, thereby making the size compact, facilitating manufacture, reducing the number of constituent lenses, and reducing the F-number. To increase the angle of view, to increase the angle of view with respect to the standard (in exchange for off-axis chromatic aberration), to decrease the angle of view with respect to the standard (in exchange for on-axis chromatic aberration), or to zoom in the case of a zoom lens The ratio can be increased, and a totally preferable photographing apparatus can be configured.

【0020】なお、コントローラにより補色からR,
G,Bへの変換を行ったり、ガンマー補正等を行ったり
することができる。
It should be noted that the complementary colors R, R
Conversion into G and B, gamma correction, and the like can be performed.

【0021】また、撮影光学系と電子撮像素子とコント
ローラは一体である必要はなく、例えば、撮像光学系は
電子撮像素子を含む装置と着脱可能であり、複数の撮像
光学系を使用できるようにしてもよい。
The photographing optical system, the electronic image pickup device and the controller need not be integrated. For example, the image pickup optical system is detachable from a device including the electronic image pickup device so that a plurality of image pickup optical systems can be used. You may.

【0022】また、pは、3.9μm以下、1.8μm
以上であることが望ましい。すなわち、上限の3.9μ
mを越えると、電子撮像素子全体の面積が大きくなりコ
ストが上がる。下限の1.8μmを越えると、撮像素子
の一画素毎に十分な光量を与えるのが困難になる。さら
に、pは、3.5μm以下、2.1μm以上であること
が望ましい。すなわち、上限の3.5μmを越えると、
電子撮像素子全体の面積が大きくなりコストが上がる。
下限の2.1μmを越えると、本発明の構成で許容され
る色収差を有する撮影光学系を簡易な構成又は低コスト
で構成するのが難しくなる。さらに、pは、3.2μm
以下、2.1μm以上とすると、バランスが良くなる。
P is 3.9 μm or less, 1.8 μm
It is desirable that this is the case. That is, the upper limit of 3.9 μm
If m is exceeded, the area of the entire electronic imaging device becomes large and the cost increases. If the lower limit of 1.8 μm is exceeded, it becomes difficult to provide a sufficient amount of light for each pixel of the image sensor. Further, p is desirably 3.5 μm or less and 2.1 μm or more. That is, when the upper limit of 3.5 μm is exceeded,
The area of the entire electronic image pickup device increases and the cost increases.
If the lower limit of 2.1 μm is exceeded, it becomes difficult to configure a photographing optical system having chromatic aberration permitted by the configuration of the present invention with a simple configuration or at low cost. Further, p is 3.2 μm
Hereinafter, when the thickness is 2.1 μm or more, the balance is improved.

【0023】本発明の第2の撮像装置は、少なくとも、
撮影光学系と、有効撮像領域の対角長をd、水平画素の
中心間隔をpとしたとき、以下の条件式(1)を満足
し、かつ、少なくとも4種類の色フィルターから構成さ
れる補色フィルターを有する電子撮像素子と、前記撮影
光学系を透過し前記電子撮像素子に入射し、前記電子撮
像素子で光電変換され、前記電子撮像素子から出力され
る信号について、少なくとも一種類の色フィルターに対
応する系の出力信号の分光強度曲線(撮影光学系にD65
光源の光が入射されたときの各波長の出力信号の強度に
よって描かれる曲線)が、その分光強度のピークをSP
とし、600nmの強度をS600 、650nmの強度を
650 とする場合に、以下の条件(4)を満足し、前記
電子撮像素子からの出力を基に信号処理と画像処理を行
うコントローラとを有することを特徴とするものであ
る。
The second imaging apparatus of the present invention comprises at least
When the diagonal length of the imaging optical system and the effective imaging area is d, and the center distance between horizontal pixels is p, the following conditional expression (1) is satisfied and a complementary color composed of at least four types of color filters is provided. An electronic image pickup device having a filter, transmitted through the photographing optical system, incident on the electronic image pickup device, photoelectrically converted by the electronic image pickup device, and output from the electronic image pickup device, at least one type of color filter. Spectral intensity curve of the output signal of the corresponding system (D 65
Curve source of light is depicted by the intensity of the output signal of each wavelength when it is incident) is the peak of the spectral intensity S P
When the intensity at 600 nm is S 600 and the intensity at 650 nm is S 650 , a controller that satisfies the following condition (4) and performs signal processing and image processing based on the output from the electronic image sensor is provided. It is characterized by having.

【0024】 1.0×10-4<p/d<6.0×10-4 ・・・(1) 0.45<(S600 −S650 )/SP <0.85 ・・・(4) 以下、この第2の撮像装置の作用・効果を説明する。1.0 × 10 −4 <p / d <6.0 × 10 −4 (1) 0.45 <(S 600 −S 650 ) / S P <0.85 (( 4) The operation and effect of the second imaging device will be described below.

【0025】条件式(1)と補色フィルターについて
は、第1の撮像装置の場合と同様である。
The condition (1) and the complementary color filter are the same as in the case of the first imaging device.

【0026】条件式(4)は赤外カットと所謂赤色の信
号強度に関するものである。この条件式の範囲内であれ
ば、十分な強度の赤色の信号を得ることができ、コント
ローラで算出される赤の発色信号への短波長域の影響は
相対的に小さくでき、補色フィルターの効果を得ながら
実質的に良好な色再現がされる。条件式(4)の下限の
0.45を越えると、十分な赤外カットができなくなる
か、十分な強度の赤色の信号を得ることができなくな
り、好ましくない。条件式(4)の上限の0.85を越
えると、色フィルター、赤外カットフィルター、又は、
赤外カット機能を有する蒸着薄膜コーティングを構成す
るのが難しくなり、コストが上がったり、構成が複雑に
なり生産性が劣化し、好ましくない。
Conditional expression (4) relates to the infrared cut and the so-called red signal intensity. Within the range of this conditional expression, a red signal of sufficient intensity can be obtained, the influence of the short wavelength region on the red color signal calculated by the controller can be relatively reduced, and the effect of the complementary color filter can be obtained. , And substantially good color reproduction is obtained. Exceeding the lower limit of 0.45 to condition (4) is not preferable because sufficient infrared cuts cannot be made or a red signal with sufficient intensity cannot be obtained. When the value exceeds the upper limit of 0.85 of the conditional expression (4), a color filter, an infrared cut filter, or
It becomes difficult to form a vapor-deposited thin film coating having an infrared cut function, which increases costs and complicates the structure, thereby deteriorating productivity, which is not preferable.

【0027】本発明の第3の撮像装置は、第1及び第2
の撮像装置において、少なくとも4種類の色フィルター
から構成される補色フィルターを有する電子撮像素子を
備え、その4種類の色フィルターの特性は以下の通りで
あることを特徴とするものである。
The third imaging apparatus according to the present invention comprises first and second
Is provided with an electronic imaging device having a complementary color filter composed of at least four types of color filters, and the characteristics of the four types of color filters are as follows.

【0028】第一の色フィルターGは、波長GP にピー
クを有し、第二の色フィルターYe は、波長YP にピー
クを有し、第三の色フィルターCは、波長CP にピーク
を有し、第四の色フィルターMは、波長MP1と波長MP2
にピークを有し、以下の条件を満足する。
The first color filter G has a peak at a wavelength G P , the second color filter Y e has a peak at a wavelength Y P , and the third color filter C has a peak at a wavelength C P. The fourth color filter M has a peak and a wavelength M P1 and a wavelength M P2.
And the following conditions are satisfied.

【0029】 510nm<GP <540nm ・・・(5−1) 5nm<YP −GP <35nm ・・・(5−2) −100nm<CP −GP <−5nm ・・・(5−3) 430nm<MP1<480nm ・・・(5−4) 580nm<MP2<640nm ・・・(5−5) 以下、この第3の撮像装置の作用・効果を説明すると、
(5−1)〜(5〜5)の条件を満たすことにより、良
好な色再現と、G,Ye ,Cが像の解像感を決定する大
きな要因である緑色(波長500nmから550nm程
度の波長域の光)に対する感度を十分に持ち、高画素に
見合う良好な解像感を得ることができる。
[0029] 510nm <G P <540nm ··· ( 5-1) 5nm <Y P -G P <35nm ··· (5-2) -100nm <C P -G P <-5nm ··· (5 -3) 430 nm <M P1 <480 nm (5-4) 580 nm <M P2 <640 nm (5-5) The operation and effect of the third imaging device will be described below.
By satisfying the conditions of (5-1) to (5-5), good color reproduction and green (wavelength from about 500 nm to about 550 nm) in which G, Ye , and C are large factors that determine the resolution of an image. With sufficient sensitivity to light in the wavelength range of the wavelength range, and a good sense of resolution suitable for high pixels can be obtained.

【0030】本発明の第4の撮像装置は、第3の撮像装
置において、少なくとも4種類の色フィルターから構成
される補色フィルターを有する電子撮像素子を備え、そ
の4種類の色フィルターの中、3種類の色フィルターは
それぞれの分光強度のピークに対して波長530nmで
は80%以上の強度を有し、1種類の色フィルターは、
その分光強度のピークに対して波長530nmでは25
%以上の強度を有することを特徴とするものである。
A fourth imaging apparatus according to the present invention is the third imaging apparatus, further comprising an electronic imaging element having a complementary color filter composed of at least four types of color filters. Each type of color filter has an intensity of 80% or more at a wavelength of 530 nm with respect to the peak of each spectral intensity, and one type of color filter has:
The peak of the spectral intensity is 25 at a wavelength of 530 nm.
% Or more.

【0031】以下、この第4の撮像装置の作用・効果を
説明すると、この構成に満足することにより、全て色フ
ィルターから解像感に影響のある情報を取り出すことが
でき、好ましい。
The operation and effect of the fourth image pickup apparatus will be described below. By satisfying this configuration, it is possible to extract information having an effect on the resolution from all color filters.

【0032】本発明の第5の撮像装置は、第1〜第4の
撮像装置において、少なくとも4種類の色フィルターか
ら構成される補色フィルターを有する電子撮像素子を備
え、その4種類の色フィルターは、それぞれが略同じ数
になるように、かつ、隣合う画素が同じ種類の色フィル
ターに対応しないようにモザイク状に配置されることを
特徴とするものである。
According to a fifth image pickup apparatus of the present invention, in the first to fourth image pickup apparatuses, an electronic image pickup device having a complementary color filter composed of at least four types of color filters is provided. Are arranged in a mosaic so that each pixel has substantially the same number and adjacent pixels do not correspond to the same type of color filter.

【0033】以下、この第5の撮像装置の作用・効果を
説明すると、この構成に満足することにより、解像感、
色再現性、各色の解像が良好となり、全体としての画質
が向上し好ましい。
The operation and effect of the fifth image pickup apparatus will be described below.
This is preferable because color reproducibility and resolution of each color are improved, and the overall image quality is improved.

【0034】本発明の第6の撮像装置は、第1〜第5の
撮像装置において、前記電子撮像素子より物体側に60
0nmの透過率が80%以上、700nmの透過率が1
0%以下の特性の蒸着薄膜コートを施した光学素子を有
することを特徴とするものである。
According to a sixth imaging apparatus of the present invention, in the first to fifth imaging apparatuses, the object is located at a position closer to the object side than the electronic imaging device.
The transmittance at 0 nm is 80% or more, and the transmittance at 700 nm is 1
The optical element is characterized by having an optical element coated with a deposited thin film having a characteristic of 0% or less.

【0035】以下、この第6の撮像装置の作用・効果を
説明すると、このような構成にすることにより、簡易な
構成で、また、低コストで、第1、第2の撮像装置の特
性を持った撮像装置を構成できる。すなわち、700n
m以上の光線をカットする所謂赤外カット機能は、赤外
カットフィルターや、撮影光学系を構成する複数枚のレ
ンズの蒸着薄膜コートを合わせることにより実現は可能
である。しかし、このような構成であると、600nm
の透過率も低下してしまう。600nmの透過率を十分
確保し、赤色の入力信号を十分とるようにするには、一
面の蒸着薄膜コートにより、上記のような特性を得るよ
うにするのが望ましい。
The operation and effect of the sixth imaging device will be described below. With such a configuration, the characteristics of the first and second imaging devices can be reduced with a simple configuration and at low cost. It is possible to configure an imaging device having the same. That is, 700n
The so-called infrared cut function of cutting a light beam of m or more can be realized by combining an infrared cut filter and a vapor-deposited thin film coat of a plurality of lenses constituting a photographic optical system. However, with such a configuration, 600 nm
Is also reduced. In order to ensure a sufficient transmittance of 600 nm and to obtain a sufficient red input signal, it is desirable to obtain the above-mentioned characteristics by one-sided evaporation thin film coating.

【0036】この方法によると、赤外カットの主要な機
能を果たす部位が薄いので、全体の透過率を下げること
が少なくなり、また、撮影装置を小さくできる。また、
赤外カットに関して注意して管理しなければならない部
位が少なくなることにより、歩留まり等の生産性を向上
でき、コストを小さくでき好ましい。
According to this method, since the portion that performs the main function of infrared cut is thin, the reduction in the overall transmittance is reduced, and the size of the photographing apparatus can be reduced. Also,
By reducing the number of sites that need to be carefully managed with respect to infrared cut, productivity such as yield can be improved, and costs can be reduced, which is preferable.

【0037】なお、より好ましくは、600nmの透過
率が90%以上、700nmの透過率が10%以下の特
性の蒸着薄膜コートを施した光学素子を有することであ
る。
It is more preferable to have an optical element coated with a vapor-deposited thin film having a transmittance of not less than 90% at 600 nm and not more than 10% at 700 nm.

【0038】本発明の第7の撮像装置は、第1〜第6の
撮像装置において、有効対角画面が70°以上の領域を
有する撮影光学系を有することを特徴とするものであ
る。
A seventh imaging apparatus according to the present invention is characterized in that, in the first to sixth imaging apparatuses, the imaging optical system has an effective diagonal screen having an area of 70 ° or more.

【0039】以下、この第7の撮像装置の作用・効果を
説明すると、有効対角画角が70°以上になると、軸外
収差である倍率の色、色コマ収差が発生しやすい。本発
明によれば、特に複雑な構成をとることなく、又は、特
殊な光学素子や高価な材質を少なくした構成又は使わな
い構成で、解像感があり良好な色再現のできる高画質の
撮影装置を実現できる。なお、この発明は、当然のこと
として、広角端が有効対角画角70°以上のズーム撮影
光学系を含む。
The operation and effect of the seventh image pickup apparatus will be described below. When the effective diagonal angle of view is 70 ° or more, chromatic and chromatic coma of magnification, which are off-axis aberrations, are likely to occur. ADVANTAGE OF THE INVENTION According to this invention, it is a high-quality imaging | photography which has a feeling of resolution and can reproduce a good color, without taking a complicated structure especially, or the structure which reduces or does not use a special optical element or expensive material. The device can be realized. It should be noted that the present invention naturally includes a zoom photographing optical system whose wide-angle end has an effective diagonal angle of view of 70 ° or more.

【0040】本発明の第8の撮像装置は、第1〜第6の
撮像装置において、有効対角画角が12°以下の領域を
有する撮影光学系を有することを特徴とするものであ
る。
An eighth imaging apparatus according to the present invention is characterized in that, in the first to sixth imaging apparatuses, the imaging optical system has an area having an effective diagonal angle of view of 12 ° or less.

【0041】以下、この第8の撮像装置の作用・効果を
説明すると、有効対角画角が12°以下になると、波長
による焦点距離の差の割合が大きくなりやすく、軸上収
差である色の球面収差が発生しやすい。本発明によれ
ば、特に複雑な構成をとることなく、又は、特殊な光学
素子や高価な材質を少なくした構成又は使わない構成
で、解像感があり良好な色再現のできる高画質の撮影装
置を実現できる。なお、この発明は、当然のこととし
て、広角端が有効対角画角12°以下のズーム撮影光学
系を含む。
The operation and effect of the eighth image pickup apparatus will be described below. When the effective diagonal angle of view is 12 ° or less, the ratio of the difference in focal length depending on the wavelength tends to increase, and the color which is an axial aberration Tends to cause spherical aberration. ADVANTAGE OF THE INVENTION According to this invention, it is a high-quality imaging | photography which has a feeling of resolution and can reproduce a good color, without taking a complicated structure especially, or the structure which reduces or does not use a special optical element or expensive material. The device can be realized. Incidentally, the present invention naturally includes a zoom photographing optical system in which the wide-angle end has an effective diagonal angle of view of 12 ° or less.

【0042】本発明の第9の撮像装置は、第1〜第6の
撮像装置において、F値が2.8より明るい領域を有す
る撮影光学系を有することを特徴とするものである。
A ninth imaging apparatus according to the present invention is characterized in that, in the first to sixth imaging apparatuses, a photographic optical system having an area where the F value is brighter than 2.8 is provided.

【0043】以下、この第9の撮像装置の作用・効果を
説明すると、F値を明るくすることにより画素ピッチが
小さくても十分な光の強度を得ることができる。F値が
2.8より明るくなると、色の球面収差や色コマ収差が
発生しやすい。本発明によれば、特に複雑な構成をとる
ことなく、又は、特殊な光学素子や高価な材質を少なく
した構成又は使わない構成で、解像感があり良好な色再
現のできる高画質の撮影装置を実現できる。なお、この
発明は、当然のこととして、広角端のF値が2.8より
明るいズーム撮影光学系を含む。
The function and effect of the ninth image pickup apparatus will be described below. By increasing the F value, a sufficient light intensity can be obtained even if the pixel pitch is small. If the F-number is brighter than 2.8, chromatic spherical aberration and chromatic coma tend to occur. ADVANTAGE OF THE INVENTION According to this invention, it is a high-quality imaging | photography which has a feeling of resolution and can reproduce a good color, without taking a complicated structure especially, or the structure which reduces or does not use a special optical element or expensive material. The device can be realized. The present invention naturally includes a zoom photographing optical system in which the F value at the wide-angle end is brighter than 2.8.

【0044】本発明の第10の撮像装置は、第1〜第6
の撮像装置において、物体側より順に、正の第1レンズ
群、変倍時に可動で負の第2レンズ群を有し、それより
像側に、合焦機能のあるレンズ群を有する撮像光学系を
有することを特徴とするものである。
The tenth imaging apparatus according to the present invention comprises first to sixth
An imaging optical system having, in order from the object side, a positive first lens group, a negative second lens group movable at the time of zooming, and a lens group having a focusing function on the image side. It is characterized by having.

【0045】以下、この第10の撮像装置の作用・効果
を説明すると、物体側から正の第1レンズ群に入射した
軸上光束は収束しながら負の第2レンズ群に入射する。
すなわち、第2レンズ群の径を小さくすることができ
る。この効果により容易に第2レンズ群のパワーを強く
でき、ズーム比を高くしたりFナンバーを明るくしたり
しやくなる。このとき、第1レンズ群のパワーも相応に
強くなり高次の倍率の色収差が発生しやすくなる。ま
た、ズーム比を大きくするとズーミングにより高次の倍
率色収差の変動は大きくなり、特に条件式(1)で規定
するような高画素数になると影響は大きくなる。また、
軸上色収差については、特に望遠側で2次スペクトルに
よる色収差を除ききれない。いわゆる色収差でない基準
波長の収差については、各群内での補正、群間での補正
により、比較的少ない枚数で、また、安価な材質で十分
な構成ができる。第1、第2の撮像装置について記載し
たような特性を持たせることにより、色収差に関して
も、複雑な構成や撮像光学系を大きくすることなく、ま
た、特殊な光学素子や高価な材質を多く使うことなく、
特に短波長側での収差が比較的大きくても、実質的な画
質を良好に得ることができる。第2レンズ群の像側に合
焦機能のあるレンズ群を配することにより、合焦のため
のスペースが有利になり、特に射出瞳を遠くに設定する
電子撮像素子対応の撮影光学系においては、物点距離の
変動による像の劣化が少なく有利である。
The operation and effect of the tenth imaging device will be described below. On-axis luminous flux incident on the positive first lens unit from the object side is incident on the negative second lens unit while converging.
That is, the diameter of the second lens group can be reduced. By this effect, the power of the second lens group can be easily increased, and it becomes easy to increase the zoom ratio and brighten the F-number. At this time, the power of the first lens group is correspondingly strong, and chromatic aberration of higher magnification is likely to occur. In addition, when the zoom ratio is increased, the fluctuation of the higher-order chromatic aberration of magnification increases due to zooming, and the effect is particularly large when the number of pixels is increased as defined by the conditional expression (1). Also,
Regarding axial chromatic aberration, chromatic aberration due to the secondary spectrum cannot be completely removed, especially on the telephoto side. As for the aberration of the reference wavelength other than the so-called chromatic aberration, a sufficient configuration can be achieved with a relatively small number of sheets and an inexpensive material by performing correction within each group and correction between groups. By providing the characteristics described for the first and second imaging devices, the chromatic aberration can be reduced without increasing the size of the complicated configuration and imaging optical system, and using many special optical elements and expensive materials. Without
Particularly, even if the aberration on the short wavelength side is relatively large, a substantial image quality can be obtained satisfactorily. By arranging a lens group having a focusing function on the image side of the second lens group, a space for focusing is advantageous, and particularly in a photographing optical system corresponding to an electronic image pickup device in which an exit pupil is set far. Advantageously, the image is less deteriorated due to the change in the object point distance.

【0046】本発明の第11の撮像装置は、第10の撮
像装置において、物体側より順に、正の第1レンズ群、
変倍時に可動で負の第2レンズ群、正の第3レンズ群、
変倍時に可動で合焦機能のある第4レンズ群よりなる撮
像光学系を有することを特徴とするものである。
An eleventh image pickup apparatus according to the present invention is the image pickup apparatus according to the tenth image pickup apparatus, wherein, in order from the object side, a positive first lens unit,
A movable negative second lens group, a positive third lens group during zooming,
An image pickup optical system comprising a fourth lens group movable at the time of zooming and having a focusing function is provided.

【0047】以下、この第11の撮像装置の作用・効果
を説明すると、正の第3レンズ群を配置することによ
り、電子撮像素子への入射光を画素に対して垂直に近く
すること、すなわち、射出瞳を遠くに設定する構成が容
易になる。望ましくは、開口絞りを第2レンズ群と第3
レンズ群の間に配置するのがよい。これにより、さらに
射出瞳を遠くに設定する構成が容易になる。
The operation and effect of the eleventh image pickup apparatus will be described below. By arranging the positive third lens group, the light incident on the electronic image pickup element is made almost perpendicular to the pixel, that is, This makes it easy to set the exit pupil far. Desirably, the aperture stop is set to the second lens group and the third lens group.
It is good to arrange between lens groups. This facilitates a configuration in which the exit pupil is set farther.

【0048】本発明の第12の撮像装置は、第11の撮
像装置において、物体側より順に、正の第1レンズ群、
変倍時に可動で負の第2レンズ群、変倍時に可動で正の
第3レンズ群、変倍時に可動で合焦機能のある正の第4
レンズ群よりなる撮像光学系を有することを特徴とする
ものである。
According to a twelfth imaging apparatus of the present invention, in the eleventh imaging apparatus, a positive first lens group,
Negative second lens group movable at the time of zooming, positive third lens group movable at the time of zooming, positive fourth lens movable at the time of zooming and having a focusing function
It has an imaging optical system composed of a lens group.

【0049】以下、この第12の撮像装置の作用・効果
を説明すると、正の第3レンズ群を可動とすることによ
り、第2レンズ群の持つ変倍作用を負担することがで
き、さなるズ ーム比の向上や、F値を明るくすること
が行いやすい。第4レンズ 群を正のパワーとすること
で、第3レンズ群の射出瞳を遠くにする機能を分担する
ことができ、第3レンズ群の変倍機能を高めることがで
きる。
The operation and effect of the twelfth image pickup apparatus will be described below. By making the positive third lens group movable, it is possible to bear the zooming effect of the second lens group. It is easy to improve the zoom ratio and brighten the F value. By making the fourth lens group have positive power, the function of making the exit pupil of the third lens group far can be shared, and the zooming function of the third lens group can be enhanced.

【0050】本発明の第13の撮像装置は、第11の撮
像装置において、物体側より順に、正の第1レンズ群、
変倍時に可動で負の第2レンズ群を有し、それより像側
に正レンズ・負レンズを少なくとも含む全体として正の
第3レンズ群と、その像側に正のパワーを有し合焦機能
のあるレンズ群よりなる撮像光学系を有することを特徴
とするものである。
A thirteenth imaging device according to the present invention is the eleventh imaging device, wherein, in order from the object side, a positive first lens unit,
A movable second negative lens group at the time of zooming, and a positive third lens group as a whole including at least a positive lens and a negative lens on the image side and a positive power on the image side for focusing It is characterized by having an imaging optical system comprising a lens group having a function.

【0051】以下、この第13の撮像装置の作用・効果
を説明すると、第3レンズ群の構成を正・負とすること
により主点を前に出し、さらに、正のレンズ群を像側に
配することにより全長の短縮を図ることができる。
The operation and effect of the thirteenth imaging apparatus will be described below. The principal point is set forward by setting the configuration of the third lens unit to be positive or negative, and the positive lens unit is moved to the image side. By arranging, the total length can be reduced.

【0052】本発明の第14の撮像装置は、第13の撮
像装置において、物体側より順に、正の第1レンズ群、
変倍時に可動で負の第2レンズ群を有し、それより像側
に正レンズと、正レンズと像側に曲率の強い凹面を向け
た負レンズとを少なくとも含む全体として正の第3レン
ズ群と、その像側に合焦機能のあるレンズ群よりなる撮
像光学系を有することを特徴とするものである。
A fourteenth imaging apparatus according to the present invention is the same as the thirteenth imaging apparatus, except that the positive first lens unit,
A third lens as a whole, including a negative second lens group movable at the time of zooming and including at least a positive lens on the image side and a negative lens having a concave surface with a strong curvature on the image side. An image pickup optical system comprising a group and a lens group having a focusing function on an image side thereof is characterized in that the image pickup optical system includes:

【0053】以下、この第14の撮像装置の作用・効果
を説明すると、第3レンズ群の物体側より正レンズとそ
れに続く正レンズと像側に曲率の強い凹面を向けた負レ
ンズは、軸上光束、軸外コマ収差の補正に効果的なレイ
アウトである。
The function and effect of the fourteenth imaging apparatus will be described below. The positive lens, the subsequent positive lens from the object side of the third lens group, and the negative lens having a concave surface with a strong curvature on the image side are arranged on the axis. This layout is effective for correcting upper light flux and off-axis coma.

【0054】なお、第4レンズ群を少なくとも物体側か
ら負レンズと正レンズで始まる構成とすることにより、
第3レンズ群と第4レンズ群で略ダブルガウスタイプの
レイアウトとなり、F値を明るくしても性能を良好に構
成しやすくなる。
By configuring the fourth lens group to start with a negative lens and a positive lens from at least the object side,
The third lens group and the fourth lens group have a substantially double Gaussian layout, and even if the F value is made bright, it is easy to configure good performance.

【0055】また、第4レンズ群を正レンズ1枚で構成
することにより、全体的な全長の短縮ができる(第4レ
ンズ群内で軸上光束が略一様に収束していくため)。
By constructing the fourth lens group with one positive lens, the overall length can be shortened (because the axial luminous flux converges substantially uniformly in the fourth lens group).

【0056】本発明の第15の撮像装置は、第14の撮
像装置において、物体側より順に、正の第1レンズ群、
変倍時に可動で負の第2レンズ群を有し、それより像側
に非球面を有する正レンズと、正レンズと物体側よりも
像側の方が曲率の強い凹面を向けた負レンズとの接合成
分を少なくとも含む全体として正の第3レンズ群と、そ
の像側に合焦機能のあるレンズ群よりなる撮像光学系を
有することを特徴とするものである。
According to a fifteenth imaging apparatus of the present invention, in the fourteenth imaging apparatus, a positive first lens unit, in order from the object side,
A positive lens having a negative second lens group movable at the time of zooming and having an aspherical surface on the image side, and a positive lens and a negative lens having a concave surface with a stronger curvature on the image side than on the object side. And an imaging optical system including a positive third lens group as a whole including at least the cemented component and a lens group having a focusing function on the image side.

【0057】以下、この第15の撮像装置の作用・効果
を説明すると、第3レンズ群の物体側の正レンズに非球
面を配することにより主に高次の球面収差を補正を行
う。この正レンズの像側に非球面を配した方が、レンズ
の曲率の選択が非球面の効果を引き出しやすく好まし
い。それに続く正レンズと物体側よりも像側の方が曲率
の強い凹面を向けた負レンズは、軸上光束、軸外コマ収
差の補正に効果的なレイアウトでもあるが、これを接合
にすることにより、この正レンズと負レンズの間で起き
る偏心による画質の劣化の要因を大幅に削減している。
The function and effect of the fifteenth imaging device will be described below. Higher-order spherical aberration is mainly corrected by arranging an aspheric surface on the object-side positive lens of the third lens unit. It is preferable to dispose an aspherical surface on the image side of the positive lens, since the selection of the curvature of the lens can easily bring out the effect of the aspherical surface. The subsequent positive lens and negative lens with a concave surface with a stronger curvature on the image side than on the object side are also effective layouts for correcting on-axis luminous flux and off-axis coma. As a result, the factor of image quality deterioration due to eccentricity occurring between the positive lens and the negative lens is greatly reduced.

【0058】なお、第4レンズ群を少なくとも物体側か
ら負レンズと正レンズで始まる構成とすることにより、
第3レンズ群と第4レンズ群で略ダブルガウスタイプの
レイアウトとなり、F値を明るくしても性能を良好に構
成しやすくなる。
By configuring the fourth lens group to start with a negative lens and a positive lens from at least the object side,
The third lens group and the fourth lens group have a substantially double Gaussian layout, and even if the F value is made bright, it is easy to configure good performance.

【0059】また、第4レンズ群を正レンズ1枚で構成
することにより、全体的な全長の短縮ができる(第4レ
ンズ群内で軸上光束が略一様に収束していくため)。
Further, by forming the fourth lens group with one positive lens, the overall length can be shortened (because the axial luminous flux converges substantially uniformly in the fourth lens group).

【0060】本発明の第16の撮像装置は、第1〜第6
の撮像装置において、物体側より順に、変倍時に可動で
負の第1レンズ群、変倍時に可動で正の第2レンズ群を
含み、前記第2レンズ群若しくはそれより像側に合焦機
能のあるレンズ群を有する撮像光学系を有することを特
徴とするものである。
The sixteenth imaging apparatus according to the present invention comprises first to sixth
The image pickup apparatus includes, in order from the object side, a negative first lens group movable at the time of zooming and a positive second lens group movable at the time of zooming, and a focusing function on the second lens group or the image side thereof. And an imaging optical system having a certain lens group.

【0061】以下、この第16の撮像装置の作用・効果
を説明すると、物体側から負の第1レンズ群、正の第2
レンズ群を配すると、第2レンズ群の径は大きくなる傾
向はあるが、第1レンズ群の軸外光束の入射高を低くす
る効果があり、3倍程度までの比較的低倍率のズームレ
ンズや広角ズームレンズに効果がある。また、第1レン
ズ群の径を小さくしやすいことで、第1レンズ群の構成
長を短くし、収納時の撮影装置の大きさを小さくすると
いう効果がある。この効果を引き出すためには、第1レ
ンズ群のレンズ構成枚数を少なくすることが求められる
(構成枚数が少ないことは、それ自体で構成長の短縮に
寄与するが、第1レンズ群の物体側のレンズ径を小さく
する効果もあり、レンズ1枚当たりの構成長を短くする
という効果もある)。一方、第1レンズ群の構成枚数を
少なくすると、特に広角端の倍率の色収差の高次成分が
発生しやすい。第1の撮像装置、第2の撮像装置に関し
て記載したような特性を持たせることにより、色収差に
関しても、複雑な構成や撮像光学系を大きくすることな
く、また、特殊な光学素子や高価な材質を多く使うこと
なく、特に短波長側での収差が比較的大きくても、実質
的な画質を良好に得ることができる。
The function and effect of the sixteenth image pickup apparatus will be described below.
The arrangement of the lens groups tends to increase the diameter of the second lens group, but has the effect of lowering the incident height of the off-axis light flux of the first lens group, and has a relatively low magnification zoom lens of up to about three times. And wide-angle zoom lenses. Further, since the diameter of the first lens group is easily reduced, there is an effect that the configuration length of the first lens group is shortened and the size of the photographing apparatus when stored is reduced. In order to bring out this effect, it is necessary to reduce the number of lens components of the first lens group. (A small number of components contributes to shortening of the component length by itself, but the object side of the first lens group is reduced. This also has the effect of reducing the lens diameter and the effect of shortening the configuration length per lens.) On the other hand, when the number of components of the first lens group is reduced, a higher-order component of chromatic aberration at the magnification at the wide-angle end is particularly likely to occur. By providing the characteristics described with respect to the first imaging device and the second imaging device, the chromatic aberration can be reduced without increasing the size of the complicated configuration and the imaging optical system, and by using special optical elements and expensive materials. , And substantial image quality can be obtained satisfactorily even if the aberration on the short wavelength side is relatively large.

【0062】また、第2レンズ群、又は、それ以降の群
に合焦機能を持たせることにより、スピーディな合焦を
行うことができる。
Further, by providing the second lens group or a group following it with a focusing function, a quick focusing can be performed.

【0063】本発明の第17の撮像装置は、第16の撮
像装置において、物体側より順に、変倍時に可動で最も
物体側のレンズが負レンズで全体として負の第1レンズ
群、非球面を有する正レンズと、正レンズと物体側より
も像側の方が曲率の強い凹面を向けた負レンズとの接合
成分を少なくとも含み、変倍時に可動で全体として正の
第2レンズ群を含み、前記第2レンズ群若しくはそれよ
り像側に合焦機能のあるレンズ群を有する撮像光学系を
有することを特徴とするものである。
A seventeenth imaging apparatus according to the present invention is the sixteenth imaging apparatus according to the sixteenth imaging apparatus, wherein, in order from the object side, the lens which is movable at the time of zooming and is closest to the object side is a negative lens, and a negative first lens group and an aspherical surface. A positive lens having at least a cemented component of a positive lens and a negative lens having a concave surface with a stronger curvature on the image side than on the object side, and including a second positive lens group movable as a whole during zooming. And an imaging optical system having the second lens group or a lens group having a focusing function on the image side of the second lens group.

【0064】以下、この第17の撮像装置の作用・効果
を説明すると、このような構成にすることにより、主点
を前側に配置し、第1レンズ群と第2レンズ群との間の
ズームスペースを確保する効果が得られ、非球面で特に
高次の球面収差、コマ収差の補正を行い、像側に曲率の
強い凹面を向けた負レンズで特に軸外光束の収差の補正
に効果を得ることができる。このように、正レンズと、
これに続く正レンズと物体側よりも像側の方が曲率の強
い凹面を向けた負レンズは、軸上光束、軸外収差の補正
に効果的なレイアウトでもあるが、これを接合にするこ
とにより、この正レンズと負レンズの間で起きる偏心に
よる画質の劣化の要因を大幅に削減している。
The operation and effect of the seventeenth image pickup apparatus will be described below. With this configuration, the principal point is located on the front side, and the zooming between the first lens group and the second lens group is performed. The effect of securing space is obtained, and it corrects particularly high-order spherical aberration and coma aberration with an aspheric surface, and the negative lens with a concave surface with strong curvature on the image side is particularly effective at correcting aberration of off-axis light flux. Obtainable. Thus, with the positive lens,
The following positive lens and negative lens with a concave surface with a stronger curvature on the image side than on the object side are also effective layouts for correcting on-axis luminous flux and off-axis aberrations. As a result, the factor of image quality deterioration due to eccentricity occurring between the positive lens and the negative lens is greatly reduced.

【0065】また、第2レンズ群の像側にズームに際し
固定の像側に強い曲率を有する正の単レンズを配するこ
とにより、軸外のコマ収差等の補正と射出瞳の配置上に
効果的である。また、第1レンズ群と第2レンズ群の間
に開口絞りを配置することにより、射出瞳を効果的に配
置できる。
Further, by disposing a positive single lens having a strong curvature on the fixed image side during zooming on the image side of the second lens group, it is effective in correcting off-axis coma and the like and in disposing the exit pupil. It is a target. Further, by arranging the aperture stop between the first lens group and the second lens group, the exit pupil can be effectively arranged.

【0066】本発明の第18の撮像装置は、第17の撮
像装置において、物体側より順に、変倍時に可動で最も
物体側のレンズが負レンズで全体として負の第1レンズ
群、非球面を有する正レンズと、正レンズと像側に曲率
の強い凹面を向けた負レンズとの接合成分を少なくとも
含み変倍時に可動で全体として正の第2レンズ群を含
み、前記第2レンズ群若しくはそれより像側に合焦機能
のあるレンズ群を有し、以下の条件を満たす撮像光学系
を有することを特徴とするものである。
An eighteenth imaging apparatus according to the present invention is the imaging apparatus according to the seventeenth imaging apparatus, wherein, in order from the object side, the first lens group which is movable at the time of zooming and which is closest to the object side is a negative lens as a whole; A positive lens having at least a cemented component of a positive lens and a negative lens having a concave surface with a strong curvature on the image side, including a second positive lens group that is movable as a whole during zooming, The image pickup apparatus further comprises a lens group having a focusing function on the image side, and an imaging optical system satisfying the following conditions.

【0067】 −βT >1.2 ・・・(6) ただし、βT は望遠端の第2レンズ群の倍率である。−β T > 1.2 (6) where β T is the magnification of the second lens unit at the telephoto end.

【0068】以下、この第18の撮像装置の作用・効果
を説明すると、条件式(6)は、各群の構成長を効果的
に短くするための条件式である。(6)式を外れると、
第1レンズ群のパワーが強くなり、その結果、レンズ構
成枚数が増え、構成長が長くなる。
The function and effect of the eighteenth imaging device will be described below. Conditional expression (6) is a conditional expression for effectively shortening the length of each group. Deviating from equation (6),
The power of the first lens group is increased, and as a result, the number of lens components increases, and the component length increases.

【0069】なお、第10の撮像装置以降のレンズレイ
アウトは、主に基準波長の収差や近軸配置を考慮したも
のであり、第1、第2の撮像装置との相乗効果より、簡
易な構成、又は、コストの少ない構成、又は、コンパク
トな構成で高画質を得ることができることが分かる。
The lens layouts after the tenth image pickup device mainly take into consideration the aberration of the reference wavelength and the paraxial arrangement, and have a simpler configuration than the synergistic effect with the first and second image pickup devices. It can be seen that high image quality can be obtained with a low-cost configuration or a compact configuration.

【0070】具体的な色収差のレベルについて以下の記
載する。有効画面の70%の範囲で無限遠物点に合焦し
たときの波長400nmの子午断面での色収差が4画素
以上になるように光学系を構成することにより、画像形
成に係わる波長域の結像性能を高くする光学系を簡易な
構成で提供できる。ここで、子午断面での色収差が4画
素とは、撮像装置で無限遠物点に合焦させた状態(つま
り、オートフォーカス機構により略無限遠物点に対して
合焦を行った状態、あるいは、マニアルフォーカスにて
無限遠メモリに合わせて略無限遠物点に対して合焦を行
った状態、あるいは、光軸上にある無限遠物点に対し光
軸上でd線(587.6nm)のPSF(Point Spread
Function )強度のピークを最大にした状態)にて、特
定波長におけるPSFの強度の最大値に対しその最大値
の1.6%以上となる範囲の子午断面上の寸法δを色収
差と定義し、波長400nmにおけるその寸法δ(40
0)が4画素以上となる構成にすることを意味する。
The specific chromatic aberration level is described below. By configuring the optical system so that the chromatic aberration at the meridional section with a wavelength of 400 nm when focusing on an object point at infinity within a range of 70% of the effective screen becomes 4 pixels or more, the wavelength range related to image formation is formed. An optical system that improves image performance can be provided with a simple configuration. Here, the chromatic aberration in the meridional section is 4 pixels, in a state where the image pickup apparatus focuses on the object point at infinity (that is, a state where the autofocus mechanism focuses on the object point at substantially infinity, or In a state in which focusing is performed on an object point at infinity in accordance with an infinite memory with manual focus, or a d-line (587.6 nm) on the optical axis with respect to an object point at infinity on the optical axis PSF (Point Spread
Function) In the state where the peak of the intensity is maximized), the dimension δ on the meridional section within a range of 1.6% or more of the maximum value of the PSF intensity at a specific wavelength is defined as chromatic aberration. At its wavelength 400 nm, its dimension δ (40
0) has a configuration of four or more pixels.

【0071】また、有効画面の70%の範囲とは、撮像
面の中心から最大有効像高までを1としたとき、撮像面
中心から最大有効像高の0.7倍を半径とする円の内側
を言う。
The range of 70% of the effective screen is defined as a circle having a radius of 0.7 times the maximum effective image height from the center of the imaging surface when the distance from the center of the imaging surface to the maximum effective image height is 1. Say inside.

【0072】また、波長435nmから600nmの色
収差が、有効画面の70%の範囲で3画素以内であるこ
とを特徴とするものである。この構成により、波長によ
る結像性能変化が実用上問題ない撮像光学系が提供でき
る。
Further, the chromatic aberration at a wavelength of 435 nm to 600 nm is within three pixels within a range of 70% of the effective screen. With this configuration, it is possible to provide an imaging optical system in which a change in imaging performance due to wavelength has no practical problem.

【0073】また、上記構成に代えて、電子撮像素子の
有効対角長をd、上記定義による有効画面の70%の範
囲での波長400nmでの色収差をδ(400)、波長
420nmでの色収差をδ(420)と定義したとき、 δ(400)/d>2.0×10-3 を満たすとよい。
Further, instead of the above configuration, the effective diagonal length of the electronic image pickup device is d, the chromatic aberration at a wavelength of 400 nm in the range of 70% of the effective screen defined above is δ (400), and the chromatic aberration at a wavelength of 420 nm is Is defined as δ (420), it is preferable that δ (400) / d> 2.0 × 10 −3 is satisfied.

【0074】さらに、 δ(420)/d<1.5×10-3 を満たすとよい。Further, it is preferable that δ (420) / d <1.5 × 10 −3 is satisfied.

【0075】また、色収差について、波長400nmと
420nmについて論じたが、波長400nmの色収差
に代えて、h線(404.7nm)の色収差、波長42
0nmの色収差に代えて、g線(435.8nm)の色
収差に置き換えても同様の効果を得ることができる。
Although the chromatic aberration has been discussed for the wavelengths of 400 nm and 420 nm, the chromatic aberration of the h-line (404.7 nm) and the wavelength of 42
The same effect can be obtained by replacing the chromatic aberration at 0 nm with the chromatic aberration at g-line (435.8 nm).

【0076】また、倍率の色収差に注目すると、d線の
中心ベストにて、d線スポットのピークとg線スポット
のピークの距離が電子撮像素子の有効な全画面にわたり
7画素以下とするとよく、さらに、d線とh線との距離
が10画素以上のところを含む構成とするとよい。
Focusing on the chromatic aberration of magnification, the distance between the peak of the d-line spot and the peak of the g-line spot at the center vest of the d-line is preferably 7 pixels or less over the entire effective screen of the electronic image pickup device. Further, it is preferable that the distance between the d-line and the h-line includes a position of 10 pixels or more.

【0077】又は、先のd線とh線のピーク間の距離を
Δdh、d線とg線のピーク間の距離をΔdg、電子撮
像素子の有効対角長をdと定義したとき、画面の少なく
とも一部で、 Δdh/d>6.0×10-3 を満たすとよい。
Alternatively, when the distance between the peaks of the d-line and the h-line is defined as Δdh, the distance between the peaks of the d-line and the g-line is defined as Δdg, and the effective diagonal length of the electronic image sensor is defined as d, It is preferable that Δdh / d> 6.0 × 10 −3 is satisfied at least in part.

【0078】さらに、全画面にわたり、 Δdg/d<4.5×10-3 を満たすとよい。Further, it is preferable that Δdg / d <4.5 × 10 −3 is satisfied over the entire screen.

【0079】[0079]

【発明の実施の形態】以下、本発明の撮像装置の実施形
態と実施例について図面を参照にして説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments and examples of an image pickup apparatus according to the present invention will be described with reference to the drawings.

【0080】図1は、所謂デジタルカメラ10の構成図
である。物点を発した光束は、光学素子から構成される
撮影レンズ系1で結像作用を受け、CCD等の撮像素子
3に像を形成する。このとき、撮像素子3が規則正しい
光電変換素子の集まりであることから生じる所謂モワレ
現象を防ぐため、ローパス効果を持つフィルター2を撮
像面3より物体側に配置する。また、赤外光をカットす
るIRカットの効果を持つフィルターを配置することも
ある。撮像素子3に入射した光束は、その光電変換素子
で電気信号となり、コントローラ4に入力される。コン
トローラ4でガンマー補正や画像圧縮処理等の信号処理
がなされ、内蔵メモリー5やインターフェース7を介
し、パソコン8等に出力される。また、コントローラ4
から液晶モニター6へ通信され、撮影しようとする画像
や撮像された画像を撮影者が確認するができるようにも
できる。また、内蔵メモリー5から所謂スマートメディ
ア(商標)等の補助メモリー9へ画像データを通信する
ことができるようにもできる。
FIG. 1 is a block diagram of a so-called digital camera 10. The luminous flux having emitted an object point is subjected to an image-forming action by a photographing lens system 1 composed of an optical element, and forms an image on an image sensor 3 such as a CCD. At this time, the filter 2 having a low-pass effect is disposed on the object side with respect to the imaging surface 3 in order to prevent a so-called moiré phenomenon caused by the imaging element 3 being a regular collection of photoelectric conversion elements. Further, a filter having an IR cut effect for cutting infrared light may be arranged. The light beam incident on the image sensor 3 is converted into an electric signal by the photoelectric conversion element and is input to the controller 4. Signal processing such as gamma correction and image compression processing is performed by the controller 4, and output to the personal computer 8 or the like via the built-in memory 5 or the interface 7. Controller 4
Can be communicated to the liquid crystal monitor 6 so that the photographer can confirm the image to be photographed or the photographed image. Further, image data can be communicated from the built-in memory 5 to an auxiliary memory 9 such as a so-called smart media (trademark).

【0081】このとき、撮像素子3は、有効撮像領域の
対角長をd、水平画素の中心間隔をpとしたとき、以下
の条件式を満足し、かつ、少なくとも4種類の色フィル
ターから構成される補色フィルターを有している。
At this time, when the diagonal length of the effective image pickup area is d and the center distance between the horizontal pixels is p, the image pickup device 3 satisfies the following conditional expression and includes at least four types of color filters. It has a complementary color filter.

【0082】 1.0×10-4<p/d<6.0×10-4 ・・・(1) また、撮像レンズ系1とフィルター2を合わせた透過率
は以下の条件式を満足している。すなわち、400nm
の透過率をT400 、600nmの透過率をT60 0 、70
0nmの透過率をT700 としたとき、 8×T700 <T600 ・・・(2) T400 <T600 ・・・(3) を満足する。
1.0 × 10 −4 <p / d <6.0 × 10 −4 (1) The transmittance of the imaging lens system 1 and the filter 2 together satisfies the following conditional expression. ing. That is, 400 nm
T 60 the transmittance of T 400, 600 nm the transmittance of 0, 70
When the transmittance of 0nm was T 700, to satisfy the 8 × T 700 <T 600 ··· (2) T 400 <T 600 ··· (3).

【0083】あるいは、撮像素子3からの出力信号は以
下の特性を有している。すなわち、少なくとも一種類の
色フィルターに対応する系の出力信号の分光強度曲線
(撮影光学系に各波長が均一の強度の光が入射されたと
きの各波長の出力信号の強度によって描かれる曲線)
が、その分光強度のピークをSP とし、600nmの強
度をS600 、650nmの強度をS650 とするとき、 0.45<(S600 −S650 )/SP <0.85 ・・・(4) であるようにシステム構成している。
Alternatively, the output signal from the image sensor 3 has the following characteristics. That is, a spectral intensity curve of an output signal of a system corresponding to at least one type of color filter (a curve drawn by the intensity of the output signal of each wavelength when light of each wavelength is incident on the imaging optical system).
But the peak of the spectral intensity and S P, when the intensity of 600nm to the intensity of the S 600, 650 nm and S 650, 0.45 <(S 600 -S 650) / S P <0.85 ··· (4) The system is configured as follows.

【0084】撮像素子3には、図3に示したようなフィ
ルター配置のカラーフィルターを配置する。これは補色
モザイクフィルターと呼ばれるタイプで、シアン
(C)、マゼンタ(M)、イエロー(Ye )、緑(G)
のフィルターがそれぞれ略同量の数配置されている。そ
れぞれの波長特性の一例を図5に示す。前述のように補
色フィルターの場合、コントローラ4で次のような処理
を行い、 輝度信号 Y=|G+M+Ye +C|*1/4 色信号 R−Y=|(M+Ye )−(G+C)| B−Y=|(M+C)−(G+Ye )| R,G,Bに変換される。補色フィルターは、光電変換
面への光量を増やすことができる。
A color filter having a filter arrangement as shown in FIG. This is a type called a complementary color mosaic filter, which is cyan (C), magenta (M), yellow (Y e ), and green (G).
Are arranged in approximately the same amount. FIG. 5 shows an example of each wavelength characteristic. As described above, in the case of a complementary color filter, the following processing is performed by the controller 4, and the luminance signal Y = | G + M + Ye + C | * 1/4 color signal RY = | (M + Ye )-(G + C) | B −Y = | (M + C) − (G + Y e ) | The complementary color filter can increase the amount of light to the photoelectric conversion surface.

【0085】これらの実施の形態として、フィルター2
に図6に分光特性を示すような赤外カット機能を有する
蒸着薄膜コートを施してもよい。図7に、図12に示す
分光特性を示す標準光源D65と、図13に示すような撮
影レンズ系1の透過率と、図6に示す赤外カットフィル
ターと、図3の補色フィルターの特性とを合わせた特性
を示す。また、図8に、図7から算出されるR,G,B
の発色のための信号強度分布を示す。参考に、図9に、
一般の赤外カットフィルターの特性の一例を示す。これ
はよく用いられる吸収型赤外カットフィルターの一例で
ある。これを用いた標準光源D65と撮影レンズ系1の透
過率と赤外カットフィルターと補色フィルターの特性を
合わせた特性を図10に示す。また、図11に、図10
から算出されるR,G,Bの発色のための信号強度分布
を示す。
In these embodiments, the filter 2
In addition, a vapor-deposited thin film coat having an infrared cut function as shown in FIG. FIG. 7 shows the standard light source D 65 having the spectral characteristics shown in FIG. 12, the transmittance of the taking lens system 1 as shown in FIG. 13, the infrared cut filter shown in FIG. 6, and the characteristics of the complementary color filter shown in FIG. This shows the characteristics obtained by combining. FIG. 8 shows R, G, B calculated from FIG.
3 shows a signal intensity distribution for color development. For reference, FIG.
An example of the characteristics of a general infrared cut filter is shown. This is an example of a commonly used absorption type infrared cut filter. FIG. 10 shows characteristics obtained by combining the transmittance of the standard light source D 65 and the photographing lens system 1 and the characteristics of the infrared cut filter and the complementary color filter using the light source. Also, FIG.
5 shows signal intensity distributions for R, G, and B color development calculated from.

【0086】図8を図11と比較すると、特にR信号の
430nm付近の強度が弱くなり、620nm付近の強
度が強くなっているのが分かる。また、B信号の450
nm付近の強度が強くなっているのが分かる。すなわ
ち、赤は赤らしく、青は青らしく発色する。また、短波
長側の色収差によって発生するフレアーは元来エネルギ
ー的に低いのに加え、図8では、目立つ赤の発色への影
響が少なくなり、比較的目立たない青の発色への作用が
主なものになっている。すなわち、被写体の情報量が多
い実質的な画面においては、この短波長側のフレアーの
情報は特に画質に大きな影響を及ぼさなくなる。
When FIG. 8 is compared with FIG. 11, it can be seen that the intensity of the R signal at around 430 nm is particularly weak and the intensity around 620 nm is particularly strong. In addition, 450 of the B signal
It can be seen that the intensity around nm is strong. That is, red is reddish and blue is blue. Further, in addition to the fact that the flare caused by the chromatic aberration on the short wavelength side is originally low in energy, in FIG. It has become something. In other words, on a substantial screen having a large amount of information on the subject, the flare information on the short wavelength side does not significantly affect the image quality.

【0087】また、図14に示すように、図1と異なる
形態として、撮像素子3より物体側で、ハーフミラープ
リズム12で光束を分割し、その分割された光束をファ
インダー光学系13に導く所謂TTLファインダー形式
もある。このタイプは、電力の消費を少なくし、被写体
を観察することができる特徴がある。このようなタイプ
に本発明を適用してもよい。
Further, as shown in FIG. 14, as a form different from that of FIG. 1, a so-called light beam is split by a half mirror prism 12 on the object side from the image sensor 3 and the split light beam is guided to a finder optical system 13. There is also a TTL finder format. This type has a feature that power consumption can be reduced and a subject can be observed. The present invention may be applied to such a type.

