JP2001264765A - Liquid crystal display device - Google Patents
Liquid crystal display deviceInfo
- Publication number
- JP2001264765A JP2001264765A JP2000078526A JP2000078526A JP2001264765A JP 2001264765 A JP2001264765 A JP 2001264765A JP 2000078526 A JP2000078526 A JP 2000078526A JP 2000078526 A JP2000078526 A JP 2000078526A JP 2001264765 A JP2001264765 A JP 2001264765A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- display device
- polarizing plate
- region
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高速応答性及び視
角特性に優れた液晶表示装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device excellent in high-speed response and viewing angle characteristics.
【0002】[0002]
【従来の技術】液晶表示装置は薄型軽量、低消費電力と
いう特徴があり、携帯端末からパーソナルコンピュー
タ、テレビに至るまで幅広く利用されている。こうした
液晶表示装置にはその性能として高速応答や広視野角が
要求され、その要求を満たすために様々な工夫がなされ
ている。高速応答が可能な液晶表示装置として、例えば
特開平9−146086号公報、特開平9−19739
7号公報、特開平10−123505号公報に開示され
ているHAN配向(hybrid AlignedNe
matic)の液晶表示装置がある。2. Description of the Related Art Liquid crystal display devices are characterized by being thin and light and having low power consumption, and are widely used from portable terminals to personal computers and televisions. Such a liquid crystal display device is required to have a high-speed response and a wide viewing angle as its performance, and various devices have been devised to satisfy the demand. As a liquid crystal display device capable of high-speed response, for example, JP-A-9-146086 and JP-A-9-19739
7, HAN alignment (hybrid aligned ne) disclosed in JP-A-10-123505.
liquid crystal display device).
【0003】この従来の液晶表示装置を図7及び図8に
基づき説明する。ここではオフ時に白表示となるノーマ
リホワイトモードの場合を説明する。図7は白表示(オ
フ時)における液晶表示装置の概略構成図であり、図8
は白表示(オフ時)における偏光板の透過軸と液晶分子
を配列状態との位置関係を示す概略図である。[0003] This conventional liquid crystal display device will be described with reference to FIGS. 7 and 8. Here, a description will be given of a case of a normally white mode in which white display is performed when the display is off. FIG. 7 is a schematic configuration diagram of the liquid crystal display device in a white display (when off), and FIG.
FIG. 3 is a schematic diagram showing a positional relationship between a transmission axis of a polarizing plate and an alignment state of liquid crystal molecules in a white display (when off).
【0004】この液晶表示装置は一方の基板100bに
は水平配向処理を行い、他方の基板100aには垂直配
向処理を行ったもので、オフ状態の場合は、液晶分子1
02は水平配向の基板100b側では水平配列し、垂直
配向の基板100a側では垂直配列し、その間の液晶層
101で水平配列から垂直配列に徐々に配列状態を変化
させている。また、オン状態の場合は、基板100b付
近の液晶分子102bは水平配列になるが、それ以外の
液晶分子は垂直配列する。In this liquid crystal display device, one substrate 100b is subjected to a horizontal alignment treatment, and the other substrate 100a is subjected to a vertical alignment treatment.
Reference numeral 02 denotes a horizontal arrangement on the horizontal alignment substrate 100b side, a vertical alignment on the vertical alignment substrate 100a side, and the liquid crystal layer 101 therebetween gradually changes the alignment state from the horizontal alignment to the vertical alignment. In the on state, the liquid crystal molecules 102b near the substrate 100b are arranged horizontally, but the other liquid crystal molecules are arranged vertically.
【0005】この液晶層101を挟んだ基板100の上
下には偏光板103が配置され、この偏光板103は、
両偏光板103の透過軸107のなす角が90度で、水
平配向の基板100bに対応する偏光板103bの透過
軸107bが水平配向の配向方向と45度をなすように
設定されている。なお、透過軸を吸収軸に置換えても良
い。図8では基板100b側の液晶分子102b及び偏
光板103bの透過軸107bを点線で示し、基板10
0a側の液晶分子102a及び偏光板103aの透過軸
107aを実線で示している。[0005] Polarizing plates 103 are arranged above and below the substrate 100 with the liquid crystal layer 101 interposed therebetween.
The angle between the transmission axes 107 of both polarizing plates 103 is 90 degrees, and the transmission axis 107b of the polarizing plate 103b corresponding to the horizontally oriented substrate 100b is set at 45 degrees with the horizontally oriented direction. Note that the transmission axis may be replaced with the absorption axis. In FIG. 8, the liquid crystal molecules 102b on the substrate 100b side and the transmission axis 107b of the polarizing plate 103b are indicated by dotted lines, and
The liquid crystal molecules 102a on the 0a side and the transmission axis 107a of the polarizing plate 103a are shown by solid lines.
【0006】基板100aと偏光板103aの間には光
学補償シート108を設けている。この光学補償シート
108は、オン時の液晶層101と光学補償シート10
8の合成屈折率楕円体が球になるような屈折率楕円体を
有しており、例えば1軸性又は2軸性の光学異方素子が
用いられている。An optical compensation sheet 108 is provided between the substrate 100a and the polarizing plate 103a. The optical compensatory sheet 108 is composed of the liquid crystal layer 101 and the optical compensatory sheet 10 in the ON state.
8 has a refractive index ellipsoid such that the composite refractive index ellipsoid becomes a sphere. For example, a uniaxial or biaxial optical anisotropic element is used.
【0007】そして透過軸107bを通過した入射光
(直線偏光)は液晶層101の液晶分子102、光学補
償シート108を通過して偏光板103aへ達する。こ
のとき液晶層101と光学補償シート108の合成屈折
率楕円体が楕円体になるので、偏光板103aへ達した
光は液晶層101と光学補償シート108による複屈折
効果により楕円偏光になり、透過軸107aを通過して
白表示になる。The incident light (linearly polarized light) passing through the transmission axis 107b passes through the liquid crystal molecules 102 of the liquid crystal layer 101 and the optical compensation sheet 108, and reaches the polarizing plate 103a. At this time, since the combined refractive index ellipsoid of the liquid crystal layer 101 and the optical compensation sheet 108 becomes an ellipsoid, the light reaching the polarizing plate 103a becomes elliptically polarized light due to the birefringence effect of the liquid crystal layer 101 and the optical compensation sheet 108, and is transmitted. After passing through the axis 107a, white display is performed.
