JP2001266800A - External electrode fluorescent lamp, and hot forming method for glass plate - Google Patents

External electrode fluorescent lamp, and hot forming method for glass plate

Info

Publication number
JP2001266800A
JP2001266800A JP2000077684A JP2000077684A JP2001266800A JP 2001266800 A JP2001266800 A JP 2001266800A JP 2000077684 A JP2000077684 A JP 2000077684A JP 2000077684 A JP2000077684 A JP 2000077684A JP 2001266800 A JP2001266800 A JP 2001266800A
Authority
JP
Japan
Prior art keywords
fluorescent lamp
external electrode
glass
electrode fluorescent
glass plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000077684A
Other languages
Japanese (ja)
Inventor
Mitsuya Ozaki
光哉 尾崎
Kenichiro Matsumoto
研一郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2000077684A priority Critical patent/JP2001266800A/en
Publication of JP2001266800A publication Critical patent/JP2001266800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an external electrode fluorescent lamp, capable of freely setting light distribution in the direction of a cross section. SOLUTION: A plate glass substrate 2 and a molded glass substrate 3, molded into approximately U-shape are subjected to laser welding, to form a sealed container 10. One molded glass substrate 3 is provided with a light emission portion 5, which has a thickness t1 at the center, with a thickness which is 0.3-0.6 mm greater than a thickness t2 at both ends.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スキャナや複写機
などのOA機器が備える原稿読取装置に用いられる外部
電極蛍光ランプとガラス板の加熱成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external electrode fluorescent lamp used in a document reading apparatus provided in an office automation apparatus such as a scanner or a copying machine, and a method for heat-forming a glass plate.

【0002】[0002]

【従来の技術】スキャナや複写機などのOA機器が備え
る原稿読取装置には、原稿読取用光源として外部電極蛍
光ランプが用いられている。従来の外部電極蛍光ランプ
としては、例えば特開平11−329366号公報に記
載されているように、断面形状が円形のガラス管の内面
に、光を出射するアパーチャー部を除いて蛍光体被膜を
形成し、アパーチャー部を挟んでガラス管の外面に一対
の帯状電極を管軸対称に設け、その外周を絶縁性の透過
性樹脂で被覆したものが知られている。
2. Description of the Related Art An external electrode fluorescent lamp is used as a light source for reading a document in a document reading device provided in an OA device such as a scanner or a copying machine. As a conventional external electrode fluorescent lamp, for example, as described in JP-A-11-329366, a phosphor coating is formed on the inner surface of a glass tube having a circular cross section except for an aperture for emitting light. It is known that a pair of band-shaped electrodes is provided on the outer surface of a glass tube symmetrically with respect to the tube axis with an aperture portion interposed therebetween, and the outer periphery thereof is covered with an insulating transparent resin.

【0003】ここで、帯状電極の幅を大きくすると、蓄
積する電荷量が増すため、ランプは高光量を発生する
が、大きくし過ぎると、ガラス管の外周の長さは決めら
れているのでアパーチャー角が狭くなるため内部の光量
が外部に有効に出射できない。また、アパーチャー部と
対向する背面側も、電極間距離を狭くし過ぎると、高温
高湿の使用条件下では、絶縁破壊を起こす可能性があ
り、好ましくない。従って、帯状電極の幅、アパーチャ
ー角、電極間距離(アパーチャー部と背面部)は、夫々
適正な値に設定されている。
Here, if the width of the strip-shaped electrode is increased, the amount of electric charge to be stored is increased, so that the lamp generates a large amount of light. However, if the width is too large, the length of the outer periphery of the glass tube is determined, so that the aperture becomes large. Since the angle becomes narrow, the amount of light inside cannot be effectively emitted to the outside. Further, if the distance between the electrodes on the back side facing the aperture portion is too small, dielectric breakdown may occur under high-temperature and high-humidity use conditions, which is not preferable. Therefore, the width of the strip-shaped electrode, the aperture angle, and the distance between the electrodes (the aperture portion and the back surface portion) are set to appropriate values.

【0004】[0004]

【発明が解決しようとする課題】しかし、アパーチャー
角は、一般に、60°〜90°の範囲内に制約されるた
め、ランプ側で配光分布の設定ができない。アパーチャ
ー角が60°以下では、光束を有効に出射できず、90
°以上では、電極幅が狭くなり過ぎて管内全体に電力を
有効に供給できないからである。また、アパーチャー部
の断面が円弧状であるため、アパーチャー部から出射し
た光束は、ほぼ均等拡散するので、指向性がなく、ラン
プ側で配光分布の設定ができない。
However, since the aperture angle is generally restricted within the range of 60 ° to 90 °, the light distribution cannot be set on the lamp side. When the aperture angle is less than 60 °, the light beam cannot be emitted effectively,
If the angle is more than °, the electrode width becomes too narrow and electric power cannot be effectively supplied to the entire inside of the tube. In addition, since the cross section of the aperture portion is arc-shaped, the light beam emitted from the aperture portion is substantially uniformly diffused, and thus has no directivity, so that the light distribution cannot be set on the lamp side.

【0005】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、断面方向の配光分布を任意に設定できる外部電
極蛍光ランプとガラス板の加熱成形方法を提供しようと
するものである。
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide an external electrode fluorescent lamp and glass capable of arbitrarily setting a light distribution in a sectional direction. An object of the present invention is to provide a method for heat forming a plate.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すべく請
求項1に係る発明は、少なくとも一方が成形ガラス基板
である2つのガラス部材を接着して密閉容器を形成し、
前記一方の成形ガラス基板に光出射部を設けたものであ
る。
According to a first aspect of the present invention, there is provided a closed container formed by bonding two glass members, at least one of which is a molded glass substrate.
The light emitting portion is provided on the one molded glass substrate.

【0007】請求項2に係る発明は、請求項1記載の外
部電極蛍光ランプにおいて、前記光出射部は、その中心
の厚みが端部の厚みより、0.3mm〜0.6mm厚く
なるように形成されたものである。
According to a second aspect of the present invention, in the external electrode fluorescent lamp according to the first aspect, the light emitting portion is formed such that a thickness at a center thereof is 0.3 mm to 0.6 mm thicker than a thickness at an end portion. It was formed.

【0008】請求項3に係る発明は、請求項1又は2記
載の外部電極蛍光ランプにおいて、前記2つのガラス部
材の接着は、レーザによる融着としたものである。
According to a third aspect of the present invention, in the external electrode fluorescent lamp according to the first or second aspect, the two glass members are bonded by laser fusion.

【0009】請求項4に係る発明は、軟化点以上に加熱
しながらガラス板を凸上型と凹下型でプレスする成形方
法を用いると共に、前記凹下型には成形された前記ガラ
ス板の突出部が接触しないように凹部を設け、プレス成
形後にガラスの粘度を1万ポイズ〜2万ポイズの範囲に
所定時間の間保ち、粘性流動を利用して前記ガラス板の
突出部に異厚部を成形するものである。
The invention according to claim 4 uses a forming method in which a glass plate is pressed with a convex upper mold and a concave lower mold while heating at a temperature higher than the softening point, and the molded glass plate is pressed into the concave lower mold. A concave portion is provided so that the protruding portion does not come into contact, the viscosity of the glass is maintained in a range of 10,000 poise to 20,000 poise for a predetermined time after press molding, and a different thickness portion is formed on the protruding portion of the glass plate using viscous flow. Is formed.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は本発明に係る
外部電極蛍光ランプの断面図、図2は本発明に係る外部
電極蛍光ランプを用いた原稿読取装置の照明系の構成
図、図3は本発明の別実施の形態の外部電極蛍光ランプ
の断面図、図4は本発明の別実施の形態の外部電極蛍光
ランプを用いた原稿読取装置の照明系の構成図、図5は
本発明の他の実施の形態の外部電極蛍光ランプの断面
図、図6は本発明に係るガラス板の加熱成形方法の説明
図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a sectional view of the external electrode fluorescent lamp according to the present invention, FIG. 2 is a configuration diagram of an illumination system of a document reading apparatus using the external electrode fluorescent lamp according to the present invention, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a cross-sectional view of an external electrode fluorescent lamp according to an embodiment of the present invention, FIG. 4 is a configuration diagram of an illumination system of a document reading apparatus using an external electrode fluorescent lamp according to another embodiment of the present invention, and FIG. FIG. 6 is a cross-sectional view of the external electrode fluorescent lamp of FIG.

【0011】図1に示すように、本発明に係る外部電極
蛍光ランプ1は、板ガラス基板2と成形ガラス基板3と
をレーザで融着してチューブ状部材4を形成し、チュー
ブ状部材4の内面に光を出射する光出射部5除いて蛍光
体被膜6を形成し、光出射部5挟んで成形ガラス基板3
の外面に一対の帯状電極7,8を管軸対称に設け、更に
その外周全体を絶縁性の透光性樹脂フィルム9で被覆し
てなる。なお、チューブ状部材4の両端部には、チュー
ブ状部材4ともに密閉容器10を形成する側面部材(不
図示)がレーザで融着されている。
As shown in FIG. 1, an external electrode fluorescent lamp 1 according to the present invention forms a tubular member 4 by fusing a plate glass substrate 2 and a molded glass substrate 3 with a laser. A phosphor coating 6 is formed on the inner surface except for a light emitting portion 5 that emits light, and the molded glass substrate 3 is sandwiched between the light emitting portions 5.
A pair of strip-shaped electrodes 7 and 8 are provided on the outer surface in a tube axis symmetrical manner, and the entire outer periphery thereof is covered with an insulating light-transmitting resin film 9. In addition, side members (not shown) forming the closed container 10 together with the tubular member 4 are fused to both ends of the tubular member 4 by laser.

【0012】成形ガラス基板3は、略U字状に成形さ
れ、その中央部には光出射部5を設けている。光出射部
5は、その内面が曲率半径(r1)4.3mmの曲面
で、外面が曲率半径(r2)3.0mmの曲面で夫々形
成され、更にその中心の厚みt1が端部の厚みt2より、
0.3mm〜0.6mm厚く形成され(0.3mm≦t
1−t2≦0.6mm)、凸レンズの働きをする。また、
光出射部5のアパーチャー角θは、90°としている。
The molded glass substrate 3 is formed in a substantially U-shape, and a light emitting portion 5 is provided at a central portion thereof. The light emitting portion 5 has an inner surface formed by a curved surface having a radius of curvature (r1) of 4.3 mm and an outer surface formed by a curved surface having a radius of curvature (r2) of 3.0 mm. Than,
0.3 mm to 0.6 mm thick (0.3 mm ≦ t
1−t2 ≦ 0.6 mm), and functions as a convex lens. Also,
The aperture angle θ of the light emitting section 5 is 90 °.

【0013】ここで、中心の厚みt1と端部の厚みt2と
の厚み差(t1−t2)が大きいほど集光効果は大きくな
る。しかし、厚み差(t1−t2)が0.6mmを超える
と逆に光線に指向性がでてしまい、一方、厚み差(t1
−t2)が0.3mm未満であると厚み差の効果がでな
い。従って、0.3mm≦t1−t2≦0.6mmの範囲
が拡散改善に有効である。なお、不必要な拡散をさせな
いため、光出射部5は透明であることが好ましい。
Here, as the thickness difference (t1−t2) between the center thickness t1 and the end thickness t2 increases, the light condensing effect increases. However, when the thickness difference (t1−t2) exceeds 0.6 mm, the directivity appears on the light beam.
When -t2) is less than 0.3 mm, the effect of the thickness difference is not obtained. Therefore, the range of 0.3 mm ≦ t1−t2 ≦ 0.6 mm is effective for improving the diffusion. It is preferable that the light emitting portion 5 is transparent to prevent unnecessary diffusion.

【0014】また、帯状電極7,8の幅は、光出射部5
の内外面の曲率半径r1,r2に制約されることなく任意
に設定できる。但し、帯状電極7,8の幅を大きくし過
ぎて帯状電極7と帯状電極8との距離が小さくなると、
高温高湿下での絶縁破壊を考慮する必要がある。
The width of each of the strip electrodes 7 and 8 is
Can be set arbitrarily without being restricted by the radii of curvature r1 and r2 of the inner and outer surfaces of. However, if the width of the strip electrodes 7 and 8 is too large and the distance between the strip electrodes 7 and 8 becomes small,
It is necessary to consider dielectric breakdown under high temperature and high humidity.

【0015】そして、本発明に係る外部電極蛍光ランプ
1は、光出射部5の内外径(曲率半径r1,r2)を微調
整することができ、内外径(曲率半径r1,r2)とも任
意に設定可能である。また、例えば、原稿読取装置の照
明系に高出力ランプを使用する場合でも、発熱の増加を
考慮して、原稿面ガラスと外部電極蛍光ランプ1との距
離に応じた内外径(曲率半径r1,r2)の調整が可能で
ある。
In the external electrode fluorescent lamp 1 according to the present invention, the inner and outer diameters (radius of curvature r1, r2) of the light emitting portion 5 can be finely adjusted, and the inner and outer diameters (curvature radii r1, r2) can be arbitrarily set. Can be set. Also, for example, even when a high-power lamp is used for the illumination system of the document reading apparatus, the inner and outer diameters (curvature radii r1, Adjustment of r2) is possible.

【0016】また、板ガラス基板2と成形ガラス基板3
と側面部材(不図示)からなる密閉容器10の封止部分
の接着は、レーザで融着する方法を用いた。その方法
は、先ず密閉容器10全体を軟化点の温度雰囲気に保
ち、次いで板ガラス基板2と成形ガラス基板3の封止部
分と、チューブ状部材4と側面部材(不図示)の封止部
分を、夫々炭酸ガスレーザで1000℃前後に加熱して
融着する方法である。
A sheet glass substrate 2 and a molded glass substrate 3
The sealing of the sealed portion of the hermetically sealed container 10 composed of the side member (not shown) and the side member (not shown) was performed by a laser fusion method. In the method, first, the entire closed container 10 is kept at a temperature of the softening point, and then the sealing portion between the sheet glass substrate 2 and the molded glass substrate 3 and the sealing portion between the tubular member 4 and the side member (not shown) are This is a method in which each is heated to about 1000 ° C. by a carbon dioxide laser and fused.

【0017】従来、ガラス基板同士の封止は、低融点ガ
ラスによる接着で行っていた。例えば、日本電気硝子
(株)製の低融点ガラスLS−0118をターピノール
等の溶剤で液状にして、封止部に塗布して450℃の大
気焼成で接着していた。ところが、低融点ガラスは鉛を
含有しているため、最近の環境負荷物質の低減対策とし
て、鉛フリーの検討がなされている。そこで、本発明に
おいては、鉛フリー対策として前記したレーザによる融
着方法を採用した。
Conventionally, sealing between glass substrates has been performed by bonding with low melting point glass. For example, low melting glass LS-0118 manufactured by Nippon Electric Glass Co., Ltd. was liquefied with a solvent such as tarpinol, applied to a sealing portion, and bonded by baking at 450 ° C. in air. However, since low-melting glass contains lead, lead-free is being studied recently as a measure to reduce substances of concern. Thus, in the present invention, the above-described fusion method using a laser is employed as a measure against lead-free.

【0018】なお、レーザによる融着方法を採用したこ
とにより、鉛フリー以外の効果として、従来は低融点ガ
ラスとガラス基板との界面でマイクロ剥離するスローリ
ーク現象が懸念されていたが、レーザによる融着の場合
は、そのような現象は皆無であった。
[0018] By adopting the fusion method using a laser, as an effect other than lead-free, a slow leak phenomenon in which micro peeling occurs at the interface between the low-melting glass and the glass substrate has been a concern in the past. In the case of fusion, there was no such phenomenon.

【0019】このように構成された外部電極蛍光ランプ
1は、例えば幅wが19.0mm、高さhが9.5mm
の大きさに形成され、一対の帯状電極7,8と蛍光体被
膜6により密閉容器10内に光を発生させ、発生させた
光を凸レンズの働きをする光出射部5から、所望の光束
幅で出射する。
The external electrode fluorescent lamp 1 thus configured has, for example, a width w of 19.0 mm and a height h of 9.5 mm.
A pair of strip-shaped electrodes 7, 8 and a phosphor coating 6 generate light in a sealed container 10, and the generated light is transmitted from a light emitting portion 5 serving as a convex lens to a desired light flux width. Out.

【0020】外部電極蛍光ランプ1を用いた原稿読取装
置の照明系は、図2に示すように、上面に原稿11を載
置する原稿台としての原稿面ガラス12と、原稿面ガラ
ス12の下面に対向して配置される外部電極蛍光ランプ
1及び外部電極蛍光ランプ1の出射光を反射する反射鏡
13などを備えてなる。なお、14は原稿11の内容を
反射する反射鏡、15は撮像デバイスとしてのCCD撮
像素子である。
As shown in FIG. 2, the illumination system of the original reading apparatus using the external electrode fluorescent lamp 1 has an original surface glass 12 as an original table on which an original 11 is placed, and a lower surface of the original surface glass 12 as shown in FIG. An external electrode fluorescent lamp 1 and a reflecting mirror 13 for reflecting light emitted from the external electrode fluorescent lamp 1 are provided. Reference numeral 14 denotes a reflecting mirror for reflecting the contents of the document 11, and reference numeral 15 denotes a CCD image pickup device as an image pickup device.

【0021】原稿読取装置としては、原稿11を原稿面
ガラス12に固定した状態で、照明系を所定の速度で移
動させて原稿11の内容を読取る方式と、照明系を固定
した状態で、原稿11を所定の速度で原稿面ガラス12
上を移動させて原稿11の内容を読取る方式がある。
The document reading apparatus reads the contents of the document 11 by moving the illumination system at a predetermined speed in a state where the document 11 is fixed to the document surface glass 12, and reads the contents of the document 11 in a state where the illumination system is fixed. 11 is a document surface glass 12 at a predetermined speed.
There is a method of reading the contents of the document 11 by moving it upward.

【0022】また、原稿面上の配光分布Pは、光軸Cを
中心に幅が4mm〜6mm以内とする。デジタルのスキ
ャナや複写機などは、受光面がCCDになることから、
原稿面上での読取り幅は約70μmとなる。従って、理
想的な配光分布は線となるが、実際はランプ1や反射鏡
13などの照明系の位置のばらつきやCCD光学系の読
取りのばらつきなどがあるため、現実の所望な配光分布
は上記の範囲となる。
The light distribution P on the document surface has a width of 4 mm to 6 mm around the optical axis C. Digital scanners and copiers have a CCD light-receiving surface,
The reading width on the document surface is about 70 μm. Therefore, although the ideal light distribution is a line, the actual desired light distribution is actually varied due to variations in the position of the illumination system such as the lamp 1 and the reflecting mirror 13 and variations in reading of the CCD optical system. It is in the above range.

【0023】また、光出射部5の内面の曲率半径(r
1)4.3mmと、外面の曲率半径(r2)3mmは、原
稿面ガラス12の厚さt3を3mm〜4mm、原稿面ガ
ラス12と外部電極蛍光ランプ1との距離d1を2m
m、外部電極蛍光ランプ1と光軸Cとの距離d2を2m
mとして、配光分布Pが光軸Cを中心に幅が4mm〜6
mm以内になるように設定した時の値である。なお、原
稿面ガラス12と外部電極蛍光ランプ1との距離d1を
2mmとしたのは、外部電極蛍光ランプ1の発熱による
原稿面ガラス12の熱割れやガラス撓みなどを考慮し
て、2mm以上空ける必要があるからである。
The radius of curvature (r) of the inner surface of the light emitting portion 5
1) 4.3 mm and the radius of curvature (r2) of the outer surface are 3 mm, the thickness t3 of the original glass 12 is 3 mm to 4 mm, and the distance d1 between the original glass 12 and the external electrode fluorescent lamp 1 is 2 m.
m, the distance d2 between the external electrode fluorescent lamp 1 and the optical axis C is 2 m
m, the light distribution P has a width of 4 mm to 6 around the optical axis C.
mm. The reason that the distance d1 between the original surface glass 12 and the external electrode fluorescent lamp 1 is set to 2 mm is to leave a space of 2 mm or more in consideration of the heat cracking of the original surface glass 12 due to the heat generated by the external electrode fluorescent lamp 1 and the bending of the glass. It is necessary.

【0024】更に、外部電極蛍光ランプ1の出射光を反
射する反射鏡13は、必ずしも必要としない。光出射部
5の凸レンズ作用による集光効果を上げれば、所望の配
光分布Pを得ることが可能だからである。
Further, the reflecting mirror 13 for reflecting the light emitted from the external electrode fluorescent lamp 1 is not always necessary. This is because a desired light distribution P can be obtained by increasing the light condensing effect of the light emitting section 5 by the convex lens function.

【0025】図3は本発明の別実施の形態である外部電
極蛍光ランプ21を示す。この外部電極蛍光ランプ21
は、板ガラス基板22と成形ガラス基板23とをレーザ
で融着してチューブ状部材24を形成し、チューブ状部
材24の内面に光を出射する光出射部25除いて蛍光体
被膜26を形成し、光出射部25挟んで成形ガラス基板
23の外面に一対の帯状電極27,28を管軸対称に設
け、更にその外周全体を絶縁性の透光性樹脂フィルム2
9で被覆してなる。なお、チューブ状部材24の両端部
には、チューブ状部材24ともに密閉容器30を形成す
る側面部材(不図示)がレーザで融着されている。
FIG. 3 shows an external electrode fluorescent lamp 21 according to another embodiment of the present invention. This external electrode fluorescent lamp 21
Forms a tubular member 24 by fusing a plate glass substrate 22 and a formed glass substrate 23 with a laser, and forms a phosphor coating 26 on the inner surface of the tubular member 24 except for a light emitting portion 25 that emits light. A pair of strip-shaped electrodes 27 and 28 are provided on the outer surface of the molded glass substrate 23 symmetrically with respect to the tube axis with the light emitting portion 25 interposed therebetween.
9. In addition, a side member (not shown) that forms the sealed container 30 together with the tubular member 24 is fused to both ends of the tubular member 24 by laser.

【0026】成形ガラス基板23は、略M字状で凹面に
成形され、その中央部には光出射部25を設けている。
光出射部25は、2つの出射面25a,25bを有して
いる。その他の構成については、図1に示す外部電極蛍
光ランプ1とほぼ同様である。
The molded glass substrate 23 is formed into a substantially M-shaped concave surface, and a light emitting portion 25 is provided at the center thereof.
The light emitting section 25 has two light emitting surfaces 25a and 25b. Other configurations are almost the same as those of the external electrode fluorescent lamp 1 shown in FIG.

【0027】また、図4は外部電極蛍光ランプ21を用
いた原稿読取装置の照明系を示す。この照明系は、上面
に原稿31を載置する原稿台としての原稿面ガラス32
と、原稿面ガラス32の下面に対向して配置される外部
電極蛍光ランプ21及び外部電極蛍光ランプ21の出射
光を反射する反射鏡33などを備えてなる。なお、34
は原稿31の内容を反射する反射鏡、35は撮像デバイ
スとしてのCCD撮像素子、36は光軸である。
FIG. 4 shows an illumination system of a document reading apparatus using the external electrode fluorescent lamp 21. This illumination system includes a document surface glass 32 as a document table on which a document 31 is placed.
And an external electrode fluorescent lamp 21 disposed opposite to the lower surface of the original surface glass 32, a reflecting mirror 33 for reflecting the light emitted from the external electrode fluorescent lamp 21, and the like. Note that 34
Is a reflecting mirror for reflecting the contents of the document 31, 35 is a CCD image pickup device as an image pickup device, and 36 is an optical axis.

【0028】光出射部25の一方の出射面25aからの
光は、反射鏡33で反射して原稿面ガラス32に進み、
他方の出射面25bからの光は、直接原稿面ガラス32
に進み、反射光と直接光で原稿面上に光軸Cを中心とし
て配光分布Pを形成する。従って、反射鏡33は、出射
面25aからの光を反射させるため、必須の構成要素で
ある。外部電極蛍光ランプ21では、図1に示す外部電
極蛍光ランプ1と比べて出射面25a,25bが原稿面
ガラス32から、遠くなるが、拡散しないという特徴を
有する。
Light from one emission surface 25a of the light emission part 25 is reflected by the reflecting mirror 33 and proceeds to the original surface glass 32.
Light from the other exit surface 25b is directly transmitted to the original surface glass 32.
To form a light distribution P about the optical axis C on the original surface with the reflected light and the direct light. Therefore, the reflecting mirror 33 is an essential component for reflecting light from the emission surface 25a. The external electrode fluorescent lamp 21 has a feature that the emission surfaces 25a and 25b are farther from the original surface glass 32 but are not diffused as compared with the external electrode fluorescent lamp 1 shown in FIG.

【0029】また、図5は本発明の他の実施の形態の外
部電極蛍光ランプ41を示す。この外部電極蛍光ランプ
41は、成形ガラス基板42と成形ガラス基板43とを
レーザで融着してチューブ状部材44を形成し、チュー
ブ状部材44の内面に光を出射する光出射部45除いて
蛍光体被膜46を形成し、光出射部45挟んで成形ガラ
ス基板43の外面に一対の帯状電極47,48を管軸対
称に設け、更にその外周全体を絶縁性の透光性樹脂フィ
ルム49で被覆してなる。なお、チューブ状部材44の
両端部には、チューブ状部材44ともに密閉容器50を
形成する側面部材(不図示)がレーザで融着されてい
る。
FIG. 5 shows an external electrode fluorescent lamp 41 according to another embodiment of the present invention. The external electrode fluorescent lamp 41 forms a tubular member 44 by fusing a molded glass substrate 42 and a molded glass substrate 43 with a laser, and excludes a light emitting portion 45 that emits light to the inner surface of the tubular member 44. A phosphor film 46 is formed, a pair of strip-shaped electrodes 47 and 48 are provided on the outer surface of the molded glass substrate 43 symmetrically with respect to the tube axis with the light emitting portion 45 interposed therebetween, and the entire outer periphery thereof is coated with an insulating translucent resin film 49. Coated. In addition, side members (not shown) forming the closed container 50 together with the tubular member 44 are fused to both ends of the tubular member 44 by laser.

【0030】成形ガラス基板42は、円弧状に成形され
ている。また、成形ガラス基板43は、略U字状に成形
され、その中央部には光出射部45を設けている。その
他の構成については、図1に示す外部電極蛍光ランプ1
と同様である。
The formed glass substrate 42 is formed in an arc shape. The molded glass substrate 43 is formed in a substantially U-shape, and a light emitting portion 45 is provided at the center thereof. For other configurations, the external electrode fluorescent lamp 1 shown in FIG.
Is the same as

【0031】次に、本発明に係るガラス板の加熱成形方
法について説明する。このガラス板の加熱成形方法は、
図6に示すように、ガラス板50を凸上型51と凹下型
52で圧縮して成形すると共に、プレス成形後に軟化し
たガラスの流動性とその重力方向への移動を利用した成
形方法である。
Next, the method of heat-forming a glass sheet according to the present invention will be described. The method of heat forming this glass sheet
As shown in FIG. 6, a glass plate 50 is compressed and molded by a convex upper mold 51 and a concave lower mold 52, and a molding method utilizing the fluidity of glass softened after press molding and its movement in the direction of gravity. is there.

【0032】チューブ状部材の半体を成形するために、
凸上型51には山部が形成され、凹下型52には凸上型
51の山部と合致する谷部が形成されている。更に、凹
下型52には、凸上型51が凹下型52に当接した状態
になっても成形されたガラス板50の突出部53が凹下
型52に接触しないように、空間を形成する凹部54が
設けられている。
In order to form a half of a tubular member,
The convex upper mold 51 is formed with a peak, and the concave lower mold 52 is formed with a valley matching the peak of the convex upper mold 51. Further, a space is formed in the concave lower mold 52 so that the projecting portion 53 of the formed glass plate 50 does not contact the concave lower mold 52 even when the convex upper mold 51 comes into contact with the concave lower mold 52. A recess 54 to be formed is provided.

【0033】ガラス板の加熱成形方法は、先ず、第1工
程として、図6(a)に示すように、ガラス板50を凹
下型52に載置した状態で軟化点以上に加熱する。
In the heat forming method of the glass plate, first, as shown in FIG. 6A, the glass plate 50 is heated above the softening point in a state of being placed on the concave lower mold 52 as shown in FIG.

【0034】次いで、第2工程として、図6(b)に示
すように、軟化点以上に加熱しながらガラス板50を凸
上型51が押圧していく。
Next, as a second step, as shown in FIG. 6 (b), the convex plate 51 presses the glass plate 50 while heating it above the softening point.

【0035】次いで、第3工程として、図6(c)に示
すように、軟化点以上に加熱しながら凸上型51を凹下
型52に当接させる。すると、プレス成形後においても
自重で突出部53に異厚部が徐々に成形されていく。
Next, as a third step, as shown in FIG. 6C, the convex upper mold 51 is brought into contact with the concave lower mold 52 while heating to a temperature higher than the softening point. Then, even after press molding, a different thickness portion is gradually formed in the protruding portion 53 by its own weight.

【0036】更に、第4工程として、図6(d)に示す
ように、ガラスの粘度を1万ポイズ〜2万ポイズの範囲
に所定時間(数分間)の間保つと、軟化したガラスの流
動性とその重力方向への移動により、所望な厚み差(例
えば、0.3mm〜0.6mm)を有する異厚部が突出
部53に成形された成形ガラス基板55が製作される。
In the fourth step, as shown in FIG. 6D, when the viscosity of the glass is maintained in the range of 10,000 poise to 20,000 poise for a predetermined time (several minutes), the flow of the softened glass is reduced. The molded glass substrate 55 in which a different thickness portion having a desired thickness difference (for example, 0.3 mm to 0.6 mm) is formed in the protruding portion 53 by the property and the movement in the gravity direction is manufactured.

【0037】ここで、突出部53の内面53a及び外面
53bは、第4工程における成形過程で、凸上型51及
び凹下型52に接触することがないので、透明な状態で
成形され突出部53の透光性が維持される。一方、凸上
型51及び凹下型52が接触する傾斜部56は不透明な
状態で成形される。従って、突出部53の内面53a及
び外面53bを透明に成形することができるので、成形
後に研磨等の仕上げ作業を必要とせず、工数低減に寄与
する。
Since the inner surface 53a and the outer surface 53b of the projection 53 do not come into contact with the convex upper mold 51 and the concave lower mold 52 during the molding process in the fourth step, the projection 53 is molded in a transparent state. The translucency of 53 is maintained. On the other hand, the inclined portion 56 where the convex upper mold 51 and the concave lower mold 52 come into contact is formed in an opaque state. Therefore, since the inner surface 53a and the outer surface 53b of the protruding portion 53 can be molded transparently, finishing work such as polishing after molding is not required, which contributes to a reduction in man-hours.

【0038】また、ガラス粘度が3万ポイズ以下になる
と流動性が活発になり、重力方向にガラスが移動し始め
る。但し、8千ポイズ以下であると、移動がかなり大き
いため、厚み差0.6mm以下の微小なコントロールが
できない。この結果、1万ポイズ〜2万ポイズの範囲
(温度換算で、ソーダライムならば1000℃〜110
0℃、PPGピュアサイトならば950℃〜1030
℃)で、数分間保つと、0.3mm〜0.6mmの厚み
差が形成される。
Further, when the glass viscosity becomes less than 30,000 poise, the fluidity becomes active and the glass starts to move in the direction of gravity. However, if the thickness is less than 8,000 poise, the movement is considerably large, so that a minute control with a thickness difference of 0.6 mm or less cannot be performed. As a result, the range of 10,000 poise to 20,000 poise (in terms of temperature, 1000 ° C. to 110
0 ° C, 950 ° C to 1030 for PPG Pure Site
C.) for a few minutes, a thickness difference of 0.3 mm to 0.6 mm is formed.

【0039】ガラスが重力方向に移動する速度は、製造
する成形ガラス基板25の傾斜角度αの大きさで異なる
ため、粘度を1万ポイズ〜2万ポイズの範囲に保つ保持
時間は、傾斜角度αが60°で2分程度、45°で9分
程度を要する。
Since the speed at which the glass moves in the direction of gravity differs depending on the magnitude of the inclination angle α of the formed glass substrate 25, the holding time for keeping the viscosity in the range of 10,000 poise to 20,000 poise is determined by the inclination angle α. It takes about 2 minutes at 60 ° and about 9 minutes at 45 °.

【0040】また、製作する成形ガラス基板25の大き
さでも粘度を1万ポイズ〜2万ポイズの範囲に保つ保持
時間に差異が生じる。傾斜角度αが45°の場合、A4
サイズの大きさで約6分、A3サイズの大きさで約9分
を要する。
In addition, there is a difference in the holding time for maintaining the viscosity in the range of 10,000 poise to 20,000 poise even in the size of the formed glass substrate 25 to be manufactured. When the inclination angle α is 45 °, A4
It takes about 6 minutes for the size and about 9 minutes for the A3 size.

【0041】本発明に係るガラス板の加熱成形方法によ
って、突出部53の中心の厚みが端部の厚みより、0.
3mm〜0.6mm厚く形成することができるので、図
1に示す外部電極蛍光ランプ1に用いる成形ガラス基板
3、及び図5に示す外部電極蛍光ランプ41に用いる成
形ガラス基板42についても同様に製作することができ
る。
The thickness of the center of the protruding portion 53 is larger than the thickness of the end portion by 0.1 mm by the method of hot-forming a glass sheet according to the present invention.
The molded glass substrate 3 used for the external electrode fluorescent lamp 1 shown in FIG. 1 and the molded glass substrate 42 used for the external electrode fluorescent lamp 41 shown in FIG. can do.

【0042】なお、本発明に係るガラス板の加熱成形方
法の実施の形態においては、図6(d)に示すように、
成形される成形ガラス基板55として、図1に示す成形
ガラス基板3のようなチューブ状部材の半体について説
明した。しかし、このガラス板の加熱成形方法によれ
ば、凸上型51及び凹下型52の形状を変えることによ
り、例えば電球の頭部のような球状部材の半体について
も突出部に異厚部を設けて成形することができる。
In the embodiment of the glass sheet heat forming method according to the present invention, as shown in FIG.
As the molded glass substrate 55 to be molded, a half of a tubular member such as the molded glass substrate 3 shown in FIG. 1 has been described. However, according to this method of heating and molding a glass plate, by changing the shapes of the convex upper mold 51 and the concave lower mold 52, even a half of a spherical member such as a head of a light bulb has a different thickness in the protruding portion. And can be molded.

【0043】[0043]

【発明の効果】以上説明したように請求項1に係る発明
によれば、光線の出射面の形状を任意に決定でき、配光
分布をランプ側で設定できる。
As described above, according to the first aspect of the present invention, the shape of the light exit surface can be arbitrarily determined, and the light distribution can be set on the lamp side.

【0044】請求項2に係る発明によれば、光出射部に
凸レンズが形成されるため、集光特性が向上し、所望な
配光分布を得ることができ、また原稿読取装置の照明系
に適用した場合には原稿面ガラスへ光を進めるための反
射鏡を省略することが可能になる。
According to the second aspect of the present invention, since the convex lens is formed at the light emitting portion, the light condensing characteristics are improved, a desired light distribution can be obtained, and the illumination system of the document reading apparatus can be used. When applied, it is possible to omit a reflecting mirror for transmitting light to the original surface glass.

【0045】請求項3に係る発明によれば、ガラス自体
の熱融着であるため、マイクロ剥離の発生がなく、スロ
ーリーク現象が皆無となる。
According to the third aspect of the present invention, since the glass itself is heat-sealed, there is no occurrence of micro-peeling and there is no slow leak phenomenon.

【0046】請求項4に係る発明によれば、突出部の内
面及び外面は、成形過程で、凸上型及び凹下型に接触す
ることがないので、透明な状態で成形され突出部の透光
性が維持される。また、突出部の内面及び外面を透明に
成形することができるので、成形後に研磨等の仕上げ作
業を必要とせず、工数低減に寄与する。
According to the fourth aspect of the present invention, since the inner surface and the outer surface of the projecting portion do not come into contact with the upper and lower molds during the molding process, they are molded in a transparent state and are transparent. Light properties are maintained. Further, since the inner surface and the outer surface of the protruding portion can be formed transparently, finishing work such as polishing after forming is not required, which contributes to reduction in the number of steps.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る外部電極蛍光ランプの断面図FIG. 1 is a cross-sectional view of an external electrode fluorescent lamp according to the present invention.

【図2】本発明に係る外部電極蛍光ランプを用いた原稿
読取装置の照明系の構成図
FIG. 2 is a configuration diagram of an illumination system of a document reading apparatus using an external electrode fluorescent lamp according to the present invention.

【図3】本発明の別実施の形態の外部電極蛍光ランプの
断面図
FIG. 3 is a sectional view of an external electrode fluorescent lamp according to another embodiment of the present invention.

【図4】本発明の別実施の形態の外部電極蛍光ランプを
用いた原稿読取装置の照明系の構成図
FIG. 4 is a configuration diagram of an illumination system of a document reading apparatus using an external electrode fluorescent lamp according to another embodiment of the present invention.

【図5】本発明の他の実施の形態の外部電極蛍光ランプ
の断面図
FIG. 5 is a sectional view of an external electrode fluorescent lamp according to another embodiment of the present invention.

【図6】本発明に係るガラス板の加熱成形方法の説明図FIG. 6 is an explanatory view of a method for heat-forming a glass sheet according to the present invention.

【符号の説明】[Explanation of symbols]

1,21,41…外部電極蛍光ランプ、2,22…板ガ
ラス基板、3,23,42,43…成形ガラス基板、
4,24,44…チューブ状部材、5,25,45…光
出射部、6,26,46…蛍光体被膜、7,8,27,
28,47,48…帯状電極、9,29,49…透光性
樹脂フィルム、10,30,50…密閉容器、50…ガ
ラス板、51…凸上型、52…凹下型、53…突出部、
54…凹部。
1,21,41 ... external electrode fluorescent lamp, 2,22 ... plate glass substrate, 3,23,42,43 ... molded glass substrate,
4, 24, 44 ... tubular member, 5, 25, 45 ... light emitting portion, 6, 26, 46 ... phosphor coating, 7, 8, 27,
28, 47, 48: band-shaped electrode, 9, 29, 49: translucent resin film, 10, 30, 50: sealed container, 50: glass plate, 51: convex upper type, 52: concave lower type, 53: projection Department,
54 ... recess.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5C012 EE02 EE08 5C043 AA02 AA04 AA14 BB03 CC09 CC16 CD01 CD13 DD01 EA01 EB15 EC02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5C012 EE02 EE08 5C043 AA02 AA04 AA14 BB03 CC09 CC16 CD01 CD13 DD01 EA01 EB15 EC02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方が成形ガラス基板である
2つのガラス部材を接着して密閉容器を形成し、前記一
方の成形ガラス基板に光出射部を設けたことを特徴とす
る外部電極蛍光ランプ。
1. An external electrode fluorescent lamp comprising two glass members, at least one of which is a molded glass substrate, bonded together to form a sealed container, and said one of the molded glass substrates is provided with a light emitting portion.
【請求項2】 前記光出射部は、その中心の厚みが端部
の厚みより、0.3mm〜0.6mm厚くなるように形
成された請求項1記載の外部電極蛍光ランプ。
2. The external electrode fluorescent lamp according to claim 1, wherein the light emitting portion is formed such that a thickness at a center thereof is 0.3 mm to 0.6 mm thicker than a thickness at an end portion.
【請求項3】 前記2つのガラス部材の接着は、レーザ
による融着とした請求項1又は2記載の外部電極蛍光ラ
ンプ。
3. The external electrode fluorescent lamp according to claim 1, wherein said two glass members are bonded by laser fusion.
【請求項4】 軟化点以上に加熱しながらガラス板を凸
上型と凹下型でプレスする成形方法を用いると共に、前
記凹下型には成形された前記ガラス板の突出部が接触し
ないように凹部を設け、プレス成形後にガラスの粘度を
1万ポイズ〜2万ポイズの範囲に所定時間の間保ち、粘
性流動を利用して前記ガラス板の突出部に異厚部を成形
することを特徴とするガラス板の加熱成形方法。
4. A molding method in which a glass plate is pressed with a convex upper mold and a concave lower mold while being heated to a temperature higher than a softening point, and a projected portion of the formed glass plate is not brought into contact with the concave lower mold. A concave portion is provided, and after the press molding, the viscosity of the glass is maintained in a range of 10,000 poise to 20,000 poise for a predetermined time, and a different thickness portion is formed on the protruding portion of the glass plate using viscous flow. Heat forming method for a glass plate.
JP2000077684A 2000-03-21 2000-03-21 External electrode fluorescent lamp, and hot forming method for glass plate Pending JP2001266800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000077684A JP2001266800A (en) 2000-03-21 2000-03-21 External electrode fluorescent lamp, and hot forming method for glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077684A JP2001266800A (en) 2000-03-21 2000-03-21 External electrode fluorescent lamp, and hot forming method for glass plate

Publications (1)

Publication Number Publication Date
JP2001266800A true JP2001266800A (en) 2001-09-28

Family

ID=18595215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077684A Pending JP2001266800A (en) 2000-03-21 2000-03-21 External electrode fluorescent lamp, and hot forming method for glass plate

Country Status (1)

Country Link
JP (1) JP2001266800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228597A (en) * 2005-02-18 2006-08-31 Sony Corp Process of manufacture of arc tube and arc tube, electronic apparatus
WO2012013521A1 (en) 2010-07-28 2012-02-02 Osram Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor element and associated method of production by direct welding of glass housing components by means of ultra short pulsed laser without glass solder
JP2013172811A (en) * 2012-02-24 2013-09-05 Seiko Epson Corp Method for sealing gas cell and gas cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228597A (en) * 2005-02-18 2006-08-31 Sony Corp Process of manufacture of arc tube and arc tube, electronic apparatus
WO2012013521A1 (en) 2010-07-28 2012-02-02 Osram Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor element and associated method of production by direct welding of glass housing components by means of ultra short pulsed laser without glass solder
DE102010038554A1 (en) 2010-07-28 2012-02-02 Osram Ag Optoelectronic semiconductor component and associated manufacturing method
JP2013172811A (en) * 2012-02-24 2013-09-05 Seiko Epson Corp Method for sealing gas cell and gas cell

Similar Documents

Publication Publication Date Title
US4403243A (en) Semi-conductor laser apparatus with support and soldering means for light-transmitting member
TW200533975A (en) Optical component with holder and manufacturing method thereof
US7252410B2 (en) Projector
KR100691084B1 (en) Illuminating device, projector, and method of assembling illuminating device
TWI262351B (en) Light-source unit and display device of projection type using the light-source unit
WO2004086453A1 (en) Illumination device and projector with the same
WO2004085916A1 (en) Light source device, and projector
JP2001266800A (en) External electrode fluorescent lamp, and hot forming method for glass plate
JP4349366B2 (en) Light source device and projector
CN114200755B (en) Wavelength conversion module, projection apparatus, and method for manufacturing wavelength conversion module
US4425606A (en) Sealed beam lamp unit
JP3498966B2 (en) Light bulb and reflector unit
JP4059270B2 (en) Light source device manufacturing method and projector
JP2008241980A (en) Manufacturing method of lens array, lens array and projector
CN101520155A (en) Method of manufacturing reflective mirror, illumination device, and projector
JP2002049096A (en) Light condensing optical system and projection type display device using the same
US7281968B2 (en) Method of manufacturing auxiliary mirror, method of manufacturing light source lamp, projector, and method of manufacturing hole opening parts
JP2001358909A (en) Light source unit and original reader using the same
JPH0864180A (en) Bulb with reflecting mirror
JPH02239202A (en) Lenticular screen and production thereof
JP2005107410A (en) Planar glass optical element and its manufacturing method
US20240128709A1 (en) Laser device and laser projection apparatus
JP2743983B2 (en) Illumination device and projection type image display device
JP2005107410A5 (en)
JP3873859B2 (en) Reflector for light source device and manufacturing method thereof