【0088】なお、補色フィルターそのものの特性に本
発明の赤外カットフィルター機能を付加してもよい。
The infrared cut filter function of the present invention may be added to the characteristics of the complementary color filter itself.

【0089】実施の別の形態として、図15に示すよう
に、撮影レンズ系1と撮像素子3を含む本体を着脱可能
にしてもよい。マウント部15としては、スクリュータ
イプやバヨネットタイプ等を用いる。また、このとき、
撮影レンズ系1に本発明の赤外カット機能を持たせても
よいし、撮像素子3を含む本体に本発明の赤外カット機
能を持たせてもよい。
As another embodiment, as shown in FIG. 15, the main body including the photographing lens system 1 and the image pickup device 3 may be made detachable. As the mount section 15, a screw type, a bayonet type, or the like is used. At this time,
The taking lens system 1 may have the infrared cut function of the present invention, or the main body including the image sensor 3 may have the infrared cut function of the present invention.

【0090】もちろん、本発明の撮像装置は、デジタル
カメラの他に、撮像装置を備えた携帯電話、ノート型パ
ソコン等にも適用可能である。
Of course, the imaging device of the present invention can be applied to a mobile phone, a notebook personal computer, and the like having the imaging device in addition to the digital camera.

【0091】さて、次に以上のような本発明の実施の形
態に適した光学系の実施例A〜Gを示す。これらの実施
例には、フィルターが含まれているものとないものがあ
るが、適宜必要に応じて配置してよい。
Next, Examples A to G of the optical system suitable for the embodiment of the present invention as described above will be described. Some of these embodiments include or do not include a filter, but may be arranged as needed.

【0092】図16〜図18にそれぞれ実施例A〜Cの
光軸を含む断面図を示す。また、図19〜図22にそれ
ぞれ実施例D〜Gの広角端での光軸を含む断面図を示
す。実施例A〜Cは固定焦点距離のレンズ系であり、実
施例D〜Gは可変焦点距離のズームレンズ系である。図
中、Fはフィルター、プリズム類、Iは像面を示す。実
施例Bは、撮像光学系内に反射部材Rが配置され、カメ
ラの薄型化に適しているが、この反射部材Rの反射特性
を本発明の赤外カット機能を満足するように構成しても
よい。実施例Dは、所謂TTLファインダー形式に適し
ている。
FIGS. 16 to 18 are sectional views including the optical axis of Examples A to C, respectively. 19 to 22 show sectional views of Examples D to G including the optical axis at the wide-angle end, respectively. Examples A to C are lens systems having a fixed focal length, and Examples D to G are zoom lens systems having a variable focal length. In the figure, F indicates a filter and prisms, and I indicates an image plane. In the embodiment B, the reflection member R is disposed in the imaging optical system and is suitable for thinning the camera. However, the reflection characteristic of the reflection member R is configured to satisfy the infrared cut function of the present invention. Is also good. Embodiment D is suitable for a so-called TTL finder format.

【0093】以下、各実施例のレンズ構成を説明する。Hereinafter, the lens configuration of each embodiment will be described.

【0094】実施例Aは、図16に示すように、物体側
へ凸面を向けた正メニスカスレンズと、物体側へ凸面を
向けた負メニスカスレンズと、絞りと、両凹レンズを両
凸レンズの接合レンズと、両凸レンズの4群5枚構成で
ある。また、非球面は、最も像面側の両凸レンズの物体
側の面1面に用いている。
In Embodiment A, as shown in FIG. 16, a positive meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, a stop, and a biconvex lens formed by combining a biconcave lens with a biconvex lens And a four-group, five-element configuration of biconvex lenses. The aspherical surface is used as one surface on the object side of the biconvex lens closest to the image plane.

【0095】実施例Bは、図17に示すように、物体側
へ凸面を向けた負メニスカスレンズと、光路を折り曲げ
るための反射面Rと、絞りと、両凸レンズと、両凸レン
ズを両凹レンズの接合レンズと、像面側に強い凸面を向
けた正レンズの4群5枚構成である。また、非球面は、
絞りの後の両凸レンズに1面と、最も像面側の正レンズ
の1面の合計2面に用いている。
In Embodiment B, as shown in FIG. 17, a negative meniscus lens having a convex surface facing the object side, a reflecting surface R for bending the optical path, a diaphragm, a biconvex lens, and a biconcave lens having a biconcave lens It is a four-group, five-element configuration including a cemented lens and a positive lens with a strong convex surface facing the image plane side. Also, the aspheric surface is
One surface is used for the biconvex lens after the stop, and one surface for the positive lens closest to the image plane is used for a total of two surfaces.

【0096】実施例Cは、図18に示すように、物体側
へ凸面を向けた2枚の負メニスカスレンズと、凸レンズ
と、絞りと、両凹レンズを両凸レンズの接合レンズと、
両凸レンズの5群6枚構成である。また、非球面は、2
番目の負メニスカスレンズの1面、最も像面側の両凸レ
ンズの1面の合計2面に用いている。
In Example C, as shown in FIG. 18, two negative meniscus lenses having convex surfaces facing the object side, a convex lens, an aperture, and a cemented lens formed by combining a biconcave lens with a biconvex lens,
It is composed of 6 groups of 5 biconvex lenses. The aspherical surface is 2
One surface of the second negative meniscus lens and one surface of the biconvex lens closest to the image surface are used for a total of two surfaces.

【0097】実施例Dは、図19に示すように、第1群
G1は、物体側へ凸面を向けた負メニスカスレンズと物
体側へ凸面を向けた正メニスカスレンズの接合レンズ
と、物体側へ凸面を向けた正メニスカスレンズとの3枚
からなり、第2群G2は、物体側へ凸面を向けた負メニ
スカスレンズと、両凹レンズと、両凹レンズと物体側へ
凸面を向けた正メニスカスレンズの接合レンズとの4枚
からなり、その後に絞りSが位置し、第3群G3は、物
体側へ凸面を向けた正メニスカスレンズと、両凸レンズ
と、物体側へ凸面を向けた負メニスカスレンズとの3枚
からなり、第4群G4は、像面側に凸面を向けた負メニ
スカスレンズと像面側に凸面を向けた正メニスカスレン
ズの接合レンズと、両凸レンズ2枚との4枚からなる。
また、非球面は、第3群G3の両凸レンズの物体側の面
と、第4群G4の最も像面側レンズに1面の合計2面に
用いている。広角端から望遠端への変倍の際、図に矢印
で示すように、第1群G1と絞りSは固定で、第2群G
2は物体側から像面側に移動し、第3群G3と第4群G
4は像面側から物体側に移動する。
In Example D, as shown in FIG. 19, the first group G1 includes a cemented lens of a negative meniscus lens having a convex surface facing the object side, a positive meniscus lens having a convex surface facing the object side, and a cemented lens having a convex surface facing the object side. The second group G2 includes a negative meniscus lens having a convex surface facing the object side, a biconcave lens, and a positive meniscus lens having a biconcave lens and convex surface facing the object side. The third group G3 includes a positive meniscus lens having a convex surface facing the object side, a biconvex lens, and a negative meniscus lens having a convex surface facing the object side. The fourth unit G4 includes four cemented lenses of a negative meniscus lens having a convex surface facing the image surface side, a positive meniscus lens having a convex surface facing the image surface side, and two biconvex lenses. .
The aspherical surface is used for the object-side surface of the biconvex lens of the third group G3 and the one lens closest to the image plane of the fourth group G4, for a total of two surfaces. At the time of zooming from the wide-angle end to the telephoto end, the first group G1 and the stop S are fixed and the second group G
2 moves from the object side to the image plane side, and the third group G3 and the fourth group G
Reference numeral 4 moves from the image plane side to the object side.

【0098】実施例Eは、図20に示すように、第1群
G1は、凸レンズ1枚からなり、第2群G2は、物体側
に凸面を向けた負メニスカスレンズと、両凹レンズと物
体側に凸面を向けた正メニスカスレンズとの接合レンズ
からなり、その後に絞りSが位置し、第3群G3は、両
凸レンズと、物体側に凸面を向けた正メニスカスレンズ
と物体側に凸面を向けた負メニスカスレンズの接合レン
ズからなり、第4群G4は、両凸レンズ1枚からなる。
また、非球面は、第3群G3の最も物体側のレンズに1
面と、第4群G4の最も物体側の面の2面に用いてい
る。広角端から望遠端への変倍の際、図に矢印で示すよ
うに、第1群G1と絞りSは固定で、第2群G2は物体
側から像面側に移動し、第3群G3と第4群G4は相互
の間隔を広げながら像面側から物体側に移動する。
In Example E, as shown in FIG. 20, the first group G1 is composed of one convex lens, and the second group G2 is composed of a negative meniscus lens having a convex surface facing the object side, a biconcave lens and an object side lens. The third lens unit G3 is composed of a cemented lens formed by a positive meniscus lens having a convex surface facing the lens surface, and a stop S located thereafter. The third group G3 includes a biconvex lens, a positive meniscus lens having a convex surface facing the object side, and a convex surface facing the object side. The fourth group G4 is composed of a single biconvex lens.
Further, the aspheric surface has one lens on the most object side lens of the third group G3.
The surface and the surface closest to the object in the fourth group G4 are used. At the time of zooming from the wide-angle end to the telephoto end, the first group G1 and the aperture S are fixed, the second group G2 moves from the object side to the image plane side, and the third group G3 And the fourth unit G4 move from the image plane side to the object side while widening the mutual distance.

【0099】実施例Fは、図21に示すように、第1群
G1は、物体側に凸面を向けた正レンズ1枚からなり、
第2群G2は、物体側に凸面を向けた負メニスカスレン
ズと、両凹レンズと、物体側に強い凸面を向けた正レン
ズからなり、その後に絞りSが位置し、第3群G3は、
両凸レンズと、物体側に凸面を向けた負メニスカスレン
ズからなり、第4群G4は、像面側に強い凸面を向けた
正レンズ1枚からなる。また、非球面は、第4群G4の
物体側の面1面に用いている。広角端から望遠端への変
倍の際、図に矢印で示すように、第1群G1と絞りSは
固定で、第2群G2は物体側から像面側に移動し、第3
群G3と第4群G4は像面側から物体側に移動する。
In Example F, as shown in FIG. 21, the first group G1 is composed of one positive lens having a convex surface facing the object side.
The second group G2 includes a negative meniscus lens having a convex surface facing the object side, a biconcave lens, and a positive lens having a strong convex surface facing the object side. After that, the stop S is located.
The fourth group G4 includes a biconvex lens and a negative meniscus lens having a convex surface facing the object side, and the fourth group G4 includes a single positive lens having a strong convex surface facing the image surface side. The aspheric surface is used for one surface on the object side of the fourth unit G4. During zooming from the wide-angle end to the telephoto end, the first group G1 and the stop S are fixed, and the second group G2 moves from the object side to the image plane side, as indicated by the arrow in the figure.
The group G3 and the fourth group G4 move from the image plane side to the object side.

【0100】実施例Gは、図22に示すように、第1群
G1は、物体面に凸面を向けた2枚の負メニスカスレン
ズ、物体面に強い凸面を有する正メニスカスレンズから
なり、第2群G2の物体側に絞りSが位置し、第2群G
2は、両凸レンズと物体面に強い凸面を有する正メニス
カスレンズと像側に強い凹面を有する負メニスカスレン
ズが接合され、第3群G3は強い凸面が像側にある正メ
ニスカスレンズで構成されている。また、非球面は、第
2群G2の最も物体側の面と、第3群G3の単レンズの
像側の面の2面に用いている。広角端から望遠端への変
倍の際、図に矢印で示すように、第3群G3は固定で、
第1群G1は一旦像側に移動し、さらに物体側に移動す
る像側の凸の軌跡をとり、第2群G2は絞りSと一体に
像側から物体側にに移動する。
In Example G, as shown in FIG. 22, the first group G1 is composed of two negative meniscus lenses having a convex surface facing the object surface and a positive meniscus lens having a strong convex surface on the object surface. The stop S is located on the object side of the group G2, and the second group G
Reference numeral 2 denotes a biconvex lens, a positive meniscus lens having a strong convex surface on the object surface, and a negative meniscus lens having a strong concave surface on the image side, and the third group G3 includes a positive meniscus lens having a strong convex surface on the image side. I have. The aspherical surface is used for two surfaces, the surface closest to the object in the second group G2 and the image side surface of the single lens in the third group G3. During zooming from the wide-angle end to the telephoto end, the third group G3 is fixed as shown by the arrow in the figure.
The first group G1 temporarily moves to the image side and then takes a convex trajectory on the image side moving to the object side. The second group G2 moves from the image side to the object side integrally with the stop S.

【0101】以下に、上記各実施例の数値データを示す
が、記号は上記の他、fは全系焦点距離、FNOはFナン
バー(F値)、2ωは画角(有効対角画角)、pは画素
ピッチ、r1 、r2 …は各レンズ面の曲率半径、d1
2 …は各レンズ面間の間隔、nd1、nd2…は各レンズ
のd線の屈折率、ng1、ng2…は各レンズのg線の屈折
率、nh1、nh2…は各レンズのh線の屈折率、Δ
θRN1 、ΔθRN2 …は各レンズのΔθRNの値、νd1、ν
d2…は各レンズのd線のアッベ数である。曲率半径、間
隔の単位はmmである。なお、非球面形状は、xを光の
進行方向を正とした光軸とし、yを光軸と直行する方向
にとると、下記の式にて表される。
The numerical data of each of the above embodiments are shown below. In addition to the symbols, f is the focal length of the entire system, F NO is the F number (F value), and 2ω is the angle of view (effective diagonal angle of view). ), P is the pixel pitch, r 1 , r 2 ... Are the radii of curvature of each lens surface, d 1 ,
d 2 ... the spacing between the lens surfaces, n d1, n d2 ... d-line refractive index of each lens, n g1, n g2 ... is the refractive index of the g-line of each lens, n h1, n h2 ... is H-line refractive index of each lens, Δ
θ RN1 , Δθ RN2 ... are the values of Δθ RN of each lens, ν d1 , ν
d2 ... are Abbe numbers of the d-line of each lens. The unit of the radius of curvature and the interval is mm. The aspherical shape is represented by the following equation, where x is an optical axis where the traveling direction of light is positive, and y is a direction perpendicular to the optical axis.

【0102】x=(y2 /r)/[1+{1−(K+
1)(y/r)2 1/2 ]+A44 +A66 +A88
A1010+ A1212 ただし、rは近軸曲率半径、Kは円錐係数、A4、A6
A8、A10 、A12 はそれぞれ4次、6次、8次、10次、
12次の非球面係数である。
X = (y 2 / r) / [1+ {1- (K +
1) (y / r) 2 } 1/2] + A 4 y 4 + A 6 y 6 + A 8 y 8 +
A 10 y 10 + A 12 y 12 where r is the paraxial radius of curvature, K is the conic coefficient, A 4 , A 6 ,
A 8 , A 10 , and A 12 are the fourth, sixth, eighth, tenth,
It is a twelfth order aspheric coefficient.

【0103】 実施例A f = 5.55mm FNO= 2.88 2ω= 64.4 ° p = 3.8 μm d = 6.64mm r1 = 13.9598 d1 = 2.4200 nd1 =1.84666 νd1 =23.78 r2 = 56.3701 d2 = 0.2700 r3 = 7.6185 d3 = 0.8700 nd2 =1.48749 νd2 =70.21 r4 = 2.4917 d4 = 3.3154 r5 = ∞(絞り) d5 = 1.0735 r6 = -8.2879 d6 = 0.8000 nd3 =1.84666 νd3 =23.78 r7 = 10.5000 d7 = 3.7900 nd4 =1.72916 νd4 =54.68 r8 = -5.2842 d8 = 0.1500 r9 = 9.8776(非球面) d9 = 3.3700 nd5 =1.56384 νd5 =60.67 r10= -13.3796 d10= 2.7100 r11= ∞ d11= 2.3200 nd6 =1.51633 νd6 =64.14 r12= ∞ d12= 1.6000 r13= ∞ d13= 0.8000 nd7 =1.51633 νd7 =64.14 r14= ∞ d14= 1.0048 r15= ∞(像面) ng1 =1.89419 nh1 =1.91428 ΔθRN1 =+0.0174 ng2 =1.49596 nh2 =1.49898 ΔθRN2 =+0.0022 ng3 =1.89419 nh3 =1.91428 ΔθRN3 =+0.0174 ng4 =1.74570 nh4 =1.75173 ΔθRN4 =-0.0086 ng5 =1.57532 nh5 =1.57947 ΔθRN5 =-0.0031 ng6 =1.52621 nh6 =1.52977 ΔθRN6 =-0.0024 ng7 =1.52621 nh7 =1.52977 ΔθRN7 =-0.0024 非球面係数 第9面 K = 0 A4 =-3.6930 ×10-4 A6 = 7.0898 ×10-7[0103] Example A f = 5.55mm F NO = 2.88 2ω = 64.4 ° p = 3.8 μm d = 6.64mm r 1 = 13.9598 d 1 = 2.4200 n d1 = 1.84666 ν d1 = 23.78 r 2 = 56.3701 d 2 = 0.2700 r 3 = 7.6185 d 3 = 0.8700 n d2 = 1.48749 ν d2 = 70.21 r 4 = 2.4917 d 4 = 3.3154 r 5 = ∞ ( stop) d 5 = 1.0735 r 6 = -8.2879 d 6 = 0.8000 n d3 = 1.84666 ν d3 = 23.78 r 7 = 10.5000 d 7 = 3.7900 n d4 = 1.72916 ν d4 = 54.68 r 8 = -5.2842 d 8 = 0.1500 r 9 = 9.8776 ( aspherical) d 9 = 3.3700 n d5 = 1.56384 ν d5 = 60.67 r 10 = -13.3796 d 10 = 2.7100 r 11 = ∞ d 11 = 2.3200 n d6 = 1.51633 ν d6 = 64.14 r 12 = ∞ d 12 = 1.6000 r 13 = ∞ d 13 = 0.8000 n d7 = 1.51633 ν d7 = 64.14 r 14 = ∞ d 14 = 1.0048 r 15 = ∞ ( image plane) n g1 = 1.89419 n h1 = 1.91428 Δθ RN1 = + 0.0174 n g2 = 1.49596 n h2 = 1.49898 Δθ RN2 = + 0.0022 n g3 = 1.89419 n h3 = 1.91428 Δθ RN3 = + 0.0174 n g4 = 1.74570 n h4 = 1.75173 Δθ RN4 = -0.0086 n g5 = 1.57532 n h5 = 1.57947 Δθ RN5 = -0.0031 n g6 = 1.52621 n h6 = 1.52977 Δθ RN6 = -0.0024 n g7 = 1.52621 n h7 = 1.52977 Δθ RN7 = -0.0024 aspherical coefficients ninth surface K = 0 A 4 = -3.6930 x 10 -4 A 6 = 7.0898 x 10 -7 .

【0104】 実施例B f = 9.88 FNO= 2.8 2ω= 59.12° p = 3.9 μm d = 11 r1 = 42.746 d1 = 1.80 nd1 =1.48749 νd1 =70.23 r2 = 9.841 d2 = 21.36 r3 = ∞(絞り) d3 = 5.09 r4 = 96.670 d4 = 4.16 nd2 =1.69350 νd2 =53.20 r5 = -14.943 (非球面) d5 = 0.08 r6 = 9.051 d6 = 6.95 nd3 =1.62041 νd3 =60.29 r7 = -33.014 d7 = 0.98 nd4 =1.80518 νd4 =25.42 r8 = 5.859 d8 = 4.21 r9 = -51.618 d9 = 5.06 nd5 =1.58913 νd5 =61.28 r10= -7.361 (非球面) d10= 1.50 r11= ∞ d11= 1.00 nd6 =1.51633 νd6 =64.14 r12= ∞ d12= 1.60 nd7 =1.54771 νd7 =62.84 r13= ∞ ng1 =1.49596 nh1 =1.49898 ΔθRN1 =+0.0022 ng2 =1.70972 nh2 =1.71566 ΔθRN2 =-0.0081 ng3 =1.63315 nh3 =1.63778 ΔθRN3 =-0.0012 ng4 =1.84729 nh4 =1.86494 ΔθRN4 =+0.0158 ng5 =1.60103 nh5 =1.60535 ΔθRN5 =-0.0018 ng6 =1.52621 nh6 =1.52977 ΔθRN6 =-0.0024 ng7 =1.55843 nh7 =1.56226 ΔθRN7 =-0.0045 非球面係数 第5面 K = 0 A4 = 6.18542×10-5 A6 = 3.07784×10-7 第10面 K = 0 A4 = 4.92151×10-4 A6 =-3.57904×10-6 A8 = 4.22919×10-8[0104] Example B f = 9.88 F NO = 2.8 2ω = 59.12 ° p = 3.9 μm d = 11 r 1 = 42.746 d 1 = 1.80 n d1 = 1.48749 ν d1 = 70.23 r 2 = 9.841 d 2 = 21.36 r 3 = ∞ (stop) d 3 = 5.09 r 4 = 96.670 d 4 = 4.16 n d2 = 1.69350 ν d2 = 53.20 r 5 = -14.943 ( aspherical) d 5 = 0.08 r 6 = 9.051 d 6 = 6.95 n d3 = 1.62041 ν d3 = 60.29 r 7 = -33.014 d 7 = 0.98 n d4 = 1.80518 ν d4 = 25.42 r 8 = 5.859 d 8 = 4.21 r 9 = -51.618 d 9 = 5.06 n d5 = 1.58913 ν d5 = 61.28 r 10 = - 7.361 (aspherical) d 10 = 1.50 r 11 = ∞ d 11 = 1.00 n d6 = 1.51633 ν d6 = 64.14 r 12 = ∞ d 12 = 1.60 n d7 = 1.54771 ν d7 = 62.84 r 13 = ∞ n g1 = 1.49596 n h1 = 1.49898 Δθ RN1 = + 0.0022 n g2 = 1.70972 n h2 = 1.71566 Δθ RN2 = -0.0081 n g3 = 1.63315 n h3 = 1.63778 Δθ RN3 = -0.0012 n g4 = 1.84729 n h4 = 1.86494 Δθ RN4 = + 0.0158 n g5 = 1.60103 n h5 = 1.60535 Δθ RN5 = -0.0018 n g6 = 1.52621 n h6 = 1.52977 Δθ RN6 = -0.0024 n g7 = 1.55843 n h7 = 1.56226 Δθ RN7 = -0.0045 aspherical coefficients fifth surface K = 0 A 4 = 6.18542 × 10 -5 A 6 = 3.07784 × 10 -7 10th surface K = 0 A 4 = 4.92151 × 10 -4 A 6 = -3.57904 × 10 -6 A 8 = 4.22919 × 10 -8 .

【0105】 実施例C f = 4.4182 FNO= 2.4 2ω= 80.9 ° p = 3.8 μm or 3 μm d = 6.64 r1 = 13.2550 d1 = 0.9000 nd1 =1.60311 νd1 =60.64 r2 = 7.0317 d2 = 1.0000 r3 = 12.0000(非球面) d3 = 0.8000 nd2 =1.56384 νd2 =60.67 r4 = 4.9103 d4 = 4.6372 r5 = 7.9159 d5 = 1.1424 nd3 =1.84666 νd3 =23.78 r6 = ∞ d6 = 0.5000 r7 = ∞(絞り) d7 = 1.8751 r8 = -3.7652 d8 = 1.0000 nd4 =1.80518 νd4 =25.42 r9 = 8.7546 d9 = 2.1667 nd5 =1.72916 νd5 =54.68 r10= -4.8805 d10= 0.1500 r11= 10.0186(非球面) d11= 2.2298 nd6 =1.56384 νd6 =60.67 r12= -8.4667 d12= 2.3588 r13= ∞ d13= 1.9000 nd7 =1.51633 νd7 =64.14 r14= ∞ d14= 0.8000 nd8 =1.51633 νd8 =64.14 r15= ∞ d15= 1.2000 r16= ∞ d16= 0.7500 nd9 =1.48749 νd9 =70.23 r17= ∞ d17= 1.2200 r18= ∞(像面) ng1 =1.61541 nh1 =1.61987 ΔθRN1 =-0.0019 ng2 =1.57532 nh2 =1.57947 ΔθRN2 =-0.0031 ng3 =1.89419 nh3 =1.91428 ΔθRN3 =+0.0174 ng4 =1.84729 nh4 =1.86494 ΔθRN4 =+0.0158 ng5 =1.74570 nh5 =1.75173 ΔθRN5 =-0.0086 ng6 =1.57532 nh6 =1.57947 ΔθRN6 =-0.0031 ng7 =1.52621 nh7 =1.52977 ΔθRN7 =-0.0024 ng8 =1.52621 nh8 =1.52977 ΔθRN8 =-0.0024 ng9 =1.49596 nh9 =1.49898 ΔθRN9 =+0.0022 非球面係数 第3面 K = 0 A4 = 3.1698 ×10-4 A6 = 6.1083 ×10-5 A8 =-4.6332 ×10-6 A10=-1.4286 ×10-7 第11面 K = 0 A4 =-1.0432 ×10-3 A6 =-2.9351 ×10-5 A8 = 4.2352 ×10-6 A10=-1.8071 ×10-7Example C f = 4.4182 F NO = 2.4 2ω = 80.9 ° p = 3.8 μm or 3 μm d = 6.64 r 1 = 13.2550 d 1 = 0.9000 n d1 = 1.60311 ν d1 = 60.64 r 2 = 7.0317 d 2 = 1.0000 r 3 = 12.0000 (aspherical) d 3 = 0.8000 n d2 = 1.56384 ν d2 = 60.67 r 4 = 4.9103 d 4 = 4.6372 r 5 = 7.9159 d 5 = 1.1424 n d3 = 1.84666 ν d3 = 23.78 r 6 = ∞ d 6 = 0.5000 r 7 = ∞ (stop) d 7 = 1.8751 r 8 = -3.7652 d 8 = 1.0000 n d4 = 1.80518 ν d4 = 25.42 r 9 = 8.7546 d 9 = 2.1667 n d5 = 1.72916 ν d5 = 54.68 r 10 = -4.8805 d 10 = 0.1500 r 11 = 10.0186 ( aspherical) d 11 = 2.2298 n d6 = 1.56384 ν d6 = 60.67 r 12 = -8.4667 d 12 = 2.3588 r 13 = ∞ d 13 = 1.9000 n d7 = 1.51633 ν d7 = 64.14 r 14 = ∞ d 14 = 0.8000 n d8 = 1.51633 ν d8 = 64.14 r 15 = ∞ d 15 = 1.2000 r 16 = ∞ d 16 = 0.7500 n d9 = 1.48749 ν d9 = 70.23 r 17 = ∞ d 17 = 1.2200 r 18 = ∞ (image plane) n g1 = 1.61541 n h1 = 1.61987 Δθ RN1 = -0.0019 n g2 = 1.57532 n h2 = 1.57947 Δθ RN2 = -0.0031 n g3 = 1.89419 n h3 = 1.91428 Δθ RN3 = + 0.0174 n g4 = 1.84729 n h4 = 1.86494 Δθ RN4 = + 0.0158 n g5 = 1.74570 n h5 = 1.75173 Δθ RN5 = -0.0086 n g6 = 1.57532 n h6 = 1.57947 Δθ RN6 = -0.0031 n g7 = 1.52621 n h7 = 1.52977 Δθ RN7 = -0.0024 n g8 = 1.52621 n h8 = 1.52977 Δθ RN8 = -0.0024 n g9 = 1.49596 n h9 = 1.49898 Δθ RN9 = + 0.0022 Aspherical surface third surface K = 0 A 4 = 3.1698 × 10 -4 A 6 = 6.1083 × 10 -5 A 8 = -4.6332 × 10 -6 A 10 = -1.4286 × 10 -7 The eleventh surface K = 0 A 4 = −1.0432 × 10 −3 A 6 = −2.9351 × 10 −5 A 8 = 4.2352 × 10 −6 A 10 = −1.8071 × 10 −7 .

【0106】 実施例D f = 9.099 〜 18.100 〜 35.998 FNO= 2.008 〜 2.065 〜 2.481 2ω= 68.4 °〜 35.8 °〜 18.6 ° p = 3.5 μm d = 11 r1 = 74.1213 d1 = 2.5000 nd1 =1.84666 νd1 =23.78 r2 = 45.2920 d2 = 7.6976 nd2 =1.61800 νd2 =63.33 r3 = 200.0000 d3 = 0.1500 r4 = 53.6322 d4 = 5.1636 nd3 =1.77250 νd3 =49.60 r5 = 160.3763 d5 = (可変) r6 = 86.4469 d6 = 1.8938 nd4 =1.77250 νd4 =49.60 r7 = 12.9947 d7 = 6.5582 r8 = -633.9388 d8 = 1.3849 nd5 =1.84666 νd5 =23.78 r9 = 53.5036 d9 = 3.0086 r10= -70.1852 d10= 1.3000 nd6 =1.48749 νd6 =70.21 r11= 19.4251 d11= 4.0971 nd7 =1.80518 νd7 =25.42 r12= 567.6091 d12= (可変) r13= ∞(絞り) d13= (可変) r14= 35.5332 d14= 2.9155 nd8 =1.84666 νd8 =23.78 r15= 149.5334 d15= 1.9951 r16= 23.1874(非球面) d16= 3.2540 nd9 =1.69350 νd9 =53.20 r17= -136.5790 d17= 0.1500 r18= 54.2006 d18= 1.1258 nd10=1.80518 νd10=25.42 r19= 17.2110 d19= (可変) r20= -12.6096 d20= 1.1000 nd11=1.80518 νd11=25.42 r21= -55.3792 d21= 3.1600 nd12=1.61800 νd12=63.33 r22= -15.6001 d22= 0.1500 r23= 74.9447 d23= 3.2661 nd13=1.61800 νd13=63.33 r24= -30.4739 d24= 0.1500 r25= 124.0475 d25= 2.5117 nd14=1.69350 νd14=53.20 r26= -68.0400(非球面) d26= (可変) r27= ∞ d27= 24.0000 nd15=1.51633 νd15=64.14 r28= ∞ d28= 1.0000 r29= ∞ d29= 1.5700 nd16=1.54771 νd16=62.84 r30= ∞ d30= 1.0000 r31= ∞ d31= 0.8000 nd17=1.51823 νd17=58.96 r32= ∞ ng1 =1.89419 nh1 =1.91428 ΔθRN1 =+0.0174 ng2 =1.63010 nh2 =1.63451 ΔθRN2 =+0.0051 ng3 =1.79197 nh3 =1.79917 ΔθRN3 =-0.0092 ng4 =1.79197 nh4 =1.79917 ΔθRN4 =-0.0092 ng5 =1.89419 nh5 =1.91428 ΔθRN5 =+0.0174 ng6 =1.49596 nh6 =1.49898 ΔθRN6 =+0.0022 ng7 =1.84729 nh7 =1.86494 ΔθRN7 =+0.0158 ng8 =1.89419 nh8 =1.91428 ΔθRN8 =+0.0174 ng9 =1.70972 nh9 =1.71566 ΔθRN9 =-0.0081 ng10=1.84729 nh10=1.86494 ΔθRN10 =+0.0158 ng11=1.84729 nh11=1.86494 ΔθRN11 =+0.0158 ng12=1.63010 nh12=1.63451 ΔθRN12 =+0.0051 ng13=1.63010 nh13=1.63451 ΔθRN13 =+0.0051 ng14=1.70972 nh14=1.71566 ΔθRN14 =-0.0081 ng15=1.52621 nh15=1.52977 ΔθRN15 =-0.0024 ng16=1.55843 nh16=1.56226 ΔθRN16 =-0.0045 ng17=1.52915 nh17=1.53314 ΔθRN17 =+0.0035 非球面係数 第16面 K = 0 A4 =-1.3659 ×10-5 A6 =-5.3156 ×10-9 A8 =-2.4548 ×10-11 A10= 2.2544 ×10-12 第26面 K = 0 A4 = 6.6763 ×10-6 A6 = 3.7977 ×10-8 A8 =-4.9995 ×10-10 A10= 2.3437 ×10-12 [0106] Example D f = 9.099 ~ 18.100 ~ 35.998 F NO = 2.008 ~ 2.065 ~ 2.481 2ω = 68.4 ° ~ 35.8 ° ~ 18.6 ° p = 3.5 μm d = 11 r 1 = 74.1213 d 1 = 2.5000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 45.2920 d 2 = 7.6976 n d2 = 1.61800 ν d2 = 63.33 r 3 = 200.0000 d 3 = 0.1500 r 4 = 53.6322 d 4 = 5.1636 n d3 = 1.77250 ν d3 = 49.60 r 5 = 160.3763 d 5 = (variable) r 6 = 86.4469 d 6 = 1.8938 n d4 = 1.77250 ν d4 = 49.60 r 7 = 12.9947 d 7 = 6.5582 r 8 = -633.9388 d 8 = 1.3849 n d5 = 1.84666 ν d5 = 23.78 r 9 = 53.5036 d 9 = 3.0086 r 10 = -70.1852 d 10 = 1.3000 n d6 = 1.48749 ν d6 = 70.21 r 11 = 19.4251 d 11 = 4.0971 n d7 = 1.80518 ν d7 = 25.42 r 12 = 567.6091 d 12 = ( variable) r 13 = ∞ (stop) d 13 = (variable) r 14 = 35.5332 d 14 = 2.9155 n d8 = 1.84666 ν d8 = 23.78 r 15 = 149.5334 d 15 = 1.9951 r 16 = 23.1874 ( aspherical) d 16 = 3.2540 n d9 = 1.69350 ν d9 = 53.20 r 17 = -136.5790 d 17 = 0.1500 r 18 = 54.2006 d 18 = 1.1258 n d10 = 1.80518 ν d10 = 25.42 r 19 = 17.2110 d 19 = ( Variable) r 20 = -12.6096 d 20 = 1.1000 n d11 = 1.80518 ν d11 = 25.42 r 21 = -55.3792 d 21 = 3.1600 n d12 = 1.61800 ν d12 = 63.33 r 22 = -15.6001 d 22 = 0.1500 r 23 = 74.9447 d 23 = 3.2661 n d13 = 1.61800 ν d13 = 63.33 r 24 = -30.4739 d 24 = 0.1500 r 25 = 124.0475 d 25 = 2.5117 n d14 = 1.69350 ν d14 = 53.20 r 26 = -68.0400 ( aspherical) d 26 = (variable) r 27 = ∞ d 27 = 24.0000 n d15 = 1.51633 ν d15 = 64.14 r 28 = ∞ d 28 = 1.0000 r 29 = ∞ d 29 = 1.5700 nd 16 = 1.54771 ν d16 = 62.84 r 30 = ∞ d 30 = 1.0000 r 31 = d d 31 = 0.8000 n d17 = 1.51823 ν d17 = 58.96 r 32 = n n g1 = 1.89419 n h1 = 1.91428 Δθ RN1 = + 0.0174 n g2 = 1.63010 n h2 = 1.63451 Δθ RN2 = + 0.0051 n g3 = 1.79197 n h3 = 1.79917 Δθ RN3 = -0.0092 n g4 = 1.79197 n h4 = 1.79917 Δθ RN4 = - 0.0092 n g5 = 1.89419 n h5 = 1.91428 Δθ RN5 = + 0.0174 n g6 = 1.49596 n h6 = 1.49898 Δθ RN6 = + 0.0022 n g7 = 1.84729 n h7 = 1.86494 Δθ RN7 = + 0.0158 n g8 = 1.89419 n h8 = 1.91428 Δθ RN8 = + 0.0174 n g9 = 1.70972 n h9 = 1.71566 Δθ RN9 = -0.0081 n g10 = 1.84729 n h10 = 1.86494 Δθ RN10 = + 0.0158 n g11 = 1.84729 n h11 = 1.86494 Δθ RN11 = + 0.0158 n g12 = 1.63010 n h12 = 1.63451 Δθ RN12 = + 0.0051 n g13 = 1.63010 n h13 = 1.63451 Δθ RN13 = + 0.0051 n g14 = 1.70972 n h14 = 1.71566 Δθ RN14 = -0.0081 n g15 = 1.52621 n h15 = 1.52977 Δθ RN15 = -0.0024 n g16 = 1.55843 n h16 = 1.56226 Δθ RN16 = -0.0045 n g17 = 1.52915 n h17 = 1.53314 Δθ RN17 = + 0.0035 Aspheric surface 16th surface K = 0 A 4 = -1.3659 × 10 -5 A 6 = -5.3156 × 10 -9 A 8 = -2.4548 × 10 -11 A 10 = 2.2544 × 10 -12 26th surface K = 0 A 4 = 6.6763 x 10 -6 A 6 = 3.7977 x 10 -8 A 8 = -4.9995 x 10 -10 A 10 = 2.3437 x 10 -12 .

【0107】 実施例E f = 6.608 〜 11.270 〜 19.098 FNO= 2.03 〜 2.36 〜 2.91 p = 3.9 μm or 3.2μm d = 8 r1 = 36.688 d1 = 4.14 nd1 =1.48749 νd1 =70.23 r2 = ∞ d2 = (可変) r3 = 21.750 d3 = 1.25 nd2 =1.84666 νd2 =23.78 r4 = 8.054 d4 = 5.45 r5 = -27.511 d5 = 1.00 nd3 =1.48749 νd3 =70.23 r6 = 10.412 d6 = 4.50 nd4 =1.84666 νd4 =23.78 r7 = 40.550 d7 = (可変) r8 = ∞(絞り) d8 = (可変) r9 = 17.583 (非球面) d9 = 3.42 nd5 =1.58913 νd5 =61.30 r10= -35.670 d10= 0.20 r11= 9.390 d11= 4.35 nd6 =1.77250 νd6 =49.60 r12= 87.943 d12= 0.90 nd7 =1.84666 νd7 =23.78 r13= 6.609 d13= (可変) r14= 13.553 (非球面) d14= 3.28 nd8 =1.58913 νd8 =61.30 r15= -30.808 ng1 =1.49596 nh1 =1.49898 ΔθRN1 =+0.0022 ng2 =1.89419 nh2 =1.91428 ΔθRN2 =+0.0174 ng3 =1.49596 nh3 =1.49898 ΔθRN3 =+0.0022 ng4 =1.89419 nh4 =1.91428 ΔθRN4 =+0.0174 ng5 =1.60103 nh5 =1.60535 ΔθRN5 =-0.0018 ng6 =1.79197 nh6 =1.79917 ΔθRN6 =-0.0092 ng7 =1.89419 nh7 =1.91428 ΔθRN7 =+0.0174 ng8 =1.60103 nh8 =1.60535 ΔθRN8 =-0.0018 非球面係数 第9面 K = 0.000 A4 =-4.66054×10-5 A6 =-1.33346×10-6 A8 = 6.88261×10-8 A10=-1.18171×10-9 A12= 1.21868×10-12 第14面 K = 0.000 A4 =-9.93375×10-5 A6 =-9.76311×10-7 A8 = 3.21037×10-7 A10=-1.95172×10-8 A12= 3.74139×10-10 [0107] Example E f = 6.608 ~ 11.270 ~ 19.098 F NO = 2.03 ~ 2.36 ~ 2.91 p = 3.9 μm or 3.2μm d = 8 r 1 = 36.688 d 1 = 4.14 n d1 = 1.48749 ν d1 = 70.23 r 2 = ∞ d 2 = (variable) r 3 = 21.750 d 3 = 1.25 n d2 = 1.84666 ν d2 = 23.78 r 4 = 8.054 d 4 = 5.45 r 5 = -27.511 d 5 = 1.00 n d3 = 1.48749 ν d3 = 70.23 r 6 = 10.412 d 6 = 4.50 n d4 = 1.84666 ν d4 = 23.78 r 7 = 40.550 d 7 = (variable) r 8 = ∞ (aperture) d 8 = (variable) r 9 = 17.583 (aspherical surface) d 9 = 3.42 n d5 = 1.58913 ν d5 = 61.30 r 10 = -35.670 d 10 = 0.20 r 11 = 9.390 d 11 = 4.35 n d6 = 1.77250 ν d6 = 49.60 r 12 = 87.943 d 12 = 0.90 n d7 = 1.84666 ν d7 = 23.78 r 13 = 6.609 d 13 = (variable) r 14 = 13.553 (aspherical) d 14 = 3.28 n d8 = 1.58913 ν d8 = 61.30 r 15 = -30.808 n g1 = 1.49596 n h1 = 1.49898 Δθ RN1 = + 0.0022 n g2 = 1.89419 n h2 = 1.91428 Δθ RN2 = + 0.0174 n g3 = 1.49596 n h3 = 1.49898 Δθ R N3 = + 0.0022 n g4 = 1.89419 n h4 = 1.91428 Δθ RN4 = + 0.0174 n g5 = 1.60103 n h5 = 1.60535 Δθ RN5 = -0.0018 n g6 = 1.79197 n h6 = 1.79917 Δθ RN6 = -0.0092 n g7 = 1.89419 n h7 = 1.91428 Δθ RN7 = + 0.0174 ng8 = 1.60103 n h8 = 1.60535 Δθ RN8 = -0.0018 Aspheric surface ninth surface K = 0.000 A 4 = -4.66054 × 10 -5 A 6 = -1.33346 × 10 -6 A 8 = 6.88261 × 10 -8 A 10 = -1.18171 × 10 -9 A 12 = 1.21868 × 10 -12 14th surface K = 0.000 A 4 = -9.93375 × 10 -5 A 6 = -9.76311 × 10 -7 A 8 = 3.21037 × 10 -7 A 10 = -1.95172 × 10 -8 A 12 = 3.74139 × 10 - 10 .

【0108】 実施例F f = 9.000 〜15.590 〜27.000 FNO= 2.800 〜 3.030 〜 4.069 2ω=67.094°〜39.462°〜23.030° p = 6.7 μm or 4 μm d = 11 r1 = 44.5137 d1 = 4.4000 nd1 =1.69680 νd1 =55.53 r2 = 137.7320 d2 = (可変) r3 = 23.5602 d3 = 1.6000 nd2 =1.69680 νd2 =55.53 r4 = 12.0406 d4 = 5.7412 r5 = -54.8255 d5 = 1.5000 nd3 =1.56384 νd3 =60.70 r6 = 13.6238 d6 = 3.8135 r7 = 16.0196 d7 = 2.2000 nd4 =1.84666 νd4 =23.78 r8 = 23.3091 d8 = (可変) r9 = ∞(絞り) d9 = (可変) r10= 31.1300 d10= 6.5179 nd5 =1.77250 νd5 =49.60 r11= -15.0403 d11= 0.1939 r12= -13.3787 d12= 0.8893 nd6 =1.84666 νd6 =23.78 r13= -65.0570 d13= (可変) r14= -2370.3961(非球面) d14= 4.3000 nd7 =1.49241 νd7 =57.66 r15= -14.2694 d15= (可変) r16= ∞ d16= 1.1400 nd8 =1.54771 νd8 =62.84 r17= ∞ d17= 0.8100 nd9 =1.54771 νd9 =62.84 r18= ∞ d18= 1.0000 r19= ∞ d19= 1.0000 nd10=1.48749 νd10=70.23 r20= ∞ d20= 1.0000 r21= ∞ d21= 0.8000 nd11=1.51823 νd11=58.96 r22= ∞ ng1 =1.71234 nh1 =1.71800 ΔθRN1 =-0.0082 ng2 =1.71234 nh2 =1.71800 ΔθRN2 =-0.0082 ng3 =1.57532 nh3 =1.57947 ΔθRN3 =-0.0031 ng4 =1.89419 nh4 =1.91428 ΔθRN4 =+0.0174 ng5 =1.79197 nh5 =1.79917 ΔθRN5 =-0.0092 ng6 =1.89419 nh6 =1.91428 ΔθRN6 =+0.0174 ng7 =1.50320 nh7 =1.50713 ΔθRN7 =+0.0104 ng8 =1.55843 nh8 =1.56226 ΔθRN8 =-0.0045 ng9 =1.55843 nh9 =1.56226 ΔθRN9 =-0.0045 ng10=1.49596 nh10=1.49898 ΔθRN10 =+0.0022 ng11=1.52915 nh11=1.53314 ΔθRN11 =+0.0035 非球面係数 第14面 K = 0.0000 A4 =-7.8946 ×10-5 A6 = 3.2441 ×10-8 A8 =-1.6090 ×10-9 A10= 1.6631 ×10-11 Example F f = 9.000 to 15.590 to 27.000 F NO = 2.800 to 3.030 to 4.069 2ω = 67.094 ° to 39.462 ° to 23.030 ° p = 6.7 μm or 4 μm d = 11 r 1 = 44.5137 d 1 = 4.4000 n d1 = 1.69680 ν d1 = 55.53 r 2 = 137.7320 d 2 = (variable) r 3 = 23.5602 d 3 = 1.6000 nd 2 = 1.69680 ν d2 = 55.53 r 4 = 12.0406 d 4 = 5.7412 r 5 = -54.8255 d 5 = 1.5000 n d3 = 1.56384 ν d3 = 60.70 r 6 = 13.6238 d 6 = 3.8135 r 7 = 16.0196 d 7 = 2.2000 n d4 = 1.84666 ν d4 = 23.78 r 8 = 23.3091 d 8 = ( variable) r 9 = ∞ (stop) d 9 = (variable) r 10 = 31.1300 d 10 = 6.5179 n d5 = 1.77250 ν d5 = 49.60 r 11 = -15.0403 d 11 = 0.1939 r 12 = -13.3787 d 12 = 0.8893 n d6 = 1.84666 ν d6 = 23.78 r 13 = -65.0570 d 13 = (variable) r 14 = -2370.3961 (aspherical) d 14 = 4.3000 n d7 = 1.49241 ν d7 = 57.66 r 15 = -14.2694 d 15 = ( variable) r 16 = ∞ d 16 = 1.1400 n d8 = 1.54771 ν d8 = 62.84 r 17 = ∞ d 1 7 = 0.8100 n d9 = 1.54771 ν d9 = 62.84 r 18 = ∞ d 18 = 1.0000 r 19 = ∞ d 19 = 1.0000 n d10 = 1.48749 ν d10 = 70.23 r 20 = ∞ d 20 = 1.0000 r 21 = ∞ d 21 = 0.8000 n d11 = 1.51823 ν d11 = 58.96 r 22 = ∞ n g1 = 1.71234 n h1 = 1.71800 Δθ RN1 = -0.0082 n g2 = 1.71234 n h2 = 1.71800 Δθ RN2 = -0.0082 n g3 = 1.57532 n h3 = 1.57947 Δθ RN3 = -0.0031 n g4 = 1.89419 n h4 = 1.91428 Δθ RN4 = + 0.0174 n g5 = 1.79197 n h5 = 1.79917 Δθ RN5 = -0.0092 n g6 = 1.89419 n h6 = 1.91428 Δθ RN6 = + 0.0174 n g7 = 1.50320 n h7 = 1.50713 Δθ RN7 = + 0.0104 n g8 = 1.55843 n h8 = 1.56226 Δθ RN8 = -0.0045 n g9 = 1.55843 n h9 = 1.56226 Δθ RN9 = -0.0045 n g10 = 1.49596 n h10 = 1.49898 Δθ RN10 = + 0.0022 n g11 = 1.52915 n h11 = 1.53314 Δθ RN11 = + 0.0035 Aspheric surface coefficient surface 14 K = 0.0000 A 4 = -7.8946 x 10 -5 A 6 = 3.2441 x 10 -8 A 8 = -1.6090 x 10 -9 A 10 = 1.6631 x 10 -11 .

【0109】 実施例G f = 4.5 〜 8.7 〜12.9 FNO= 2.8 〜 3.9 〜 5.0 2ω=58° 〜32° 〜21.9° p = 3.0 μm d = 5.0 r1 = 21.9050 d1 = 1.0000 nd1 =1.79952 νd1 =42.22 r2 = 5.4876 d2 = 1.9041 r3 = 133.8501 d3 = 0.9000 nd2 =1.79952 νd2 =42.22 r4 = 12.6430 d4 = 0.2000 r5 = 7.5698 d5 = 1.5775 nd3 =1.84666 νd3 =23.78 r6 = 19.3947 d6 = (可変) r7 = ∞(絞り) d7 = 1.0000 r8 = 11.9178(非球面) d8 = 1.6467 nd4 =1.58913 νd4 =61.14 r9 = -11.0083 d9 = 0.3000 r10= 3.5308 d10= 1.5734 nd5 =1.72916 νd5 =54.68 r11= 7.2012 d11= 0.5000 nd6 =1.80518 νd6 =25.42 r12= 2.5388 d12= (可変) r13= -24.9058 d13= 2.0739 nd7 =1.58913 νd7 =61.14 r14= -5.9760(非球面) d14= 0.5000 r15= ∞ d15= 0.8000 nd8 =1.51633 νd8 =61.14 r16= ∞ d16= 1.8000 nd9 =1.54771 νd9 =62.84 r17= ∞ d17= 0.5000 r18= ∞ d18= 0.5000 nd10=1.51633 νd10=64.14 r19= ∞ d19= 1.2000 r20= ∞(像面) ng1 =1.82355 nh1 =1.83271 ΔθRN1 =-0.0060 ng2 =1.82355 nh2 =1.83271 ΔθRN2 =-0.0060 ng3 =1.89419 nh3 =1.91428 ΔθRN3 =+0.0174 ng4 =1.60103 nh4 =1.60535 ΔθRN4 =-0.0018 ng5 =1.74570 nh5 =1.75173 ΔθRN5 =-0.0086 ng6 =1.84729 nh6 =1.86494 ΔθRN6 =+0.0158 ng7 =1.60103 nh7 =1.60535 ΔθRN7 =-0.0018 ng8 =1.52621 nh8 =1.52977 ΔθRN8 =-0.0024 ng9 =1.55843 nh9 =1.56226 ΔθRN9 =-0.0045 ng10=1.52621 nh10=1.52977 ΔθRN10 =-0.0024 非球面係数 第8面 K = 0.0000 A4 =-6.2411 ×10-4 A6 =-8.9699 ×10-7 A8 =-2.7168 ×10-8 A10= 5.6463 ×10-9 第14面 K = 0.0000 A4 = 1.3371 ×10-3 A6 =-3.0850 ×10-5 A8 = 1.0398 ×10-9 A10= 1.5028 ×10-7[0109] Example G f = 4.5 ~ 8.7 ~12.9 F NO = 2.8 ~ 3.9 ~ 5.0 2ω = 58 ° ~32 ° ~21.9 ° p = 3.0 μm d = 5.0 r 1 = 21.9050 d 1 = 1.0000 n d1 = 1.79952 ν d1 = 42.22 r 2 = 5.4876 d 2 = 1.9041 r 3 = 133.8501 d 3 = 0.9000 n d2 = 1.79952 ν d2 = 42.22 r 4 = 12.6430 d 4 = 0.2000 r 5 = 7.5698 d 5 = 1.5775 n d3 = 1.84666 ν d3 = 23.78 r 6 = 19.3947 d 6 = ( variable) r 7 = ∞ (stop) d 7 = 1.0000 r 8 = 11.9178 ( aspherical) d 8 = 1.6467 n d4 = 1.58913 ν d4 = 61.14 r 9 = -11.0083 d 9 = 0.3000 r 10 = 3.5308 d 10 = 1.5734 n d5 = 1.72916 ν d5 = 54.68 r 11 = 7.2012 d 11 = 0.5000 n d6 = 1.80518 ν d6 = 25.42 r 12 = 2.5388 d 12 = ( variable) r 13 = -24.9058 d 13 = 2.0739 n d7 = 1.58913 ν d7 = 61.14 r 14 = -5.9760 ( aspherical) d 14 = 0.5000 r 15 = ∞ d 15 = 0.8000 n d8 = 1.51633 ν d8 = 61.14 r 16 = ∞ d 16 = 1.8000 n d9 = 1.54771 ν d9 = 62.84 r 17 = ∞ d 17 = 0.5000 r 18 = ∞ d 18 = 0.5000 n d10 = 1.51633 ν d10 = 64.14 r 19 = ∞ d 19 = 1.2000 r 20 = ∞ ( image plane) n g1 = 1.82355 n h1 = 1.83271 Δθ RN1 = -0.0060 n g2 = 1.82355 n h2 = 1.83271 Δθ RN2 = -0.0060 n g3 = 1.89419 n h3 = 1.91428 Δθ RN3 = + 0.0174 n g4 = 1.60103 n h4 = 1.60535 Δθ RN4 = -0.0018 n g5 = 1.74570 n h5 = 1.75173 Δθ RN5 = -0.0086 n g6 = 1.84729 n h6 = 1.86494 Δθ RN6 = + 0.0158 n g7 = 1.60103 n h7 = 1.60535 Δθ RN7 = -0.0018 n g8 = 1.52621 n h8 = 1.52977 Δθ RN8 = -0.0024 n g9 = 1.55843 n h9 = 1.56226 Δθ RN9 = -0.0045 n g10 = 1.52621 n h10 = 1.52977 Δθ RN10 = -0.0024 Aspheric coefficient 8th surface K = 0.0000 A 4 = -6.2411 × 10 -4 A 6 = -8.9699 × 10 -7 A 8 = -2.7168 × 10 -8 A 10 = 5.6463 × 10 -9 14th surface K = 0.0000 A 4 = 1.3371 × 10 -3 A 6 = -3.0850 × 10 -5 A 8 = 1.0398 × 10 -9 A 10 = 1.5028 × 10 -7 .

【0110】ところで、本発明の撮像装置に用いる図6
に示したような赤外カット機能を有するフィルターの具
体例として、図23に分光透過率を示すような27層構
成のIRカットフィルターがあげられる。以下に、その
多層コーティングのデータを示す。このフィルターは、
屈折率1.52の平行平板からなる基板上に、基板側か
ら下記の順番でAl2 3 、TiO2 、SiO2 を27
層積層してなるものである。設計波長λは780nmで
ある。
By the way, FIG. 6 used in the image pickup apparatus of the present invention.
As a specific example of a filter having an infrared cut function as shown in FIG. 23, there is an IR cut filter having a 27-layer structure as shown in FIG. The data of the multilayer coating is shown below. This filter is
Al 2 O 3 , TiO 2 , and SiO 2 were deposited on a substrate made of a parallel flat plate having a refractive index of 1.52 in the following order from the substrate side.
It is formed by laminating layers. The design wavelength λ is 780 nm.

【0111】 膜の順番 材質 膜厚 λ/4に対する相対膜厚 基板 1 Al2 3 58.96 0.50 2 TiO2 84.19 1.00 3 SiO2 134.14 1.00 4 TiO2 84.19 1.00 5 SiO2 134.14 1.00 6 TiO2 84.19 1.00 7 SiO2 134.14 1.00 8 TiO2 84.19 1.00 9 SiO2 134.14 1.00 10 TiO2 84.19 1.00 11 SiO2 134.14 1.00 12 TiO2 84.19 1.00 13 SiO2 134.14 1.00 14 TiO2 84.19 1.00 15 SiO2 178.41 1.33 16 TiO2 101.03 1.21 17 SiO2 167.67 1.25 18 TiO2 96.82 1.15 19 SiO2 147.55 1.05 20 TiO2 84.19 1.00 21 SiO2 160.97 1.20 22 TiO2 84.19 1.00 23 SiO2 154.26 1.15 24 TiO2 95.13 1.13 25 SiO2 160.97 1.20 26 TiO2 99.34 1.18 27 SiO2 87.19 0.65 空気 。Order of Film Material Film Thickness Relative Film Thickness with respect to λ / 4 Substrate 1 Al 2 O 3 58.96 0.50 2 TiO 2 84.19 1.00 3 SiO 2 134.14 1.00 4 TiO 2 84.19 1.00 5 SiO 2 134.14 1.00 6 TiO 2 84.19 1.00 7 SiO 2 134.14 1.008 TiO 2 84.19 1.00 9 SiO 2 134.14 1.00 10 TiO 2 84.19 1.00 11 SiO 2 134.14 1.00 12 TiO 2 84.19 1.00 13 SiO 2 134.14 1.00 14 TiO 2 84.19 1.00 15 SiO 2 178.41 1.33 16 TiO 2 101.03 1.217 SiO 2 167.67 1.25 18 TiO 2 96.82 1.15 19 SiO 2 147.55 1.05 20 TiO 2 84.19 1.00 21 SiO 2 160.97 1.20 22 TiO 2 84.19 1.00 23 SiO 2 154.26 1.15 24 TiO 2 95.13 1.13 25 SiO 2 160.97 1.20 26 TiO 2 99.34 1.27 SiO 2 87.19 0.65 air.

【0112】また、上記の実施の形態及び実施例A〜G
における、条件(1)〜(5−5)に関する値、及び、
他のパラメータの値を次に示す。
The above embodiment and Examples A to G
, The values relating to the conditions (1) to (5-5), and
The values of the other parameters are shown below.

【0113】 実施例A 実施例B 実施例C 実施例D (1)p/d 5.72×10-4 3.55×10-4 5.72×10-4 3.18×10-4 or 4.52×10-4 実施例E 実施例F 実施例G 4.88×10-4 6.09×10-4 6.00×10-4 or 4.00×10-4 or 3.64×10-4 実施の形態 (2),(3)(撮影レンズ1とフィルター2における) T700 0.02 T600 0.79 T400 0.45 (4) S600 66% S650 7% SP 87% (S600 −S650 )/SP 0.68 (5−1)GP 532nm (5−2)YP −GP 539-532=7nm (5−3)CP −GP 505-532=-27nm (5−4)MP1 455nm (5−5)MP2 613nm 530nmにおけるピークに対する強度(色フィルターのみにおける) Ye M C G 0.96 0.25 0.80 0.71 図6 600nmの透過率 96% 700nmの透過率 0% 図23 600nmの透過率 92% 700nmの透過率 2% 。Example A Example B Example B Example C Example D (1) p / d 5.72 × 10 -4 3.55 × 10 -4 5.72 × 10 -4 3.18 × 10 -4 or 4.52 × 10 -4 Example E Example F Example G 4.88 × 10 -4 6.09 × 10 -4 6.00 × 10 -4 or 4.00 × 10 -4 or 3.64 × 10 -4 Embodiments (2), (3) (photographing lens 1 and filter 2 ) T 700 0.02 T 600 0.79 T 400 0.45 in (4) S 600 66% S 650 7% S P 87% (S 600 -S 650) / S P 0.68 (5-1) G P 532nm (5-2) Y P -G P 539-532 = 7nm ( 5-3) C P -G P 505-532 = -27nm (5-4) M P1 455nm (5-5) intensity relative to the peak at M P2 613 nm 530 nm (color filter ) Y e M C G 0.96 0.25 0.80 0.71 FIG. 6 600 nm transmittance of 2% transmission 92% 700 nm transmittance of 0% Figure 23 600 nm transmittance of 96% 700 nm of the chisel.

【0114】以上の本発明の撮像装置及び撮像光学系は
例えば次のように構成することができる。
The above-described image pickup apparatus and image pickup optical system according to the present invention can be constituted, for example, as follows.

【0115】〔1〕 少なくとも、有効撮像領域の対角
長をd、水平画素の中心間隔をpとしたとき、以下の条
件式(1)を満足し、かつ、少なくとも4種類の色フィ
ルターから構成される補色フィルターを有する電子撮像
素子と、400nmの透過率をT400 、600nmの透
過率をT600 、700nmの透過率をT700 としたと
き、以下の分光特性(2)、(3)を有し、前記電子撮
像素子に物体側からの光束を導く撮像光学系と、前記電
子撮像素子からの出力を基に信号処理と画像処理を行う
コントローラとを有することを特徴とする撮像装置。
[1] When at least the diagonal length of the effective image pickup area is d and the center distance between horizontal pixels is p, the following conditional expression (1) is satisfied, and at least four types of color filters are provided. The following spectral characteristics (2) and (3) are obtained when an electronic image pickup device having a complementary color filter and a transmittance at 400 nm is T 400 , a transmittance at 600 nm is T 600 , and a transmittance at 700 nm is T 700. An imaging apparatus comprising: an imaging optical system that guides a light beam from an object side to the electronic imaging element; and a controller that performs signal processing and image processing based on an output from the electronic imaging element.

【0116】 1.0×10-4<p/d<6.0×10-4 ・・・(1) 8×T700 <T600 ・・・(2) T400 <T600 ・・・(3) 〔2〕 少なくとも、撮影光学系と、有効撮像領域の対
角長をd、水平画素の中心間隔をpとしたとき、以下の
条件式(1)を満足し、かつ、少なくとも4種類の色フ
ィルターから構成される補色フィルターを有する電子撮
像素子と、前記撮影光学系を透過し前記電子撮像素子に
入射し、前記電子撮像素子で光電変換され、前記電子撮
像素子から出力される信号について、少なくとも一種類
の色フィルターに対応する系の出力信号の分光強度曲線
(撮影光学系にD65光源の光が入射されたときの各波長
の出力信号の強度によって描かれる曲線)が、その分光
強度のピークをSP とし、600nmの強度をS600
650nmの強度をS650 とする場合に、以下の条件
(4)を満足し、前記電子撮像素子からの出力を基に信
号処理と画像処理を行うコントローラとを有することを
特徴とする撮像装置。
1.0 × 10 −4 <p / d <6.0 × 10 −4 (1) 8 × T 700 <T 600 (2) T 400 <T 600 ( 3) [2] At least when the diagonal length of the imaging optical system and the effective imaging area is d, and the center interval between horizontal pixels is p, the following conditional expression (1) is satisfied, and at least four types of conditional expressions are satisfied. An electronic imaging device having a complementary color filter composed of a color filter, and transmitted through the imaging optical system and incident on the electronic imaging device, photoelectrically converted by the electronic imaging device, and output from the electronic imaging device, at least one of the spectral intensity curve of the system output signal corresponding to the color filter (curve light illuminant D 65, the imaging optical system is described by the intensity of the output signal of each wavelength when it is incident) is the spectral intensity the peak and S P, the intensity of the 600 nm S 600,
When the intensity at 650 nm is set to S650, the image pickup apparatus satisfies the following condition (4) and includes a controller that performs signal processing and image processing based on an output from the electronic image pickup device.

【0117】 1.0×10-4<p/d<6.0×10-4 ・・・(1) 0.45<(S600 −S650 )/SP <0.85 ・・・(4) 〔3〕 上記1又は2記載の撮像装置において、少なく
とも4種類の色フィルターから構成される補色フィルタ
ーを有する電子撮像素子を備え、その4種類の色フィル
ターの特性は以下の通りであることを特徴とする撮像装
置。
1.0 × 10 −4 <p / d <6.0 × 10 −4 (1) 0.45 <(S 600 −S 650 ) / S P <0.85 (( 4) [3] The imaging device according to the above 1 or 2, further comprising an electronic imaging device having a complementary color filter composed of at least four types of color filters, and the characteristics of the four types of color filters are as follows. An imaging device characterized by the above-mentioned.

【0118】第一の色フィルターGは、波長GP にピー
クを有し、第二の色フィルターYe は、波長YP にピー
クを有し、第三の色フィルターCは、波長CP にピーク
を有し、第四の色フィルターMは、波長MP1と波長MP2
にピークを有し、以下の条件を満足する。
[0118] The first color filter G has a peak at a wavelength G P, a second color filter Y e has a peak at a wavelength Y P, a third color filter C is the wavelength C P The fourth color filter M has a peak and a wavelength M P1 and a wavelength M P2.
And the following conditions are satisfied.

【0119】 510nm<GP <540nm ・・・(5−1) 5nm<YP −GP <35nm ・・・(5−2) −100nm<CP −GP <−5nm ・・・(5−3) 430nm<MP1<480nm ・・・(5−4) 580nm<MP2<640nm ・・・(5−5) 〔4〕 上記3記載の撮像装置において、少なくとも4
種類の色フィルターから構成される補色フィルターを有
する電子撮像素子を備え、その4種類の色フィルターの
中、3種類の色フィルターはそれぞれの分光強度のピー
クに対して波長530nmでは80%以上の強度を有
し、1種類の色フィルターは、その分光強度のピークに
対して波長530nmでは25%以上の強度を有するこ
とを特徴とする撮像装置。
[0119] 510nm <G P <540nm ··· ( 5-1) 5nm <Y P -G P <35nm ··· (5-2) -100nm <C P -G P <-5nm ··· (5 -3) 430nm <M P1 <480nm ··· (5-4) 580nm <M P2 < the imaging apparatus 640 nm · · · (5-5) [4] above 3, wherein at least 4
An electronic image pickup device having a complementary color filter composed of various types of color filters is provided. Of the four types of color filters, three types of color filters have an intensity of 80% or more at a wavelength of 530 nm with respect to the peak of each spectral intensity. An image pickup apparatus, wherein one type of color filter has an intensity of 25% or more at a wavelength of 530 nm with respect to the peak of the spectral intensity.

【0120】〔5〕 上記1から4の何れか1項記載の
撮像装置において、少なくとも4種類の色フィルターか
ら構成される補色フィルターを有する電子撮像素子を備
え、その4種類の色フィルターは、それぞれが略同じ数
になるように、かつ、隣合う画素が同じ種類の色フィル
ターに対応しないようにモザイク状に配置されることを
特徴とする撮像装置。
[5] The imaging device according to any one of the above items 1 to 4, further comprising an electronic imaging device having a complementary color filter composed of at least four types of color filters, wherein the four types of color filters are respectively Are arranged in a mosaic pattern such that the numbers of pixels are substantially the same, and adjacent pixels do not correspond to the same type of color filter.

【0121】〔6〕 上記1から5の何れか1項記載の
撮像装置において、前記電子撮像素子より物体側に60
0nmの透過率が80%以上、700nmの透過率が1
0%以下の特性の蒸着薄膜コートを施した光学素子を有
することを特徴とする撮像装置。
[6] The imaging apparatus according to any one of the above [1] to [5], wherein 60
The transmittance at 0 nm is 80% or more, and the transmittance at 700 nm is 1
An imaging device comprising an optical element coated with a deposited thin film having a characteristic of 0% or less.

【0122】〔7〕 上記1から6の何れか1項記載の
撮像装置において、有効対角画角が70°以上の領域を
有する撮影光学系を有することを特徴とする撮像装置。
[7] The imaging apparatus according to any one of the above items 1 to 6, further comprising an imaging optical system having an area having an effective diagonal angle of view of 70 ° or more.

【0123】〔8〕 上記1から6の何れか1項記載の
撮像装置において、有効対角画角が12°以下の領域を
有する撮影光学系を有することを特徴とする撮像装置。
[8] The imaging apparatus according to any one of the above items 1 to 6, further comprising an imaging optical system having an area having an effective diagonal angle of view of 12 ° or less.

【0124】[0124]

〔9〕 上記1から6の何れか1項記載の
撮像装置において、F値が2.8より明るい領域を有す
る撮影光学系を有することを特徴とする撮像装置。
[9] The imaging device according to any one of the above items 1 to 6, further comprising an imaging optical system having an area where the F value is brighter than 2.8.

【0125】〔10〕 上記1から6の何れか1項記載
の撮像装置において、物体側より順に、正の第1レンズ
群、変倍時に可動で負の第2レンズ群を有し、それより
像側に、合焦機能のあるレンズ群を有する撮像光学系を
有することを特徴とする撮像装置。
[10] The imaging apparatus according to any one of the above items 1 to 6, further comprising, in order from the object side, a first positive lens unit and a second negative lens unit movable during zooming. An image pickup apparatus comprising an image pickup optical system having a lens group having a focusing function on an image side.

【0126】〔11〕 上記10記載の撮像装置におい
て、物体側より順に、正の第1レンズ群、変倍時に可動
で負の第2レンズ群、正の第3レンズ群、変倍時に可動
で合焦機能のある第4レンズ群よりなる撮像光学系を有
することを特徴とする撮像装置。
[11] In the imaging apparatus according to the above item 10, in order from the object side, the first positive lens unit, the second negative lens unit and the third positive lens unit which are movable at the time of zooming, and the movable first lens unit at the time of zooming. An imaging apparatus comprising an imaging optical system including a fourth lens group having a focusing function.

【0127】〔12〕 上記11記載の撮像装置におい
て、物体側より順に、正の第1レンズ群、変倍時に可動
で負の第2レンズ群、変倍時に可動で正の第3レンズ
群、変倍時に可動で合焦機能のある正の第4レンズ群よ
りなる撮像光学系を有することを特徴とする撮像装置。
[12] In the imaging apparatus according to the above item 11, in order from the object side, a positive first lens group, a movable negative second lens group during zooming, a movable positive third lens group during zooming, An imaging apparatus comprising: an imaging optical system including a positive fourth lens group which is movable at the time of zooming and has a focusing function.

【0128】〔13〕 上記11記載の撮像装置におい
て、物体側より順に、正の第1レンズ群、変倍時に可動
で負の第2レンズ群を有し、それより像側に正レンズ・
負レンズを少なくとも含む全体として正の第3レンズ群
と、その像側に正のパワーを有し合焦機能のあるレンズ
群よりなる撮像光学系を有することを特徴とする撮像装
置。
[13] The imaging apparatus according to the above item 11, further comprising, in order from the object side, a first positive lens unit and a second negative lens unit movable at the time of zooming.
An imaging apparatus comprising: a third lens group as a whole including at least a negative lens; and an imaging optical system including a lens group having a positive power and a focusing function on an image side thereof.

【0129】〔14〕 上記13記載の撮像装置におい
て、物体側より順に、正の第1レンズ群、変倍時に可動
で負の第2レンズ群を有し、それより像側に正レンズ
と、正レンズと像側に曲率の強い凹面を向けた負レンズ
とを少なくとも含む全体として正の第3レンズ群と、そ
の像側に合焦機能のあるレンズ群よりなる撮像光学系を
有することを特徴とする撮像装置。
[14] The imaging apparatus according to the above 13, further comprising, in order from the object side, a first positive lens unit and a second negative lens unit movable at the time of zooming, and a positive lens on the image side. A third lens group as a whole including at least a positive lens and a negative lens having a concave surface having a strong curvature on the image side, and an imaging optical system including a lens group having a focusing function on the image side. Imaging device.

【0130】〔15〕 上記14記載の撮像装置におい
て、物体側より順に、正の第1レンズ群、変倍時に可動
で負の第2レンズ群を有し、それより像側に非球面を有
する正レンズと、正レンズと物体側よりも像側の方が曲
率の強い凹面を向けた負レンズとの接合成分を少なくと
も含む全体として正の第3レンズ群と、その像側に合焦
機能のあるレンズ群よりなる撮像光学系を有することを
特徴とする撮像装置。
[15] The imaging apparatus according to the above item 14, wherein the first lens unit includes, in order from the object side, a negative second lens unit that is movable during zooming, and has an aspheric surface on the image side. A positive third lens group as a whole including at least a cemented component of a positive lens and a negative lens having a concave surface with a stronger curvature on the image side than on the object side, and a focusing function on the image side; An imaging apparatus comprising an imaging optical system including a certain lens group.

【0131】〔16〕 上記1から6の何れか1項記載
の撮像装置において、物体側より順に、変倍時に可動で
負の第1レンズ群、変倍時に可動で正の第2レンズ群を
含み、前記第2レンズ群若しくはそれより像側に合焦機
能のあるレンズ群を有する撮像光学系を有することを特
徴とする撮像装置。
[16] In the imaging apparatus according to any one of the above items 1 to 6, in order from the object side, a movable first negative lens group during zooming and a positive second lens group movable during zooming. An imaging apparatus, comprising: an imaging optical system including the second lens group or a lens group having a focusing function on an image side of the second lens group.

【0132】〔17〕 上記16記載の撮像装置におい
て、物体側より順に、変倍時に可動で最も物体側のレン
ズが負レンズで全体として負の第1レンズ群、非球面を
有する正レンズと、正レンズと物体側よりも像側の方が
曲率の強い凹面を向けた負レンズとの接合成分を少なく
とも含み、変倍時に可動で全体として正の第2レンズ群
を含み、前記第2レンズ群若しくはそれより像側に合焦
機能のあるレンズ群を有する撮像光学系を有することを
特徴とする撮像装置。
[17] In the image pickup apparatus according to the above item 16, in order from the object side, the lens closest to the object side, which is movable at the time of zooming, is the negative first lens group as a whole, and a positive lens having an aspheric surface; The second lens group includes at least a cemented component of a positive lens and a negative lens having a concave surface with a stronger curvature on the image side than on the object side; Alternatively, an imaging apparatus comprising an imaging optical system having a lens group having a focusing function on the image side.

【0133】〔18〕 上記17記載の撮像装置におい
て、物体側より順に、変倍時に可動で最も物体側のレン
ズが負レンズで全体として負の第1レンズ群、非球面を
有する正レンズと、正レンズと像側に曲率の強い凹面を
向けた負レンズとの接合成分を少なくとも含み変倍時に
可動で全体として正の第2レンズ群を含み、前記第2レ
ンズ群若しくはそれより像側に合焦機能のあるレンズ群
を有し、以下の条件を満たす撮像光学系を有することを
特徴とする撮像装置。
[18] In the imaging device according to the above item 17, in order from the object side, the lens closest to the object side movable at the time of zooming is the negative first lens group, the positive lens having an aspheric surface as a whole; The zoom lens includes at least a cemented component of a positive lens and a negative lens having a concave surface with a strong curvature on the image side, includes a second lens group that is movable as a whole during zooming, and is generally closer to the image side than the second lens group. An imaging apparatus comprising: a lens group having a focusing function; and an imaging optical system satisfying the following conditions.

【0134】 −βT >1.2 ・・・(6) ただし、βT は望遠端の第2レンズ群の倍率である。−β T > 1.2 (6) where β T is the magnification of the second lens unit at the telephoto end.

【0135】[0135]

【発明の効果】以上の説明から明らかなように、本発明
によると、簡易な構成で、幅広い自然の被写体に対し
て、色を含め良好な像の再現を可能とする撮像装置及び
撮像光学系を提供することができる。
As is apparent from the above description, according to the present invention, an image pickup apparatus and an image pickup optical system capable of reproducing a good image including colors for a wide range of natural subjects with a simple configuration. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施形態のデジタルカメラの構成図
である。
FIG. 1 is a configuration diagram of a digital camera according to an embodiment of the present invention.

【図2】原色フィルターのフィルター配置の例を示す図
である。
FIG. 2 is a diagram illustrating an example of a filter arrangement of primary color filters.

【図3】本発明で用いる補色フィルターのフィルター配
置の例を示す図である。
FIG. 3 is a diagram showing an example of a filter arrangement of a complementary color filter used in the present invention.

【図4】図2の波長特性を示す図である。FIG. 4 is a diagram illustrating the wavelength characteristics of FIG. 2;

【図5】図3の波長特性を示す図である。FIG. 5 is a diagram illustrating the wavelength characteristics of FIG. 3;

【図6】本発明の1実施形態で用いる赤外カットフィル
ターの分光特性を示す図である。
FIG. 6 is a diagram showing spectral characteristics of an infrared cut filter used in one embodiment of the present invention.

【図7】本発明の1実施形態における補色フィルターを
含む撮影光学系の全体の分光特性を示す図である。
FIG. 7 is a diagram illustrating the entire spectral characteristic of an imaging optical system including a complementary color filter according to an embodiment of the present invention.

【図8】図7の分光特性から算出されるR,G,B信号
強度分布を示す図である。
8 is a diagram showing R, G, and B signal intensity distributions calculated from the spectral characteristics of FIG. 7;

【図9】一般の赤外カットフィルターの分光特性を示す
図である。
FIG. 9 is a diagram illustrating spectral characteristics of a general infrared cut filter.

【図10】図9の赤外カットフィルターを用いた場合の
撮影光学系の全体の分光特性を示す図である。
FIG. 10 is a diagram showing the entire spectral characteristic of the photographing optical system when the infrared cut filter of FIG. 9 is used.

【図11】図10の分光特性から算出されるR,G,B
信号強度分布を示す図である。
FIG. 11 shows R, G, and B calculated from the spectral characteristics of FIG.
It is a figure showing a signal intensity distribution.

【図12】標準光源D65の分光特性を示す図である。12 is a diagram showing the spectral characteristics of the standard illuminant D 65.

【図13】本発明の1実施形態における撮影レンズ系の
分光透過率を示す図である。
FIG. 13 is a diagram illustrating a spectral transmittance of a photographing lens system according to an embodiment of the present invention.

【図14】本発明の別の実施形態のデジタルカメラの構
成図である。
FIG. 14 is a configuration diagram of a digital camera according to another embodiment of the present invention.

【図15】本発明のもう1つの実施形態のデジタルカメ
ラの構成図である。
FIG. 15 is a configuration diagram of a digital camera according to another embodiment of the present invention.

【図16】実施例Aの光軸を含む断面図である。FIG. 16 is a sectional view including an optical axis of Example A.

【図17】実施例Bの光軸を含む断面図である。FIG. 17 is a cross-sectional view including an optical axis of Example B.

【図18】実施例Cの光軸を含む断面図である。FIG. 18 is a cross-sectional view including an optical axis of Example C.

【図19】実施例Dの広角端での光軸を含む断面図であ
る。
FIG. 19 is a sectional view of Example D including the optical axis at the wide-angle end.

【図20】実施例Eの広角端での光軸を含む断面図であ
る。
FIG. 20 is a sectional view of Example E including an optical axis at a wide-angle end.

【図21】実施例Fの広角端での光軸を含む断面図であ
る。
FIG. 21 is a cross-sectional view of Example F including an optical axis at a wide-angle end.

【図22】実施例Gの広角端での光軸を含む断面図であ
る。
FIG. 22 is a cross-sectional view of Example G including an optical axis at a wide-angle end.

【図23】本発明で使用可能なIRカットフィルターの
1具体例の分光透過率を示す図である。
FIG. 23 is a diagram showing the spectral transmittance of one specific example of an IR cut filter usable in the present invention.

【図24】550nmの波長で屈折力が1となる単レン
ズの波長による屈折力の変化を示す図である。
FIG. 24 is a diagram showing a change in refractive power depending on the wavelength of a single lens whose refractive power is 1 at a wavelength of 550 nm.

【図25】500nmを基準にしたときの一般的な屈折
型光学素子のみからなる光学系の波長に対する後側焦点
位置のずれ量を示す図である。
FIG. 25 is a diagram illustrating a shift amount of a rear focal position with respect to a wavelength of an optical system including only a general refractive optical element when 500 nm is used as a reference.

【符号の説明】[Explanation of symbols]

1…撮影レンズ系 2…ローパス効果を持つフィルター 3…撮像素子 4…コントローラ 5…内蔵メモリー 6…液晶モニター 7…インターフェース 8…パソコン 9…補助メモリー 10…デジタルカメラ 11…色分解プリズム 12…ハーフミラープリズム 13…ファインダー光学系 15…マウント部 G1…第1群 G2…第2群 G3…第3群 G4…第4群 S…絞り F…フィルター、プリズム類 I…像面 R…反射部材 DESCRIPTION OF SYMBOLS 1 ... Photography lens system 2 ... Filter with a low-pass effect 3 ... Image sensor 4 ... Controller 5 ... Built-in memory 6 ... LCD monitor 7 ... Interface 8 ... Personal computer 9 ... Auxiliary memory 10 ... Digital camera 11 ... Color separation prism 12 ... Half mirror Prism 13 Finder optical system 15 Mount part G1 First group G2 Second group G3 Third group G4 Fourth group S ... Aperture F ... Filters and prisms I ... Image surface R ... Reflecting member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三原 伸一 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 Fターム(参考) 5C065 AA03 BB13 CC01 CC08 CC09 EE05 EE06 EE07 EE12 EE16 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shinichi Mihara 2-43-2 Hatagaya, Shibuya-ku, Tokyo F-term in Olympus Optical Co., Ltd. (reference) 5C065 AA03 BB13 CC01 CC08 CC09 EE05 EE06 EE07 EE12 EE16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、有効撮像領域の対角長を
d、水平画素の中心間隔をpとしたとき、以下の条件式
(1)を満足し、かつ、少なくとも4種類の色フィルタ
ーから構成される補色フィルターを有する電子撮像素子
と、 400nmの透過率をT400 、600nmの透過率をT
600 、700nmの透過率をT700 としたとき、以下の
分光特性(2)、(3)を有し、前記電子撮像素子に物
体側からの光束を導く撮像光学系と、 前記電子撮像素子からの出力を基に信号処理と画像処理
を行うコントローラとを有することを特徴とする撮像装
置。 1.0×10-4<p/d<6.0×10-4 ・・・(1) 8×T700 <T600 ・・・(2) T400 <T600 ・・・(3)
When at least the diagonal length of the effective imaging area is d and the center distance between horizontal pixels is p, the following conditional expression (1) is satisfied, and at least four types of color filters are provided. An electronic image sensor having a complementary color filter having a transmittance of 400 nm at T 400 and a transmittance of 600 nm at T
600, when the 700nm transmittance was defined as T 700, the following spectral characteristics (2), an imaging optical system for guiding the light beam to have, from the object side to the electronic image pickup element (3), from the electronic image pickup device An image pickup apparatus comprising: a controller that performs signal processing and image processing based on the output of the image pickup apparatus. 1.0 × 10 −4 <p / d <6.0 × 10 −4 (1) 8 × T 700 <T 600 (2) T 400 <T 600 (3)
【請求項2】 少なくとも、撮影光学系と、 有効撮像領域の対角長をd、水平画素の中心間隔をpと
したとき、以下の条件式(1)を満足し、かつ、少なく
とも4種類の色フィルターから構成される補色フィルタ
ーを有する電子撮像素子と、 前記撮影光学系を透過し前記電子撮像素子に入射し、前
記電子撮像素子で光電変換され、前記電子撮像素子から
出力される信号について、少なくとも一種類の色フィル
ターに対応する系の出力信号の分光強度曲線(撮影光学
系にD65光源の光が入射されたときの各波長の出力信号
の強度によって描かれる曲線)が、その分光強度のピー
クをSP とし、600nmの強度をS600 、650nm
の強度をS650 とする場合に、以下の条件(4)を満足
し、 前記電子撮像素子からの出力を基に信号処理と画像処理
を行うコントローラとを有することを特徴とする撮像装
置。 1.0×10-4<p/d<6.0×10-4 ・・・(1) 0.45<(S600 −S650 )/SP <0.85 ・・・(4)
2. When at least the diagonal length of the imaging optical system and the effective imaging area is d, and the center distance between horizontal pixels is p, the following conditional expression (1) is satisfied, and at least four types of conditional expressions are satisfied. An electronic imaging device having a complementary color filter composed of a color filter, and transmitted through the imaging optical system and incident on the electronic imaging device, photoelectrically converted by the electronic imaging device, and output from the electronic imaging device, at least one of the spectral intensity curve of the system output signal corresponding to the color filter (curve light illuminant D 65, the imaging optical system is described by the intensity of the output signal of each wavelength when it is incident) is the spectral intensity the peak and S P, S 600 the intensity of the 600 nm, 650 nm
When the intensity of S is set to S650 , the following condition (4) is satisfied, and an image pickup apparatus comprising: a controller that performs signal processing and image processing based on an output from the electronic image pickup device. 1.0 × 10 −4 <p / d <6.0 × 10 −4 (1) 0.45 <(S 600 −S 650 ) / S P <0.85 (4)
【請求項3】 請求項1又は2記載の撮像装置におい
て、 少なくとも4種類の色フィルターから構成される補色フ
ィルターを有する電子撮像素子を備え、その4種類の色
フィルターの特性は以下の通りであることを特徴とする
撮像装置。第一の色フィルターGは、波長GP にピーク
を有し、 第二の色フィルターYe は、波長YP にピークを有し、 第三の色フィルターCは、波長CP にピークを有し、 第四の色フィルターMは、波長MP1と波長MP2にピーク
を有し、 以下の条件を満足する。 510nm<GP <540nm ・・・(5−1) 5nm<YP −GP <35nm ・・・(5−2) −100nm<CP −GP <−5nm ・・・(5−3) 430nm<MP1<480nm ・・・(5−4) 580nm<MP2<640nm ・・・(5−5)
3. The image pickup apparatus according to claim 1, further comprising an electronic image pickup device having a complementary color filter composed of at least four types of color filters, wherein characteristics of the four types of color filters are as follows. An imaging device characterized by the above-mentioned. The first color filter G has a peak at a wavelength G P, a second color filter Y e has a peak at a wavelength Y P, a third color filter C is have a peak at a wavelength C P The fourth color filter M has peaks at the wavelengths M P1 and M P2 and satisfies the following conditions. 510nm <G P <540nm ··· ( 5-1) 5nm <Y P -G P <35nm ··· (5-2) -100nm <C P -G P <-5nm ··· (5-3) 430nm <M P1 <480nm ··· ( 5-4) 580nm <M P2 <640nm ··· (5-5)
JP2000075690A 1999-07-08 2000-03-17 Image pickup device and image pickup optical system Withdrawn JP2001268583A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000075690A JP2001268583A (en) 2000-03-17 2000-03-17 Image pickup device and image pickup optical system
US09/612,597 US7057659B1 (en) 1999-07-08 2000-07-07 Image pickup device and image pickup optical system
US11/400,199 US7564497B2 (en) 1999-07-08 2006-04-10 Image pickup device and image pickup optical system
US11/543,856 US7432974B2 (en) 1999-07-08 2006-10-06 Image pickup device and image pickup optical system
US11/543,855 US7605859B2 (en) 1999-07-08 2006-10-06 Image pickup device and image pickup optical system that optically reduce color flares
US11/545,585 US7567288B2 (en) 1999-07-08 2006-10-11 Image pickup device and image pickup optical system
US11/583,059 US7602437B2 (en) 1999-07-08 2006-10-19 Image pickup device and image pickup optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075690A JP2001268583A (en) 2000-03-17 2000-03-17 Image pickup device and image pickup optical system

Publications (1)

Publication Number Publication Date
JP2001268583A true JP2001268583A (en) 2001-09-28

Family

ID=18593546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075690A Withdrawn JP2001268583A (en) 1999-07-08 2000-03-17 Image pickup device and image pickup optical system

Country Status (1)

Country Link
JP (1) JP2001268583A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368968B2 (en) 2008-05-21 2013-02-05 Ricoh Company, Ltd. Imaging apparatus and image correction method
US8477230B2 (en) 2010-06-17 2013-07-02 Olympus Imaging Corp. Image forming optical system and electronic image pickup apparatus using the same
EP3572716A4 (en) * 2017-01-19 2020-11-25 Opple Lighting Co., Ltd. Color acquisition apparatus and remote control capable of color acquisition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368968B2 (en) 2008-05-21 2013-02-05 Ricoh Company, Ltd. Imaging apparatus and image correction method
US8477230B2 (en) 2010-06-17 2013-07-02 Olympus Imaging Corp. Image forming optical system and electronic image pickup apparatus using the same
EP3572716A4 (en) * 2017-01-19 2020-11-25 Opple Lighting Co., Ltd. Color acquisition apparatus and remote control capable of color acquisition

Similar Documents

Publication Publication Date Title
US6975462B2 (en) Zoom lens, and electronic imaging system using the same
US7289152B2 (en) Electronic image pickup system including a zoom lens and an electronic image pickup device located on an image plane side of the zoom lens
JP5117521B2 (en) Electronic imaging device
JP4674258B2 (en) Zoom lens and electronic imaging apparatus using the same
US7085071B2 (en) Zoom lens
JP4294299B2 (en) Zoom lens and electronic imaging apparatus using the same
JP2002048975A (en) Electronic image pickup device
US20030206352A1 (en) Zoom lens, and electronic imaging system using the same
JP4079551B2 (en) Imaging apparatus and imaging optical system
JP2003149556A (en) Zoom lens and electronic image pickup device using the same
JP4451069B2 (en) Zoom lens and electronic imaging device using the same
JP2003140043A (en) Zoom lens and electronic image pickup device using the same
JP4212291B2 (en) Zoom lens and electronic imaging apparatus using the same
JP2003329930A (en) Zoom lens and electronic image pickup device having the same
JP2002090624A (en) Electronic imaging device
JP4590127B2 (en) Electronic imaging device
JP2003287679A (en) Zoom lens and camera device
JP2003131130A (en) Zoom lens and electronic imaging unit using the zoom lens
JP2001268583A (en) Image pickup device and image pickup optical system
JP4666669B2 (en) Zoom lens and electronic imaging apparatus having the same
JP2003344767A (en) Zoom lens and electronic image pickup device having the same
JP2003121740A (en) Electronic imaging device
JP2003121743A (en) Zoom lens and electronic image pickup device using the same
JP2003084199A (en) Variable power image forming optical system and electronic imaging apparatus having the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605