【0008】また液晶層101に所定電圧が印加される
と、液晶分子の配列状態が垂直配列に変化し、液晶層1
01と光学補償シート108の合成屈折率楕円体が球に
なる。したがって透過軸107bを通過した入射光(直
線偏光)は、偏光板103aに達したときに振幅方向が
透過軸107bと同一方向の直線偏光を維持し、透過軸
107aを通過することなく黒表示になる。When a predetermined voltage is applied to the liquid crystal layer 101, the alignment state of the liquid crystal molecules changes to a vertical alignment, and the liquid crystal layer 1
The composite refractive index ellipsoid of 01 and the optical compensation sheet 108 becomes a sphere. Therefore, when the incident light (linearly polarized light) that has passed through the transmission axis 107b reaches the polarizing plate 103a, the amplitude direction maintains linear polarization in the same direction as the transmission axis 107b, and a black display is made without passing through the transmission axis 107a. Become.
【0009】[0009]
【発明が解決しようとする課題】しかしHAN配向の液
晶表示装置は、偏光板103aの表面の法線方向から見
たときは良好な白表示が実現できるが、法線方向に対し
てある程度の角度をなす方向から見たときは、その方向
によって光透過率等が異なり良好な表示が得られない。
透過軸107の方向109から斜めに見る場合はあまり
変化がないが、透過軸107と45度の角度をなす方向
110、111から斜めに見る場合はこの差が大きくな
る。特に、水平配列している液晶分子102aの長軸方
向110から見た場合は液晶層101のリタデーション
が大きくなるため偏光板103aの正面から見たときに
比べて着色したように見え、液晶分子102aの短軸方
向111から見た場合は液晶層101のリタデーション
が小さくなるので偏光板103aの正面から見たときに
比べて暗くなってしまう。However, the HAN-aligned liquid crystal display device can realize good white display when viewed from the normal direction of the surface of the polarizing plate 103a, but has a certain angle with respect to the normal direction. When viewed from the direction, the light transmittance and the like vary depending on the direction, and good display cannot be obtained.
When viewed obliquely from the direction 109 of the transmission axis 107, there is not much change. However, when viewed obliquely from the directions 110 and 111 that form an angle of 45 degrees with the transmission axis 107, the difference increases. In particular, when viewed from the long axis direction 110 of the horizontally aligned liquid crystal molecules 102a, the retardation of the liquid crystal layer 101 increases, so that the liquid crystal molecules 102a appear to be colored compared to when viewed from the front of the polarizing plate 103a. When viewed from the short-axis direction 111, the retardation of the liquid crystal layer 101 is small, so that it becomes darker than when viewed from the front of the polarizing plate 103a.
【0010】こうした視角依存性を小さくするために、
どの方向から偏光板103aを斜めに見た場合も液晶層
101と光学補償シート108の合成屈折率楕円体が球
になるように、光学補償シートに様々な工夫することが
試みられている。In order to reduce such viewing angle dependence,
Regardless of the direction in which the polarizing plate 103a is viewed obliquely, various attempts have been made in the optical compensation sheet so that the combined refractive index ellipsoid of the liquid crystal layer 101 and the optical compensation sheet 108 becomes a sphere.
【0011】そこで本発明は、液晶層の垂直配列の液晶
分子と水平配列の液晶分子が互いのリタデーションを補
償して液晶層自体に視角補償機能を持たせ、広視角化及
び高速応答が可能な液晶表示装置を提供することを目的
とする。Therefore, the present invention provides a liquid crystal layer having a viewing angle compensating function by compensating for the retardation of liquid crystal molecules in a liquid crystal layer and liquid crystal molecules in a horizontal alignment, thereby enabling a wide viewing angle and high-speed response. It is an object to provide a liquid crystal display device.
【0012】[0012]
【課題を解決するための手段】上記課題を解決するため
に請求項1記載の発明は、一対の基板間に液晶層を挟み
込み、一対の基板の上下に一対の偏光板を配置した液晶
表示装置において、液晶層には偏光板表面の法線方向に
沿って液晶分子が垂直配列した領域と水平配列した領域
が存在し、偏光板を少なくとも異なる2方向から斜めに
見たときの液晶層のリタデーションがほぼ一定になるよ
うに両領域のギャップ幅を設定したことを特徴とする。According to a first aspect of the present invention, there is provided a liquid crystal display having a liquid crystal layer sandwiched between a pair of substrates and a pair of polarizing plates disposed above and below the pair of substrates. In the liquid crystal layer, there are a region in which liquid crystal molecules are vertically aligned and a region in which liquid crystal molecules are horizontally aligned along the normal direction of the polarizing plate surface, and the retardation of the liquid crystal layer when the polarizing plate is viewed obliquely from at least two different directions. Is set so that the gap width is substantially constant.
【0013】また請求項2記載の発明は、一対の基板間
に液晶層を挟み込み、一対の基板の上下に一対の偏光板
を配置した液晶表示装置において、液晶層には偏光板表
面の法線方向に沿って液晶分子が垂直配列した領域と水
平配列した領域が存在し、偏光板を少なくともある1方
向から斜めに見たときの液晶層のリタデーションと偏光
板を法線方向から見たときの液晶層のリタデーションが
ほぼ同じになるように両領域のギャップ幅を設定したこ
とを特徴とする。According to a second aspect of the present invention, in a liquid crystal display device in which a liquid crystal layer is sandwiched between a pair of substrates and a pair of polarizing plates are disposed above and below the pair of substrates, the liquid crystal layer has a normal to the surface of the polarizing plate. There is a region in which liquid crystal molecules are vertically aligned and a region in which liquid crystal molecules are horizontally aligned along the direction, and the retardation of the liquid crystal layer when the polarizing plate is viewed obliquely from at least one direction and when the polarizing plate is viewed from the normal direction. The gap width of both regions is set so that the retardation of the liquid crystal layer is substantially the same.
【0014】また請求項3記載の発明は、一対の基板間
に液晶層を挟み込み、一対の基板の上下に一対の偏光板
を配置した液晶表示装置において、液晶層には偏光板表
面の法線方向に沿って液晶分子が垂直配列した領域と水
平配列した領域が存在し、偏光板表面を斜め方向から見
た際に、液晶分子が水平配列した領域のリタデーション
と液晶分子が垂直配列した領域のリタデーションが互い
に補償しあって偏光板の法線方向に対して同一の角度を
有する範囲から見たときの液晶層のリタデーションがほ
ぼ一定になるように両領域のギャップ幅を設定したこと
を特徴とする。According to a third aspect of the present invention, in a liquid crystal display device in which a liquid crystal layer is sandwiched between a pair of substrates and a pair of polarizing plates are arranged above and below the pair of substrates, the liquid crystal layer has a normal to the surface of the polarizing plate. There are a region where liquid crystal molecules are vertically aligned and a region where horizontal alignment occurs along the direction.When the polarizing plate surface is viewed from an oblique direction, the retardation of the region where the liquid crystal molecules are horizontally aligned and the region where the liquid crystal molecules are vertically aligned The gap width of both regions is set so that the retardation of the liquid crystal layer when viewed from a range having the same angle with respect to the normal direction of the polarizing plate is compensated for each other and is substantially constant. I do.
【0015】また請求項4記載の発明は、一対の基板
は、一方の基板の配向膜に垂直配向処理が行われると共
に他方の基板の配向膜に水平配向処理が行われ、両領域
のギャップ幅が設定値になるように配向膜の配向アンカ
リングを調整したことを特徴とする。According to a fourth aspect of the present invention, in the pair of substrates, a vertical alignment process is performed on an alignment film of one substrate and a horizontal alignment process is performed on an alignment film of the other substrate, so that a gap width between the two regions is increased. Is characterized in that the alignment anchoring of the alignment film is adjusted so that is equal to a set value.
【0016】また請求項5記載の発明は、一対の偏光板
は、互いの透過軸又は吸収軸が約90度をなすと共に、
透過軸又は吸収軸が配向膜の水平配向方向と約45度を
なすように配置されていることを特徴とする。According to a fifth aspect of the present invention, the pair of polarizing plates have a transmission axis or an absorption axis of about 90 degrees with each other, and
The transmission axis or the absorption axis is arranged so as to form an angle of about 45 degrees with the horizontal alignment direction of the alignment film.
【0017】また請求項6記載の発明は、偏光板を斜め
から見る方向が、偏光板の透過軸又は吸収軸と40度か
ら50度の角度をなすと共に、偏光板の表面の法線方向
に対して10度から70度の角度をなす範囲に含まれる
ことを特徴とする。According to a sixth aspect of the present invention, the direction in which the polarizing plate is viewed obliquely forms an angle of 40 ° to 50 ° with the transmission axis or the absorption axis of the polarizing plate, and is perpendicular to the surface of the polarizing plate. It is characterized by being included in a range forming an angle of 10 degrees to 70 degrees.
【0018】また請求項7記載の発明は、偏光板の表面
の法線方向から液晶層を見たときの水平配列領域のリタ
デーションが約200nmから約300nmの範囲内に
なるように設定したことを特徴とする。According to a seventh aspect of the present invention, the retardation of the horizontal alignment region when the liquid crystal layer is viewed from the normal direction of the surface of the polarizing plate is set to be in a range of about 200 nm to about 300 nm. Features.
【0019】また請求項8記載の発明は、基板間には誘
電率異方性が正のネマティック液晶が介在されているこ
とを特徴とする。The invention according to claim 8 is characterized in that a nematic liquid crystal having a positive dielectric anisotropy is interposed between the substrates.
【0020】[0020]
【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。この液晶表示装置はノーマリホワイ
トモードであり、図1は白表示(オフ時)における液晶
分子の配列状態を示す概略構成図、図2は黒表示(オン
時)における液晶分子の配列状態を示す概略構成図、図
3はオフ時の液晶表示装置の側面該略図、図4は偏光板
の透過軸と液晶分子の配列方向の関係を示す図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. This liquid crystal display device is in a normally white mode. FIG. 1 is a schematic configuration diagram showing an arrangement state of liquid crystal molecules in a white display (at the time of off), and FIG. 2 shows an arrangement state of liquid crystal molecules in a black display (at the time of on). 3 is a schematic side view of the liquid crystal display device in an off state, and FIG. 4 is a diagram showing a relationship between a transmission axis of a polarizing plate and an arrangement direction of liquid crystal molecules.
【0021】第1基板1はガラス基板1a上に画素電極
1b、配向膜1cを積層し、第2基板2はガラス基板2
a上に透明電極2b、配向膜2cを積層している。第1
基板1上にスペーサを散布させた後、第1基板1と第2
基板2をそれぞれの配向膜1c、2cが向かい合うよう
に所定の位置に対向配置し、両基板1、2の周辺をシー
ル剤で固着する。第1基板1の配向膜1cには水平配向
処理が施され、第2基板2の配向膜2cには垂直配向処
理が施されている。両基板1、2間に誘電率異方性が正
のネマティック液晶3が封入され、液晶分子4が配向膜
1c、2cの影響によって後述する配列を保っている。The first substrate 1 has a pixel electrode 1b and an alignment film 1c laminated on a glass substrate 1a, and the second substrate 2 has a glass substrate 2a.
a, a transparent electrode 2b and an alignment film 2c are laminated. First
After the spacers are scattered on the substrate 1, the first substrate 1 and the second
The substrates 2 are arranged at predetermined positions so that the alignment films 1c and 2c face each other, and the periphery of the substrates 1 and 2 is fixed with a sealant. The alignment film 1c of the first substrate 1 is subjected to a horizontal alignment process, and the alignment film 2c of the second substrate 2 is subjected to a vertical alignment process. A nematic liquid crystal 3 having a positive dielectric anisotropy is sealed between the two substrates 1 and 2, and the liquid crystal molecules 4 maintain an alignment described later due to the influence of the alignment films 1c and 2c.
【0022】第1基板1の下方には下偏光板5が配置さ
れ、第2基板2の上方には上偏光板6が配置されてい
る。下偏光板5と上偏光板6はその表面の法線方向9か
ら見たときに互いの透過軸8a、8bが直交するように
配置され、且つ下偏光板5は透過軸8aと第1基板1の
配向方向7と45度をなすように配置される。なお、こ
の実施例では透過軸で説明するが、透過軸の代わりに吸
収軸の場合でもよい。また、両基板1、2及び両偏向板
5、6は平行に配置されるので、それらの表面の法線方
向9は一致する。A lower polarizer 5 is disposed below the first substrate 1, and an upper polarizer 6 is disposed above the second substrate 2. The lower polarizing plate 5 and the upper polarizing plate 6 are arranged so that their transmission axes 8a and 8b are orthogonal to each other when viewed from the normal direction 9 of the surface thereof. They are arranged so as to form an angle of 45 degrees with one orientation direction 7. In this embodiment, the transmission axis will be described, but an absorption axis may be used instead of the transmission axis. Since the substrates 1 and 2 and the deflecting plates 5 and 6 are arranged in parallel, their normal directions 9 coincide with each other.
【0023】オフ時(図1)は、第1基板1側の液晶分
子4aは配向膜1cの水平配向に影響されてプレチルト
角θの傾斜で水平配列し、第2基板2側の液晶分子4b
は配向膜2cの垂直配向に影響されて垂直配列する。な
お、配向膜1cに影響される液晶分子4aがプレチルト
角を有することなく第1基板1と平行に水平配列してい
てもよい。In the off state (FIG. 1), the liquid crystal molecules 4a on the first substrate 1 are horizontally arranged at an inclination of the pretilt angle θ due to the horizontal alignment of the alignment film 1c.
Are vertically affected by the vertical alignment of the alignment film 2c. Note that the liquid crystal molecules 4a affected by the alignment film 1c may be horizontally arranged in parallel with the first substrate 1 without having a pretilt angle.
【0024】液晶分子4の水平配列領域12aのギャッ
プ幅と垂直配列領域12bのギャップ幅は、第1基板1
の法線方向9に対して角度を有する斜め方向から見たと
きに、水平配列領域12aのリタデーションと垂直配列
領域12bのリタデーションが補償しあって液晶層3の
リタデーションがほぼ一定になるように設定される。特
に図1及び図4に示すように、水平配列している液晶分
子4aの長軸方向と同一方向a(β1=45°)から見
たときと、この液晶分子4aの短軸方向と同一方向b
(β2=45°)から見たときの液晶層3のリタデーシ
ョンがほぼ同一になるように設定すれば、光量の変化が
最小限に抑えられて視角依存性を小さくすることができ
る。このときの両領域のギャップ幅は各配向膜1c、2
cの配向アンカリングの強度を調整することで設定でき
る。The gap width of the horizontal alignment region 12a of the liquid crystal molecules 4 and the gap width of the vertical alignment region 12b are determined by the first substrate 1
When viewed from an oblique direction having an angle with respect to the normal direction 9, the retardation of the horizontal array region 12 a and the retardation of the vertical array region 12 b are compensated for so that the retardation of the liquid crystal layer 3 becomes substantially constant. Is done. In particular, as shown in FIGS. 1 and 4, when viewed from the same direction a (β1 = 45 °) as the long axis direction of the horizontally aligned liquid crystal molecules 4a, the same direction as the short axis direction of the liquid crystal molecules 4a b
If the retardation of the liquid crystal layer 3 when viewed from (β2 = 45 °) is set to be substantially the same, the change in the amount of light can be minimized and the viewing angle dependency can be reduced. At this time, the gap width between the two regions is determined by the orientation films 1c and 2c.
It can be set by adjusting the strength of the orientation anchoring of c.
【0025】このオフ時の場合、振幅方向が透過軸8a
と同一方向の直線偏光(入射光)10aが下偏光板5を
通過し、液晶分子4を介して上偏光板6へ到達する。こ
のとき上偏光板6へ達した透過光10bは液晶分子10
2によって複屈折されて楕円偏光になるので、このうち
振幅方向が上偏光板6の透過軸8bと同一方向の直線偏
光10cが上偏光板6を通過して白表示になる。In the off-state, the amplitude direction is the transmission axis 8a.
Then, linearly polarized light (incident light) 10 a having the same direction as above passes through the lower polarizing plate 5 and reaches the upper polarizing plate 6 via the liquid crystal molecules 4. At this time, the transmitted light 10b reaching the upper polarizing plate 6 is
The linearly polarized light 10c whose amplitude direction is the same as that of the transmission axis 8b of the upper polarizing plate 6 passes through the upper polarizing plate 6 and becomes white display.
【0026】また、水平配列領域12aの液晶分子4a
が透過光10bに与えるリタデーションと垂直配列領域
12bの液晶分子10aが透過光10bに与えるリタデ
ーションが補償し合うので、例えば透過軸8bと45度
をなす方向a、bから斜めに見た場合も液晶層3のリタ
デーションがほぼ同じになり、どの方向から見てもほぼ
同調の白表示になって視角特性が向上する。The liquid crystal molecules 4a in the horizontal alignment region 12a
Compensates for the retardation given to the transmitted light 10b and the retardation given to the transmitted light 10b by the liquid crystal molecules 10a in the vertical alignment region 12b. For example, even when the liquid crystal is viewed obliquely from the directions a and b at 45 degrees with the transmission axis 8b. The retardation of the layer 3 becomes almost the same, and a white display with almost the same tuning is obtained from any direction, and the viewing angle characteristic is improved.
【0027】オン時(図2)の場合、第1基板1付近の
液晶分子4aは水平配列するが、それ以外の液晶分子4
は垂直配列する。そして下偏光板5を通過した直線偏光
の入射光10aは入射時の状態をほぼ維持しながら液晶
分子4を通過し、振幅方向が透過軸8bと直交する直線
偏光10dが上偏光板6に到達するので、透過光10d
は上偏光板6に遮られて黒表示となる。In the ON state (FIG. 2), the liquid crystal molecules 4a near the first substrate 1 are arranged horizontally, but the other liquid crystal molecules 4a are not aligned.
Are arranged vertically. The linearly polarized incident light 10a passing through the lower polarizing plate 5 passes through the liquid crystal molecules 4 while almost maintaining the state at the time of incidence, and linearly polarized light 10d whose amplitude direction is orthogonal to the transmission axis 8b reaches the upper polarizing plate 6. The transmitted light 10d
Are blocked by the upper polarizing plate 6 to display black.
【0028】次に水平配列領域のギャップ幅と垂直配列
領域のギャップ幅の一例を説明する。図5は図1及び図
4のa方向から上偏光板6を見たときの光の進行路を説
明する側面概略図であり、図6は図1及び図4のb方向
から上偏光板6を見たときの光の進行路を説明する側面
概略図である。なお、説明及び計算を簡単にするために
液晶層3を垂直配列領域12bと水平配列領域12aの
2つに領域に分割し、垂直配列領域12bの液晶分子4
bは全て第1基板1の表面の法線方向9と平行に垂直配
列し、水平配列領域12aの液晶分子4aは全て第1基
板1の表面の法線方向9と直交方向に水平配列するもの
とする。またこの例では、第1基板1の法線方向9に対
して70度(α)の方向から液晶層3を見たときのリタ
デーションがほぼ一定になるように設定する。Next, an example of the gap width of the horizontal arrangement area and the gap width of the vertical arrangement area will be described. FIG. 5 is a schematic side view illustrating the traveling path of light when the upper polarizing plate 6 is viewed from the direction a in FIGS. 1 and 4. FIG. 6 is a side view illustrating the upper polarizing plate 6 from the direction b in FIGS. FIG. 3 is a schematic side view for explaining a traveling path of light when viewing FIG. In order to simplify the description and calculation, the liquid crystal layer 3 is divided into two regions, a vertical alignment region 12b and a horizontal alignment region 12a, and the liquid crystal molecules 4 in the vertical alignment region 12b are divided.
b are all vertically aligned parallel to the normal direction 9 of the surface of the first substrate 1, and the liquid crystal molecules 4a in the horizontal alignment region 12a are all horizontally aligned in a direction orthogonal to the normal direction 9 of the surface of the first substrate 1. And In this example, the retardation when viewing the liquid crystal layer 3 from the direction of 70 degrees (α) with respect to the normal direction 9 of the first substrate 1 is set to be substantially constant.
【0029】液晶分子4の屈折率は長軸方向nx=1.
5575、短軸方向ny=1.4754とし、液晶層3
のギャップ幅は垂直配列領域がdv、水平配列領域がdh
とする。このとき水平配列領域12aの液晶層のリタデ
ーションΔn・dh=(nx−n y)・dhが約275nm
になるように予め設定する。これは上偏光板6の表面の
法線方向9から見たときの液晶層3のリタデーション
は、水平配列領域12aの液晶層のリタデーションと同
一になる。そして一般に、液晶層のリタデーションを
R、入射光波長をλとしたとき、透過率Iはsin2(Rπ
/λ)に比例するので、λを人が最も感じやすい光の波
長550nmに設定すると、この光の透過率が最も高く
なるのはR=275nmになる。したがって水平配列領
域12aの液晶層のリタデーションを275nmに設定
すれば、上偏光板6を正面から見たときに良好な白表示
が得られる。このようにΔn・dh=275nmの場合
はdh=3350nmになり、dhが決定する。The refractive index of the liquid crystal molecules 4 is n in the major axis direction.x= 1.
5575, short axis direction ny= 1.4754 and the liquid crystal layer 3
The gap width of the vertical array region is dv, The horizontal array area is dh
And At this time, the retardation of the liquid crystal layer in the horizontal alignment region 12a is
Option Δn · dh= (Nx-N y) ・ DhIs about 275 nm
Is set in advance so that This is the surface of the upper polarizing plate 6
The retardation of the liquid crystal layer 3 when viewed from the normal direction 9
Is the same as the retardation of the liquid crystal layer in the horizontal alignment region 12a.
Be one. And generally, the retardation of the liquid crystal layer
R, when the incident light wavelength is λ, the transmittance I is sinTwo(Rπ
/ Λ) is proportional to the wavelength of light
When the length is set to 550 nm, the transmittance of this light is the highest.
Is R = 275 nm. Therefore, the horizontal arrangement
Set the retardation of the liquid crystal layer in the area 12a to 275nm
A good white display when the upper polarizing plate 6 is viewed from the front.
Is obtained. Thus, Δn · dh= 275nm
Is dh= 3350 nm and dhIs determined.
【0030】またα=70°の方向から見た場合、液晶
層3における光の進行方向α’は約38°になる(図
5、図6)。When viewed from the direction of α = 70 °, the light traveling direction α ′ in the liquid crystal layer 3 is about 38 ° (FIGS. 5 and 6).
【0031】次にa方向、α=70°のときの水平配列
領域12aにおけるリタデーションRh(a、α)を計算
する。このときの水平配向領域12aにおける異常光屈
折率nxh(a、α)は次式で表される。 nxh(a、α)=nx・ny/(nx 2・sin2α’+ny 2・cos2α’)0.5 また常光屈折率nyh(a、α)はnyh(a、α)=ny、水
平配列領域12aにおける光路dh(a、α)はdh(a、
α)=dh/cosα’で表せる。したがって水平配列領域
12aにおけるリタデーションRh(a、α)は次式で表
せる。 Rh(a、α)={nxh(a、α)−nyh(a、α)}・dh(a、α) =[nx・ny/(nx 2・sin2α’+ny 2・cos2α’)0.5−ny]・dh/cos α’ =209 次にb方向、α=70°のときの水平配列領域12aに
おけるリタデーションRh(b、α)を計算する。このと
きの水平配向領域12aにおける異常光屈折率n
xh(b、α)はnxh(b、α)=nx、常光屈折率nyh(b、
α)はnyh(b、α)=ny、水平配列領域12aにおける
光路dh(b、α)はdh(b、α)=dh/cosα’で表せ
る。したがって水平配列領域12aにおけるリタデーシ
ョンRh(b、α)は次式で表せる。 Rh(b、α)={nxh(b、α)−nyh(b、α)}・dh(b、α) ={nx−ny}・dh/cosα’ =350 次に、このときの垂直配列領域12bにおけるリタデー
ションRv(α)を計算する。なお、垂直配列領域12b
のリタデーションRv(α)はa方向から見たときもb方
向から見たときも同じになる。まず垂直配向領域12b
における異常光屈折率nxv(a、α)は次式で表される。 nxv(α)=nx・ny/(nx 2・cos2α’+ny 2・sin2α’)0.5 また常光屈折率nyv(α)はnyv(α)=ny、垂直配列領
域12bにおける光路dv(α)はdv(α)=dv/cosα’
で表せる。したがって垂直配列領域12bにおけるリタ
デーションRv(α)は次式で表せる。 Rv(α)={nxv(α)−nyv(α)}・dv(α) =[nx・ny/(nx 2・cos2α’+ny 2・sin2α’)0.5−ny]・dv/cosα’ =0.038dv 次に液晶層3全体のリタデーションを計算する。Next, the retardation R h (a, α) in the horizontal arrangement area 12a in the a direction, when α = 70 °, is calculated. The extraordinary light refractive index n xh (a, α) in the horizontal alignment region 12a at this time is represented by the following equation. n xh (a, α) = n x · n y / (n x 2 · sin 2 α '+ n y 2 · cos 2 α') 0.5 The ordinary refractive index n yh (a, α) is n yh (a, α) = n y, optical path d h (a in the horizontal arrangement region 12a, alpha) is d h (a,
α) = d h / cos α ′. Therefore, the retardation R h (a, α) in the horizontal array region 12a can be expressed by the following equation. R h (a, α) = {n xh (a, α) -n yh (a, α)} · d h (a, α) = [n x · n y / (n x 2 · sin 2 α ' + n y 2 · cos 2 α ') 0.5 -n y] · d h / cos α' = 209 then the b direction, the retardation in the horizontal arrangement region 12a in the case of α = 70 ° R h (b , α) calculated I do. The extraordinary light refractive index n in the horizontal alignment region 12a at this time
xh (b, α) is n xh (b, α) = n x, the ordinary refractive index n yh (b,
alpha) is n yh (b, α) = n y, optical path d h (b in the horizontal arrangement region 12a, alpha) is expressed by d h (b, α) = d h / cosα '. Therefore, the retardation R h (b, α) in the horizontal array region 12a can be expressed by the following equation. R h (b, α) = {n xh (b, α) -n yh (b, α)} · d h (b, α) = {n x -n y} · d h / cosα '= 350 primary Next, the retardation R v (α) in the vertical array region 12b at this time is calculated. The vertical array region 12b
Retardation R v (alpha) is also the same when viewed from b direction when viewed from a direction. First, the vertical alignment region 12b
The extraordinary light refractive index n xv (a, α) at is expressed by the following equation. n xv (α) = n x · n y / (n x 2 · cos 2 α '+ n y 2 · sin 2 α') 0.5 The ordinary refractive index n yv (alpha) is n yv (α) = n y , The optical path d v (α) in the vertical array region 12b is d v (α) = d v / cos α ′
Can be represented by Therefore, the retardation R v (α) in the vertical array region 12b can be expressed by the following equation. R v (α) = {n xv (α) -n yv (α)} · d v (α) = [n x · n y / (n x 2 · cos 2 α '+ n y 2 · sin 2 α' ) 0.5 -n y] · d v / cosα '= 0.038d v then calculating the retardation of the entire liquid crystal layer 3.
【0032】まずa方向から見た場合、水平配列した液
晶分子4aの長軸方向から見ることになるので、液晶分
子4の配列状態をこの光路に沿って観察すると水平配列
領域12aの液晶分子4aの長軸方向と垂直配列領域1
2bの液晶分子4bの長軸方向が一致する。よってこの
ときの液晶層3全体のリタデーションR(a、α)は次
式で表せる。 またb方向から見た場合、水平配列した液晶分子4aの
短軸方向から見ることになるので、液晶分子4の配列状
態をこの光路に沿って観察すると水平配列領域12aの
液晶分子4aの長軸方向と垂直配列領域12bの液晶分
子4bの長軸方向が直交する。よってこのときの液晶層
3全体のリタデーションR(b、α)は次式で表せる。 ここでR(a、α)=R(b、α)に設定すれば視角依
存性が小さくなり、上記の式よりdv=1855nmと
なる。このときR(a、α)=R(b、α)=279n
mとなり、基板の正面から見たときのリタデーションの
275nmともほぼ同等の値になり、視角特性が改善さ
れる。なお、このときΔn・dv=152になる。First, when viewed from the direction a, the liquid crystal molecules 4a in the horizontal alignment region 12a are viewed from the long axis direction of the liquid crystal molecules 4a. Long axis direction and vertical array area 1
The major axis directions of the liquid crystal molecules 4b of 2b coincide. Therefore, the retardation R (a, α) of the entire liquid crystal layer 3 at this time can be expressed by the following equation. When viewed from the direction b, the liquid crystal molecules 4a are viewed from the short-axis direction of the horizontally aligned liquid crystal molecules 4a. The direction is perpendicular to the major axis direction of the liquid crystal molecules 4b in the vertical alignment region 12b. Therefore, the retardation R (b, α) of the entire liquid crystal layer 3 at this time can be expressed by the following equation. Here, if R (a, α) = R (b, α), the viewing angle dependency is reduced, and from the above equation, d v = 1855 nm. At this time, R (a, α) = R (b, α) = 279n
m, which is almost equal to the retardation of 275 nm when viewed from the front of the substrate, and the viewing angle characteristics are improved. At this time, Δn · d v = 152.
【0033】こうして求めたギャップ幅dv、dhになる
ように配向膜1c、2cの配向アンカリングの強度を設
定する。ここで求めたギャップ幅dv、dhは液晶層の液
晶分子4が図5、図6に示すように配列している場合の
値である。しかし水平配列している液晶分子4aはプレ
チルト角θで傾斜し、第1基板1から第2基板2までの
液晶分子4は水平配列から垂直配列へ徐々に配列状態が
変わっている。したがって求めたギャップ幅dv、dhに
設定した後で実験等により各ギャップ幅を適正値に調整
することで、白表示のときに斜め方向から見たときもリ
タデーションがあまり変わらない視角依存性の小さい液
晶表示装置になる。The alignment anchoring strength of the alignment films 1c and 2c is set so as to obtain the gap widths d v and d h thus obtained. Here determined gap width d v, d h is a value when the liquid crystal molecules 4 of the liquid crystal layer 5, are arranged as shown in FIG. However, the horizontally aligned liquid crystal molecules 4a are inclined at the pretilt angle θ, and the alignment state of the liquid crystal molecules 4 from the first substrate 1 to the second substrate 2 is gradually changed from horizontal alignment to vertical alignment. Thus obtained gap width d v, by adjusting to a proper value each gap width by experiments or the like after setting the d h, viewing angle dependence of retardation does not change much even when viewed from an oblique direction when the white display Liquid crystal display device.
【0034】また、配向アンカリングの強度を求めたギ
ャップ幅dv、dhの条件を満たす範囲でできるだけ強く
すれば、水平配列領域12aと垂直配列領域12bの占
める範囲が多くなり、水平配列から垂直配列に配列状態
が変わる液晶分子4の領域を少なくすることができ、液
晶分子4の配列状態が両領域のギャップ幅dv、dhを求
めるときに仮定した配列状態(図5及び図6)に近くな
る。[0034] The alignment anchoring strength obtained gap width d v, if possible strong satisfying a condition of d h, increases the range occupied by the horizontal arrangement region 12a and a vertical array region 12b, the horizontal arrangement it is possible to reduce the area of the liquid crystal molecules 4 to change the array state to the vertical arrangement, the gap width of the alignment state of the liquid crystal molecules 4 are both areas d v, arrangement state (Fig. 5 and which is assumed when determining the d h 6 ).
【0035】また、こうして各ギャップ幅を設定した液
晶表示装置に光学補償シートを追加すれば、更に視角依
存性をなくすことができ、視角特性を向上させることが
できる。さらに、第1基板1側に、配向膜1cの配向方
向と90度をなす方向に延伸軸を有する一軸延伸フィル
ムを設け、この一軸延伸フィルムによってオン時に水平
配列の状態を維持する液晶分子4aのリタデーションを
相殺するようにすれば、オン時に良好な黒表示を得るこ
とができ、コントラストが向上する。Further, if an optical compensation sheet is added to the liquid crystal display device in which the respective gap widths are set as described above, the viewing angle dependency can be further eliminated, and the viewing angle characteristics can be improved. Further, on the first substrate 1 side, a uniaxially stretched film having a stretching axis in a direction at 90 degrees to the alignment direction of the alignment film 1c is provided, and the uniaxially stretched film is used to maintain the liquid crystal molecules 4a which maintain a horizontal alignment state when turned on. By canceling the retardation, a good black display can be obtained at the time of ON, and the contrast is improved.
【0036】この実施例では、上偏光板の透過軸に対し
て45度をなす方向で且つα=70°の方向から見た場
合を説明したが、本発明はこの方向に限定するものでは
なく、他の方向から斜めに偏光板6を見たときに液晶層
のリタデーションがほぼ同じ値になるように設定しても
よい。ただし上偏光板6の透過軸と45度の方向からの
見たときのリタデーションが一番異なるので、透過軸に
対して40度から50度の角度をなし且つαが0度から
70度に含まれる範囲のうちある方向から上偏光板6を
見たときに、液晶層3のリタデーションがほぼ同じ値に
なるように設定すれば、視角特性が向上する。In this embodiment, a case was described in which the direction was 45 degrees with respect to the transmission axis of the upper polarizing plate and the direction was α = 70 °. However, the present invention is not limited to this direction. Alternatively, the retardation of the liquid crystal layer may be set to have substantially the same value when the polarizing plate 6 is viewed obliquely from another direction. However, since the retardation when viewed from the direction of the transmission axis of the upper polarizer 6 and the direction of 45 degrees is the most different, the transmission axis forms an angle of 40 to 50 degrees with respect to the transmission axis and α is included in the range of 0 to 70 degrees. If the retardation of the liquid crystal layer 3 is set to have substantially the same value when the upper polarizing plate 6 is viewed from a certain direction in the range, the viewing angle characteristics are improved.
【0037】またこの実施例では、上偏向板6を法線方
向9から見たときの水平配列領域12aにおける液晶層
3のリタデーションを約275nmに設定したが、本発
明はこの値に限定するものではない。ただしこのリタデ
ーションが大きくなると表示が黄色っぽくなる色付きが
生じ、リタデーションが小さくなると暗くなる。よって
この水平配列領域12aの液晶層3のリタデーションを
約200nmから約300nmの範囲内になるように設
定すれば、適切な表示が得られる。In this embodiment, the retardation of the liquid crystal layer 3 in the horizontal alignment region 12a when the upper deflecting plate 6 is viewed from the normal direction 9 is set to about 275 nm, but the present invention is limited to this value. is not. However, when the retardation increases, the display becomes colored yellowish, and when the retardation decreases, the display becomes darker. Therefore, if the retardation of the liquid crystal layer 3 in the horizontal alignment region 12a is set to be in a range from about 200 nm to about 300 nm, an appropriate display can be obtained.
【0038】[0038]
【発明の効果】本発明によれば、液晶層に存在する液晶
分子が水平配列した領域と垂直配列した領域が互いにリ
タデーションを補償しあうことによって、偏光板を斜め
から見たときに液晶層のリタデーションの変化が小さく
なるように、液晶層の水平配列領域と垂直配列領域のギ
ャップ幅を設定しているので、視角依存性が小さくなり
広視角の液晶表示装置が実現できる。According to the present invention, the region where the liquid crystal molecules present in the liquid crystal layer are horizontally aligned and the region where the liquid crystal molecules are vertically aligned compensate for each other's retardation. Since the gap width between the horizontal alignment region and the vertical alignment region of the liquid crystal layer is set so as to reduce the change in retardation, the viewing angle dependency is reduced and a liquid crystal display device with a wide viewing angle can be realized.
【図1】本発明の一実施例であるノーマリホワイトモー
ドの液晶表示装置のオフ時における液晶分子の配列状態
を示す概略図である。FIG. 1 is a schematic diagram showing an arrangement state of liquid crystal molecules when a normally white mode liquid crystal display device according to an embodiment of the present invention is off.
【図2】本発明の一実施例であるノーマリホワイトモー
ドの液晶表示装置のオン時における液晶分子の配列状態
を示す概略図である。FIG. 2 is a schematic view showing an arrangement state of liquid crystal molecules when a normally white mode liquid crystal display device according to an embodiment of the present invention is turned on.
【図3】本発明の一実施例である液晶表示装置を側面か
ら見たときの該略図である。FIG. 3 is a schematic view of a liquid crystal display device according to an embodiment of the present invention when viewed from a side.
【図4】本発明の一実施例である液晶表示装置を偏光板
の法線方向から見たときの概略図である。FIG. 4 is a schematic view of a liquid crystal display device according to one embodiment of the present invention when viewed from a normal direction of a polarizing plate.
【図5】本発明の図4のA’−A’線に沿った液晶分子
の配列状態を模式的に示した図である。FIG. 5 is a diagram schematically illustrating an alignment state of liquid crystal molecules along the line A′-A ′ in FIG. 4 of the present invention.
【図6】本発明の図4のB’−B’線に沿った液晶分子
の配列状態を模式的に示した図である。FIG. 6 is a diagram schematically illustrating an alignment state of liquid crystal molecules along a line B′-B ′ in FIG. 4 of the present invention.
【図7】従来の液晶表示装置を側面から見たときの該略
図である。FIG. 7 is a schematic view of a conventional liquid crystal display device as viewed from the side.
【図8】従来の液晶表示装置を偏光板の法線方向から見
たときの概略図である。FIG. 8 is a schematic diagram when a conventional liquid crystal display device is viewed from a normal direction of a polarizing plate.
1 第1基板 1c 配向膜 2 第2基板 2c 配向膜 4 液晶分子 5 下偏光板 6 上偏光板 7a、7b 配向方向 8a、8b 透過軸 DESCRIPTION OF SYMBOLS 1 1st substrate 1c Alignment film 2 2nd substrate 2c Alignment film 4 Liquid crystal molecule 5 Lower polarizing plate 6 Upper polarizing plate 7a, 7b Orientation direction 8a, 8b Transmission axis
───────────────────────────────────────────────────── フロントページの続き (72)発明者 賀勢 裕之 鳥取県鳥取市南吉方3丁目201番地 鳥取 三洋電機株式会社内 (72)発明者 森 善隆 鳥取県鳥取市南吉方3丁目201番地 鳥取 三洋電機株式会社内 (72)発明者 田中 慎一郎 鳥取県鳥取市南吉方3丁目201番地 鳥取 三洋電機株式会社内 Fターム(参考) 2H090 MA01 MA02 MA03 MA15 2H091 FA08X FA08Z FA11X FA11Z FD08 FD09 KA02 KA04 KA05 LA16 LA19 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Kase 3-201 Minamiyoshikata, Tottori-shi, Tottori Sanyo Electric Co., Ltd. (72) Inventor Yoshitaka Mori 3-201 Minamiyoshikata, Tottori-shi, Tottori Sanyo Tottori Inside Electric Co., Ltd. (72) Inventor Shinichiro Tanaka 3-201 Minamiyoshikata, Tottori City, Tottori Pref.
Claims (8)
一対の基板の上下に一対の偏光板を配置した液晶表示装
置において、前記液晶層には前記偏光板表面の法線方向
に沿って液晶分子が垂直配列した領域と水平配列した領
域が存在し、前記偏光板を少なくとも異なる2方向から
斜めに見たときの前記液晶層のリタデーションがほぼ一
定になるように前記両領域のギャップ幅を設定したこと
を特徴とする液晶表示装置。1. A liquid crystal display device having a liquid crystal layer sandwiched between a pair of substrates and a pair of polarizing plates disposed above and below the pair of substrates, wherein the liquid crystal layer is disposed along a direction normal to a surface of the polarizing plate. There is a region in which liquid crystal molecules are vertically arranged and a region in which liquid crystal molecules are horizontally arranged, and the gap width between the two regions is set so that the retardation of the liquid crystal layer when the polarizing plate is viewed obliquely from at least two different directions is substantially constant. A liquid crystal display device characterized by being set.
一対の基板の上下に一対の偏光板を配置した液晶表示装
置において、前記液晶層には前記偏光板表面の法線方向
に沿って液晶分子が垂直配列した領域と水平配列した領
域が存在し、前記偏光板を少なくともある1方向から斜
めに見たときの前記液晶層のリタデーションと前記偏光
板を法線方向から見たときの前記液晶層のリタデーショ
ンがほぼ同じになるように前記両領域のギャップ幅を設
定したことを特徴とする液晶表示装置。2. A liquid crystal display device in which a liquid crystal layer is sandwiched between a pair of substrates and a pair of polarizing plates are arranged above and below the pair of substrates, wherein the liquid crystal layer is provided along a direction normal to a surface of the polarizing plate. There is a region in which liquid crystal molecules are vertically aligned and a region in which the liquid crystal molecules are horizontally arranged, and the retardation of the liquid crystal layer when the polarizing plate is viewed obliquely from at least one direction and the when the polarizing plate is viewed from a normal direction. A liquid crystal display device wherein the gap width of the two regions is set so that the retardation of the liquid crystal layer is substantially the same.
一対の基板の上下に一対の偏光板を配置した液晶表示装
置において、前記液晶層には前記偏光板表面の法線方向
に沿って液晶分子が垂直配列した領域と水平配列した領
域が存在し、前記偏光板表面を斜め方向から見た際に、
液晶分子が水平配列した領域のリタデーションと液晶分
子が垂直配列した領域のリタデーションが互いに補償し
あって前記偏光板の法線方向に対して同一の角度を有す
る範囲から見たときの前記液晶層のリタデーションがほ
ぼ一定になるように前記両領域のギャップ幅を設定した
ことを特徴とする液晶表示装置。3. A liquid crystal display device in which a liquid crystal layer is sandwiched between a pair of substrates, and a pair of polarizing plates are disposed above and below the pair of substrates, wherein the liquid crystal layer is provided along a direction normal to a surface of the polarizing plate. There is a region in which liquid crystal molecules are vertically aligned and a region in which the liquid crystal molecules are horizontally arranged, and when the polarizing plate surface is viewed from an oblique direction,
The retardation of the region where the liquid crystal molecules are horizontally aligned and the retardation of the region where the liquid crystal molecules are vertically aligned compensate for each other, and the retardation of the liquid crystal layer when viewed from the range having the same angle with respect to the normal direction of the polarizing plate. A liquid crystal display device, wherein a gap width between the two regions is set so that retardation is substantially constant.
に垂直配向処理が行われると共に他方の基板の配向膜に
水平配向処理が行われ、前記両領域のギャップ幅が設定
値になるように前記配向膜の配向アンカリングを調整し
たことを特徴とする請求項1乃至請求項3記載の液晶表
示装置。4. In the pair of substrates, a vertical alignment process is performed on an alignment film of one substrate and a horizontal alignment process is performed on an alignment film of the other substrate, so that a gap width of the two regions becomes a set value. 4. The liquid crystal display device according to claim 1, wherein the alignment anchoring of the alignment film is adjusted as described above.
吸収軸が約90度をなすと共に、前記透過軸又は吸収軸
が前記配向膜の水平配向方向と約45度をなすように配
置されていることを特徴とする請求項1乃至請求項4記
載の液晶表示装置。5. The pair of polarizing plates are arranged such that the transmission axis or the absorption axis thereof is about 90 degrees and the transmission axis or the absorption axis is about 45 degrees with the horizontal alignment direction of the alignment film. The liquid crystal display device according to claim 1, wherein:
偏光板の透過軸又は吸収軸と40度から50度の角度を
なすと共に、前記偏光板の表面の法線方向に対して10
度から70度の角度をなす範囲に含まれることを特徴と
する請求項1乃至請求項5記載の液晶表示装置。6. A direction in which the polarizing plate is viewed obliquely forms an angle of 40 ° to 50 ° with a transmission axis or an absorption axis of the polarizing plate, and is 10 ° with respect to a normal direction of the surface of the polarizing plate.
The liquid crystal display device according to claim 1, wherein the liquid crystal display device is included in a range forming an angle of from 70 degrees to 70 degrees.
晶層を見たときの水平配列領域のリタデーションが約2
00nmから約300nmの範囲内になるように設定し
たことを特徴とする請求項1乃至請求項6記載の液晶表
示装置。7. When the liquid crystal layer is viewed from the direction normal to the surface of the polarizing plate, the retardation of the horizontal alignment region is about 2
7. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is set to be in a range from 00 nm to about 300 nm.
ティック液晶が介在されていることを特徴とする請求項
1乃至請求項7記載の液晶表示装置。8. The liquid crystal display device according to claim 1, wherein a nematic liquid crystal having a positive dielectric anisotropy is interposed between said substrates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000078526A JP3649986B2 (en) | 2000-03-21 | 2000-03-21 | Liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000078526A JP3649986B2 (en) | 2000-03-21 | 2000-03-21 | Liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001264765A true JP2001264765A (en) | 2001-09-26 |
JP3649986B2 JP3649986B2 (en) | 2005-05-18 |
Family
ID=18595927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000078526A Expired - Fee Related JP3649986B2 (en) | 2000-03-21 | 2000-03-21 | Liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3649986B2 (en) |
-
2000
- 2000-03-21 JP JP2000078526A patent/JP3649986B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3649986B2 (en) | 2005-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2982869B2 (en) | Liquid crystal display | |
JP3299190B2 (en) | Liquid crystal display | |
RU2444034C1 (en) | Liquid crystal display | |
JP4080245B2 (en) | Liquid crystal display | |
US7176999B2 (en) | Liquid crystal display device | |
US8179508B2 (en) | Liquid crystal display device having first and second polarizers and first and second birefringent layers | |
US20080018834A1 (en) | Circular polarizer, liquid crystal display device, and terminal device | |
US20080309854A1 (en) | Wide Viewing Angle and Broadband Circular Polarizers for Transflective Liquid Crystal Displays | |
JP2001013501A (en) | Liquid crystal display device | |
KR101476841B1 (en) | Viewing angle controlable Liquid Crystal Display Device | |
JP2006309105A (en) | Liquid crystal display device | |
US6208396B1 (en) | Normally white mode twisted nematic liquid crystal display device having improved viewing angle characteristics | |
JPH10282487A (en) | Liquid crystal display element | |
JPH0769537B2 (en) | Anisotropic compensation twisted nematic liquid crystal display | |
US6429915B1 (en) | Tilted polarizers for liquid crystal displays | |
US7110071B2 (en) | Liquid crystal display device and electronic apparatus | |
JPH11305232A (en) | Reflection type liquid crystal display device | |
JP4788247B2 (en) | Liquid crystal device and electronic device | |
EP0838713A2 (en) | Liquid crystal display device | |
KR20030037821A (en) | Vertical alignment mode liquid crystal display device | |
JP3649986B2 (en) | Liquid crystal display | |
CN110908169A (en) | Liquid crystal display panel | |
JPH06342154A (en) | Liquid crystal display device | |
JPH06281927A (en) | Liquid crystal display device | |
JP3568449B2 (en) | Liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050216 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080225 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080225 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120225 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |