JP2001264559A - Polymer optical integrated circuit light source and method of manufacturing the same - Google Patents

Polymer optical integrated circuit light source and method of manufacturing the same

Info

Publication number
JP2001264559A
JP2001264559A JP2000070275A JP2000070275A JP2001264559A JP 2001264559 A JP2001264559 A JP 2001264559A JP 2000070275 A JP2000070275 A JP 2000070275A JP 2000070275 A JP2000070275 A JP 2000070275A JP 2001264559 A JP2001264559 A JP 2001264559A
Authority
JP
Japan
Prior art keywords
polymer
thin film
polymer optical
integrated circuit
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000070275A
Other languages
Japanese (ja)
Other versions
JP3630605B2 (en
Inventor
Yutaka Omori
裕 大森
Makoto Hikita
真 疋田
Hisataka Takenaka
久貴 竹中
Saburo Imamura
三郎 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2000070275A priority Critical patent/JP3630605B2/en
Publication of JP2001264559A publication Critical patent/JP2001264559A/en
Application granted granted Critical
Publication of JP3630605B2 publication Critical patent/JP3630605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer optical integrated circuit light source which is highly flexible, small in size, lightweight, low-cost and of high efficiency. SOLUTION: A light emitting device formed on a polymer optical waveguide substrate and having a light emitting layer consisting of an organic functional conductive thin film interposed between a transparent electrode and a counter electrode is used as the polymer optical integrated circuit light source. The organic functional conductive thin film consists of a plurality of organic molecules dispersed in a polymer material. As for the polymer material, a polymer having a carbazole group is used, and the molecules to be disposed to obtain emission of red light have a porphin ring. Because the composite polymer aggregate can be dissolved in a solvent to prepare the material in a solution state, the polymer can be made into a thin film by a spin coat method in air in the process of forming the thin film of the polymer. Thereby, the polymer optical integrated circuit light source which is highly flexible, small in size, lightweight, low-cost and of high efficiency can be easily mass produced in a short time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光情報処理回路に用
いる、可とう性に優れた小型軽量光源とその製法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small and lightweight light source having excellent flexibility and used for an optical information processing circuit, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年IT(Information T
echnology)革命が急速に進展する中、あらゆ
るところに光情報処理回路が必要とされている。その中
で、可とう性に優れ、小型軽量で、高性能な受発光素子
は、光情報処理回路の構成要素部品の一つとして、要求
が高い。このような部品開発には、従来、以下の様な問
題点があり、開発が困難であった。
2. Description of the Related Art In recent years, IT (Information T
2. Description of the Related Art As the revolution progresses rapidly, optical information processing circuits are required everywhere. Among them, highly flexible, compact, lightweight, high-performance light emitting and receiving elements are highly demanded as one of the component parts of the optical information processing circuit. Conventionally, such component development has the following problems, and has been difficult to develop.

【0003】従来の光回路は、シリコン基板上に形成さ
れた、石英系の材料により形成されたものであり、可と
う性はない。また、光導波回路に組み込まれる能動素子
は無機の半導体により形成されており、基板を加熱した
状態で能動素子を作製するために、高温に耐える基板を
必要とした。
[0003] A conventional optical circuit is formed of a quartz-based material formed on a silicon substrate and has no flexibility. Further, the active element incorporated in the optical waveguide circuit is formed of an inorganic semiconductor, and a substrate that can withstand high temperatures is required to manufacture the active element while heating the substrate.

【0004】最近、可とう性を有する光回路として、ポ
リマー光導波路フィルムが提案されている(疋田:“有
機光導波路素子”、電子情報通信学会誌、Vol.8
1,No.1,pp.37−40(1998))。しか
し、能動素子機能を有する半導体素子は、通常、高温で
形成するため、可とう性を有するポリマー光導波路上に
直接作製することは困難であった。
Recently, polymer optical waveguide films have been proposed as flexible optical circuits (Hikita: “Organic Optical Waveguide Devices”, Journal of the Institute of Electronics, Information and Communication Engineers, Vol. 8).
1, No. 1, pp. 37-40 (1998)). However, since a semiconductor element having an active element function is usually formed at a high temperature, it is difficult to directly fabricate the semiconductor element on a flexible polymer optical waveguide.

