JP2001266668A - Superconducting cable - Google Patents

Superconducting cable

Info

Publication number
JP2001266668A
JP2001266668A JP2000254561A JP2000254561A JP2001266668A JP 2001266668 A JP2001266668 A JP 2001266668A JP 2000254561 A JP2000254561 A JP 2000254561A JP 2000254561 A JP2000254561 A JP 2000254561A JP 2001266668 A JP2001266668 A JP 2001266668A
Authority
JP
Japan
Prior art keywords
layer
superconducting
pitch
current
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000254561A
Other languages
Japanese (ja)
Other versions
JP3698623B2 (en
Inventor
Jun Fujigami
純 藤上
Toru Okazaki
徹 岡崎
Takahito Masuda
孝人 増田
Takeshi Kato
武志 加藤
Hiroyasu Yumura
洋康 湯村
Yoshihisa Takahashi
芳久 高橋
Kimiyoshi Matsuo
公義 松尾
Shoichi Honjo
昇一 本庄
Tomoo Mimura
智男 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2000254561A priority Critical patent/JP3698623B2/en
Priority to EP01400094A priority patent/EP1117104A3/en
Priority to US09/758,261 priority patent/US6552260B2/en
Publication of JP2001266668A publication Critical patent/JP2001266668A/en
Application granted granted Critical
Publication of JP3698623B2 publication Critical patent/JP3698623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting cable, particularly a superconducting cable having a core material and a multi-layer superconductive conductor with a reduced alternating current loss through an accurate current distribution analysis. SOLUTION: This superconducting cable comprises a core material, a conductor layer with a supercondcuting wire wound spirally around the core material, an electrically insulated layer, and a magnetic shielding layer around which a superconducting wire is spirally wound. In the superconducting element wire the shortest pitch is disposed on the outermost layer of the conductive layer while the longest pitch is disposed on the outermost layer of the magnetic shielding layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超電導ケーブルに
関するものである。特に、芯材、多層超電導導体および
磁気遮蔽層をもつ超電導ケーブルの電流分布を解析し
て、その交流損失を低減した超電導ケーブルに関するも
のである。
[0001] The present invention relates to a superconducting cable. In particular, the present invention relates to a superconducting cable in which an AC loss is reduced by analyzing a current distribution of a superconducting cable having a core material, a multilayer superconducting conductor, and a magnetic shielding layer.

【0002】[0002]

【従来の技術】芯材上にテープ状の超電導素線を同一ピ
ッチで螺旋巻きして多層に構成した超電導導体構造が知
られている。このような導体では内周の超電導層ほど電
流密度が小さく、外周の超電導層ほど電流密度が大きい
という偏流の問題がある。偏流に伴って交流損失が増大
すると考えられ、交流損失低減が求められている。
2. Description of the Related Art There is known a superconducting conductor structure in which a tape-shaped superconducting element wire is spirally wound around a core material at the same pitch to form a multilayer structure. In such a conductor, there is a problem of drift in that the current density is lower in the inner superconducting layer and higher in the outer superconducting layer. It is considered that the AC loss increases due to the drift, and a reduction in the AC loss is required.

【0003】多層導体の偏流抑制と損失低減に関する基
本技術としては、特公昭29-6685号公報記載の発明が知
られている。これは、各層の螺旋巻きピッチを調整して
各層のインピーダンス調整を行う技術である。その他、
特表平11-506261号公報には超電導素線を巻回した磁気
遮蔽層を持つ超電導ケーブルの構造が開示されている。
The invention described in Japanese Patent Publication No. Sho 29-6685 is known as a basic technique for suppressing the drift and loss of a multilayer conductor. This is a technique of adjusting the spiral winding pitch of each layer to adjust the impedance of each layer. Others
Japanese Unexamined Patent Publication No. Hei 11-506261 discloses a structure of a superconducting cable having a magnetic shielding layer in which a superconducting element wire is wound.

【0004】[0004]

【発明が解決しようとする課題】しかし、超電導導体で
は具体的にどのようにして巻きピッチを調整するかにつ
いての方針が確立していない。これは、超電導導体の電
流−電圧特性が非線形であり、実効抵抗が通電電流によ
って変化するため、これを考慮しないと超電導導体の電
流分布、交流損失が予測できないからである。一方、ど
のようにして実効抵抗を考慮するかについては、具体的
な手法が確立していない。
However, in the superconducting conductor, no specific policy has been established for how to adjust the winding pitch. This is because the current-voltage characteristics of the superconducting conductor are non-linear, and the effective resistance changes with the flowing current. Unless this is taken into consideration, the current distribution and AC loss of the superconducting conductor cannot be predicted. On the other hand, no specific method has been established for how to consider the effective resistance.

【0005】また、芯材と超電導磁気遮蔽層とを考慮し
た超電導導体での電流分布、交流損失の解析手法も確立
していない。これは、高温超電導導体をどのような等価
回路にモデル化すべきかが確立していないためである。
Further, a method of analyzing current distribution and AC loss in a superconducting conductor in consideration of a core material and a superconducting magnetic shielding layer has not been established. This is because it has not been established what kind of equivalent circuit the high-temperature superconductor should be modeled.

【0006】さらに、芯材と磁気遮蔽層を含めた超電導
導体の交流損失特性が実験的に明確にはなっていない。
理論的にも、芯材の抵抗ならびにインピーダンスを同時
に考慮したモデルは報告されていない。その理由の一つ
は、これらを考慮しようとすれば数値計算が非常に複雑
になるためである。
Furthermore, the AC loss characteristics of the superconducting conductor including the core material and the magnetic shielding layer have not been clarified experimentally.
Theoretically, no model has been reported that considers the resistance and impedance of the core material at the same time. One of the reasons is that numerical calculations become very complicated if these are taken into account.

【0007】従って、本発明の主目的は、超電導ケーブ
ル、特に芯材と多層超電導導体とを持つ超電導ケーブル
の電流分布を正確に解析して、交流損失を低減した超電
導ケーブルを提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a superconducting cable in which the current distribution of a superconducting cable, particularly a superconducting cable having a core material and a multilayer superconducting conductor, is accurately analyzed to reduce the AC loss. .

【0008】[0008]

【課題を解決するための手段】本発明は、ケーブルの交
流損失が極小値をとるのは、各層の電流が均一化したと
きではなく、導体層中の素線を流れる電流が均一化した
ときであるとの知見に基づくもので、導体層と磁気遮蔽
層における各超電導素線の巻きピッチを最適化すること
で上記の目的を達成する。
According to the present invention, the reason why the AC loss of the cable takes the minimum value is not when the current in each layer is made uniform, but when the current flowing through the strand in the conductor layer is made uniform. The above object is achieved by optimizing the winding pitch of each superconducting wire in the conductor layer and the magnetic shielding layer.

【0009】すなわち、本発明ケーブルは、芯材と、芯
材上に超電導素線を螺旋状に巻き付けた導体層と、電気
絶縁層と、超電導素線を螺旋状に巻き付けた磁気遮蔽層
とを具える超電導ケーブルである。そして、下記のプロ
セスにより各導体層および各磁気遮へい層中の素線の電
流値を解析し、その解析結果をもとに各導体層と各磁気
遮へい層のピッチを設定したことを特徴とする。
That is, the cable of the present invention comprises a core material, a conductor layer in which a superconducting element wire is spirally wound on the core material, an electrical insulating layer, and a magnetic shielding layer in which the superconducting element wire is spirally wound. It is a superconducting cable equipped. The current values of the wires in each conductor layer and each magnetic shielding layer are analyzed by the following process, and the pitch between each conductor layer and each magnetic shielding layer is set based on the analysis result. .

【0010】 前記芯材、導体層および磁気遮蔽層を
少なくとも誘導リアクタンスで構成される回路にモデル
化するプロセス。 芯材サイズと比抵抗を含む芯材の諸元、臨界電流と
サイズを含む超電導素線の諸元、導体層の螺旋巻きの方
向とピッチ、導体層の厚さと外径、導体層の層数を含む
導体層の諸元、ならびに周波数と通電電流を含む必要な
パラメータを入力するプロセス。 入力したパラメータを用いて回路中のインダクタン
スと実効抵抗を算出するプロセス。 前記モデルに基づいた回路方程式を作成し、各層の
電流分布を算出するプロセス。
A process of modeling the core material, the conductor layer and the magnetic shielding layer into a circuit composed of at least an inductive reactance. Specifications of core material including core size and specific resistance, specifications of superconducting wire including critical current and size, direction and pitch of spiral winding of conductor layer, thickness and outer diameter of conductor layer, number of conductor layers The process of entering the specifications of the conductor layer, including, as well as the required parameters, including frequency and current carrying. The process of calculating inductance and effective resistance in a circuit using input parameters. A process of creating a circuit equation based on the model and calculating a current distribution of each layer.

【0011】ここで、上記のプロセスにより解析した解
析電流の絶対値が、設定値である通電電流Iallを導体層
に使用した素線の数nで除した値Iall/nに対して誤差30
%の範囲に入るように磁気遮蔽層を含む各超電導素線の
ピッチを設定することが好ましい。より好ましい解析電
流の絶対値の範囲は、Iall/nに対して±20%、さらに好
ましくは±5%である。ただし、各層の素線本数がほぼ
同数である場合、例としては、導体の層数が少ない場合
には、各層の電流を均一化することで交流損失の極小値
が実現できる。そして、各層の臨界電流が磁場や螺旋巻
きによる曲げ歪の影響などによって異なった場合にも、
素線の臨界電流を各層毎に定義することで上記のプロセ
スによる解析が可能である。
Here, the absolute value of the analysis current analyzed by the above process is different from the value I all / n obtained by dividing the set value of the conduction current I all by the number n of the wires used for the conductor layer. 30
%, The pitch of each superconducting element including the magnetic shielding layer is preferably set. A more preferable range of the absolute value of the analysis current is ± 20%, more preferably ± 5%, with respect to I all / n. However, when the number of strands in each layer is substantially the same, for example, when the number of conductor layers is small, the minimum value of AC loss can be realized by equalizing the current in each layer. And even if the critical current of each layer is different due to the influence of the magnetic field and the bending strain due to the spiral winding,
By defining the critical current of the strand for each layer, the analysis by the above process is possible.

【0012】導体層および磁気遮蔽層の層数は1層でも
多層でも構わない。後述する「モデル化」に対応させる
必要上、導体層および磁気遮蔽層中にある超電導素線の
各層同士は電気的に絶縁されていることが好ましい。超
電導体の各層のインピーダンス調節を考える場合、層間
の乗り移り抵抗等の影響を完全に除外した層間絶縁導体
の方が、層間絶縁のない導体よりもモデル化が容易であ
る。また、この構造は導体中の渦電流損失低減に対して
も効果がある。
The number of conductor layers and magnetic shielding layers may be one or multiple. It is preferable that the layers of the superconducting element wires in the conductor layer and the magnetic shielding layer are electrically insulated from each other in order to correspond to “modeling” described later. When considering the impedance adjustment of each layer of the superconductor, modeling is easier with an interlayer insulated conductor completely excluding the effects of transfer resistance between layers than a conductor without interlayer insulation. This structure is also effective in reducing eddy current loss in the conductor.

【0013】モデル化するプロセスとしては、芯材、導
体層および磁気遮蔽層を誘導リアクタンスのみで構成さ
れる回路にモデル化しても構わないが、抵抗と誘導リア
クタンスとで構成される回路にモデル化することが好ま
しい。従来、抵抗を考慮して電流分布の解析を行うこと
は極めて煩雑で難しいと考えられていた。本発明におけ
る「モデル化の仕方」および後述する「モデル化した回
路中の誘導リアクタンスと実効抵抗を算出する手法」を
用いることで、抵抗を考慮して正確な電流分布を解析す
ることができ、さらに解析結果を元に交流損失特性を解
析することができる。
As a modeling process, the core material, the conductor layer, and the magnetic shielding layer may be modeled as a circuit composed only of inductive reactance, but may be modeled as a circuit composed of resistance and inductive reactance. Is preferred. Conventionally, it has been considered that analyzing the current distribution in consideration of the resistance is extremely complicated and difficult. By using the "method of modeling" in the present invention and the "method of calculating inductive reactance and effective resistance in a modeled circuit" described later, it is possible to analyze an accurate current distribution in consideration of resistance, Further, the AC loss characteristics can be analyzed based on the analysis results.

【0014】モデル化するプロセスをより具体的に説明
する。まず、芯材ならびに導体層を誘導リアクタンスと
抵抗とが直列に配置された集中定数回路とみなす。ま
た、磁気遮蔽層を端末部の接続抵抗を介してつながった
閉回路ループとみなす。そして、導体層とそれにとりつ
けた電源が形成する回路を1次回路、磁気遮蔽層とその
端末部の接続抵抗とで形成する回路を2次回路とした相
互誘導回路とみなすことが好ましい。
The modeling process will be described more specifically. First, the core material and the conductor layer are regarded as a lumped constant circuit in which inductive reactance and resistance are arranged in series. Also, the magnetic shielding layer is regarded as a closed circuit loop connected via a connection resistance of the terminal. It is preferable that a circuit formed by the conductor layer and the power supply attached thereto is regarded as a primary circuit, and a circuit formed by the magnetic shield layer and the connection resistance of the terminal portion is regarded as a secondary circuit as a secondary circuit.

【0015】モデル化した等価回路を元に電流分布を求
めるには、インダクタンスおよび実効抵抗の算出を行う
ために、モデル化した等価回路に対して必要なパラメー
タを設定する必要がある。
To obtain a current distribution based on a modeled equivalent circuit, it is necessary to set necessary parameters for the modeled equivalent circuit in order to calculate inductance and effective resistance.

【0016】パラメータとしては、線材諸元(幅、厚
さ、Ic)、芯材諸元(比抵抗、外径、厚さ)、導体層・
磁気遮蔽層諸元(各層の巻き線方向、ピッチ、各層の外
径、各層の厚さ、各層でのIc維持率)、通電条件(通電
電流、周波数)が挙げられる。
The parameters include wire material specifications (width, thickness, Ic), core material specifications (specific resistance, outer diameter, thickness), conductor layer
Specifications of the magnetic shielding layer (winding direction and pitch of each layer, outer diameter of each layer, thickness of each layer, Ic retention rate in each layer), and energizing conditions (current and frequency).

【0017】また、実効抵抗の算出に際して、前記集中
定数回路中の抵抗は、導体層を流れる電流によって変化
することとして扱うことが好適である。高温超電導導体
の特徴の一つに、超電導状態から常伝導状態への転位が
緩やかということがある。直流通電特性を例にとると、
高温超電導導体の電流−電圧曲線はV〜I(n〜10)の
様になり、理想的な超電導体のようにI=Icでステップ状
(不連続的)に有限の電圧が発生するわけではない。
In calculating the effective resistance, it is preferable that the resistance in the lumped constant circuit is treated as being changed by a current flowing through the conductor layer. One of the features of the high-temperature superconducting conductor is that the dislocation from the superconducting state to the normal conducting state is moderate. Taking DC conduction characteristics as an example,
The current-voltage curve of a high-temperature superconducting conductor looks like V to In ( n to 10), and a step-like (discontinuous) finite voltage is generated at I = Ic like an ideal superconductor. is not.

【0018】このような、非線形の電流−電圧特性を持
つ高温超電導ケーブルを常伝導導体のような電流に依存
しない抵抗を持つとして取り扱うことや、理想的な超電
導素線のようにIc以下で抵抗がゼロとして取り扱うこと
は、モデルと実際のケーブルとの間に誤差を生じさせる
元となる。
Such a high-temperature superconducting cable having a non-linear current-voltage characteristic can be treated as having a current-independent resistance, such as a normal conductor. Is a source of error between the model and the actual cable.

【0019】そこで、電流によって変化する抵抗を考え
ることで、より厳密に超電導ケーブルの交流損失を取り
扱えるようになる。
Therefore, by considering the resistance that changes with the current, the AC loss of the superconducting cable can be handled more strictly.

【0020】さらに、高温超電導ケーブルの最も重要な
特徴の一つは、臨界電流(Ic)を越える電流を流したと
き、従来の金属系超電導素線の様なクエンチ現象を生じ
ることなく、安定にIcを越える通電ができることであ
る。また、同じ容量のピッチ調整導体とピッチ無調整導
体の交流損失を比較すると、両者に最も差が生じるのは
導体Ic近傍であることが理論的に予測できる。
Further, one of the most important characteristics of the high-temperature superconducting cable is that when a current exceeding the critical current (Ic) is applied, the quench phenomenon unlike the conventional metal-based superconducting wire does not occur, and the cable is stable. It is possible to conduct electricity exceeding Ic. Further, comparing the AC loss of the pitch adjusting conductor and the AC loss of the pitch non-adjusting conductor having the same capacity, it can be theoretically predicted that the most difference between the two occurs near the conductor Ic.

【0021】このように高温超電導ケーブル解析のため
には、導体のIc以上ならびにIc近傍の交流損失特性予測
も重要となる。これらの効果は、モデル化したときの集
中定数回路中の抵抗が電流によって変化すると考えるこ
とで、はじめてモデルの中に取り入れることができる。
As described above, for the analysis of the high-temperature superconducting cable, it is also important to predict the AC loss characteristics above the conductor Ic and near the conductor Ic. These effects can be incorporated into the model for the first time by considering that the resistance in the lumped constant circuit at the time of modeling changes with the current.

【0022】より具体的には、超電導素線の実効抵抗R
effを、各層の交流損失量Wlayerと通電電流Iを用い
て、Reff=Wlayer/Iとし、Reffを前記集中定数回路
中の抵抗とみなせばよい。そして、この損失量Wlayer
を超電導素線の交流電流−損失特性をもとに計算するこ
とが好適である。例えば、交流損失量Wlayerはノリス
の式から求めれば良い。そして、I>Icにおける交流損
失量Wlayerを求める式がI<Icにおける交流損失量W
layerを求める式と連続するようにすればよい。
More specifically, the effective resistance R of the superconducting wire is
eff is set to R eff = W layer / I 2 using the AC loss amount W layer and the conduction current I of each layer, and R eff may be regarded as the resistance in the lumped constant circuit. And this loss amount W layer
Is preferably calculated based on the alternating current-loss characteristic of the superconducting element wire. For example, the AC loss amount W layer may be obtained from the Norris equation. Then, the equation for calculating the AC loss W layer when I> Ic is represented by the AC loss W when I <Ic.
What is necessary is just to make it continuous with the formula which calculates | requires a layer .

【0023】続いて、モデルに対応した回路方程式を作
成し、各層の電流分布を算出する。その際、パラメータ
を入力するプロセスにおいて、各層の電流値として適宜
な初期値を与え、この初期値をもとに各層の電流分布を
演算する。
Subsequently, a circuit equation corresponding to the model is created, and the current distribution of each layer is calculated. At that time, in the process of inputting parameters, an appropriate initial value is given as a current value of each layer, and a current distribution of each layer is calculated based on the initial value.

【0024】次に、演算により得られた電流値を用いて
再度パラメータの入力プロセスから電流分布の算出プ
ロセスまでを繰り返す。そして、この繰り返しを、演
算の前後における各層の電流値の差が所望の範囲に収束
するまで実行すればよい。
Next, the process from the parameter input process to the current distribution calculation process is repeated using the current value obtained by the calculation. This repetition may be performed until the difference between the current values of the respective layers before and after the calculation converges to a desired range.

【0025】演算結果を収束させるための所定の範囲と
は、10%以下、より好ましくは5%以下、さらに好まし
くは1%以下である。演算の前後における各層の電流値
の差が10%を超えると解析結果の正確性が低下する。ま
た、演算の前後における電流値の差を1%程度の差に収
束できれば、それ以上の演算を繰り返しても時間がかか
るだけであり、解析結果の精度向上にほどんど寄与しな
いからである。各層の電流分布が求められれば、各層の
電流から素線1本あたりに流れる電流を容易に推定でき
る。
The predetermined range for converging the operation result is 10% or less, more preferably 5% or less, and further preferably 1% or less. If the difference between the current values of each layer before and after the calculation exceeds 10%, the accuracy of the analysis result decreases. Further, if the difference between the current values before and after the calculation can be converged to a difference of about 1%, even if the calculation is further repeated, it takes a long time, and does not substantially contribute to the improvement of the accuracy of the analysis result. If the current distribution of each layer is obtained, the current flowing per strand can be easily estimated from the current of each layer.

【0026】そして、算出された電流分布から磁場分布
を求めて、さらに交流損失量を算出するプロセスを具え
ることが好適である。
It is preferable to provide a process for obtaining a magnetic field distribution from the calculated current distribution and further calculating an AC loss amount.

【0027】以上のプロセスに基づいて見出された交流
損失が小さくなる超電導ケーブルの具体的構造として
は、芯材と、芯材上に超電導素線を螺旋状に巻き付けた
導体層と、電気絶縁層と、超電導素線を螺旋状に巻き付
けた磁気遮蔽層とを具える超電導ケーブルであって、超
電導素線の中で、最短のピッチを導体層の最外層に配置
し、最長のピッチを磁気遮蔽層の最外層に配置すること
が挙げられる。
As a specific structure of the superconducting cable which has been found based on the above process and in which the AC loss is reduced, a core material, a conductor layer in which a superconducting element wire is spirally wound on the core material, an electric insulating material, A superconducting cable comprising a layer and a magnetic shielding layer in which a superconducting element wire is spirally wound, wherein the shortest pitch in the superconducting element wire is arranged on the outermost layer of the conductor layer, and the longest pitch is determined by magnetic force. It may be arranged on the outermost layer of the shielding layer.

【0028】さらに、導体層における超電導素線の最短
ピッチが次式を満たすことが好適である。この条件を満
たすことで、超電導素線の曲げ歪による劣化が抑制で
き、かつ臨界電流が大きく、その上、交流損失が小さい
超電導ケーブルを構成できる。
Furthermore, it is preferable that the shortest pitch of the superconducting wires in the conductor layer satisfies the following expression. By satisfying this condition, deterioration of the superconducting wire due to bending strain can be suppressed, and a superconducting cable having a large critical current and a small AC loss can be configured.

【0029】[0029]

【数2】 (Equation 2)

【0030】そして、磁気遮蔽層における超電導素線の
最長ピッチが次式を満たすことも望ましい。この条件を
満たすことで、超電導素線の引っ張りによる劣化が抑制
でき、かつ臨界電流が大きく、その上、交流損失が小さ
い超電導ケーブルを構成できる。 超電導素線の破断荷重>摩擦力(kg/m)×半ピッチ分の
超電導素線の長さ(m)+巻き線張力(kg)
It is also desirable that the longest pitch of the superconducting wires in the magnetic shielding layer satisfies the following expression. By satisfying this condition, deterioration of the superconducting element wire due to tension can be suppressed, and a superconducting cable having a large critical current and a small AC loss can be configured. Breaking load of superconducting wire> frictional force (kg / m) x length of superconducting wire for half pitch (m) + winding tension (kg)

【0031】さらに、前記からのプロセスにより各
層の周方向磁場成分および軸方向磁場成分を解析して、
この解析した磁場成分のうち、周方向磁場成分が内層か
ら外層に向かって極大値を1つだけ持つ分布で、軸方向
磁場成分が内層から外層に向かって単調減少分布になる
ように、磁気遮へい層を含む超電導素線のピッチを設定
することが好ましい。この構成により、Iall/nのばらつ
きが5%以内におさまらない場合でも、交流損失が小さな
ピッチに設定した導体を得ることができる。
Further, the circumferential magnetic field component and the axial magnetic field component of each layer are analyzed by the above process,
Among the analyzed magnetic field components, the magnetic shielding is such that the circumferential magnetic field component has only one maximum value from the inner layer to the outer layer, and the axial magnetic field component has a monotonically decreasing distribution from the inner layer to the outer layer. It is preferable to set the pitch of the superconducting wires including the layer. With this configuration, even when the variation of Iall / n is not within 5%, it is possible to obtain a conductor in which the AC loss is set to a small pitch.

【0032】[0032]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 <試験例1>本発明超電導ケーブルの構造を説明する前
に、超電導ケーブルの交流損失を正確に解析できる方法
について説明する。本発明ケーブルは、この解析方法の
解析結果に基づいて構成される。
Embodiments of the present invention will be described below. <Test Example 1> Before describing the structure of the superconducting cable of the present invention, a method for accurately analyzing the AC loss of the superconducting cable will be described. The cable of the present invention is configured based on the analysis result of this analysis method.

【0033】ここでは、芯材、芯材の外周に超電導素線
を多層に巻回した導体層、導体層の外周に形成した絶縁
層、絶縁層の外周に超電導素線を多層に巻回した磁気遮
蔽層とを具える3相超電導ケーブルについて交流損失を
求める。交流損失を求める手順は、超電導ケーブルを等
価回路にモデル化し、インダクタンスの導出・実効抵抗
の導出を行い、モデルに対応した回路方程式を作成し、
電流分布の算出を行う。そして、電流分布から磁場分布
を求め、交流損失を演算する。
Here, a core material, a conductor layer in which superconducting wires are wound in multiple layers around the core material, an insulating layer formed in the outer periphery of the conductor layers, and a superconducting wire wound in multiple layers around the insulating layer. AC loss is determined for a three-phase superconducting cable having a magnetic shielding layer. The procedure for finding the AC loss is to model the superconducting cable into an equivalent circuit, derive the inductance and the effective resistance, create a circuit equation corresponding to the model,
The current distribution is calculated. Then, the magnetic field distribution is obtained from the current distribution, and the AC loss is calculated.

【0034】(モデル化)3相ケーブルのうちの1相分
に着目して、芯材、導体層(コア)および磁気遮蔽層
(シールド)と端末を含む超電導ケーブルを図1のよう
な等価回路とみなした。すなわち、芯材ならびに導体層
を誘導リアクタンスと抵抗とが直列に配置された集中定
数回路とみなしている。導体層には外部電源よりIall
供給され、各導体層間には絶縁が施されているとした。
(Modeling) Focusing on one phase of the three-phase cable, a superconducting cable including a core material, a conductor layer (core), a magnetic shielding layer (shield), and a terminal and an equivalent circuit as shown in FIG. Was considered. That is, the core material and the conductor layer are regarded as a lumped constant circuit in which inductive reactance and resistance are arranged in series. It is assumed that Iall is supplied from an external power supply to the conductor layers, and insulation is provided between the conductor layers.

【0035】また、磁気遮蔽層は超電導素線が端部にて
接続抵抗rで接続され、図1のようなループを形成す
るものとした。図中のi0、i1…は各層に流れる電流、
co、Lc1…は各層の周方向磁場によるインダクタン
ス、Lao、Lal…は各層の軸方向磁場によるインダクタン
ス、r0、r1…は各層の実効抵抗、rjは端末のインダ
クタンスならびに抵抗、Vc、V1はそれぞれ導体層側、磁
気遮蔽層側の電圧である。添え字の0は芯材を表し、導
体層または磁気遮蔽層は内層より1、2、3…のように表
記した。このモデルでは、導体層4層、磁気遮蔽層2層
として検討している。
Further, the magnetic shielding layer has a superconducting element wire connected at an end thereof with a connection resistance r j to form a loop as shown in FIG. In the figure, i 0 , i 1 ...
L co, L c1 ... is the inductance due to the circumferential direction magnetic field of each layer, L ao, L al ... an inductance due to the axial magnetic field of the respective layers, r 0, r 1 ... the effective resistance of each layer, r j is the inductance and resistance of the terminal , V c , and V 1 are voltages on the conductor layer side and the magnetic shielding layer side, respectively. The suffix 0 represents the core material, and the conductor layer or the magnetic shielding layer is represented as 1, 2, 3,... From the inner layer. This model considers four conductor layers and two magnetic shielding layers.

【0036】(インダクタンス導出)各超電導層(導体
層および磁気遮蔽層)のインダクタンスについては、層
間の相互インダクタンスも考慮して、周方向成分を数式
1と定義し、軸方向成分を数式2と定義した。
(Derivation of Inductance) Regarding the inductance of each superconducting layer (conductor layer and magnetic shielding layer), the circumferential component is calculated by taking into account the mutual inductance between the layers.
It was defined as 1 and the axial component was defined as Equation 2.

【0037】[0037]

【数3】 (Equation 3)

【0038】[0038]

【数4】 ここで、式中のanはn層目の半径Pnはn層目のピッチ
である。kはn層が、Z撚りのとき1、S撚りのとき2とす
る。
(Equation 4) Here, a n in the expression is the radius P n of the n-th layer and the pitch of the n-th layer. k is 1 when the n layer is Z-twisted, and 2 when the S layer is S-twisted.

【0039】(抵抗成分導出)各層の抵抗成分は、導体
層を構成する素線のACロス理論値Wnorris(ノリスの
式)から導くこととした。このとき、素線一本あたりの
実効抵抗rwireは、素線に流れる電流Iwireを用いて数
式3のように定義する。
(Derivation of Resistance Component) The resistance component of each layer is derived from the theoretical AC loss value W norris (Norris equation) of the strands constituting the conductor layer. At this time, the effective resistance r wire per one wire is defined as Expression 3 using the current I wire flowing through the wire .

【0040】[0040]

【数5】 (Equation 5)

【0041】ここで、素線の損失Wnorrisは、z=Iwire/
Icとすればz<1(臨界電流値未満)のとき、ノリスの
式より数式4のようになる。
Here, the wire loss W norris is z = I wire /
Assuming Ic, when z <1 (less than the critical current value), Equation 4 is obtained from Norris' equation.

【0042】[0042]

【数6】 (Equation 6)

【0043】そして、z>1のとき、フラックススロー
損失は数式5のようになる。
Then, when z> 1, the flux throw loss is as shown in Expression 5.

【0044】[0044]

【数7】 (Equation 7)

【0045】ここで、nは、電圧が電流Iのn乗に比例
するとした場合のIc近傍でのn値であり、数式5はz=
1で数式4と連続するようにしている。これら数式4、
5は実験結果と良く一致する。
Here, n is the value of n near Ic when the voltage is proportional to the current n raised to the nth power.
1 is set to be continuous with Equation 4. Equation 4
5 agrees well with the experimental results.

【0046】なお、ジョイント抵抗については、試験で
求めた端末の抵抗値(3×10-6Ω/ケーブル長)を採用し
た。
For the joint resistance, the terminal resistance value (3 × 10 −6 Ω / cable length) determined in the test was adopted.

【0047】(回路方程式)このモデルでは、回路方程
式は下式のようになる。
(Circuit Equation) In this model, the circuit equation is as follows.

【0048】[0048]

【数8】 (Equation 8)

【0049】上式で、初期条件として各層のピッチ、
Lc、La、r1、Iallを与えれば、i0〜i6、Vc、Vsに関す
る9元連立方程式となり、計算によって各層の電流分布
を求めることができる。
In the above equation, the pitch of each layer as an initial condition,
L c, L a, be given the r 1, I all, i 0 ~i 6, V c, by 9-way simultaneous equations relating V s, it is possible to obtain a current distribution of each layer by computation.

【0050】(電流分布の算出)計算は、まず全通電電
流(Iall)に対して初期電流分布(各層の電流値)を適
当に与え、そのときの各超電導層の抵抗値を先述の抵抗
成分導出プロセスにしたがって求める。すると数式6の
回路方程式中のiiとVc、Vsを除く全数値が既知の値とな
るために、数式6を解いてio〜i6、Vc、Vsを求めること
ができる。この電流値をもとに再度各超電導層の抵抗値
を求めた後、数式6からio〜i6を求める。この作業を、
演算前後の計算結果の差が一定値以下となるまで繰り返
す。今回は前後の計算結果の差が1%以下となったとき
に、計算が終了したとみなした。
(Calculation of current distribution) In the calculation, first, an initial current distribution (current value of each layer) is appropriately given to the entire energized current (I all ), and the resistance value of each superconducting layer at that time is determined by the aforementioned resistance. Determined according to the component derivation process. Then, since all the numerical values except i i , V c , and V s in the circuit equation of Expression 6 become known values, it is possible to obtain i o to i 6 , V c , and V s by solving Expression 6. . After the resistance value of each superconducting layer is obtained again based on this current value, i o to i 6 are obtained from Expression 6. This work,
The process is repeated until the difference between the calculation results before and after the calculation becomes equal to or smaller than a certain value. In this case, when the difference between the calculation results before and after becomes 1% or less, the calculation is considered to be completed.

【0051】数式6の回路方程式を解けば電流分布が求
まるはずであるが、実際は回路中の抵抗成分が電流によ
って変化する効果を取り入れる必要があるので、答えを
解析的に見出すことはできない。「演算前後の計算結果
の差が一定値以下となるまで繰り返す」という手法を取
り入れることによって、はじめて任意の巻きピッチ条件
の超電導ケーブルの電流分布を計算によって推測できる
ようになった。以上のプロセスを経た時点で電流分布が
求められるため、その結果を元にして以下のプロセスに
より交流損失量を求める。
The current distribution should be obtained by solving the circuit equation of the equation (6). However, since it is necessary to incorporate the effect that the resistance component in the circuit changes with the current, the answer cannot be found analytically. By adopting the technique of "repeating until the difference between the calculation results before and after the calculation becomes equal to or less than a certain value", the current distribution of the superconducting cable under an arbitrary winding pitch condition can be estimated by calculation for the first time. Since the current distribution is obtained at the time of passing through the above process, the AC loss is obtained by the following process based on the result.

【0052】(磁場の計算)このモデルでは、導体層は
複数の超電導素線が螺旋状に巻かれた構造であり、通電
時の磁場は、図2に示すように、周方向磁場成分と導体
軸方向磁場成分に分けて考えることができる。
(Calculation of Magnetic Field) In this model, the conductor layer has a structure in which a plurality of superconducting wires are spirally wound. As shown in FIG. It can be considered separately for the axial magnetic field component.

【0053】このときのn層目に加わる周方向磁界成分H
cn(単位はA/m)は数式7で表される。
At this time, the circumferential magnetic field component H applied to the n-th layer
cn (unit: A / m) is represented by Expression 7.

【0054】[0054]

【数9】 (Equation 9)

【0055】また、n層目に加わる軸方向磁界成分H
an(単位はA/m)は数式8で表される。
The axial magnetic field component H applied to the n-th layer
an (the unit is A / m) is represented by Expression 8.

【0056】[0056]

【数10】 (Equation 10)

【0057】(交流損失の計算)導体の交流損失は、導
体を図3に示すような隣接したn個の無限平面にモデル
化して計算した。このようなモデル化は、例えば「H.IS
HII(ISS’97プロシーディングス)」等から報告があ
り、円筒導体の磁界分布を表すモデルとしては簡便であ
る。
(Calculation of AC Loss) The AC loss of the conductor was calculated by modeling the conductor into n adjacent infinite planes as shown in FIG. Such modeling is, for example, "H.IS
HII (ISS'97 Proceedings) "etc., and it is a simple model to represent the magnetic field distribution of a cylindrical conductor.

【0058】導体の磁化損失は、各層の磁化損失の総和
とする。各層の磁化損失は、ビーンモデルを前提にした
超電導平板の磁化損失の公式(数式9、数式10)を利用
して表すことができる。
The magnetization loss of the conductor is the sum of the magnetization losses of the respective layers. The magnetization loss of each layer can be expressed by using the formula (Formula 9 and Formula 10) of the magnetization loss of the superconducting flat plate based on the Bean model.

【0059】[0059]

【数11】 [Equation 11]

【0060】[0060]

【数12】 (Equation 12)

【0061】ここで、数式9は磁場が平板全域に侵入し
ていない場合、数式10は磁場が平板の全域に侵入してい
る場合であり、磁場は平板の両側から均等に侵入するこ
とを前提としている。また、fは周波数(Hz)、Hmは外
部磁界のピーク値(A/m)、J cは超電導体の臨界電流密
度(A/m2)、tは平板の厚さ(m)である。
Here, Equation 9 indicates that the magnetic field penetrates the entire flat plate.
If not, Equation 10 indicates that the magnetic field has penetrated the entire plate.
The magnetic field penetrates evenly from both sides of the plate.
It is assumed that F is frequency (Hz), Hm is outside
Partial magnetic field peak value (A / m), J cIs the critical current density of the superconductor
Degree (A / mTwo) And t are the thickness (m) of the flat plate.

【0062】数式9、数式10を利用すると、導体中の第
n層の磁化損失Wnは超電導平板と同様に、磁界が層全
体に侵入していない場合、磁界が層全体に侵入した場
合で異なり、の場合には、数式11となり、の場合に
は数式12となる。
Using equations (9) and (10), the first
As in the case of the superconducting flat plate, the magnetization loss Wn of the n- layer is different depending on whether the magnetic field does not penetrate the entire layer, or when the magnetic field penetrates the entire layer. It becomes 12.

【0063】[0063]

【数13】 (Equation 13)

【0064】[0064]

【数14】 [Equation 14]

【0065】ここで、Hopnはn層以外に流れる電流がn層
部に作る磁場(n層部にとっての外部磁場)の大きさ、I
opnはn層を流れる電流が作る磁場(n層部にとっての自
己磁場)の大きさであり、前節で示したn層の周方向磁
界成分Hcnと軸方向磁界成分Ha nを用いて、Hopnは数式13
で表される。
Here, Hopn is the magnitude of the magnetic field (external magnetic field for the n-layer part) created in the n-layer part by the current flowing in the layers other than the n-layer,
opn is the magnitude of (the self-magnetic field for the n layer portion) magnetic field generated current flowing through the n-layer, using the circumferential magnetic field component H cn the axial field component H a n of n layer described in the previous section, Hopn is given by Equation 13
It is represented by

【0066】[0066]

【数15】 (Equation 15)

【0067】また、n層に流れる電流inを用いて、Iopn
は数式14と表される。
[0067] Further, using a current i n flowing through the n-layer, I opn
Is represented by Expression 14.

【0068】[0068]

【数16】 (Equation 16)

【0069】これらの単位はいずれもA/mである。ま
た、Rnはn層の半径、Jeはn層部のオーバーオールJc、t
anは外側から見たn層部の磁界侵入深さ、tbnは内側から
見たn層部の磁界侵入深さである。さらに、Wnの単位はW
/m、HopnとIopnの単位はどちらもA/mである。
Each of these units is A / m. R n is the radius of the n-layer, and J e is the overall J c , t of the n-layer.
an is the magnetic field penetration depth of the n-layer part viewed from the outside, and t bn is the magnetic field penetration depth of the n-layer part viewed from the inside. Further, the unit of W n is W
The unit of / m, Hopn and Iopn is A / m.

【0070】芯材の渦電流損失Wf,eは以下の数式15で計
算した。
The eddy current loss W f, e of the core material was calculated by the following equation (15).

【0071】[0071]

【数17】 [Equation 17]

【0072】数式15は、例えば「Case Studies in S
uperconducting Magnets」(PLENUM PUBLISHING C
o.)のP41に記載されており、ρは芯材の比抵抗(@77
K)、Rfは芯材の外半径、dは芯材の肉厚、Haoは芯材の
軸方向磁場である。
Equation 15 is, for example, “Case Studies in S
uperconducting Magnets "(PLENUM PUBLISHING C
o.) on page 41, where ρ is the specific resistance of the core material (@ 77
K) and Rf are the outer radius of the core, d is the thickness of the core, and Hao is the axial magnetic field of the core.

【0073】以上のような考えにしたがって、導体の磁
場分布と交流損失量を算出してシステムを解析するシミ
ュレーションコードを作成して、コンピューター内に組
み込み、解析装置とした。
In accordance with the above-described concept, a simulation code for analyzing the system by calculating the magnetic field distribution of the conductor and the amount of AC loss was prepared and incorporated into a computer to provide an analyzer.

【0074】本コードでの計算の流れを図4に示す。計
算手順は、次の各ステップ〜に示す通りである。
「電流分布計算」のステップから「各層のピッチを設
定」のステップに戻るのは、演算前後の計算結果の差が
一定値以下となるまで繰り返すことを示している。
FIG. 4 shows the flow of calculation using this code. The calculation procedure is as shown in each of the following steps.
Returning from the step of “current distribution calculation” to the step of “setting the pitch of each layer” indicates that the process is repeated until the difference between the calculation results before and after the calculation becomes equal to or smaller than a certain value.

【0075】基本パラメータ設定:パラメータは、線
材諸元(幅、厚さ、Ic)、芯材諸元(比抵抗、外径、厚
さ)、導体諸元(各層の巻き線方向、各層の外径、各層
の厚さ、各層でのIc維持率)、通電条件(通電電流、周
波数)とする。 各層のピッチ入力 各層のインダクタンス計算および実効抵抗の計算 連立方程式の作成と、各層の電流値の計算 計算した電流分布での磁場分布と導体交流損失計算
Basic parameter setting: Parameters include wire material specifications (width, thickness, Ic), core material specifications (specific resistance, outer diameter, thickness), conductor specifications (winding direction of each layer, outer layer of each layer) Diameter, thickness of each layer, Ic retention rate in each layer), and energization conditions (energization current, frequency). Pitch input of each layer Calculation of inductance and effective resistance of each layer Creation of simultaneous equations and calculation of current value of each layer Calculation of magnetic field distribution and conductor AC loss in the calculated current distribution

【0076】<試験例2>前記解析装置を用いて磁気遮
蔽層付きのピッチ調整導体を設計・試作し、交流損失測
定結果と本シミュレーションで求めた損失を比較した。
導体の諸元を以下に示す。導体層と遮蔽層のピッチは各
超電導層の電流がほぼ均一化するピッチを設定した。
<Test Example 2> A pitch-adjusting conductor with a magnetic shielding layer was designed and trial-produced using the above-described analyzer, and the AC loss measurement result was compared with the loss obtained in this simulation.
The specifications of the conductor are shown below. The pitch between the conductor layer and the shielding layer was set such that the current in each superconducting layer became substantially uniform.

【0077】芯材 材質:銅 外径:φ19.2mm 肉厚:0.9mm 比抵抗(@77K):3×10-9Ωm 導体層 素線:Bi2223系Ag-Mn合金被覆高温超電導テープ線(厚
さ0.24mm) 層数:4層(層間絶縁あり) 巻き方向:S/S/S/S 巻きピッチ:1層目360mm/2層目200mm/3層目110mm/4層
目70mm 絶縁層 材質:紙 厚さ:7mm 磁気遮蔽層 素線:Bi2223系Ag-Mn合金被覆高温超電導テープ線(厚
さ0.24mm) 層数:2層 巻き方向:S/S 巻きピッチ:1層目180mm/2層目360mm
Core material: Copper Outer diameter: φ19.2mm Wall thickness: 0.9mm Specific resistance (@ 77K): 3 × 10 -9 Ωm Conductive layer Element wire: Bi2223-based Ag-Mn alloy coated high-temperature superconducting tape wire (thick Number of layers: 4 layers (with interlayer insulation) Winding direction: S / S / S / S Winding pitch: 1st layer 360mm / 2nd layer 200mm / 3rd layer 110mm / 4th layer 70mm Insulating layer Material: Paper Thickness: 7mm Magnetic shielding layer Element wire: Bi2223-based Ag-Mn alloy coated high-temperature superconducting tape wire (thickness 0.24mm) Number of layers: 2 Winding direction: S / S Winding pitch: 1st 180mm / 2nd 360mm

【0078】直流通電試験の結果、導体Icは2000A(1μ
V/m定義)であった。導体層の交流損失について、実験
値と計算値を比較した。結果を図5に示す。実験は磁気
遮蔽層での遮蔽効果を模擬して、導体層と磁気遮蔽層を
直列につないで交流電流を通電し、電圧は導体層の電圧
を計測した。周波数は50Hz、温度は77K、測定は半田付
けした電圧端子での交流4端子法で行った。このとき計
測する抵抗性電圧(通電電流と同相の電圧)から導体層
の交流損失を見積もることができる。図5に示すよう
に、実験値と計算値は非常に良く一致していることを確
認した。
As a result of the direct current test, the conductor Ic was 2000 A (1 μm).
V / m definition). The experimental value and the calculated value were compared for the AC loss of the conductor layer. FIG. 5 shows the results. The experiment simulated the shielding effect of the magnetic shielding layer, connected the conductor layer and the magnetic shielding layer in series, applied an alternating current, and measured the voltage of the conductor layer. The frequency was 50 Hz, the temperature was 77 K, and the measurement was performed by an AC four-terminal method using soldered voltage terminals. At this time, the AC loss of the conductor layer can be estimated from the measured resistive voltage (voltage in phase with the flowing current). As shown in FIG. 5, it was confirmed that the experimental value and the calculated value agreed very well.

【0079】図5中の波線はmono-block model(電流
が偏流して流れる場合に適用可能なモデル)から求めた
導体の交流損失理論値であるが、実験値は波線から大き
くはずれている。さらに、解析コードで各層の電流が均
一化するピッチを設定した導体では、実際に偏流が抑制
されていることも確認できた。
The dashed line in FIG. 5 is the theoretical value of the AC loss of the conductor obtained from the mono-block model (a model applicable to the case where the current flows in a non-uniform manner), but the experimental value deviates greatly from the dashed line. Furthermore, it was confirmed that drift was actually suppressed in the conductor in which the pitch at which the current of each layer was made uniform by the analysis code was actually set.

【0080】この導体について、シミュレーションコー
ドで求まった各層の電流を各層毎の素線数で除して素線
1本あたりに流れる電流を推定した。そして、素線に流
れる電流が完全に一様化された場合(Iall/n)と比較す
ると、ばらつきΔが最大20%に達していた(2000A通電
時)。
With respect to this conductor, the current of each layer obtained by the simulation code is divided by the number of wires of each layer to obtain a wire.
The current flowing per line was estimated. Then, as compared with the case where the current flowing through the strand was completely uniform (I all / n), the variation Δ reached a maximum of 20% (when 2000 A was energized).

【0081】このばらつきΔを抑制するために、試みに
最内層(1層目)のピッチを340mmに変更して計算を行
ったところ、前記ばらつきΔは最大15%に抑制され、損
失も2000A通電時に約3%低減するという結果を得た。
In order to suppress the variation Δ, the pitch of the innermost layer (the first layer) was changed to 340 mm for calculation, and the variation Δ was suppressed to a maximum of 15%, and the loss was 2,000 A. Sometimes the result was about 3% reduction.

【0082】以上の結果より、超電導素線の中で、最短
のピッチを導体層の最外層に配置し、最長のピッチを磁
気遮蔽層の最外層に配置すれば良いことがわかる。
From the above results, it can be seen that in the superconducting element wires, the shortest pitch may be arranged on the outermost layer of the conductor layer, and the longest pitch may be arranged on the outermost layer of the magnetic shielding layer.

【0083】このばらつきを小さくすればさらに、交流
損失が低減できると予想して、試験例2の導体について
ピッチの再検討を行った。その結果、導体層のピッチを
内層から420mm/270mm/140mm/80mmとし、磁気遮蔽層
のピッチを内層から260mm/560mmという条件(極小条
件)とすれば、ばらつきΔが極小となることが判った。
The pitch of the conductor of Test Example 2 was reexamined on the assumption that the AC loss could be further reduced by reducing this variation. As a result, it was found that when the pitch of the conductor layer was set to 420 mm / 270 mm / 140 mm / 80 mm from the inner layer and the pitch of the magnetic shielding layer was set to 260 mm / 560 mm from the inner layer (minimal condition), the variation Δ was minimized. .

【0084】図6に、前記極小条件から導体層における4
層目のピッチのみを変化させたときのピッチとばらつき
最大値Δの関係、ならびにピッチと交流損失(交流損失
の極小値で規格化)との関係を示す。このグラフに示す
ように、素線の電流は完全には均一化されないが、素線
電流の理想値からのずれの最大値Δが5%以内であれ
ば、損失についても極小値を選定できることが判る。
FIG. 6 shows that the minimum value of 4
The relationship between the pitch and the maximum variation Δ when only the pitch of the layer is changed, and the relationship between the pitch and the AC loss (normalized by the minimum value of the AC loss) are shown. As shown in this graph, the current of the wire is not completely uniform, but if the maximum value Δ of the deviation of the wire current from the ideal value is within 5%, it is possible to select the minimum value of the loss. I understand.

【0085】<試験例3>試験例2で解析装置を用いて
設計した導体交流損失の計算値と実測値が良く一致する
ことを確認した。ただし、この導体では最短ピッチが70
mmであり、螺旋巻き時の曲げ歪みによって線材のIcが低
下し、導体層第4層のIc維持率が低下して、導体のIcが
理想的な値よりも低くなっている。
<Test Example 3> It was confirmed that the calculated value and the measured value of the conductor AC loss designed using the analyzer in Test Example 2 were in good agreement. However, this conductor has a minimum pitch of 70
mm, the Ic of the wire is reduced by the bending strain during the spiral winding, the Ic retention of the fourth conductive layer is reduced, and the Ic of the conductor is lower than an ideal value.

【0086】螺旋巻き時にテープ線材に加わる歪みεa
は、テープ線の厚さをt、螺旋巻きピッチをP、芯材の外
径をDとして考えれば、数式16で表すことができる。従
って、超電導素線の最短ピッチは、εc(超電導素線の
限界曲げ歪)>εaとなるように設定すれば良い。限界
曲げ歪εcは、超電導素線のIcの低下が顕著になる曲げ
状態の歪とすれば良い。例えば、曲げを加えない超電導
素線のIcに対して、Icの低下率が2%以上となる場合の
歪を限界曲げ歪εcとする。
Strain ε a applied to tape wire during spiral winding
Can be expressed by Equation 16 where t is the thickness of the tape wire, P is the spiral winding pitch, and D is the outer diameter of the core material. Therefore, the shortest pitch of the superconducting wires may be set so that ε c (critical bending strain of the superconducting wires)> ε a . The critical bending strain ε c may be a strain in a bending state in which a decrease in Ic of the superconducting wire becomes remarkable. For example, with respect to Ic of the superconducting wire without added bend, reduction ratio of Ic is the critical bending strain epsilon c strain when is 2% or more.

【0087】[0087]

【数18】 (Equation 18)

【0088】この数式16を用いて、ピッチと歪みの関係
をグラフ化すると図7のようになる。ここで、テープ線
の厚さと芯材のサイズは試験例2と同じくそれぞれ0.24
mm、φ19.2mmとした。
FIG. 7 is a graph showing the relationship between the pitch and the distortion using the equation (16). Here, the thickness of the tape wire and the size of the core material were 0.24, respectively, as in Test Example 2.
mm and φ19.2 mm.

【0089】これまでの実験によって、螺旋巻きによる
超電導素線のIc低下は数式16で0.3%以下の範囲に設定
すれば防止できることが判っており、図7より見積もる
と、試験例2のような諸元の導体ではピッチ100mm以上
に設定する必要があることが判った。本例では、超電導
素線の限界曲げ歪を0.3%としたが、この数値は超電導
素線の特性に応じて決定すれば良いことは言うまでもな
い。
From the experiments so far, it has been found that the decrease in Ic of the superconducting wire due to the spiral winding can be prevented by setting the range of 0.3% or less in the formula (16). It turned out that it is necessary to set the pitch to 100 mm or more in the conductor of the specifications. In this example, the critical bending strain of the superconducting wire is set to 0.3%, but it goes without saying that this value may be determined according to the characteristics of the superconducting wire.

【0090】また、導体中の最長ピッチが600mmを越え
ると、ドラム巻きに伴う引っ張りによって断線が頻発す
ることが判っている。この最長ピッチは次のように求め
ることができる。すなわち、数式17で求められるケーブ
ル曲げ時に超電導素線に加わる張力が超電導素線の破断
荷重未満となるように設定すれば良い。
Further, it has been found that when the longest pitch in the conductor exceeds 600 mm, disconnection frequently occurs due to pulling caused by drum winding. This longest pitch can be obtained as follows. That is, the tension applied to the superconducting wire at the time of bending the cable determined by Expression 17 may be set so as to be less than the breaking load of the superconducting wire.

【0091】摩擦力(kg/m)×半ピッチ分の超電導素線
の長さ(m)+巻き線張力(kg)…数式17
Friction force (kg / m) × length of superconducting wire for half a pitch (m) + winding tension (kg) Equation 17

【0092】通常の超電導素線の破断荷重は10kg程度、
摩擦力は実測により30kg/m程度、巻き線張力は1kg程度
である。従って、数式17にこれらの各値を代入して、巻
きピッチを求めれば600mmとなる。もちろん、超電導素
線の破断荷重、摩擦力、巻き線張力は超電導素線の特性
によって異なるため、その特性に応じた値を用いれば良
い。
The breaking load of a normal superconducting element wire is about 10 kg,
The friction force is about 30 kg / m by actual measurement, and the winding tension is about 1 kg. Therefore, when these values are substituted into Expression 17, the winding pitch is determined to be 600 mm. Of course, since the breaking load, frictional force, and winding tension of the superconducting wire differ depending on the characteristics of the superconducting wire, a value according to the characteristics may be used.

【0093】以上より、試験例1のコードを用いて、最
短ピッチ100mm以上、最長ピッチ600mm以下という条件を
付加して、磁気遮蔽層付きのピッチ調整導体を設計・試
作し、交流損失測定結果と本シミュレーションで求めた
損失とを比較した。導体の諸元を以下に示す。今回は、
芯材として銅よりもはるかに抵抗の大きいFRP(FiberRe
inforced Plastics)パイプを使用した。なお、導体と
遮蔽層のピッチは各超電導層の電流が均一化するピッチ
を設定した。
From the above, using the cord of Test Example 1, a condition that the minimum pitch was 100 mm or more and the maximum pitch was 600 mm or less was added to design and prototype a pitch-adjusting conductor with a magnetic shielding layer. The loss obtained in this simulation was compared. The specifications of the conductor are shown below. This time,
As a core material, FRP (FiberRe
inforced Plastics) pipes were used. The pitch between the conductor and the shielding layer was set such that the current in each superconducting layer became uniform.

【0094】芯材 材質:FRPパイプ 外径:φ19.2mm 肉厚:0.9mm 導体層 素線:Bi2223系Ag-Mn合金被覆高温超電導テープ線(厚
さ0.24mm) 層数:4層(層間絶縁あり) 巻き方向:S/S/Z/Z 巻きピッチ:1層目140mm/2層目320mm/3層目420mm/4層
目120mm 絶縁層 材質:紙 厚さ:7mm 磁気遮蔽層 素線:Bi2223系Ag-Mn合金被覆高温超電導テープ線(厚さ
0.24mm) 層数:2層 巻き方向:S/S 巻きピッチ:1層目350mm/2層目520mm
Core material: FRP pipe Outer diameter: φ19.2 mm Wall thickness: 0.9 mm Conductive layer Element wire: Bi2223-based Ag-Mn alloy coated high-temperature superconducting tape wire (thickness 0.24 mm) Number of layers: 4 layers (interlayer insulation) Available) Winding direction: S / S / Z / Z Winding pitch: 1st layer 140mm / 2nd layer 320mm / 3rd layer 420mm / 4th layer 120mm Insulation layer Material: Paper Thickness: 7mm Magnetic shielding layer Element wire: Bi2223 Ag-Mn alloy coated high-temperature superconducting tape wire (thickness
0.24mm) Number of layers: 2 layers Winding direction: S / S Winding pitch: 350mm for the first layer / 520mm for the second layer

【0095】直流通電試験の結果、導体層のIcは2100A
(1μV/m定義)であり、歪みの加わらない状態の素線I
cから見積もった導体のIc(2100A)と一致した。
As a result of the DC current test, Ic of the conductor layer was 2100 A
(1μV / m definition) and the wire I without distortion
It was consistent with Ic (2100A) of the conductor estimated from c.

【0096】さらに、導体層の交流損失について、実験
値と計算値を比較した。実験は磁気遮蔽層での遮蔽効果
を模擬して、導体層と磁気遮蔽層を直列につないで交流
電流を通電し、電圧は導体層の電圧を計測した。周波数
は50Hz、温度は77K、測定は半田付けした電圧端子での
交流4端子法で行った。このとき計測する抵抗性電圧
(通電電流と同相の電圧)から導体層の交流損失を見積
もることができる。
Further, regarding the AC loss of the conductor layer, an experimental value and a calculated value were compared. The experiment simulated the shielding effect of the magnetic shielding layer, connected the conductor layer and the magnetic shielding layer in series, applied an alternating current, and measured the voltage of the conductor layer. The frequency was 50 Hz, the temperature was 77 K, and the measurement was performed by an AC four-terminal method using soldered voltage terminals. At this time, the AC loss of the conductor layer can be estimated from the measured resistive voltage (voltage in phase with the flowing current).

【0097】実験の結果1kArms通電時の導体交流損失は
0.5W/mであり、解析装置を用いて見積もった損失値(0.
47W/m)と非常に良く一致することを確認した。
As a result of the experiment, the conductor AC loss when 1 kArms was applied was
0.5 W / m, which is the loss value (0.
47W / m).

【0098】従って、超電導素線の中で、最短のピッチ
を導体層の最外層に配置し、最長のピッチを磁気遮蔽層
の最外層に配置とした上に、最短ピッチを歪が0.3%以
下となる巻きピッチとし、最長ピッチをドラム巻きに伴
う引っ張りによって断線しない程度(0.6m未満)に設
定することで、機械的特性に優れて臨界電流の低下も生
じない超電導ケーブルを構築できる。
Therefore, in the superconducting element wire, the shortest pitch is arranged on the outermost layer of the conductor layer, the longest pitch is arranged on the outermost layer of the magnetic shielding layer, and the shortest pitch is 0.3% or less. A superconducting cable having excellent mechanical characteristics and not causing a decrease in critical current can be constructed by setting the winding pitch to be as follows and setting the longest pitch to such an extent that the wire is not disconnected by the tension accompanying the drum winding (less than 0.6 m).

【0099】さらに、試験例3の導体についても、製作
条件から導体層における4層目のピッチのみを変化させ
たときのピッチとばらつき最大値Δの関係、ならびにピ
ッチと交流損失(交流損失の極小値で規格化)との関係
を調べた。その関係を図8のグラフに示す。このグラフ
に示すように、素線の電流は完全には均一化されない
が、素線電流の理想値からのずれの最大値Δが5%以内
であれば、損失についても極小値を選定できることが判
る。
Further, also for the conductor of Test Example 3, the relationship between the pitch and the maximum variation Δ when only the pitch of the fourth layer in the conductor layer was changed from the manufacturing conditions, and the pitch and the AC loss (minimum AC loss) (Normalized by the value). The relationship is shown in the graph of FIG. As shown in this graph, the current of the wire is not completely uniform, but if the maximum value Δ of the deviation of the wire current from the ideal value is within 5%, it is possible to select the minimum value of the loss. I understand.

【0100】<試験例4>従来の理論では、各層の電流
分布が完全に均一化したときに導体交流損失を最低にで
きると考えていた。しかし、上記の解析装置を用いて、
各層の電流分布のばらつきと導体全体の交流損失量の関
係をチェックしたところ、各層の電流がある程度不均一
であっても、超電導素線の電流値が均一化されていれば
損失は極小値をとり、各層の電流が均一化したときと同
レベルの交流損失が実現できることが判った。
<Test Example 4> In the conventional theory, it was considered that the conductor AC loss could be minimized when the current distribution in each layer was completely uniform. However, using the above analyzer,
When we checked the relationship between the variation of the current distribution in each layer and the amount of AC loss in the entire conductor, we found that even if the current in each layer was somewhat uneven, the loss was minimized if the current values of the superconducting wires were uniform. In other words, it has been found that the same level of AC loss as when the current in each layer is uniformed can be realized.

【0101】この結果を利用すれば、各層毎の電流を完
全に均一化するためのピッチ条件が線材の機械的特性の
面で現実にそぐわない場合に、機械特性上現実的なピッ
チに設計を変更して、各層間で若干の電流アンバランス
は発生するけれども、交流損失としては各層の電流分布
が均一化した場合とほぼ同じとすることもできる。
By utilizing this result, if the pitch condition for completely equalizing the current of each layer does not match the mechanical properties of the wire rod, the design is changed to a realistic pitch in terms of mechanical properties. Although a slight current imbalance occurs between the layers, the AC loss can be made substantially the same as when the current distribution in each layer is made uniform.

【0102】具体的な解析は、導電性を有する芯材
(銅)と芯材上に複数の超電導素線を螺旋に巻き付けて
なる4層の超電導層を有した導体層と、電気絶縁層およ
び、2層の超電導素線からなる超電導磁気遮蔽層とで構
成される3相超電導ケーブル(1相分)について、ピッ
チのみを微妙に変化させて各層の電流分布および各超電
導素線の電流値を微妙に変化させて行った。
A specific analysis is made of a conductive layer having a conductive core material (copper) and four superconducting layers formed by spirally winding a plurality of superconducting wires on the core material; For a three-phase superconducting cable (for one phase) composed of a superconducting magnetic shielding layer composed of two layers of superconducting wires, only the pitch is slightly changed to change the current distribution of each layer and the current value of each superconducting wire. I went with subtle changes.

【0103】その結果、解析結果による超電導素線の電
流値(絶対値)が、設定値である電流Iallを素線数nで
除した値Iall/nに対して±5%以内であれば損失は極小
値をとり、電流が各層で完全に均一化した場合と比較し
て交流損失の変化は10%以下である。しかし、超電導素
線の電流絶対値のぱらつきがこれ以上大きくなると、電
流が各層で完全に均一化した場合と比較して損失が急激
に増大することが判明した。従って、各層間で若干の電
流アンバランスが発生しても、交流損失としては各層間
で電流分布が完全に均一化した場合と同等となるように
するには、解析結果による超電導素線の電流値が、設定
値である通電電流を素線数nで除した値Iall/nに対し
て、±5%の範囲に入るように磁気遮蔽層を含む各超電
導素線のピッチを設定すれば良い。
As a result, if the current value (absolute value) of the superconducting element wire based on the analysis result is within ± 5% of a value I all / n obtained by dividing the set value current I all by the number n of element wires, If the loss takes a minimum value, the change in the AC loss is 10% or less as compared with the case where the current is completely uniform in each layer. However, it was found that when the fluctuation of the absolute value of the current of the superconducting wire became larger, the loss increased sharply as compared with the case where the current was completely uniform in each layer. Therefore, even if a slight current imbalance occurs between the layers, it is necessary to obtain the current of the superconducting element wire based on the analysis result so that the AC loss is equivalent to the case where the current distribution is completely uniform between the layers. If the pitch of each superconducting element wire including the magnetic shielding layer is set so that the value falls within a range of ± 5% with respect to a value I all / n obtained by dividing the energizing current as a set value by the number n of elements. good.

【0104】また、従来技術として、磁気遮蔽層を有す
る多層構造の超電導ケーブルで電流分布を均一化する一
般的なピッチ条件としては、特表平11-506261号公報記
載の技術があった。解析結果による超電導素線の電流値
(絶対値)が、設定値である電流Iallを素線数nで除し
た値Iall/nに対して±5%以内に入るように磁気遮蔽層
を含む各超電導素線のピッチを設定すると、前記公報が
提案する条件式にあてはまらないピッチ条件でも電流分
布の均一化ができることがわかった。
As a conventional technique, as a general pitch condition for making the current distribution uniform with a multi-layered superconducting cable having a magnetic shielding layer, there is a technique described in Japanese Patent Publication No. Hei 11-506261. The magnetic shielding layer is set so that the current value (absolute value) of the superconducting wire based on the analysis result is within ± 5% of the value I all / n obtained by dividing the set value current I all by the number n of wires. It has been found that when the pitch of each superconducting element wire is set, the current distribution can be made uniform even under the pitch condition that does not satisfy the conditional expression proposed in the above-mentioned publication.

【0105】<試験例5>さらに層数を多くした導体で
の均流化条件をシミュレーションコードを用いて調査し
た。計算を行った超電導素線の諸元を表1に示す。
<Test Example 5> The current equalization conditions in a conductor having a larger number of layers were investigated using a simulation code. Table 1 shows the specifications of the calculated superconducting element wires.

【0106】[0106]

【表1】 [Table 1]

【0107】この超電導素線を用いて、内周から順に芯
材、導体層、絶縁層、磁気遮蔽層を有する超電導導体構
造を作製し、各素線の電流が均流化されるピッチを計算
した。超電導導体構造の諸元を表2に示す。
Using this superconducting wire, a superconducting conductor structure having a core material, a conductor layer, an insulating layer, and a magnetic shielding layer is manufactured in order from the inner periphery, and the pitch at which the current of each wire is made uniform is calculated. did. Table 2 shows the specifications of the superconducting conductor structure.

【0108】[0108]

【表2】 [Table 2]

【0109】この条件ではIall/nのばらつきが5%以内に
おさまるピッチ条件は見つからなかった。そのような場
合に、交流損失が小さくなる条件を調査した。調査の結
果、交流損失が極小となる条件を見い出した。そのピッ
チ条件を表3に示す。
Under these conditions, no pitch condition was found in which the variation of Iall / n was within 5%. In such a case, the conditions under which the AC loss was reduced were investigated. As a result of the investigation, we found the conditions that minimize the AC loss. Table 3 shows the pitch conditions.

【0110】[0110]

【表3】 [Table 3]

【0111】この場合の損失は、導体層と遮蔽層とを合
わせて2.8W/mと見積もられた。また、各層の磁場分布を
グラフにしたところ図9に示すようになった。このグラ
フには、周方向磁場成分(Bc)、軸方向磁場成分(B
a)、合計磁場成分(Ball)を示している。この磁場分
布の特徴は「周方向磁場成分が内層から外層に向かって
極大値を1つだけ持つ分布で、軸方向磁場成分が内層か
ら外層に向かって単調減少分布になる」ことである。
The loss in this case was estimated to be 2.8 W / m for the conductor layer and the shielding layer. Further, a graph of the magnetic field distribution of each layer was as shown in FIG. The graph shows the circumferential magnetic field component (Bc) and the axial magnetic field component (Bc).
a) shows the total magnetic field component (Ball). The characteristic of this magnetic field distribution is that "the circumferential magnetic field component has only one maximum value from the inner layer to the outer layer, and the axial magnetic field component has a monotonically decreasing distribution from the inner layer to the outer layer."

【0112】次に、表3における導体層の8層目のピッ
チを±10mm変更し、150mm(または130mm)とすると損失
は3.0W/m(3.2W/m)のように増大する。このときの磁場分
布を図10(図11)に示す。
Next, if the pitch of the eighth conductor layer in Table 3 is changed by ± 10 mm to 150 mm (or 130 mm), the loss increases to 3.0 W / m (3.2 W / m). The magnetic field distribution at this time is shown in FIG. 10 (FIG. 11).

【0113】図10に示すように、損失が極小値からはず
れるピッチ条件(150mm)では、周方向磁場成分(Bc)
に2つの極大値が存在し、軸方向磁場成分(Ba)は単調
減少分布になっていない。また、図11に示すように、損
失が極小値からはずれるピッチ条件(130mm)では、周
方向磁場成分(Bc)は極大値が1つだけであるが、軸方
向磁場成分(Ba)は単調減少分布になっていない。
As shown in FIG. 10, under the pitch condition (150 mm) where the loss deviates from the minimum value, the circumferential magnetic field component (Bc)
There are two local maxima, and the axial magnetic field component (Ba) does not have a monotonically decreasing distribution. As shown in Fig. 11, under the pitch condition (130mm) where the loss deviates from the minimum value, the circumferential magnetic field component (Bc) has only one maximum value, but the axial magnetic field component (Ba) monotonically decreases. Not distributed.

【0114】このように磁場分布の形状を目安に、各層
のピッチを調整すれば、Iall/nのばらつきが5%以内にお
さまらない場合(層数が多い場合)でも、交流損失が小さ
なピッチに設定した導体を提供することが可能である。
By adjusting the pitch of each layer based on the shape of the magnetic field distribution as described above, even when the variation of Iall / n is not less than 5% (when the number of layers is large), the AC loss can be reduced to a small pitch. It is possible to provide a set conductor.

【0115】なお、本発明の超電導ケーブルは、上述の
具体例にのみ限定されるものではなく、本発明の要旨を
逸脱しない範囲内において種々変更を加え得ることは勿
論である。
It should be noted that the superconducting cable of the present invention is not limited to the above-described specific example, and it is needless to say that various changes can be made without departing from the gist of the present invention.

【0116】[0116]

【発明の効果】以上説明したように、本発明超電導ケー
ブルによれば、任意の芯材抵抗、任意の導体サイズ、任
意の螺旋巻き方向、任意の螺旋巻きピッチを有する超電
導ケーブルの電流分布、交流損失を詳細に解析した結
果、交流損失の少ない構造とすることができる。特に、
超電導素線の最短ピッチを曲げ歪の観点から設定し、最
長ピッチを引っ張りに対する強度の観点から設定するこ
とで、臨界電流が高く、かつ交流損失の少ない超電導ケ
ーブルを構築できる。
As described above, according to the superconducting cable of the present invention, the current distribution of the superconducting cable having any core resistance, any conductor size, any spiral winding direction, any spiral winding pitch, As a result of a detailed analysis of the loss, a structure with a small AC loss can be obtained. In particular,
By setting the shortest pitch of the superconducting wires from the viewpoint of bending strain and setting the longest pitch from the viewpoint of tensile strength, a superconducting cable having a high critical current and a small AC loss can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超電導ケーブルの等価回路へのモデル化手法を
示す説明図である。
FIG. 1 is an explanatory diagram showing a method of modeling a superconducting cable into an equivalent circuit.

【図2】超電導ケーブルにおける通電時の磁場成分の説
明図である。
FIG. 2 is an explanatory diagram of a magnetic field component during energization in a superconducting cable.

【図3】円筒導体を無限平面にモデル化する手法の説明
図である。
FIG. 3 is an explanatory diagram of a method of modeling a cylindrical conductor into an infinite plane.

【図4】超電導ケーブルの交流損失を評価する手順のフ
ローチャートである。
FIG. 4 is a flowchart of a procedure for evaluating an AC loss of a superconducting cable.

【図5】電流と交流損失の関係を示すグラフである。FIG. 5 is a graph showing a relationship between current and AC loss.

【図6】導体層の4層目のピッチと理想値からのずれΔ
との関係を示すグラフである。
FIG. 6: Pitch of fourth conductive layer and deviation from ideal value Δ
6 is a graph showing a relationship with the graph.

【図7】超電導素線のピッチと歪の関係を示すグラフで
ある。
FIG. 7 is a graph showing the relationship between the pitch of superconducting wires and strain.

【図8】導体層の4層目のピッチと理想値からのずれΔ
との関係を示すグラフである。
FIG. 8 is a diagram showing a pitch Δ of a fourth conductor layer and a deviation Δ from an ideal value.
6 is a graph showing a relationship with the graph.

【図9】超電導導体層と遮蔽層における各層の磁場分布
を示すグラフである。
FIG. 9 is a graph showing a magnetic field distribution of each layer in the superconducting conductor layer and the shielding layer.

【図10】導体層最外層の超電導素線のピッチを150mm
とした超電導導体層と遮蔽層における各層の磁場分布を
示すグラフである。
[FIG. 10] The pitch of the superconducting element wires in the outermost layer of the conductor layer is 150 mm.
4 is a graph showing a magnetic field distribution of each layer in a superconducting conductor layer and a shielding layer, which are referred to as “superconducting conductor layer” and “shielding layer”.

【図11】導体層最外層の超電導素線のピッチを130mm
とした超電導導体層と遮蔽層における各層の磁場分布を
示すグラフである。
[FIG. 11] The pitch of the superconducting element wire of the outermost layer of the conductor layer is 130 mm.
4 is a graph showing a magnetic field distribution of each layer in a superconducting conductor layer and a shielding layer, which are referred to as “superconducting conductor layer” and “shielding layer”.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡崎 徹 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 増田 孝人 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 加藤 武志 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 湯村 洋康 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 高橋 芳久 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 松尾 公義 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 本庄 昇一 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 三村 智男 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 Fターム(参考) 5G321 BA01 CA16 CA26 CA48  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toru Okazaki 1-3-1, Shimaya, Konohana-ku, Osaka-shi Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Takato Masuda 1-1-1, Shimaya, Konohana-ku, Osaka-shi No. 3 Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Takeshi Kato 1-3-1, Shimaya, Konohana-ku, Osaka-shi Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Hiroyasu Yumura Konohana, Osaka-shi 1-3-3, Shimaya-ku, Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Yoshihisa Takahashi 4-1 Egasakicho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Tokyo Electric Power Company Electric Power Research Laboratory (72) Invention Person Kimiyoshi Matsuo 4-1 Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Electric Power Research Laboratory, Tokyo Electric Power Company (72) Inventor Shoichi Honjo Yokohama-shi, Kanagawa Prefecture 4-1 Egasakicho, Mi-ku Tokyo Electric Power Co., Inc. Electric Power Research Laboratory (72) Inventor Tomio Mimura 4-1 Egasaki-cho, Tsurumi-ku, Yokohama, Kanagawa Prefecture Reference) 5G321 BA01 CA16 CA26 CA48

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 芯材と、芯材上に超電導素線を螺旋状に
巻き付けた導体層と、電気絶縁層と、超電導素線を螺旋
状に巻き付けた磁気遮へい層とを具える超電導ケーブル
であって、 下記のプロセスにより各導体層および各磁気遮へい層中
の素線の電流値を解析し、その解析結果をもとに各導体
層と各磁気遮へい層のピッチを設定したことを特徴とす
る超電導ケーブル。 前記芯材、導体層および磁気遮蔽層を少なくとも誘
導リアクタンスで構成される回路にモデル化するプロセ
ス。 芯材サイズと比抵抗を含む芯材の諸元、臨界電流と
サイズを含む超電導素線の諸元、導体層の螺旋巻きの方
向とピッチ、導体層の厚さと外径、導体層の層数を含む
導体層の諸元、ならびに周波数と通電電流を含む必要な
パラメータを入力するプロセス。 入力したパラメータを用いて回路中のインダクタン
スと実効抵抗を算出するプロセス。 前記モデルに基づいた回路方程式を作成し、各層の
電流分布を算出するプロセス。
1. A superconducting cable comprising a core material, a conductor layer in which a superconducting element wire is spirally wound on the core material, an electrical insulating layer, and a magnetic shielding layer in which the superconducting element wire is spirally wound. Then, the current value of the wires in each conductor layer and each magnetic shielding layer was analyzed by the following process, and the pitch between each conductor layer and each magnetic shielding layer was set based on the analysis result. Superconducting cable. A process of modeling the core, the conductor layer and the magnetic shielding layer into a circuit composed of at least an inductive reactance. Specifications of core material including core size and specific resistance, specifications of superconducting wire including critical current and size, direction and pitch of spiral winding of conductor layer, thickness and outer diameter of conductor layer, number of conductor layers The process of entering the specifications of the conductor layer, including, as well as the required parameters, including frequency and current carrying. The process of calculating inductance and effective resistance in a circuit using input parameters. A process of creating a circuit equation based on the model and calculating a current distribution of each layer.
【請求項2】 前記からのプロセスにより導体層に
おける超電導素線の電流値を解析して、この解析電流の
絶対値が、設定値である通電電流Iallを導体層に使用し
た素線の数nで除した値Iall/nに対して±30%の範囲に
入るように磁気遮蔽層を含む各超電導素線のピッチを設
定したことを特徴とする請求項1記載の超電導ケーブ
ル。
2. The current value of the superconducting element wire in the conductor layer is analyzed by the above-described process, and the absolute value of the analysis current is determined by the number of element wires using the conduction current I all which is a set value for the conductor layer. 2. The superconducting cable according to claim 1, wherein the pitch of each superconducting wire including the magnetic shielding layer is set so as to fall within a range of ± 30% with respect to a value I all / n divided by n.
【請求項3】 解析電流の絶対値が、設定値である通電
電流Iallを導体層に使用した素線の数nで除した値Iall
/nに対して±5%の範囲に入るように磁気遮蔽層を含む
各超電導素線のピッチを設定したことを特徴とする請求
項2に記載の超電導ケーブル。
3. The absolute value of the analysis current is a value I all obtained by dividing the set current I all by the number n of wires used for the conductor layer.
The superconducting cable according to claim 2, wherein the pitch of each superconducting element wire including the magnetic shielding layer is set so as to fall within a range of ± 5% with respect to / n.
【請求項4】 芯材と、芯材上に超電導素線を螺旋状に
巻き付けた導体層と、電気絶縁層と、超電導素線を螺旋
状に巻き付けた磁気遮蔽層とを具える超電導ケーブルで
あって、 前記超電導素線の中で、最短のピッチを導体層の最外層
に配置し、最長のピッチを磁気遮蔽層の最外層に配置し
たことを特徴とする超電導ケーブル。
4. A superconducting cable comprising a core material, a conductor layer in which a superconducting element wire is spirally wound on the core material, an electrical insulating layer, and a magnetic shielding layer in which the superconducting element wire is spirally wound. A superconducting cable, wherein the shortest pitch of the superconducting wires is arranged on the outermost layer of the conductor layer, and the longest pitch is arranged on the outermost layer of the magnetic shielding layer.
【請求項5】 導体層における超電導素線の最短ピッチ
が次式を満たすことを特徴する請求項4記載の超電導ケ
ーブル。 【数1】
5. The superconducting cable according to claim 4, wherein the shortest pitch of the superconducting wires in the conductor layer satisfies the following expression. (Equation 1)
【請求項6】 磁気遮蔽層における超電導素線の最長ピ
ッチが次式を満たすことを特徴する請求項4記載の超電
導ケーブル。超電導素線の破断荷重>摩擦力(kg/m)×
半ピッチ分の超電導素線の長さ(m)+巻き線張力(k
g)
6. The superconducting cable according to claim 4, wherein the longest pitch of the superconducting wires in the magnetic shielding layer satisfies the following expression. Breaking load of superconducting strand> frictional force (kg / m) x
Length of superconducting wire for half pitch (m) + winding tension (k
g)
【請求項7】 前記からのプロセスにより各層の周
方向磁場成分および軸方向磁場成分を解析して、この解
析した磁場成分のうち、周方向磁場成分が内層から外層
に向かって極大値を1つだけ持つ分布で、軸方向磁場成
分が内層から外層に向かって単調減少分布になるよう
に、磁気遮へい層を含む超電導素線のピッチを設定した
ことを特徴とする請求項1記載の超電導ケーブル。
7. A circumferential magnetic field component and an axial magnetic field component of each layer are analyzed by the above-mentioned process, and among the analyzed magnetic field components, a circumferential magnetic field component has one maximum value from the inner layer toward the outer layer. 2. The superconducting cable according to claim 1, wherein the pitch of the superconducting wires including the magnetic shielding layer is set such that the axial magnetic field component has a monotonically decreasing distribution from the inner layer to the outer layer.
JP2000254561A 2000-01-13 2000-08-24 Superconducting cable Expired - Fee Related JP3698623B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000254561A JP3698623B2 (en) 2000-01-13 2000-08-24 Superconducting cable
EP01400094A EP1117104A3 (en) 2000-01-13 2001-01-12 Superconducting cable and method of analyzing the same
US09/758,261 US6552260B2 (en) 2000-01-13 2001-01-12 Superconducting cable and method of analyzing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-5107 2000-01-13
JP2000005107 2000-01-13
JP2000254561A JP3698623B2 (en) 2000-01-13 2000-08-24 Superconducting cable

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005163280A Division JP4261513B2 (en) 2000-01-13 2005-06-02 Superconducting cable

Publications (2)

Publication Number Publication Date
JP2001266668A true JP2001266668A (en) 2001-09-28
JP3698623B2 JP3698623B2 (en) 2005-09-21

Family

ID=26583472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000254561A Expired - Fee Related JP3698623B2 (en) 2000-01-13 2000-08-24 Superconducting cable

Country Status (1)

Country Link
JP (1) JP3698623B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091423B2 (en) 2003-04-10 2006-08-15 Sumitomo Electric Industries, Ltd. Superconducting cable
KR100722367B1 (en) 2005-09-29 2007-05-28 한국전기연구원 Superconducting power cable and a manufacturing method thereof
CN112100809A (en) * 2020-08-10 2020-12-18 华南理工大学 Method for designing three-phase coaxial superconducting cable based on multi-physical-field coupling simulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091423B2 (en) 2003-04-10 2006-08-15 Sumitomo Electric Industries, Ltd. Superconducting cable
KR100722367B1 (en) 2005-09-29 2007-05-28 한국전기연구원 Superconducting power cable and a manufacturing method thereof
CN112100809A (en) * 2020-08-10 2020-12-18 华南理工大学 Method for designing three-phase coaxial superconducting cable based on multi-physical-field coupling simulation
CN112100809B (en) * 2020-08-10 2022-06-14 华南理工大学 Method for designing three-phase coaxial superconducting cable based on multi-physical field coupling simulation

Also Published As

Publication number Publication date
JP3698623B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
Wang et al. Quench behavior of high-temperature superconductor (RE) Ba2Cu3Ox CORC cable
KR100934448B1 (en) Non-contact measuring method of current flowing in a plurality of superconducting wires connected in parallel
Takayasu et al. Investigation of twisted stacked-tape cable conductor
Ciazynski et al. AC losses and current distribution in 40 kA NbTi and Nb/sub 3/Sn conductors for NET/ITER
Hu et al. Design and electromagnetic analysis of a 330 kVA single-phase HTS transformer
US20010054509A1 (en) Superconducting cable and method of analyzing the same
US7383625B2 (en) Method of manufacturing continuous disk winding for high-voltage superconducting transformers
Lindblom et al. Calculating the coupling factor in a multilayer coaxial transformer with air core
JP3754879B2 (en) Superconducting cable analysis method
JP4414558B2 (en) Superconducting cable
JP2001266668A (en) Superconducting cable
Wang et al. Study on field-based superconducting cable for magnetic energy storage devices
JP4261513B2 (en) Superconducting cable
JP4423581B2 (en) Superconducting cable
JP3628589B2 (en) Superconducting cable
Duchateau et al. Electromagnetic evaluation of the collective behavior of 720 twisted strands for the TF model coil experiment
Kang et al. Characterizations of a novel structure of fault-tolerant HTS cable
Amemiya et al. Magnetization loss and current transport characteristics of SCSC cables with metal cores
Wang et al. Study on critical current of a flexible quasi-isotropic HTS conductor with high engineering current density
CN114462279B (en) Incomplete stranded litz wire loss calculation method considering stranding structure and pitch
Atomura et al. Homogeneous current distribution experiment in a multi-laminated HTS tape conductor for a double-pancake coil of SMES
Onodera et al. Development of a compact HTS-FAIR conductor for magnet application
KR100540782B1 (en) Method for manufacturing the superconducting power transmission cable
JP2001325837A (en) Superconducting cable
JP3705309B2 (en) Superconducting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees