JP2001267660A - Wavelength monitor device for laser beam for semiconductor exposure - Google Patents

Wavelength monitor device for laser beam for semiconductor exposure

Info

Publication number
JP2001267660A
JP2001267660A JP2000070600A JP2000070600A JP2001267660A JP 2001267660 A JP2001267660 A JP 2001267660A JP 2000070600 A JP2000070600 A JP 2000070600A JP 2000070600 A JP2000070600 A JP 2000070600A JP 2001267660 A JP2001267660 A JP 2001267660A
Authority
JP
Japan
Prior art keywords
light
wavelength
etalon
laser
semiconductor exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000070600A
Other languages
Japanese (ja)
Inventor
Terushi Tada
昭史 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Sogo Gijutsu Kenkyusho KK
Original Assignee
Ushio Sogo Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Sogo Gijutsu Kenkyusho KK filed Critical Ushio Sogo Gijutsu Kenkyusho KK
Priority to JP2000070600A priority Critical patent/JP2001267660A/en
Publication of JP2001267660A publication Critical patent/JP2001267660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength monitor device equipped with an etalon suitable for both reference lights and lights to be measured. SOLUTION: This device is constituted of a single etalon (1) whose different areas are coated with reflection coating (1b) for laser (20) for semiconductor exposure and reflection coating (1a) for reference lights (10), an incidence optical system (2) for making the laser beams and the reference lights incident to the areas of the etalon (1) coated with the reflection coating (1a, 1b) corresponding to each light by alternately shifting the central axes, a converging means (3) for converging the two lights transmitted through the etalon (1), and a sensor (4) for receiving the lights from the converging means (3). Thus, the wavelength of the laser (20) for semiconductor exposure can be calculated by the sensor (4).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は半導体露光用レー
ザ光のための波長モニターに関し、特に、波長が既知の
基準光に対する半導体露光用レーザ光の波長を測定する
半導体露光用レーザ光のための波長モニタ装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength monitor for laser light for semiconductor exposure, and more particularly to a wavelength monitor for laser light for semiconductor exposure for measuring the wavelength of laser light for semiconductor exposure with respect to a reference light having a known wavelength. The present invention relates to a monitor device.

【0002】[0002]

【従来の技術】半導体集積回路の微細化について半導体
露光用の光源の短波長化が進み、次世代の光源として、
波長193nmのArFエキシマレーザ装置や波長15
7nmのフッ素レーザ装置が有力である。ArFエキシ
マレーザについて言えば、レーザ光はスペクトル幅が4
00pm程度と広い。しかしながら、真空紫外域におい
て使用可能な露光装置用光学材料としては、合成石英と
蛍石しか存在せず、露光装置の投影光学系において色消
しが極めて困難である。露光装置の投影光学系における
この色収差の問題を回避するためには、半導体リソグラ
フィ用光源であるArFエキシマレーザ装置やフッ素レ
ーザ装置から放出されるレーザ光のスペクトル幅を0.
6pm以下に狭帯域化することが必要になり、また、中
心波長も変動が±0.1pm以内の波長安定度が必須の
要件になる。
2. Description of the Related Art With the miniaturization of semiconductor integrated circuits, the wavelength of light sources for semiconductor exposure has been shortened.
ArF excimer laser device with a wavelength of 193 nm and wavelength of 15
7 nm fluorine laser devices are promising. As for the ArF excimer laser, the laser beam has a spectral width of 4
It is as wide as about 00 pm. However, only synthetic quartz and fluorite exist as optical materials for an exposure apparatus that can be used in the vacuum ultraviolet region, and it is extremely difficult to achromatize the projection optical system of the exposure apparatus. In order to avoid the problem of chromatic aberration in the projection optical system of the exposure apparatus, the spectral width of laser light emitted from an ArF excimer laser device or a fluorine laser device, which is a light source for semiconductor lithography, is set to 0.
It is necessary to narrow the band to 6 pm or less, and the center wavelength is also required to have a wavelength stability within ± 0.1 pm.

【0003】半導体露光用レーザ光のスペクトル線幅の
狭帯域化には、例えばビーム径拡大プリズムと回折格子
からなる狭帯域化光学系により実現され、また、回折格
子への光の入射角を制御することにより波長選択がなさ
れる。
[0003] The narrowing of the spectral line width of the laser beam for semiconductor exposure is realized by, for example, a narrowing optical system including a beam diameter expanding prism and a diffraction grating, and controlling the incident angle of light to the diffraction grating. By doing so, wavelength selection is performed.

【0004】上記のような波長安定化を実現するために
は、露光中に狭帯域化された半導体露光用レーザ光の波
長及びスペクトル線幅を計測し、そのデータをもとにA
rFエキシマレーザ装置などの半導体露光用のレーザ装
置のフィードバック制御を行うための波長モニタ装置が
必要になる。
In order to realize the above-mentioned wavelength stabilization, the wavelength and the spectral line width of the semiconductor exposure laser light which has been narrowed during the exposure are measured, and the data is measured based on the data.
A wavelength monitoring device for performing feedback control of a laser device for semiconductor exposure such as an rF excimer laser device is required.

【0005】このような波長モニタ装置の従来例とし
て、バーレ社の波長モニタ装置の構成を図2に示す。こ
の装置においては、まずシャッタBが閉じた状態で標準
光源としての波長632.8nmのHe−Neレーザか
らの基準光が反射鏡とシャッターAを経てビームスプリ
ッタに入射し、そこで反射され、反射鏡、凹面反射鏡を
経てエタロンに達し、エタロンで多重反射された光は集
光レンズを経てその後側焦点面に同心円状あるいは平行
線からなる干渉縞(フリンジ)を形成する。側焦点面に
はリニアアレイセンサ(CCD)が配置されており、各
フリンジのCCD上での位置データからエタロンの空気
の屈折率の変動やミラー間隔の変動を補正するためのデ
ータを得る。次で、シャッターAを閉じ、シャッタBを
開けるとArFエキシマレーザからの波長193.4n
m近傍の被波長測定光が図の右側から入射開口とシャッ
ターBを経てビームスプリッタを透過し、反射鏡、凹面
鏡で反射されてエタロンに達し、エタロンで多重反射さ
れた光は集光レンズを経てその後焦点面のCCD上に同
心円状あるいは平行線からなる干渉縞(フリンジ)を形
成する。その被波長測定光のフリンジのCCD上での位
置データおよび基準光のフリンジ上の位置データから求
めたエタロンの空気の屈折率の変動やミラー間隔の変動
を補正するためのデータから被波長測定光の波長を算出
する。
[0005] As a conventional example of such a wavelength monitor, FIG. 2 shows the configuration of a wavelength monitor of Vale. In this apparatus, first, in a state where the shutter B is closed, reference light from a He-Ne laser having a wavelength of 632.8 nm as a standard light source is incident on a beam splitter through a reflecting mirror and a shutter A, is reflected there, and is reflected there. The light that reaches the etalon via the concave reflecting mirror reaches the etalon, and the light multiply reflected by the etalon passes through the condenser lens to form an interference fringe (fringe) formed of concentric or parallel lines on the rear focal plane. A linear array sensor (CCD) is arranged on the side focal plane, and data for correcting fluctuations in the refractive index of the etalon air and fluctuations in the mirror interval are obtained from position data of each fringe on the CCD. Next, when the shutter A is closed and the shutter B is opened, the wavelength of 193.4 n from the ArF excimer laser is emitted.
The light to be measured in the vicinity of m passes through the beam splitter from the right side of the drawing through the entrance aperture and the shutter B, is reflected by the reflecting mirror and the concave mirror, reaches the etalon, and the light multiply reflected by the etalon passes through the condenser lens. Thereafter, interference fringes (fringes) formed of concentric or parallel lines are formed on the CCD on the focal plane. From the data for correcting the fluctuation of the refractive index of the etalon air and the fluctuation of the mirror interval obtained from the position data of the fringe of the wavelength measurement light on the CCD and the position data of the reference light on the fringe, the wavelength measurement light is obtained. Is calculated.

【0006】[0006]

【発明が解決しようとする課題】このような従来の波長
モニタ装置においては、標準光源(He−Neレーザ)
による測定と、半導体露光用レーザ光(例えば、ArF
エキシマレーザ)による測定において同一のエタロンの
同じ領域を使用していた。このため、エタロンを構成す
る反射鏡には、He−Neレーザ光の波長632.8n
mとArFエキシマレーザ光の波長193nmの2波長
に対する誘電体多層コーティングあるいはアルミニウム
コーティングが必要になる。しかし、この両者に対して
ともに十分な反射率と低損失特性を得ることができるよ
うなコーティングを構成することは難しく、かつ、高価
となってしまう。
In such a conventional wavelength monitor, a standard light source (He-Ne laser) is used.
Measurement and laser light for semiconductor exposure (for example, ArF
Excimer laser) used the same region of the same etalon. For this reason, the reflecting mirror constituting the etalon has a wavelength of 632.8 n of He-Ne laser light.
A dielectric multi-layer coating or an aluminum coating is required for two wavelengths of m and ArF excimer laser light of 193 nm. However, it is difficult and expensive to construct a coating that can obtain sufficient reflectance and low loss characteristics for both of them.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の半導体露光用レーザ光のための波長モニター装置
は、半導体露光用レーザ光用の反射コーティングと基準
光用の反射コーティングが別々の領域に施されている単
一のエタロンと、このエタロンに対して当該レーザ光と
基準光を相互に中心軸をずらして各々の反射コーティン
グが施された領域に入射させる入射光学系と、このエタ
ロンを透過した前記2つの光の集光手段と、この集光手
段からの光を受光するセンサとからなり、前記センサー
によって、半導体露光用レーザ光の波長を算出すること
を特徴とする。
In order to achieve the above object, the present invention provides a wavelength monitor for a laser beam for semiconductor exposure, wherein the reflection coating for the laser beam for semiconductor exposure and the reflection coating for the reference beam are provided in separate areas. A single etalon applied to the etalon, an incident optical system for causing the laser light and the reference light to be shifted from each other with respect to the etalon so as to be incident on the regions provided with the respective reflective coatings, It is characterized by comprising a condensing means for the two transmitted lights and a sensor for receiving the light from the condensing means, wherein the sensor calculates the wavelength of the semiconductor exposure laser light.

【0008】これらの半導体露光用レーザ光のための波
長モニター装置は、半導体露光用レーザ光をArFエキ
シマレーザ光、もしくはフッ素レーザ光、基準光をHe
ーNeレーザ光とする場合に有効なものである。そし
て、半導体露光用レーザ光と基準光を相互に中心軸をず
らして単一のエタロンの別々の領域に入射させ、その
後、凹面反射鏡等の集光手段を使ってセンサ上に生じる
干渉縞等を利用して測定を行う。このため、単一のエタ
ロンのコーティング領域を2分割して、一方の領域には
基準光用の反射コーティングを施し、他方の領域には被
波長測定用の反射コーティングを施せばよいので、エタ
ロンの反射コーティングが施しやすくなる。
In these wavelength monitoring devices for semiconductor exposure laser light, the semiconductor exposure laser light is ArF excimer laser light or fluorine laser light, and the reference light is He.
-Ne laser light is effective. Then, the laser light for semiconductor exposure and the reference light are shifted from each other with respect to the central axis to be incident on different regions of a single etalon, and thereafter, interference fringes and the like generated on the sensor using condensing means such as a concave reflecting mirror. The measurement is performed using. For this reason, a single etalon coating area may be divided into two parts, and one area may be provided with a reflective coating for reference light and the other area may be provided with a reflective coating for measuring a wavelength to be measured. Reflective coating is easier to apply.

【0009】[0009]

【発明の実施の形態】以下、本発明の半導体露光用レー
ザ光のための波長モニタ装置の実施例について、半導体
露光用レーザ光としてArFエキシマレーザ光を使った
場合を例示して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a wavelength monitoring apparatus for laser light for semiconductor exposure according to the present invention will be described below by exemplifying a case where ArF excimer laser light is used as laser light for semiconductor exposure.

【0010】図1は本発明の波長モニタ装置の一例の光
路図であり、1個のエタロン1を備えている。このエタ
ロン1の入射側には、2つの凹レンズ2a、2bが並べ
て配置されており、凹レンズ2aには標準光源であるH
e−Neレーザ10からの基準光が反射鏡6,6、シャ
ッタAを介して入射される。また、もう一方の凹レンズ
2bには、例えば半導体露光用のArFエキシマレーザ
20からの被波長測定光が反射鏡6、入射開口5、シャ
ッタBを介して入射される。凹レンズ2aで発散光に変
換された基準光は、エタロン1を透過して、その射出側
に凹面反射鏡3、アルミ反射ミラー9を介してセンサ4
に到達する。そして、センサ4上で例えば照射光がフリ
ンジを形成して、このフリンジを測定することで信号処
理回路7において波長を算出する。同様に、凹レンズ2
bで発散光に変換された被波長測定光は、同じエタロン
1の別々の領域を透過して、同様に凹面反射鏡3、アル
ミ反射ミラー9を介してセンサ4に到達する。そして同
様に、センサ上で被波長測定光のフリンジを形成して、
信号処理回路7で波長を測定表示する。なお、測定につ
いては、従来技術で説明したように、まず、シャッタA
を開いてシャッタBを閉じてHe−Neレーザ光を測定
し、次に、シャッタBを開いてシャッタAを閉じてエキ
シマレーザ光を測定する。
FIG. 1 is an optical path diagram of an example of a wavelength monitor according to the present invention, and includes one etalon 1. On the incident side of the etalon 1, two concave lenses 2a and 2b are arranged side by side, and the concave lens 2a has a standard light source H
Reference light from the e-Ne laser 10 enters through the reflecting mirrors 6 and 6 and the shutter A. The wavelength measurement light from, for example, an ArF excimer laser 20 for semiconductor exposure is incident on the other concave lens 2b via the reflecting mirror 6, the entrance aperture 5, and the shutter B. The reference light converted into the divergent light by the concave lens 2a passes through the etalon 1 and is transmitted to the sensor 4 via the concave reflecting mirror 3 and the aluminum reflecting mirror 9 on the exit side.
To reach. Then, for example, the irradiation light forms a fringe on the sensor 4, and the signal processing circuit 7 calculates the wavelength by measuring the fringe. Similarly, concave lens 2
The wavelength-measuring light converted into the divergent light in b passes through different regions of the same etalon 1 and reaches the sensor 4 via the concave reflecting mirror 3 and the aluminum reflecting mirror 9 in the same manner. And similarly, a fringe of the wavelength measurement light is formed on the sensor,
The wavelength is measured and displayed by the signal processing circuit 7. Note that, as described in the related art, first, the shutter A
Is opened and the shutter B is closed to measure the He-Ne laser light, and then the shutter B is opened and the shutter A is closed to measure the excimer laser light.

【0011】ここでエタロンのうち、基準光(He−N
eレーザ光)が入射する領域の反射鏡には、その基準光
(He−Neレーザ光)を低損失で反射するように設計
された誘電体多層膜コーティング1aが施され、また、
被波長測定光(ArFエキシマレーザ光)が入射する領
域の反射鏡には、その被波長測定光を低損失で反射する
ように設計された別の誘電体多層膜コーティング1bが
施されている。
Here, of the etalon, the reference light (He-N
The reflecting mirror in the area where the e-laser light is incident is provided with a dielectric multilayer coating 1a designed to reflect the reference light (He-Ne laser light) with low loss.
The reflector in the area where the wavelength measurement light (ArF excimer laser light) is incident is provided with another dielectric multilayer coating 1b designed to reflect the wavelength measurement light with low loss.

【0012】ここで、凹面反射鏡3はエタロン1を通過
した光をセンサに向けて集光する手段の一例であって、
他に2枚組の色消しレンズなどを個々に使用することも
できる。また、アルミ反射ミラー9は、光路を折り曲げ
て装置の小型化を図るためのもので、必須のものではな
い。さらに、センサ4は、例えば、単一の一次元アレイ
光センサであってCCDが一方向に並んでいるものが適
用できる。センサからの位置信号は信号処理回路7に入
力され、処理されて得られた波長制御信号8はArFエ
キシマレーザ20に入力され、その中の狭帯域化光学系
の例えば回折格子の角度制御に用いられる。
Here, the concave reflecting mirror 3 is an example of means for condensing the light passing through the etalon 1 toward the sensor.
Alternatively, a pair of achromatic lenses or the like may be used individually. Further, the aluminum reflection mirror 9 is for bending the optical path to reduce the size of the device, and is not essential. Further, as the sensor 4, for example, a single one-dimensional array optical sensor in which CCDs are arranged in one direction can be applied. A position signal from the sensor is input to a signal processing circuit 7, and a wavelength control signal 8 obtained by processing is input to an ArF excimer laser 20, and used for angle control of, for example, a diffraction grating of a narrow band optical system therein. Can be

【0013】このように、本発明においては、共通の単
一のエタロンを使って、まず被は長測定光をシャッタ等
で止めて基準光の波長を測定し、次に、今度は逆に基準
光をシャッタ等で止めて被波長測定光の波長を測定する
わけである。つまり、共通の単一のエタロン1の別々の
領域に基準光と被波長測定光を入射させて、基準光の波
長を基準に被波長測定光の波長の測定をするので、各々
の光に適したコーティングを施すことで高精度な測定を
すること可能になる。なお、本実施例においては、エタ
ロン1後にアルミ反射ミラー9を介してセンサ4に光を
入射させたが、直接センサ4に入射させてもかまわな
い。また、エタロン1に基準光と被波長測定光を入射さ
せる光学系としては、発散光にする凹レンズに限定され
ず、集束光にする凸レンズ等の光学系、拡散光にするス
リガラス等の光学系であってもかまわない。
As described above, in the present invention, using a common single etalon, first, the measured object is stopped by a shutter or the like to measure the wavelength of the reference light, and then the reference light is turned back. The light is stopped by a shutter or the like to measure the wavelength of the wavelength measurement light. In other words, the reference light and the wavelength-measuring light are made incident on separate areas of the common single etalon 1 and the wavelength of the wavelength-measuring light is measured with reference to the wavelength of the reference light. By applying such a coating, it becomes possible to perform highly accurate measurement. In this embodiment, light is incident on the sensor 4 via the aluminum reflecting mirror 9 after the etalon 1, but it may be incident directly on the sensor 4. Further, the optical system that causes the reference light and the wavelength measurement light to enter the etalon 1 is not limited to a concave lens that emits divergent light, but may be an optical system such as a convex lens that emits convergent light, or an optical system such as ground glass that emits diffused light. It doesn't matter.

【0014】なお、本実施例の説明は、すべて被波長測
定光としてArFエキシマレーザ光を対象に説明した
が、フッ素レーザ装置についても同様のことが適用でき
る。
Although the description of the present embodiment has been directed to an ArF excimer laser beam as the wavelength measurement light, the same applies to a fluorine laser device.

【0015】[0015]

【発明の効果】このように本発明においては、共通の単
一のエタロン1の別々の領域に基準光と被波長測定光の
入射させて、基準光の波長を基準に被波長測定光の波長
の測定をするので、前記別々の領域に各々の光に適した
コーティングを施すことで高精度な測定をすること可能
になる。
As described above, according to the present invention, the reference light and the wavelength-measuring light are made to enter the separate regions of the common single etalon 1, and the wavelength of the wavelength-measuring light is determined with reference to the wavelength of the reference light. Therefore, it is possible to perform highly accurate measurement by applying a coating suitable for each light to the separate areas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の波長モニタ装置の概略構成図を示す。FIG. 1 shows a schematic configuration diagram of a wavelength monitor device of the present invention.

【図2】従来の波長モニタ装置の概略構成図を示す。FIG. 2 shows a schematic configuration diagram of a conventional wavelength monitor device.

【符号の説明】[Explanation of symbols]

1 エタロン 2 凹レンズ 3 凹面反射鏡 4 センサ 10 HeーNeレーザ 20 ArFエキシマレーザ DESCRIPTION OF SYMBOLS 1 Etalon 2 Concave lens 3 Concave reflecting mirror 4 Sensor 10 He-Ne laser 20 ArF excimer laser

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体露光用レーザ光用の反射コーティン
グと基準光用の反射コーティングが別々の領域に施され
ている単一のエタロンと、このエタロンに対して当該レ
ーザ光と基準光を相互に中心軸をずらして各々の反射コ
ーティングが施された領域に入射させる入射光学系と、
このエタロンを透過した前記2つの光の集光手段と、こ
の集光手段からの光を受光するセンサとからなり、 前記センサーによって、半導体露光用レーザ光の波長を
算出することを特徴とする半導体露光用レーザ光のため
の波長モニター装置。
A single etalon in which a reflective coating for laser light for semiconductor exposure and a reflective coating for reference light are applied to separate areas, and the laser light and the reference light are mutually transmitted to the etalon. An incident optical system that shifts the central axis to enter the area where each reflective coating is applied,
A semiconductor device comprising: a condensing unit for the two light beams transmitted through the etalon; and a sensor for receiving light from the condensing unit, wherein the sensor calculates a wavelength of the laser light for semiconductor exposure. Wavelength monitor for laser light for exposure.
JP2000070600A 2000-03-14 2000-03-14 Wavelength monitor device for laser beam for semiconductor exposure Pending JP2001267660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000070600A JP2001267660A (en) 2000-03-14 2000-03-14 Wavelength monitor device for laser beam for semiconductor exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000070600A JP2001267660A (en) 2000-03-14 2000-03-14 Wavelength monitor device for laser beam for semiconductor exposure

Publications (1)

Publication Number Publication Date
JP2001267660A true JP2001267660A (en) 2001-09-28

Family

ID=18589312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000070600A Pending JP2001267660A (en) 2000-03-14 2000-03-14 Wavelength monitor device for laser beam for semiconductor exposure

Country Status (1)

Country Link
JP (1) JP2001267660A (en)

Similar Documents

Publication Publication Date Title
JP3624783B2 (en) Double pass etalon spectrometer
USRE38372E1 (en) Narrow band excimer laser and wavelength detecting apparatus
JP2791038B2 (en) Spectroscope, projection exposure apparatus and projection exposure method using the same
US6160831A (en) Wavelength calibration tool for narrow band excimer lasers
JP2023058479A (en) Systems for providing illumination in optical metrology
US6509970B1 (en) Wavelength monitoring apparatus for laser light for semiconductor exposure
US5373515A (en) Laser wavelength controlling apparatus
JP4065923B2 (en) Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus
JP4668953B2 (en) Lithographic apparatus and device manufacturing method
JP2004040067A (en) Method of detecting focus and imaging system having focus detecting system
JP2002510797A (en) Spectral measurement system using off-axis spherical mirror and refractive element
JP2006138874A (en) Double optical pass double-etalon spectroscope
JP2001284228A (en) Exposure system and device manufacturing method
WO1990014582A1 (en) Wavelength detector
JP3690632B2 (en) Narrowband module inspection equipment
JP4362857B2 (en) Light source apparatus and exposure apparatus
JP2018516388A (en) Method and apparatus for optical fiber connection
TWI815077B (en) Sensor apparatus and method for correcting a processing error of a lithographic apparatus
JP2006250858A (en) Surface accuracy measuring method, interferometer, surface accuracy measuring instrument, and projection optical system manufacturing method
JPH0936032A (en) Aligner and manufacturing method of device, using the same
JPH06188502A (en) Wavelength detector
JP2001267660A (en) Wavelength monitor device for laser beam for semiconductor exposure
CN109565145A (en) Laser aid
US6456361B1 (en) Method and instrument for measuring vacuum ultraviolet light beam, method of producing device and optical exposure apparatus
JP2617320B2 (en) Laser wavelength controller