【0005】この問題を解決するために、可とう性を有
するポリマー光導波路上に、電気−光変換機能を有し、
しかも、低温形成が可能な有機薄膜を形成した受発光機
能付きポリマー光導波路フィルムを作製する試みがなさ
れている(Y.Ohmori,H.Ueta,Y.Ku
rosaka,M.Hikita and K.Yos
hino,“Organic EL diode wi
th waveguide devices”,Non
linear Optics,vol.22,pp.4
61−464(1999))。このような素子では、発
光に直接寄与する機能性有機薄膜部分での発光が高効率
であることが重要である。従来、電気−光変換機能を有
する分子を他の有機分子中に分散させて発光効率を高め
る方法が検討されているが、これらの複合分子薄膜は、
蒸着法により形成されていた。蒸着法は、薄膜形成法と
しては優れているが、真空装置を使用することから、真
空引きに時間がかかることや装置そのものが高額なこと
から、低価格な汎用部品を作製する方法としては、適さ
ないという問題点があった。
In order to solve this problem, an electric-optical conversion function is provided on a flexible polymer optical waveguide,
In addition, attempts have been made to produce a polymer optical waveguide film having a light emitting / receiving function formed of an organic thin film that can be formed at a low temperature (Y. Ohmori, H. Ueta, Y. Ku).
rosaka, M .; Hikita and K.S. Yos
hino, “Organic EL diode wi
th waveguide devices ", Non
linear Optics, vol. 22, pp. 4
61-464 (1999)). In such a device, it is important that light emission at the functional organic thin film portion directly contributing to light emission is highly efficient. Conventionally, methods of increasing the luminous efficiency by dispersing molecules having an electro-optical conversion function in other organic molecules have been studied.
It was formed by a vapor deposition method. The vapor deposition method is excellent as a method for forming a thin film, but since a vacuum device is used, it takes a long time to evacuate and the device itself is expensive. There was a problem that it was not suitable.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、可と
う性に富む小型で軽量で低価格で高効率なポリマー光集
積回路光源を提供する事にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a flexible, compact, lightweight, low-cost, high-efficiency polymer optical integrated circuit light source.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明によるポリマー光集積回路光源は、ミラー構
造を有するポリマー光導波路を基板とし、該基板上で該
ミラー構造の上部に、透明電極と、カルバゾール基を有
する高分子材料中に、少なくとも1つのポルフィン環を
有する分子のほか、単数又は複数の分子固体を混合して
構成された集合体から形成された有機薄膜層と、対向電
極からなる発光素子を有することを特徴とする。また、
好ましくは、有機薄膜層は、カルバゾール基を有する高
分子材料としてポリビニールカルバゾールを含み、ポル
フィン環を有する分子として5,10,15,20 t
etraphenyl−21H,23H−porphi
ne(TPP)分子を含み、分子固体として4−(di
cyano methylene)−2−methyl
−6−(p−dimethyl aminostyry
l)−4H−pyran(DCM)分子を含むことを特
徴とする。
In order to solve the above-mentioned problems, a polymer optical integrated circuit light source according to the present invention comprises a polymer optical waveguide having a mirror structure as a substrate, and a transparent light-emitting device provided on the substrate and above the mirror structure. An electrode, an organic thin film layer formed from an aggregate formed by mixing a molecule having at least one porphine ring, one or more molecular solids in a polymer material having a carbazole group, and a counter electrode. And a light-emitting element comprising: Also,
Preferably, the organic thin film layer contains polyvinyl carbazole as a polymer material having a carbazole group, and 5, 10, 15, 20 t as a molecule having a porphine ring.
ethaphenyl-21H, 23H-porphi
ne (TPP) molecule, and 4- (di)
cyano methylene) -2-methyl
-6- (p-dimethyl aminostyry
1) It is characterized by containing a -4H-pyran (DCM) molecule.

【0008】また、上記課題を解決するために、本発明
によるポリマー光集積回路光源の製造方法は、ミラー構
造を有するポリマー光導波路上で該ミラー構造の上部に
透明電極を形成し、該透明電極上に、カルバゾール基を
有する高分子材料中に、少なくとも1つのポルフィン環
を有する分子のほか、単数又は複数の分子固体を混合し
て構成された集合体を、溶媒中に溶かして溶液状にし、
スピンコート法により発光機能を有する有機薄膜層を積
層し、該有機薄膜層上に、対向電極を形成することを特
徴とする。また好ましくは、集合体は、ポリビニールカ
ルバゾールと5,10,15,20 tetraphe
nyl−21H,23H−porphine(TPP)
分子と4−(dicyano methylene)−
2−methyl−6−(p−dimethyl am
inostyryl)−4H−pyran(DCM)分
子がモル濃度比90:1:9の割合で混合したものであ
ることを特徴とする。
According to another aspect of the present invention, there is provided a method of manufacturing a light source for a polymer optical integrated circuit, comprising: forming a transparent electrode on a polymer optical waveguide having a mirror structure on the mirror structure; Above, in a polymer material having a carbazole group, in addition to a molecule having at least one porphine ring, an aggregate formed by mixing one or more molecular solids is dissolved in a solvent to form a solution,
An organic thin film layer having a light emitting function is laminated by a spin coating method, and a counter electrode is formed on the organic thin film layer. Also preferably, the aggregate comprises polyvinyl carbazole and 5,10,15,20 tetraphe
nyl-21H, 23H-porfine (TPP)
Molecules and 4- (dicyano methylene)-
2-methyl-6- (p-dimethyl am
(inostyryl) -4H-pyran (DCM) molecules are mixed at a molar ratio of 90: 1: 9.

【0009】すなわち、本発明は、ポリマー光導波路基
板上に形成された透明電極と対向電極に挟まれた発光層
が有機機能性導電体薄膜で構成されている発光素子をポ
リマー光集積回路光源として用いるもので、当該有機機
能性導電体薄膜が高分子材料中に分散された複数の有機
分子により構成されており、高分子材料にカルバゾール
基を有する高分子を用い、赤色発光を得るために分散さ
れる分子はポルフィン環を有する分子であり、この複合
高分子集合体を溶媒に溶かし、溶液状にすることができ
るので、この高分子を薄膜化するとき、従来のような高
価な真空装置を用いることなく、大気中でスピンコート
法により薄膜化できる。このため、短時間にしかも簡便
に作製できるため、可とう性に富む小型で軽量で安価で
高効率なポリマー光集積回路光源が大量に作製可能とな
る。
That is, the present invention relates to a light-emitting element in which a light-emitting layer sandwiched between a transparent electrode and a counter electrode formed on a polymer optical waveguide substrate is formed of an organic functional conductive thin film as a polymer optical integrated circuit light source. The organic functional conductive thin film is composed of a plurality of organic molecules dispersed in a polymer material, and a polymer having a carbazole group is used as the polymer material and dispersed to obtain red light emission. The molecule to be formed is a molecule having a porphine ring, and this complex polymer assembly can be dissolved in a solvent to form a solution. Without using it, a thin film can be formed by spin coating in air. For this reason, since it can be manufactured in a short time and simply, it is possible to manufacture a large amount of a flexible, compact, lightweight, inexpensive and highly efficient polymer optical integrated circuit light source.

【0010】[0010]

【発明の実施の形態】図1に本発明によるポリマー光集
積回路光源の構成の一実施形態を示す。図1は基板とし
て使用するポリマー光導波路に垂直な方向から見た断面
図であり、1はポリマー光導波路の下部クラッド部、2
はポリマー光導波路のコア部、3はポリマー光導波路の
上部クラッド部、4はポリマー光導波路のミラー構造、
5はアルミコート膜、6は光導波路のコア部2の中心
線、7は発光素子とミラー構造の中心線、8は発光素子
の透明電極(下部電極)、9は発光素子の有機薄膜層、
10は発光素子の対向電極(上部電極)、aは上部クラ
ッド層3の膜厚、bは導波路コア部2の膜厚、cは下部
クラッド部1の膜厚である。
FIG. 1 shows an embodiment of the structure of a polymer optical integrated circuit light source according to the present invention. FIG. 1 is a cross-sectional view as viewed from a direction perpendicular to a polymer optical waveguide used as a substrate.
Is the core of the polymer optical waveguide, 3 is the upper cladding of the polymer optical waveguide, 4 is the mirror structure of the polymer optical waveguide,
5 is an aluminum coating film, 6 is a center line of the core portion 2 of the optical waveguide, 7 is a center line of the light emitting element and the mirror structure, 8 is a transparent electrode (lower electrode) of the light emitting element, 9 is an organic thin film layer of the light emitting element,
Reference numeral 10 denotes a counter electrode (upper electrode) of the light emitting element, a denotes the thickness of the upper cladding layer 3, b denotes the thickness of the waveguide core portion 2, and c denotes the thickness of the lower cladding portion 1.

【0011】ポリマー光導波路の上には、透明電極用材
料を蒸着法やスパッタ法などで堆積し、微細加工技術で
パタニングし、ミラー構造4の上部に透明電極8を形成
する。その上に、発光機能を有する有機薄膜層9をスピ
ンコート法により形成する。有機薄膜層としては、ポリ
ビニールカルバゾールにポルフィン環を有する5,1
0,15,20 tetraphenyl−21H,2
3H−porphine(TPP)分子、と4−(di
cyano methylene)−2−methyl
−6−(p−dimethyl aminostyry
l)−4H−pyran(DCM)分子を分散させ、モ
ル濃度比を適当に選び、この混合分子をクロロフォルム
溶液中に溶かし、スピンコート法で薄膜を作製する。こ
のとき、DCMの濃度を30%以上の割合にするとTP
P分子以外にDCM分子からの発光も得られる。ポリビ
ニールカルバゾールとポルフィン環を有するTPP分子
とDCM分子のモル濃度比90対1対9の割合の時にT
PPからの発光強度が最も強く、またポリビニールカル
バゾールにTPP分子のみを添加する場合よりDCM分
子を添加する場合に1桁以上強いTPP分子からの発光
が得られる。上記、混合高分子は、クロロフォルム溶液
中に溶かすことができるため、スピンコートが可能であ
る。
A transparent electrode material is deposited on the polymer optical waveguide by a vapor deposition method, a sputtering method, or the like, and is patterned by a fine processing technique to form a transparent electrode 8 on the mirror structure 4. An organic thin film layer 9 having a light emitting function is formed thereon by a spin coating method. As the organic thin film layer, 5,1 having a porphine ring in polyvinyl carbazole is used.
0,15,20 tetraphenyl-21H, 2
3H-porfine (TPP) molecule, and 4- (di
cyano methylene) -2-methyl
-6- (p-dimethyl aminostyry
1) Disperse -4H-pyran (DCM) molecules, select an appropriate molar concentration ratio, dissolve the mixed molecules in a chloroform solution, and prepare a thin film by spin coating. At this time, if the concentration of DCM is set to 30% or more, TP
Light emission from DCM molecules other than P molecules is also obtained. When the molar concentration ratio of polyvinyl carbazole, TPP molecule having a porphine ring and DCM molecule is 90: 1 to 9: 1, T
The light emission intensity from PP is the strongest, and the light emission from TPP molecules is at least one order of magnitude stronger when adding DCM molecules than when adding only TPP molecules to polyvinyl carbazole. Since the above mixed polymer can be dissolved in a chloroform solution, spin coating is possible.

【0012】次に、対向電極10として、マグネシウム
と銀の合金を蒸着法により、有機膜上に形成する事によ
り発光機能を有するポリマー光集積回路光源を作製でき
る。同様の結果はポリビニールカルバゾールの代わり
に、ポリアルキルチオフェンをもちいてクロロフォルム
を溶媒としスピンコート法により成膜をすることにより
得られる。
Next, a polymer optical integrated circuit light source having a light emitting function can be manufactured by forming an alloy of magnesium and silver on the organic film by a vapor deposition method as the counter electrode 10. Similar results can be obtained by forming a film by spin coating using polyalkylthiophene instead of polyvinylcarbazole and using chloroform as a solvent.

【0013】有機薄膜層9から発光された光は、ポリマ
ー光導波路のミラー構造4で反射され、ポリマー光導波
路のコア部2に導かれ、光導波路のコア部2を伝搬した
光は導波路端面から発せられる。本実施形態におけるミ
ラー構造では、ポリマー光導波路のコア部2とアルミニ
ウムコート層5との境界が45度の傾斜をなしており、
当該ミラー構造上部に微細加工技術で形成された発光素
子から発せられた光がミラー構造4で反射され、コア部
2に高効率で導かれることになる。
The light emitted from the organic thin film layer 9 is reflected by the mirror structure 4 of the polymer optical waveguide, guided to the core 2 of the polymer optical waveguide, and transmitted through the core 2 of the optical waveguide. Emanated from. In the mirror structure according to the present embodiment, the boundary between the core portion 2 of the polymer optical waveguide and the aluminum coat layer 5 is inclined at 45 degrees,
The light emitted from the light emitting element formed on the upper part of the mirror structure by the fine processing technique is reflected by the mirror structure 4 and guided to the core 2 with high efficiency.

【0014】以下実施例により、具体的に述べる。Hereinafter, the present invention will be described in detail with reference to embodiments.

【0015】[0015]

【実施例】図1を用いて、本実施例を説明する。基板に
用いるポリマー光導波路は、下部クラッド部1と上部ク
ラッド部3は紫外線硬化エポキシ樹脂により、光導波路
のコア部2は重水素化メタクリレートにより構成されて
いる。上部クラッド部3の膜厚aは15μm、コア部2
の膜厚bは40μm、下部クラッド部1の膜厚cは65
μmである。コア部2は40μm角の正方形の断面を持
つ。また、ポリマー光導波路端面の一方は、45度傾斜
に加工され、蒸着法により、アルミニュウムコート膜5
が200nmの厚さでコーティングされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS This embodiment will be described with reference to FIG. In the polymer optical waveguide used for the substrate, the lower cladding part 1 and the upper cladding part 3 are made of an ultraviolet curing epoxy resin, and the core part 2 of the optical waveguide is made of deuterated methacrylate. The thickness a of the upper cladding part 3 is 15 μm,
Is 40 μm, and the thickness c of the lower cladding 1 is 65 μm.
μm. The core 2 has a square cross section of 40 μm square. One of the end faces of the polymer optical waveguide is processed to be inclined at 45 degrees, and the aluminum coat film 5 is formed by a vapor deposition method.
Is coated with a thickness of 200 nm.

【0016】このポリマー光導波路基板上でミラー構造
4の上部に、スパッタ法で膜厚200nmのITO(I
ndium−Tin−Oxide:インジウムスズ酸化
物)薄膜を形成し、フォトグラフィとアルゴンイオンミ
リングを用いたエッチングによりパタンニングし、透明
電極8を形成した。
On this polymer optical waveguide substrate, a 200 nm-thick ITO (I
An ndium-Tin-Oxide (indium tin oxide) thin film was formed and patterned by photography and etching using argon ion milling to form a transparent electrode 8.

【0017】次に、ポリビニールカルバゾールにポルフ
ィン環を有する5,10,15,20 tetraph
enyl−21H,23H−porphine(TP
P)分子、と4−(dicyano methylen
e)−2−methyl−6−(p−dimethyl
aminostyryl)−4H−pyran(DC
M)分子を分散させ、モル濃度比90対1対9の割合で
混合し、この混合分子をクロロフォルム溶液中に、カル
バゾール基あたり溶媒のクロロフォルムに対し0.1m
ol/L(モル/リットル)の濃度になるように溶か
し、スピンコート法により500rpmで5秒、次いで
1500rpmで20秒の条件で基板を回転することに
より、ポリマー光導波路基板上に膜厚100nmの有機
薄膜層9が得られた。
Next, 5,10,15,20 tetraphenyl having a porphine ring in polyvinyl carbazole.
enyl-21H, 23H-porfine (TP
P) molecule, and 4- (dicyano methylen)
e) -2-methyl-6- (p-dimethyl)
aminostyryl) -4H-pyran (DC
M) The molecules are dispersed and mixed in a molar concentration ratio of 90: 1 to 9 and the mixed molecules are added to a chloroform solution in an amount of 0.1 m per carbazole group relative to the solvent chloroform.
ol / L (mol / liter), and the substrate was rotated at 500 rpm for 5 seconds and then at 1500 rpm for 20 seconds by spin coating to form a 100 nm thick film on the polymer optical waveguide substrate. An organic thin film layer 9 was obtained.

【0018】次に、対向電極10を、マグネシウムと銀
の合金を蒸着法により、有機膜上に200nm堆積し、
フォトグラフィとアルゴンイオンミリングを用いたエッ
チングによりパタンニングする事により形成し、発光機
能を有するポリマー光集積回路光源を作製した。なお、
有機薄膜層9のエッチングには酸素の反応性イオンエッ
チングを用いた。
Next, a counter electrode 10 is deposited on the organic film to a thickness of 200 nm by vapor deposition of an alloy of magnesium and silver.
A polymer optical integrated circuit light source with a light emitting function was fabricated by patterning by photography and etching using argon ion milling. In addition,
The reactive ion etching of oxygen was used for etching the organic thin film layer 9.

【0019】本発明の発光機能を有するポリマー光集積
回路光源に、透明電極(下部電極)8を正電位に対向電
極(上部電極)10を負電位になるように両電極の間に
5Vの電圧を印加したところ有機薄膜層9からのみ波長
620nmの赤色の発光が生じた。この発光について
は、真空蒸着法で得られた場合に比してそん色のない強
度等の特性が得られた。
In the polymer optical integrated circuit light source having a light emitting function of the present invention, a voltage of 5 V is applied between both electrodes such that the transparent electrode (lower electrode) 8 has a positive potential and the counter electrode (upper electrode) 10 has a negative potential. Was applied, red light with a wavelength of 620 nm was emitted only from the organic thin film layer 9. With respect to this light emission, characteristics such as intensity without color were obtained as compared with those obtained by the vacuum evaporation method.

【0020】[0020]

【発明の効果】本発明の効果は簡易な作製プロセスによ
り可とう性を有する光集積回路に用いる光源及びその作
製方法を提供するものである。本光集積回路は可とう性
を持つ回路であるために、携帯機器に適用することによ
り軽量な加工性に富む回路部品を安価に提供出来、また
汎用部品であるためにその市場規模は計り知れないほど
大きい。
An advantage of the present invention is to provide a light source used for an optical integrated circuit having flexibility by a simple manufacturing process and a manufacturing method thereof. Since this optical integrated circuit is a flexible circuit, it can provide lightweight, highly processable circuit components at low cost by being applied to portable equipment, and its market scale is immeasurable because it is a general-purpose component. Not so big.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図は本発明によるポリマー光集積回路光源
の構成の一実施形態を示す図で、導波路に平行な方向か
ら見た断面図である。
FIG. 1 is a view showing one embodiment of a configuration of a polymer optical integrated circuit light source according to the present invention, and is a cross-sectional view seen from a direction parallel to a waveguide.

【符号の説明】[Explanation of symbols]

1 ポリマー光導波路の下部クラッド部 2 ポリマー光導波路のコア部 3 ポリマー光導波路の上部クラッド部 4 ポリマー光導波路のミラー構造 5 ポリマー光導波路の第2のクラッド部 6 ポリマー光導波路のコア部の中心線 7 発光素子とミラー構造の中心線 8 発光素子の透明電極(下部電極) 9 発光素子の有機薄膜層 10 発光素子の対向電極(上部電極) a 上部クラッド部の膜厚 b コア部の膜厚 c 下部クラッド部の膜厚 DESCRIPTION OF SYMBOLS 1 Lower clad part of polymer optical waveguide 2 Core part of polymer optical waveguide 3 Upper clad part of polymer optical waveguide 4 Mirror structure of polymer optical waveguide 5 Second clad part of polymer optical waveguide 6 Center line of core part of polymer optical waveguide 7 Center line of light emitting element and mirror structure 8 Transparent electrode (lower electrode) of light emitting element 9 Organic thin film layer of light emitting element 10 Counter electrode (upper electrode) of light emitting element a Thickness of upper clad part b Thickness of core part c Lower cladding thickness

フロントページの続き (72)発明者 疋田 真 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 竹中 久貴 東京都新宿区西新宿二丁目1番1号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 (72)発明者 今村 三郎 東京都新宿区西新宿二丁目1番1号 エ ヌ・ティ・ティ・アドバンステクノロジ株 式会社内 Fターム(参考) 2H047 KA04 KA15 LA09 MA07 PA01 PA28 QA05 TA00 TA01 Continuation of front page (72) Inventor Makoto Hikita 2-3-1 Otemachi, Chiyoda-ku, Tokyo Within Nippon Telegraph and Telephone Corporation (72) Kuki Takenaka 2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo d (72) Inventor Saburo Imamura 2-1-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo F-term (reference) in NTT Advanced Technology Co., Ltd. 2H047 KA04 KA15 LA09 MA07 PA01 PA28 QA05 TA00 TA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ミラー構造を有するポリマー光導波路を
基板とし、該基板上で該ミラー構造の上部に、透明電極
と、カルバゾール基を有する高分子材料中に、少なくと
も1つのポルフィン環を有する分子のほか、単数又は複
数の分子固体を混合して構成された集合体から形成され
た有機薄膜層と、対向電極からなる発光素子を有するこ
とを特徴とするポリマー光集積回路光源。
A polymer optical waveguide having a mirror structure is used as a substrate, and a transparent electrode and a polymer material having at least one porphine ring in a polymer material having a carbazole group are provided on the mirror structure on the substrate. In addition, a polymer optical integrated circuit light source having a light emitting element comprising an organic thin film layer formed of an aggregate formed by mixing one or more molecular solids, and a counter electrode.
【請求項2】 請求項1における有機薄膜層は、カルバ
ゾール基を有する高分子材料としてポリビニールカルバ
ゾールを含み、ポルフィン環を有する分子として5,1
0,15,20 tetraphenyl−21H,2
3H−porphine(TPP)分子を含み、分子固
体として4−(dicyano methylene)
−2−methyl−6−(p−dimethyl a
minostyryl)−4H−pyran(DCM)
分子を含むことを特徴とするポリマー光集積回路光源。
2. The organic thin film layer according to claim 1, wherein the polymer material having a carbazole group contains polyvinyl carbazole, and the molecule having a porphine ring has a molecular weight of 5,1.
0,15,20 tetraphenyl-21H, 2
It contains 3H-porphine (TPP) molecule, and is 4- (dicyanomethylene) as a molecular solid.
-2-methyl-6- (p-dimethyla
minostyryl) -4H-pyran (DCM)
A polymer optical integrated circuit light source comprising a molecule.
【請求項3】 ミラー構造を有するポリマー光導波路上
で該ミラー構造の上部に透明電極を形成し、該透明電極
上に、カルバゾール基を有する高分子材料中に、少なく
とも1つのポルフィン環を有する分子のほか、単数又は
複数の分子固体を混合して構成された集合体を、溶媒中
に溶かして溶液状にし、スピンコート法により発光機能
を有する有機薄膜層を積層し、該有機薄膜層上に、対向
電極を形成することを特徴とするポリマー光集積回路光
源の製造方法。
3. A molecule having at least one porphine ring in a polymer material having a carbazole group on a transparent electrode formed on the mirror structure on a polymer optical waveguide having a mirror structure. In addition, an aggregate formed by mixing one or more molecular solids is dissolved in a solvent to form a solution, and an organic thin film layer having a light emitting function is laminated by a spin coating method, and the organic thin film layer is formed on the organic thin film layer. Forming a counter electrode, and a method of manufacturing a polymer optical integrated circuit light source.
【請求項4】 請求項3における集合体は、ポリビニー
ルカルバゾールと5,10,15,20 tetrap
henyl−21H,23H−porphine(TP
P)分子と4−(dicyano methylen
e)−2−methyl−6−(p−dimethyl
aminostyryl)−4H−pyran(DC
M)分子がモル濃度比90:1:9の割合で混合したも
のであることを特徴とするポリマー光集積回路光源の製
造方法。
4. The aggregate according to claim 3, wherein the aggregate is composed of polyvinyl carbazole and 5, 10, 15, 20 tetraps.
henyl-21H, 23H-porfine (TP
P) molecule and 4- (dicyanomethylen)
e) -2-methyl-6- (p-dimethyl)
aminostyryl) -4H-pyran (DC
M) A method for producing a polymer optical integrated circuit light source, wherein molecules are mixed at a molar ratio of 90: 1: 9.
JP2000070275A 2000-03-14 2000-03-14 Polymer optical integrated circuit light source and manufacturing method thereof Expired - Fee Related JP3630605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000070275A JP3630605B2 (en) 2000-03-14 2000-03-14 Polymer optical integrated circuit light source and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000070275A JP3630605B2 (en) 2000-03-14 2000-03-14 Polymer optical integrated circuit light source and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001264559A true JP2001264559A (en) 2001-09-26
JP3630605B2 JP3630605B2 (en) 2005-03-16

Family

ID=18589037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000070275A Expired - Fee Related JP3630605B2 (en) 2000-03-14 2000-03-14 Polymer optical integrated circuit light source and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3630605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278024A (en) * 2003-08-14 2010-12-09 Mitsubishi Chemicals Corp Manufacturing method of organic electroluminescent element, and organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278024A (en) * 2003-08-14 2010-12-09 Mitsubishi Chemicals Corp Manufacturing method of organic electroluminescent element, and organic electroluminescent element

Also Published As

Publication number Publication date
JP3630605B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
KR100513439B1 (en) Light emitting articles with light reflecting structures
US5874803A (en) Light emitting device with stack of OLEDS and phosphor downconverter
US6262441B1 (en) Organic light emitting diode including an organic functional layer between electrodes
US6091195A (en) Displays having mesa pixel configuration
US7830086B2 (en) Light emitting device, lighting device, and display device having light emitting device
US8134291B2 (en) Electroluminescent device and method for preparing the same
US7781961B2 (en) Top emitting, electroluminescent component with frequency conversion centres
CN101305643B (en) Organic el light emitting display
CN102956671B (en) display and electronic system
JP2004207065A (en) Color conversion light emitting device, its manufacturing method and display using color conversion light emitting device
Zhu et al. Ultrahighly Efficient White Quantum Dot Light‐Emitting Diodes Operating at Low Voltage
JP4406991B2 (en) Thin film EL device and manufacturing method thereof
JP2773720B2 (en) Organic thin film EL device
US6639359B1 (en) Organic EL display device higher brightness and a method for manufacturing the same
JP2001264559A (en) Polymer optical integrated circuit light source and method of manufacturing the same
JP2002313553A (en) High-speed operating organic el element
JP5182024B2 (en) EL element and EL display device using the same
JP3239046B2 (en) Organic electroluminescence device
JP2001264587A (en) Connector-attached waveguide type optical active element
JP4423103B2 (en) Organic electroluminescence light emitting device
JP3452262B1 (en) Color conversion color display
JP2001264560A (en) Polymer optical waveguide having function to receive and emit light, and method of manufacturing the same
CN112909201B (en) Display panel, preparation method thereof and display device
JP3444298B1 (en) Method for manufacturing organic EL display and method for manufacturing color conversion filter substrate
JP2002184577A (en) Color conversion filter substrate and color conversion color display equipped with same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees