JP2001264517A - Optical sheet - Google Patents

Optical sheet

Info

Publication number
JP2001264517A
JP2001264517A JP2000081620A JP2000081620A JP2001264517A JP 2001264517 A JP2001264517 A JP 2001264517A JP 2000081620 A JP2000081620 A JP 2000081620A JP 2000081620 A JP2000081620 A JP 2000081620A JP 2001264517 A JP2001264517 A JP 2001264517A
Authority
JP
Japan
Prior art keywords
fine particles
spherical fine
optical sheet
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000081620A
Other languages
Japanese (ja)
Other versions
JP3741415B2 (en
Inventor
Akira Murata
亮 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2000081620A priority Critical patent/JP3741415B2/en
Priority to US09/811,602 priority patent/US6596375B2/en
Priority to TW090106588A priority patent/TW500928B/en
Priority to KR10-2001-0015237A priority patent/KR100447671B1/en
Publication of JP2001264517A publication Critical patent/JP2001264517A/en
Application granted granted Critical
Publication of JP3741415B2 publication Critical patent/JP3741415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly stable optical sheet with excellent optical transmittance and diffusion properties and maintaining the optical characteristics without damage even under a high temperature and high humidity conditions in the optical sheet used for displays such as an LCD(liquid crystal display) or an EL(electroluminescence) panel. SOLUTION: The optical sheet is characterized by having a translucent substrate and an adhesive layer laminated on the translucent substrate, by having a single layer of spherical fine particles with 0.8-1.0 particle size distribution value buried in the adhesive layer in the state partly protruding from the surface of the adhesive layer and by having the distance from the apexes of the protruding parts of the spherical fine particles to the surface of the translucent substrate being 100-110% of the volume averaged particle diameter of the spherical fine particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、LCD、
EL、FED等のディスプレイに好適に用いられ、特
に、これらディスプレイの輝度ムラ防止、コントラスト
向上、広視野角化に優れた効果を発揮する光学シートに
関する。
TECHNICAL FIELD The present invention relates to, for example, LCDs,
The present invention relates to an optical sheet that is suitably used for displays such as EL and FED, and particularly exhibits excellent effects of preventing luminance unevenness, improving contrast, and increasing the viewing angle of these displays.

【0002】[0002]

【従来の技術】LCD、EL、FED等のディスプレイ
は、近年開発が目覚ましい。特に、LCDは、ノートパ
ソコン、携帯端末等あらゆる分野に普及しており、将来
への期待も大きい。このLCDは、液晶パネルを照明す
る光の取り入れ方式により、反射型と透過型とに大別さ
れる。反射型は、反射率の高いアルミニウム膜等を貼っ
た反射板を透過・反射型液晶パネルの背面に配し、ディ
スプレイ表面側から入射する外光を反射板で反射させて
液晶パネルを照明し液晶画像を得る。一方、透過型は、
液晶パネルの背面に配したバックライトユニットにより
液晶パネルを照明する方式である。反射型にあっては、
アルミニウムの地色が出てコントラストが悪化すること
を防ぐために、液晶パネルと反射板との間に光を適度に
拡散する媒体を介装して、背景色をペーパーホワイト色
に近づけることが行われている。また、透過型にあって
は、バックライトユニットを構成するアクリル導光板の
パターンが出て視認性が悪化することを防ぐために、液
晶パネルとバックライトユニットとの間に光を適度に拡
散する媒体を介装して、均一な面状の光が液晶パネルを
照明する構成となっている。
2. Description of the Related Art In recent years, displays such as LCDs, ELs, and FEDs have been remarkably developed. In particular, LCDs have become widespread in all fields such as notebook computers and portable terminals, and expectations for the future are great. This LCD is roughly classified into a reflection type and a transmission type according to a method of taking in light for illuminating a liquid crystal panel. In the reflective type, a reflective plate with an aluminum film with high reflectivity is placed on the back of the transmissive / reflective liquid crystal panel, and external light incident from the display surface is reflected by the reflective plate to illuminate the liquid crystal panel and illuminate the liquid crystal. Get an image. On the other hand, the transmission type
In this method, the backlight unit provided on the back of the liquid crystal panel illuminates the liquid crystal panel. For the reflective type,
In order to prevent the background color of aluminum from deteriorating the contrast, a medium that appropriately diffuses light is interposed between the liquid crystal panel and the reflector to bring the background color closer to paper white. ing. In the case of the transmission type, a medium that appropriately diffuses light between the liquid crystal panel and the backlight unit in order to prevent the pattern of the acrylic light guide plate constituting the backlight unit from coming out and deteriorating the visibility. , A uniform planar light illuminates the liquid crystal panel.

【0003】このように、反射型、透過型のいずれの方
式にあっても、概ね光拡散性の媒体(以下光拡散体と記
す)が用いられている。この光拡散体としては、結着樹
脂中に微粒子を分散させて、層内部で光散乱をさせる内
部光拡散体と、樹脂表面を荒らし、凹凸形状として光を
拡散させる外部光拡散体、さらに、結着樹脂表面に粒子
の一部を突出させて凹凸を作り、内部/外部両方で光を
拡散させる内部・外部光拡散体がある。このうち、粒子
を樹脂層表面に単層で並べた内部・外部光拡散体は、後
方への散乱による透過光の損失が少なく、高透過率、高
拡散性となることが知られている。
As described above, a light diffusing medium (hereinafter, referred to as a light diffusing body) is generally used in both the reflection type and the transmission type. As this light diffuser, by dispersing fine particles in a binder resin, an internal light diffuser that scatters light inside the layer, an external light diffuser that roughens the resin surface and diffuses light as an uneven shape, There is an internal / external light diffuser that makes unevenness by protruding a part of particles on the surface of the binder resin to diffuse light both inside and outside. Of these, it is known that an internal / external light diffuser in which particles are arranged in a single layer on the surface of a resin layer has a small loss of transmitted light due to backward scattering, and has high transmittance and high diffusivity.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の内部・
外部光拡散体は高温高湿時、徐々に光学特性が変化する
という問題があった。本発明は上記実情に鑑みてなされ
たもので、高く均一な光透過性、拡散性が十分発現さ
れ、この光学特性を高温高湿条件下においてさえも保持
し続ける光学シートを提供することを目的としている。
However, the above-mentioned internal
The external light diffuser has a problem that the optical characteristics gradually change at high temperature and high humidity. The present invention has been made in view of the above circumstances, and has as its object to provide an optical sheet in which high and uniform light transmittance and diffusivity are sufficiently exhibited, and which maintain these optical characteristics even under high temperature and high humidity conditions. And

【0005】[0005]

【課題を解決するための手段】本発明者は、光学安定性
の向上について鋭意検討を行った結果、高温高湿条件下
では、結着剤の流動により球状微粒子が基体方向に沈み
込み、これが光学特性を変化させることを見いだした。
さらに、結着層の厚さを薄くすることにより結着剤の流
動を抑制できることを明らかにした。そこで、本願発明
者は、球状微粒子を基体上に直接もしくは非常に薄い結
着剤を介して単層に結着させることで、球状微粒子が結
着剤中で沈み込む挙動を抑え、光透過性、拡散性が高
く、かつ光学特性の安定性も高い光学シートを得ること
ができた。
Means for Solving the Problems As a result of intensive studies on the improvement of optical stability, the present inventors have found that under high temperature and high humidity conditions, spherical fine particles sink in the direction of the substrate due to the flow of the binder. It was found to change the optical properties.
Furthermore, it has been clarified that the flow of the binder can be suppressed by reducing the thickness of the binder layer. Therefore, the present inventor suppressed the behavior of the spherical fine particles sinking in the binder by binding the spherical fine particles directly or on a single layer via a very thin binder, thereby reducing the light transmittance. An optical sheet having high diffusivity and high stability of optical characteristics was obtained.

【0006】すなわち本発明の光学シートは、透光性基
体と、該透光性基体上に直接または他の層を介して積層
された結着層を有し、該結着層上に粒子径分布が0.8
〜1.0の単分散球状微粒子が単層で結着層の表面から
一部が突出する状態で埋め込まれており、かつ、該球状
微粒子の突出部の頂点から透光性基体表面までの距離が
該球状微粒子の体積平均粒子径の100%〜110%で
あることを特徴としている。なお、球状微粒子が埋め込
まれた結着層の表面には、光拡散性を向上させるような
積層を施してもよい。
That is, the optical sheet of the present invention has a light-transmitting substrate and a binding layer laminated directly or via another layer on the light-transmitting substrate, and the particle size is formed on the binding layer. 0.8 distribution
Monodisperse spherical fine particles of 1.0 to 1.0 are embedded in a single layer with a part protruding from the surface of the binder layer, and the distance from the top of the protrusion of the spherical fine particles to the surface of the light-transmitting substrate. Is 100% to 110% of the volume average particle diameter of the spherical fine particles. Note that the surface of the binding layer in which the spherical fine particles are embedded may be laminated to improve light diffusion.

【0007】[0007]

【発明の実施の形態】図1は、本発明の光学シートの一
例を模式的に示した断面図である。この光学シートL
は、透光性基体1上に結着層2が直接積層され、この結
着層2の表層に、多数の球状微粒子3が面方向で高密度
に厚さ方向に重なることなく単層で結着層表面から一部
が突出するように埋め込まれている。このように球状微
粒子が埋め込まれていることにより、球状微粒子による
均一な光拡散性と光透過性を十分に得ることができる。
なお、ここでいう単層とは、球状微粒子が結着層の厚さ
方向で重ならないで球状微粒子が結着層の表面にできる
だけ均一に並んで埋め込まれている状態をいう。
FIG. 1 is a sectional view schematically showing one example of the optical sheet of the present invention. This optical sheet L
In this method, a binding layer 2 is directly laminated on a light-transmitting substrate 1, and a large number of spherical fine particles 3 are bound on a surface layer of the binding layer 2 in a single layer without being densely overlapped in a plane direction in a thickness direction. It is embedded so that a part thereof protrudes from the surface of the deposition layer. By embedding the spherical fine particles in this way, it is possible to sufficiently obtain uniform light diffusion and light transmittance by the spherical fine particles.
Here, the single layer refers to a state in which the spherical fine particles are embedded in the surface of the binding layer as uniformly as possible without overlapping the spherical fine particles in the thickness direction of the binding layer.

【0008】本発明では、球状微粒子の突出部の頂点か
ら透光性基体の表面までの距離(図1のb)が球状微粒
子の体積平均粒子径(図1のa)の100%〜110%
でなければならない。かかる距離は、球状微粒子が透光
性基体にまで埋め込まれていることはないから球状微粒
子の体積平均粒子径のほぼ100%が最低であり、ま
た、110%を超えるものでは、球状微粒子と透光性基
体の間に存在する結着層の樹脂が多過ぎて、高温高湿下
での光学特性の安定性が低下し、実用上十分な光学特性
を得ることができない。なお、本発明では、「球状微粒
子の突出部の頂点から透光性基体表面までの距離」は、
図2のd1に該当するものであり次の方法により測定し
た値である。なお図2において符号2及び3は前記と同
様、各々結着層と球状微粒子を意味する。まず、光学シ
ートを液体窒素で凍結させた後に任意の部分で2つに割
り、その破断面の断面写真を用いて、該写真から無作為
に球状微粒子を5つ抽出する。そして、それぞれの球状
微粒子の突出部の頂点T1から透光性基体と結着層との
境界線に直交する直線d1を引き、その直線の長さを測
定する。この値を平均したものを粒子の突出部の頂点か
ら透光性基体表面までの距離とする。
In the present invention, the distance (b in FIG. 1) from the apex of the protrusion of the spherical fine particles to the surface of the light-transmitting substrate is 100% to 110% of the volume average particle diameter of the spherical fine particles (a in FIG. 1).
Must. The distance is at least about 100% of the volume average particle diameter of the spherical fine particles since the spherical fine particles are not embedded in the light-transmitting substrate. Too much resin of the binder layer existing between the optical substrates causes the stability of the optical characteristics under high temperature and high humidity to deteriorate, and practically sufficient optical characteristics cannot be obtained. In the present invention, the "distance from the top of the protruding portion of the spherical fine particles to the surface of the light-transmitting substrate" is:
It corresponds to d 1 in FIG. 2 and is a value measured by the following method. In FIG. 2, reference numerals 2 and 3 denote a binder layer and spherical fine particles, respectively, as described above. First, after freezing the optical sheet with liquid nitrogen, the optical sheet is divided into two at an arbitrary portion, and five spherical microparticles are randomly extracted from the photograph by using a photograph of a cross section of the fractured surface. Then, a straight line d 1 orthogonal to the boundary between the light-transmitting substrate and the binder layer is drawn from the apex T 1 of the protrusion of each spherical fine particle, and the length of the straight line is measured. The average of these values is defined as the distance from the vertex of the protrusion of the particle to the surface of the light-transmitting substrate.

【0009】また、球状微粒子の粒子径分布は、狭いほ
ど球状微粒子の結着層への埋め込み深さが均一になるこ
とから好ましく、その値が0.8〜1.0が好ましく、
より好ましくは0.9〜1.0であることが望ましい。
なお、本発明でいう「粒子径分布」とは下記式で定義さ
れるもので、粒子径分布が単分散になるほど1.0に近
くなり、完全な単分散粒子では1.0となるものであ
る。 *粒子径分布=個数平均粒子径/体積平均粒子径 *個数平均粒子径=球状微粒子の顕微鏡写真から無作為
に抽出した100個の球状微粒子の直径を測定した平均
値 *体積平均粒子径=上記個数平均粒子径の測定で得られ
た球状微粒子の直径から球状微粒子を真球とみなし個々
の球状微粒子の体積を求める。次に、個々の球状微粒子
の体積を累積して100個の球状微粒子の合計体積を算
出する。その後、100個の球状微粒子の内で最小体積
の球状微粒子から最大体積の球状微粒子まで体積の大き
さの順に体積を累積していき、その累積体積が上記の合
計体積の50%となった時の粒子の直径。なお、球状微
粒子が真球でない場合には、その最長径を球状微粒子の
直径とする。
The narrower the particle size distribution of the spherical fine particles is, the more uniform the depth of embedding the spherical fine particles in the binder layer is. The value is preferably 0.8 to 1.0.
More preferably, it is desirable to be 0.9-1.0.
The term “particle size distribution” as used in the present invention is defined by the following formula, and is closer to 1.0 as the particle size distribution becomes monodisperse, and becomes 1.0 for complete monodisperse particles. is there. * Particle size distribution = Number average particle size / Volume average particle size * Number average particle size = Average value of diameters of 100 spherical fine particles randomly extracted from a micrograph of spherical fine particles * Volume average particle size = above The spherical fine particles are regarded as true spheres from the diameter of the spherical fine particles obtained by measuring the number average particle diameter, and the volume of each spherical fine particle is determined. Next, the volumes of the individual spherical fine particles are accumulated to calculate the total volume of 100 spherical fine particles. Then, the volume is accumulated in order of volume from the smallest spherical particle to the largest spherical particle among the 100 spherical particles, and when the accumulated volume becomes 50% of the above total volume. Particle diameter. When the spherical fine particles are not true spheres, the longest diameter is defined as the diameter of the spherical fine particles.

【0010】また、結着層の厚さ(図1のc)は、結着
層からの球状微粒子の剥離が抑えられ、かつ結着層の表
面から突出して確実に光拡散性が発現され得るために、
球状微粒子の直径の10〜90%、好ましくは30〜8
0%の厚さであることが望ましい。なお、本発明では、
「結着層の厚さ」とは、図3のd2に該当するもので次
の方法により測定した値である。なお、図3において符
号2及び3は前記と同様、各々結着層と球状微粒子を意
味する。測定の方法は、まず前述の光学シートの断面写
真から無作為に球状微粒子を5つ抽出する。そして、球
状微粒子が結着層2と球状微粒子3が接する点T2から
透光性基体と結着層との境界線に直交する直線d2を引
き、その直線d2の長さを測定する。これを5つの球状
微粒子の突出部の左右それぞれについて測定し、合計1
0点の平均値を結着層の厚さとする。
The thickness (c in FIG. 1) of the binder layer can prevent the spherical fine particles from peeling off from the binder layer, and can protrude from the surface of the binder layer to ensure light diffusion. for,
10 to 90% of the diameter of the spherical fine particles, preferably 30 to 8
Desirably, the thickness is 0%. In the present invention,
The “thickness of the binding layer” corresponds to d 2 in FIG. 3 and is a value measured by the following method. In FIG. 3, reference numerals 2 and 3 mean a binder layer and spherical fine particles, respectively, as described above. First, five spherical microparticles are randomly extracted from the cross-sectional photograph of the optical sheet. Then, a straight line d 2 perpendicular to the boundary between the translucent substrate and the binding layer is drawn from the point T 2 where the spherical fine particles contact the binding layer 2 and the spherical fine particle 3, and the length of the straight line d 2 is measured. . This was measured for each of the left and right sides of the protrusions of the five spherical fine particles, and a total of 1
The average value of zero points is defined as the thickness of the binder layer.

【0011】さらに、本発明においては上記のような球
状微粒子の埋め込み形態とするためには、結着層に用い
られる樹脂のガラス転移点(以下「Tg」という)が−
65〜−15℃であることが望ましい。Tgが−65℃
より低い場合は、結着剤がやわらかすぎるために光学特
性の変化を抑えることが困難になり、−15℃より高い
場合は結着剤が硬いために球状微粒子を結着層に埋め込
みにくくなり、しっかりと保持することができない。な
お、本発明におけるTgは動的粘弾性を測定(オリエン
テック社製、レオパイブロンDDV−II使用)して、T
anδの最大値を求め、これをTgとしたものである。
Further, in the present invention, the glass transition point (hereinafter, referred to as “Tg”) of the resin used for the binder layer must be −
It is desirable to be 65 to -15 ° C. Tg is -65 ° C
If the temperature is lower, it is difficult to suppress the change in the optical properties because the binder is too soft.If the temperature is higher than -15 ° C., the spherical particles are hard to be embedded in the binding layer because the binder is hard, It cannot be held firmly. In the present invention, Tg is determined by measuring dynamic viscoelasticity (using Orientec Co., Ltd., using Leopy Bron DDV-II).
The maximum value of an δ was determined, and this was defined as Tg.

【0012】次に、本発明の光学シートを構成する好適
な材料を示す。本発明の透光性基体としては、透明なフ
ィルムを使用することができる。具体的には、ポリエチ
レンテレフタレート(PET)、ポリエチレンナフタレ
ート(PEN)、トリアセチルセルロース(TAC)、
ポリアレート、ポリイミド、ポリエーテル、ポリカーボ
ネート、ポリスルホン、ポリエーテルスルホン、セロフ
ァン、ポリアミド、ポリエチレン、ポリプロピレン、ポ
リビニルアルコール等からなる各種樹脂フィルムを好適
に使用することができる。また、本発明においては、こ
のようなフィルムに限定されず、上記樹脂からなる樹脂
板や、石英ガラス、ソーダガラス等ガラス材料からなる
シート状部材も用いることができる。
Next, suitable materials for forming the optical sheet of the present invention will be described. A transparent film can be used as the translucent substrate of the present invention. Specifically, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), triacetyl cellulose (TAC),
Various resin films made of polyalate, polyimide, polyether, polycarbonate, polysulfone, polyethersulfone, cellophane, polyamide, polyethylene, polypropylene, polyvinyl alcohol, and the like can be suitably used. The present invention is not limited to such a film, and a resin plate made of the above resin or a sheet-shaped member made of a glass material such as quartz glass or soda glass can be used.

【0013】透光性基体としては光が透過されるもので
あれば非透明状物のもので使用できるが、液晶ディスプ
レイ等に用いる場合等は屈折率(JIS K7142)
が1.42〜1.60の範囲にある透明基体が望まし
い。具体例には、トリアセチルセルロース(TAC)や
ポリメチルメタクリレート等のアクリル系樹脂フィルム
等をあげることができる。これら透明基体の透明性は高
いもの程良好であって、光線透過率(JIS C671
4)が80%以上、より好ましくは85%以上のもの、
また、ヘイズ値(JIS K7105)が3.0以下、
より好ましくは1.0以下、最も好ましくは0.5以下
のものが好適に使用できる。なお、小型軽量の液晶ディ
スプレイに用いる場合には、透光性基体はフィルムであ
ることがより好ましく、その厚さに関しては、軽量化の
観点から薄いほうが望ましいが、その生産性を考慮する
と、0.5μm〜1mmの範囲のものを使用することが
好適である。さらに、透光性基体の結着層とは反対側の
片面に集光性または拡散性を有するレンズを形成するこ
ともできる。
As the light-transmitting substrate, a non-transparent substrate can be used as long as it transmits light. However, when it is used for a liquid crystal display or the like, the refractive index (JIS K7142) is used.
Is desirable in the range of 1.42 to 1.60. Specific examples include acrylic resin films such as triacetyl cellulose (TAC) and polymethyl methacrylate. The higher the transparency of these transparent substrates, the better, and the light transmittance (JIS C671)
4) is 80% or more, more preferably 85% or more,
Further, the haze value (JIS K7105) is 3.0 or less,
More preferably, it is preferably 1.0 or less, most preferably 0.5 or less. When used in a small and lightweight liquid crystal display, the light-transmitting substrate is more preferably a film, and the thickness thereof is preferably thinner from the viewpoint of weight reduction. It is preferable to use one having a range of 0.5 μm to 1 mm. Further, a lens having a light collecting property or a diffusing property can be formed on one surface of the light-transmitting substrate on the side opposite to the binding layer.

【0014】また、本発明の結着層は、例えば、粘着剤
を上記基体上にコーティングして得られる粘着剤層が好
適である。その粘着剤としては、ポリエステル系樹脂、
エポキシ系樹脂、ポリウレタン系樹脂、シリコーン系樹
脂、アクリル系樹脂等の樹脂製粘着剤を挙げることがで
きる。これらは、単独もしくは2種以上を混合して使用
してもよい。特に、アクリル系粘着剤は、耐水性、耐熱
性、耐光性等に優れ、粘着力、透明性がよく、さらに、
液晶ディスプレイに用いる場合には屈折率をそれに適合
するように調整しやすいこと等から好ましい。アクリル
系粘着剤としては、アクリル酸及びそのエステル、メタ
クリル酸及びそのエステル、アクリルアミド、アクリル
ニトリル等のアクリルモノマーの単独重合体もしくはこ
れらの共重合体、さらに、前記アクリルモノマーの少な
くとも1種と、酢酸ビニル、無水マレイン酸、スチレン
等の芳香族ビニルモノマーとの共重合体を挙げることが
できる。特に、粘着性を発現するエチレンアクリレー
ト、ブチルアクリレート、2−エチルヘキシルアクリレ
ート等の主モノマー、凝集力成分となる酢酸ビニル、ア
クリルニトリル、アクリルアミド、スチレン、メタクリ
レート、メチルアクリレート等のモノマー、さらに粘着
力向上や、架橋化起点を付与するメタクリル酸、アクリ
ル酸、イタコン酸、ヒドロキシエチルメタクリレート、
ヒドロキシプロピルメタクリレート、ジメチルアミノエ
チルメタクリレート、ジメチルアミノメチルメタクリレ
ート、アクリルアミド、メチロールアクリルアミド、グ
リシジルメタクリレート、無水マレイン酸等の官能基含
有モノマーからなる共重合体が好適である。また、粘着
剤には、硬化剤として、例えば金属キレート系、イソシ
アネート系、エポキシ系等の架橋剤を必要に応じて1種
あるいは2種以上混合して用いることができる。さら
に、結着層には光重合性モノマー、オリゴマー、ポリマ
ーおよび光重合開始剤を加えたUV硬化性の結着剤を用
いても良い。
The binder layer of the present invention is preferably, for example, a pressure-sensitive adhesive layer obtained by coating a pressure-sensitive adhesive on the substrate. As the adhesive, polyester resin,
Resin adhesives such as epoxy resins, polyurethane resins, silicone resins, and acrylic resins can be used. These may be used alone or in combination of two or more. In particular, acrylic pressure-sensitive adhesives are excellent in water resistance, heat resistance, light resistance, etc., and have good adhesive strength and transparency.
When used for a liquid crystal display, it is preferable because the refractive index can be easily adjusted to conform to the refractive index. Examples of the acrylic pressure-sensitive adhesive include homopolymers or copolymers of acrylic monomers such as acrylic acid and esters thereof, methacrylic acid and esters thereof, acrylamide and acrylonitrile, and at least one of the acrylic monomers and acetic acid. Copolymers with aromatic vinyl monomers such as vinyl, maleic anhydride and styrene can be mentioned. In particular, ethylene acrylate, butyl acrylate, 2-ethylhexyl acrylate, and other main monomers that exhibit adhesiveness, vinyl acetate, acrylonitrile, acrylamide, styrene, methacrylate, and methyl acrylate, which are cohesive components, and further improve adhesive strength. Methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate to impart a crosslinking origin,
A copolymer comprising a functional group-containing monomer such as hydroxypropyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminomethyl methacrylate, acrylamide, methylolacrylamide, glycidyl methacrylate, and maleic anhydride is preferred. In the pressure-sensitive adhesive, as a curing agent, for example, a metal chelate-based, isocyanate-based, or epoxy-based cross-linking agent may be used alone or in combination of two or more as necessary. Further, a UV curable binder to which a photopolymerizable monomer, oligomer, polymer and photopolymerization initiator are added may be used for the binder layer.

【0015】本発明の結着層は上記のような樹脂が用い
られるが、前記のように中でもそのTgが−65〜−1
5℃であることが好ましい。Tgが−65℃より低い樹
脂では柔らかすぎるため、特に高温高湿時には一度付着
した球状微粒子が衝撃により剥がされ、色ムラ等の欠陥
が発生し易くなる。また、一度剥がされた球状微粒子に
は樹脂が付着しており、その球状微粒子が再度他の球状
微粒子に付着して、光学特性に悪影響を及ぼすこともあ
る。さらに、光学シート作製時においても球状微粒子の
固定が不十分となり、結着層上に球状微粒子を単層で形
成することが難しく、光透過性が低くなるので好ましく
ない。一方、Tgが−15℃より高い樹脂では粘着性不
足のため、球状微粒子の脱落が発生し易いので好ましく
ない。
The above-mentioned resin is used for the binder layer of the present invention.
Preferably it is 5 ° C. Since a resin having a Tg lower than -65 ° C. is too soft, the spherical fine particles once adhered are peeled off by an impact particularly at a high temperature and a high humidity, and defects such as color unevenness easily occur. Further, the resin is attached to the spherical fine particles that have been peeled off once, and the spherical fine particles may again adhere to other spherical fine particles, which may adversely affect the optical characteristics. Furthermore, even when the optical sheet is produced, the fixation of the spherical fine particles becomes insufficient, it is difficult to form the spherical fine particles in a single layer on the binder layer, and the light transmittance becomes low, which is not preferable. On the other hand, a resin having a Tg higher than −15 ° C. is not preferable because the spherical fine particles easily fall off due to insufficient tackiness.

【0016】結着層は上記の如き樹脂を用いて、その粘
着力(JIS Z0237−8)が、100g/25m
m以上になるよう配合されると実用上好ましい。粘着力
が100g/25mm未満では球状微粒子の脱離が起き
たり、耐環境性が悪くなったりする。特に、高温高湿下
では、結着層が透光性基体から剥離したりするおそれが
ある。さらに、結着層の保持力(JIS Z0237−
11)は0.5mm以下が好ましい。保持力が0.5m
mより大きいと柔らかいため、前述したように球状微粒
子が複層になり易い。
The binder layer is made of a resin as described above and has an adhesive strength (JIS Z0237-8) of 100 g / 25 m.
m or more is practically preferable. If the adhesive strength is less than 100 g / 25 mm, detachment of the spherical fine particles may occur or environmental resistance may deteriorate. In particular, under high temperature and high humidity, the binder layer may peel off from the light transmitting substrate. Further, the holding force of the binder layer (JIS Z0237-
11) is preferably 0.5 mm or less. 0.5m holding force
When it is larger than m, the particles are soft, so that the spherical fine particles are liable to form a multilayer as described above.

【0017】本発明の球状微粒子としては、シリカ、ア
ルミナ等の無機フィラー、アクリル樹脂、ポリスチレン
樹脂、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹
脂、ポリフッ化ビニリデン、テフロン(登録商標)、ジ
ビニルベンゼン、フェノール樹脂、ウレタン樹脂、酢酸
セルロース、ナイロン、セルロース、ベンゾグアナミ
ン、メラミン等の有機微粒子を使用することができる
が、光透過性および結着層との密着性の観点から有機微
粒子が好ましく、さらに耐光性の点でアクリルビーズ、
シリコーンビーズが特に好ましい。
The spherical fine particles of the present invention include inorganic fillers such as silica and alumina, acrylic resins, polystyrene resins, polyethylene resins, epoxy resins, silicone resins, polyvinylidene fluoride, Teflon (registered trademark), divinylbenzene, and phenol resins. Organic fine particles such as urethane resin, cellulose acetate, nylon, cellulose, benzoguanamine and melamine can be used, but organic fine particles are preferable from the viewpoint of light transmittance and adhesion with the binder layer, and furthermore, in light resistance. Acrylic beads,
Silicone beads are particularly preferred.

【0018】さらに、球状微粒子の粒子径分布は、前述
のように狭いほど球状微粒子の結着層への埋め込み深さ
が均一になり、光学シートの光学特性が安定するため、
0.8〜1.0が好ましく、より好ましくは0.9〜
1.0であるが、有機微粒子はこのような単分散に近い
粒度分布のものが得られやすいことからも好適である。
さらに、他の層として、例えば最表面に光の屈折率や透
過性を調整するための調整層、または基体と結着層とを
強固に接着させるための接着層等を必要に応じて設けて
もよい。
Further, as the particle size distribution of the spherical fine particles is narrower as described above, the embedding depth of the spherical fine particles into the binder layer becomes more uniform, and the optical characteristics of the optical sheet become more stable.
0.8 to 1.0 is preferable, and 0.9 to 1.0 is more preferable.
The value of 1.0 is preferable because the organic fine particles having a particle size distribution close to such a monodispersion are easily obtained.
Further, as other layers, for example, an adjustment layer for adjusting the refractive index and transmittance of light on the outermost surface, or an adhesive layer for firmly bonding the base and the binding layer, and the like may be provided as necessary. Is also good.

【0019】次に、本発明の光学シートの製造法を示
す。まず、透光性基体の片面または両面に、直接あるい
は他の層を介して、上記結着層を形成する樹脂を適宜溶
媒に溶解した塗液を塗布・乾燥し、結着層を積層させ
る。塗布の手段としては、エアドクターコーティング、
ブレードコーティング、ナイフコーティング、リバース
コーティング、トランスファロールコーティング、グラ
ビアロールコーティング、キスコーティング、キャスト
コーティング、スプレーコーティング、スロットオリフ
ィスコーティング、カレンダーコーティング、電着コー
ティング、ディップコーティング、ダイコーティング等
のコーティングや、フレキソ印刷等の凸版印刷、ダイレ
クトグラビア印刷、オフセットグラビア印刷等の凹版印
刷、オフセット印刷等の平版印刷、スクリーン印刷等の
孔版印刷等の印刷等があり、特に、ロールコーターを使
用するコーティングが、均一な層厚が得られることから
好ましい。また、結着層の熟成のために、剥離PETフ
ィルム等で結着層を保護した状態で、20〜80℃程度
の温度で、3〜14日程度熱処理をおこなってから次工
程に移ってもよい。
Next, a method for producing the optical sheet of the present invention will be described. First, on one or both surfaces of the translucent substrate, directly or via another layer, a coating solution in which a resin for forming the binder layer is dissolved in an appropriate solvent is applied and dried to laminate the binder layer. Air doctor coating,
Coating such as blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, cast coating, spray coating, slot orifice coating, calendar coating, electrodeposition coating, dip coating, die coating, flexographic printing, etc. Printing, such as letterpress printing, direct gravure printing, intaglio printing such as offset gravure printing, lithographic printing such as offset printing, and stencil printing such as screen printing.In particular, coating using a roll coater has a uniform layer thickness. Is preferred because it is obtained. In addition, in order to mature the binder layer, a heat treatment is performed at a temperature of about 20 to 80 ° C. for about 3 to 14 days in a state where the binder layer is protected with a peelable PET film or the like, and then the process proceeds to the next step. Good.

【0020】次に、透光性基体上の結着層の表面に球状
微粒子を付着させる。付着の手段としては、球状微粒子
を結着層上に直接散布、エアースプレーによる吹き付
け、球状微粒子を付着させたブラシやロール等から転
写、または球状微粒子を溶剤に分散させた後にコーティ
ング等がある。特に、流動槽を使用した流動浸漬が、均
一に球状微粒子を付着させることから好ましい。なお、
ここでは球状微粒子が結着層の表面に、結着層の粘着力
によって単に付着していればよい。
Next, spherical fine particles are adhered to the surface of the binding layer on the translucent substrate. Examples of the means of adhesion include spraying the spherical fine particles directly onto the binder layer, spraying the fine particles with an air spray, transferring the fine particles from a brush or a roll to which the fine spherical particles are adhered, or coating after dispersing the fine spherical particles in a solvent. In particular, fluid immersion using a fluidized tank is preferable because spherical fine particles are uniformly attached. In addition,
Here, it is sufficient that the spherical fine particles simply adhere to the surface of the binding layer by the adhesive force of the binding layer.

【0021】その後、付着した球状微粒子を加圧して結
着層に埋め込む。加圧の手段としては、ゴム製の加圧ロ
ーラー、加圧媒体による打撃等がある。加圧に結着層に
付着した球状微粒子に対して均一におこなわれる必要が
ある。このため、加圧媒体に球状の粒子を使用し、振動
により球状微粒子に打撃を加える方法が好ましい。な
お、加圧媒体の大きさとしては、球状微粒子の粒子径や
材質に応じて適宜選択されるが、概ね0.3〜2.0m
m程度が適当である。さらに、結着層に埋め込まれずに
付着したままになっている余剰の球状微粒子を、流水等
により洗い流して除去して、本発明の光学シートとす
る。また、この後埋め込まれた球状微粒子と結着層の熟
成を目的として、20〜80℃程度の温度で、3〜14
日程度熱処理をおこなってもよい。
Thereafter, the adhered spherical fine particles are embedded in the binder layer by applying pressure. As a means for pressurizing, there are a rubber press roller and a blow with a pressurized medium. It is necessary to uniformly apply the pressure to the spherical fine particles attached to the binder layer. For this reason, it is preferable to use a method in which spherical particles are used as the pressurizing medium and the spherical fine particles are hit by vibration. The size of the pressurizing medium is appropriately selected depending on the particle size and material of the spherical fine particles, but is generally about 0.3 to 2.0 m.
About m is appropriate. Further, excess spherical fine particles remaining adhering without being embedded in the binder layer are removed by washing away with running water or the like to obtain an optical sheet of the present invention. Further, at a temperature of about 20 to 80 ° C. for 3 to 14 hours for the purpose of aging the embedded fine spherical particles and the binder layer.
The heat treatment may be performed for about a day.

【0022】[0022]

【実施例】次に、本発明をより具体化した実施例を説明
する。 A.ポリアクリレートの合成 [合成例1]三つ口フラスコにブチルアクリレート62
部、メチルアクリレート28部、メチルメタクリレート
5部、アゾビスイソブチロニトリル2部、トルエン20
0部を入れ、撹拌しながら60℃で5時間重合させる。
それに0.3部の二官能イソシアネート(商品名:D−
90、綜研化学社製)を加えてポリアクリレートaとし
た。このポリアクリレートaを離型PETにアプリケー
ターロールで乾燥膜厚が20μmになるように塗布した
後、その上から離型PETを重ね、液体窒素でポリアク
リレートを凍らせ、シートを作製した。その後、このシ
ートを4×0.5cmの大きさに切断し、レオバイブロ
ンDDV−II(オリエンテック社製)で、動的粘弾性を
測定し、Tanδの最大値をTgとしたところ、Tgは
−34℃であった。
Next, an embodiment of the present invention will be described. A. Synthesis of polyacrylate [Synthesis Example 1] Butyl acrylate 62 in a three-necked flask
Parts, methyl acrylate 28 parts, methyl methacrylate 5 parts, azobisisobutyronitrile 2 parts, toluene 20
Add 0 parts and polymerize at 60 ° C. for 5 hours with stirring.
And 0.3 part of a bifunctional isocyanate (trade name: D-
90, manufactured by Soken Chemical Co., Ltd.) to obtain polyacrylate a. After applying this polyacrylate a to the release PET with an applicator roll so that the dry film thickness became 20 μm, the release PET was overlaid thereon, and the polyacrylate was frozen with liquid nitrogen to produce a sheet. Thereafter, this sheet was cut into a size of 4 × 0.5 cm, and the dynamic viscoelasticity was measured with Leo Vibron DDV-II (manufactured by Orientec), and the maximum value of Tan δ was taken as Tg. 34 ° C.

【0023】[合成例2]三つ口フラスコに2−エチル
ヘキシルアクリレート92部、アクリル酸8部、アゾビ
スイソブチロニトリル2部、トルエン200部を加え、
撹拌しながら60℃で5時間重合させ、ポリアクリレー
トbとした。このポリアクリレートbのTgを合成例1
と同様の方法で測定したところ、−11℃であった。
[Synthesis Example 2] In a three-necked flask, 92 parts of 2-ethylhexyl acrylate, 8 parts of acrylic acid, 2 parts of azobisisobutyronitrile, and 200 parts of toluene were added.
Polymerization was performed at 60 ° C. for 5 hours with stirring to obtain polyacrylate b. Synthesis Example 1 of Tg of this polyacrylate b
It was -11 degreeC when it measured by the same method as above.

【0024】B.光学シートの作製 [実施例1]透光性基体として、厚さ80μmのトリア
セチルセルロース(商品名:富士タックUVD80、屈
折率1.49、全光線透過率92.4%、ヘイズ値0.
15、富士写真フィルム社製、)を用いた。このフィル
ムの片面上に、前記ポリアクリレートaを、乾燥後の厚
さが1.5μmになるようにリバースコーターで塗工し
た後、100℃で2分間乾燥させた後、60℃で7日間
熟成をおこない、結着層を形成した。
B. Production of Optical Sheet [Example 1] As a light-transmitting substrate, triacetyl cellulose having a thickness of 80 µm (trade name: Fujitack UVD80, refractive index 1.49, total light transmittance 92.4%, haze value 0.4%).
15, manufactured by Fuji Photo Film Co., Ltd.). On one side of this film, the polyacrylate a was coated with a reverse coater so that the thickness after drying was 1.5 μm, dried at 100 ° C. for 2 minutes, and then aged at 60 ° C. for 7 days. Was performed to form a binder layer.

【0025】次に、球状微粒子として、体積平均粒子径
が4.5μmで、粒子径分布が0.94のメチルシリコ
ーン微粒子(商品名:トスパール145、GE東芝シリ
コーン社製)を用い、この球状微粒子が入った流動槽
に、結着層の形成された透光性基体を通し、付着させ
た。さらに、加圧媒体として粒子径0.5mmの真球状
ジルコニア球を容器に入れ、この容器に振動を加えた状
態のまま、容器中に球状微粒子を付着させた透光性基体
をくぐらせ、球状微粒子を結着層中に埋め込んだ。洗浄
を行い余剰の球状微粒子を除去した後、60℃の恒温槽
で7日間の熟成をおこない、常温まで冷却し、実施例1
の光学シートを得た。
Next, methyl silicone fine particles (trade name: Tospearl 145, manufactured by GE Toshiba Silicone Co., Ltd.) having a volume average particle size of 4.5 μm and a particle size distribution of 0.94 were used as the spherical fine particles. Was passed through the light-transmissive substrate on which the binder layer was formed, and was adhered thereto. Further, a spherical zirconia sphere having a particle diameter of 0.5 mm is placed in a container as a pressurizing medium, and while the container is being vibrated, the light-transmitting substrate having the spherical fine particles adhered to the container is passed through the container, and the sphere is formed. Fine particles were embedded in the binder layer. After washing to remove excess spherical fine particles, aging was performed for 7 days in a constant temperature bath at 60 ° C., and cooled to room temperature.
Was obtained.

【0026】[実施例2]実施例1と同様のフィルムの
片面上に、実施例1の結着剤を乾燥後の厚さが3μmに
なるようにリバースコーターで塗工、100℃で2分間
乾燥させた後、60℃で7日間熟成をおこない、結着層
を形成した。その後の工程は、使用する球状微粒子を体
積平均粒子径が10.8μm、粒子径分布0.94のメ
チルメタクリルレート(商品名:MX−1000、綜研
化学社製)に変更した以外は実施例1と同様に行い、実
施例2の光学シートを得た。
Example 2 The same binder as in Example 1 was coated on one side of the same film as in Example 1 with a reverse coater so that the thickness after drying was 3 μm, and the coating was performed at 100 ° C. for 2 minutes. After drying, aging was performed at 60 ° C. for 7 days to form a binder layer. The subsequent steps were performed in the same manner as in Example 1 except that the spherical fine particles used were changed to methyl methacrylate (trade name: MX-1000, manufactured by Soken Chemical Co., Ltd.) having a volume average particle size of 10.8 μm and a particle size distribution of 0.94. In the same manner as in the above, an optical sheet of Example 2 was obtained.

【0027】[実施例3]実施例1と同様のフィルムの
片面上に、実施例1の結着剤を乾燥後の厚さが1μmに
なるようにリバースコーターで塗工、100℃で2分間
乾燥させた後、60℃で7日間熟成をおこない、結着層
を形成した。その後の工程は、使用する球状微粒子を体
積平均粒子径が2.6μm、粒子径分布0.90のメチ
ルシリコーンビーズ(商品名:トスパール130、GE
東芝シリコーン社製)に変更した以外は実施例1と同様
に行い、実施例3の光学シートを得た。
Example 3 The same binder as in Example 1 was coated on one side with a reverse coater on one side of a film so as to have a thickness of 1 μm after drying, and at 100 ° C. for 2 minutes. After drying, aging was performed at 60 ° C. for 7 days to form a binder layer. In the subsequent step, the spherical fine particles to be used are methyl silicone beads having a volume average particle size of 2.6 μm and a particle size distribution of 0.90 (trade names: Tospearl 130, GE
An optical sheet of Example 3 was obtained in the same manner as in Example 1 except for changing to Toshiba Silicone Co., Ltd.).

【0028】[実施例4]実施例1と同様のフィルムの片
面上に、実施例1の結着剤を乾燥後の厚さが5μmにな
るようにリバースコーターで塗工、100℃で2分間乾
燥させた後、60℃で7日間熟成をおこない、結着層を
形成した。次に、球状微粒子として、体積平均粒子径が
10.8μm、粒子径分布0.94のメチルメタクリル
レート(商品名:MX−1000、綜研化学社製)を用
い、この球状微粒子が入った流動槽に、結着層の形成さ
れた透光性基体を通し、付着させた。
Example 4 On one side of the same film as in Example 1, the binder of Example 1 was applied with a reverse coater so that the thickness after drying was 5 μm, and was applied at 100 ° C. for 2 minutes. After drying, aging was performed at 60 ° C. for 7 days to form a binder layer. Next, methyl methacrylate (trade name: MX-1000, manufactured by Soken Chemical Co., Ltd.) having a volume average particle diameter of 10.8 μm and a particle diameter distribution of 0.94 was used as the spherical fine particles, and a fluid tank containing the spherical fine particles was used. Through a light-transmitting substrate on which a binding layer was formed.

【0029】さらに、加圧媒体として粒子径0.5mm
の真球状ジルコニア球を容器に入れ、この容器に振動を
加えた状態のまま、容器中に球状微粒子を付着させた透
光性基体をくぐらせ、球状微粒子を結着層中に埋め込ん
だ。洗浄を行い余剰の球状微粒子を除去した後、40℃
の恒温槽で14日間の熟成をおこない、常温まで冷却
し、実施例4の光学シートを得た。
Further, as a pressurizing medium, a particle diameter of 0.5 mm
The spherical zirconia spheres were placed in a container, and while the container was being vibrated, a translucent substrate having the spherical particles adhered to the container was passed through the container, and the spherical particles were embedded in the binder layer. After washing to remove excess spherical fine particles,
After aging for 14 days in a constant temperature bath, the mixture was cooled to room temperature to obtain an optical sheet of Example 4.

【0030】[比較例1]実施例1と同様のフィルムの
片面上に、実施例1の結着剤を乾燥後の厚さが2.2μ
mになるようにリバースコーターで塗工、100℃で2
分間乾燥させた後、60℃で7日間熟成をおこない、結
着層を形成した。その後の工程は実施例1と同様に行
い、比較例1の光学シートを得た。
Comparative Example 1 On one side of the same film as in Example 1, the binder of Example 1 was dried to a thickness of 2.2 μm.
m with reverse coater, 2 at 100 ° C
After drying for 5 minutes, aging was performed at 60 ° C. for 7 days to form a binder layer. Subsequent steps were performed in the same manner as in Example 1 to obtain an optical sheet of Comparative Example 1.

【0031】[比較例2]実施例1と同様のフィルムの
片面上に、実施例1の結着剤を乾燥後の厚さが1.5μ
mになるようにリバースコーターで塗工、100℃で2
分間乾燥させた後、60℃で7日間熟成をおこない、結
着層を形成した。その後の工程は実施例3と同様に行
い、比較例2の光学シートを得た。
[Comparative Example 2] The binder of Example 1 was dried on one side of the same film as in Example 1 to a thickness of 1.5 μm.
m with reverse coater, 2 at 100 ° C
After drying for 5 minutes, aging was performed at 60 ° C. for 7 days to form a binder layer. The subsequent steps were performed in the same manner as in Example 3, and an optical sheet of Comparative Example 2 was obtained.

【0032】[比較例3]実施例1と同様のフィルムの
片面上に、実施例1の結着剤を乾燥後の厚さが1.5μ
mとなるようにリバースコーターで塗工、100℃で2
分間乾燥させた後、60℃で7日間熟成を行ない、結着
層を形成した。その後の工程は、使用する球状微粒子を
体積平均粒子径が4.5μm、粒子径分布0.78のメ
チルシリコーンビーズに変更した以外は実施例1と同様
に行ない、比較例3の光学シートを得た。
Comparative Example 3 The binder of Example 1 was dried on one side of the same film as in Example 1 to a thickness of 1.5 μm.
m with reverse coater, 100 ℃ 2
After drying for 5 minutes, aging was performed at 60 ° C. for 7 days to form a binder layer. The subsequent steps were performed in the same manner as in Example 1 except that the spherical fine particles used were changed to methyl silicone beads having a volume average particle diameter of 4.5 μm and a particle diameter distribution of 0.78, and an optical sheet of Comparative Example 3 was obtained. Was.

【0033】[比較例4]実施例1と同様のフィルムの
片面上に、前記ポリアクリレートbを、乾燥後の厚さが
1.5μmになるようにリバースコーターで塗工、10
0℃で2分間乾燥させた後、60℃で7日間熟成をおこ
ない、結着層を形成した。その後の工程は実施例1と同
様に行い、比較例4の光学シートを得た。
Comparative Example 4 On one side of the same film as in Example 1, the above-mentioned polyacrylate b was coated with a reverse coater so that the thickness after drying was 1.5 μm.
After drying at 0 ° C. for 2 minutes, aging was performed at 60 ° C. for 7 days to form a binder layer. Subsequent steps were performed in the same manner as in Example 1 to obtain an optical sheet of Comparative Example 4.

【0034】*光学シートの観察 実施例1〜4、および比較例1〜4の光学シートの断面
を電子顕微鏡によって写真撮影し観察した。図4〜7
は、実施例1〜4の光学シートの断面写真の模式図、図
8〜11は、比較例1〜4の光学シートの断面写真の模
式図である。その写真をもとに、本発明で特定する球状
微粒子の突出部の頂点から透光性基体までの距離及び結
着層の厚さについて測定した値を表1に示す。
* Observation of Optical Sheet The cross sections of the optical sheets of Examples 1 to 4 and Comparative Examples 1 to 4 were photographed with an electron microscope and observed. Figures 4-7
Are schematic diagrams of cross-sectional photographs of the optical sheets of Examples 1 to 4, and FIGS. 8 to 11 are schematic diagrams of cross-sectional photographs of the optical sheets of Comparative Examples 1 to 4. Table 1 shows the measured values of the distance from the apex of the protrusion of the spherical fine particles specified in the present invention to the light-transmitting substrate and the thickness of the binder layer based on the photograph.

【0035】[0035]

【表1】 [Table 1]

【0036】*光学特性試験 上記実施例及1〜4、および比較例1〜4の光学シート
について、図12のように透光性基体1、結着層2およ
び球状微粒子3からなるシートの表面側から入射光を施
した場合の、全光線透過率:Tt(%)、ヘーズ値:H
z(%)を日本電色工業社製 NDH2000を用いて
測定した。次に、上記実施例1〜4および比較例1〜4
の光学シートを高温高湿(60℃、90%)条件下に7
日間放置し、その後、上記と同様にTtとHzの測定を
行い、耐高温高湿性、すなわち、高温高湿下における信
頼性の評価を行った。測定結果を表2に記す。
* Optical property test The surface of the sheet comprising the light-transmitting substrate 1, the binder layer 2 and the spherical fine particles 3 as shown in FIG. Total light transmittance: Tt (%), Haze value: H when incident light is applied from the side
z (%) was measured using NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. Next, the above Examples 1-4 and Comparative Examples 1-4
Under high temperature and high humidity (60 ° C., 90%) condition.
After standing for days, Tt and Hz were measured in the same manner as above, and the high-temperature and high-humidity resistance, that is, the reliability under high temperature and high humidity was evaluated. Table 2 shows the measurement results.

【0037】[0037]

【表2】 [Table 2]

【0038】表1及び表2から明らかなとおり、基体表
面から球状微粒子の頂点までの高さが球状微粒子径に近
い110%以下の場合は、比較例3を除いていずれも良
好な光学特性が得られる。すなわち、実施例1〜4の本
発明の光学シートの光学特性は、高温高湿下に放置した
後もほとんど変化せずに高い光透過性と光拡散性を維持
できた。一方、基体表面から球状微粒子の頂点までの高
さが球状微粒子の直径の110%を超えている比較例1
〜2及び4の光学シート、及び球状微粒子の粒子径分布
の値が0.78と0.80より小さい比較例3の光学シ
ートでは、高温高湿下に放置するといずれもHzが10
%以上低下した。さらに、比較例4の光学シートでは、
Tgの高い結着剤を使用したために高温高湿下に放置し
た後には球状微粒子の脱落も確認されて(Ttの値が大
きくなっている)、光学特性のムラを生じるという問題
を有するものであった。
As is clear from Tables 1 and 2, when the height from the substrate surface to the apex of the spherical fine particles is 110% or less, which is close to the diameter of the spherical fine particles, good optical characteristics are obtained except for Comparative Example 3. can get. That is, the optical characteristics of the optical sheets of Examples 1 to 4 of the present invention were able to maintain high light transmittance and light diffusion with little change even after being left under high temperature and high humidity. On the other hand, Comparative Example 1 in which the height from the substrate surface to the top of the spherical fine particles exceeds 110% of the diameter of the spherical fine particles
In the optical sheets of Nos. 2 and 4, and the optical sheet of Comparative Example 3 in which the value of the particle size distribution of the spherical fine particles is smaller than 0.78 and 0.80, the frequency was 10 Hz when left at high temperature and high humidity.
% Or more. Further, in the optical sheet of Comparative Example 4,
Since the binder having a high Tg was used, the spherical fine particles were also found to have fallen off after being left under high temperature and high humidity (the value of Tt was large), resulting in a problem that unevenness in optical characteristics was caused. there were.

【0039】[0039]

【発明の効果】本発明の光学シートは、透光性基体と、
その透光性基体上に、直接または他の層を介して積層さ
れた結着層と、この結着層上に球状微粒子が単層で敷き
詰められた光学部材であり、該透光性基体の表面から該
球状微粒子の結着層から突出した頂点までの平均高さが
球状微粒子の体積平均粒子径に近いため、従来の光学シ
ートよりも光学特性の安定性が高く、信頼性に優れた光
学シートが得られる。
The optical sheet of the present invention comprises a light-transmitting substrate,
A binding layer laminated directly or via another layer on the light-transmitting substrate, and an optical member in which spherical fine particles are spread over the binding layer in a single layer; Since the average height from the surface to the apex protruding from the binding layer of the spherical fine particles is close to the volume average particle size of the spherical fine particles, the stability of the optical characteristics is higher than that of the conventional optical sheet, and the optical characteristics have excellent reliability. A sheet is obtained.

【0040】このことより、例えば、透過型液晶ディス
プレーにおいて図13のようにバックライトユニット1
2と、偏光板13に挟持された液晶セル14との間に本
発明の光学シート11を挿入することにより、バックラ
イトユニットの光を効率よく透過しつつ、効率良く光を
拡散させることが可能であり、高温高湿下でも光学特性
の安定性に優れているために長期間にわたり安定した性
能を液晶ディスプレイに与えることができる。したがっ
て、本発明の光学シートはLCD、EL、FED等の各
種ディスプレイをはじめとして、長期間の光学安定性が
求められる用途に用いることができ、極めて優れた作用
効果を奏する。
Thus, for example, in a transmission type liquid crystal display, as shown in FIG.
By inserting the optical sheet 11 of the present invention between the liquid crystal cell 2 and the liquid crystal cell 14 held between the polarizing plates 13, it is possible to efficiently diffuse the light while efficiently transmitting the light of the backlight unit. In addition, since the optical characteristics are excellent even under high temperature and high humidity, stable performance can be given to the liquid crystal display for a long period of time. Therefore, the optical sheet of the present invention can be used for applications requiring long-term optical stability, such as various displays such as LCDs, ELs, and FEDs, and has extremely excellent effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学シートの一例を模式的に示す断面
FIG. 1 is a cross-sectional view schematically showing one example of an optical sheet of the present invention.

【図2】本発明の光学シートの球状微粒子の突出部の頂
点から透光性基体の表面までの距離の測定部位を示す模
式図
FIG. 2 is a schematic view showing a measurement site of a distance from a vertex of a protruding portion of a spherical fine particle of the optical sheet of the present invention to a surface of a light-transmitting substrate.

【図3】本発明の光学シートの結着層の厚さの測定部位
示す模式図
FIG. 3 is a schematic view showing a measurement site of a thickness of a binder layer of the optical sheet of the present invention.

【図4】本発明の実施例1の光学シート断面の模式図FIG. 4 is a schematic diagram of a cross section of an optical sheet according to a first embodiment of the present invention.

【図5】本発明の実施例2の光学シート断面の模式図FIG. 5 is a schematic view of a cross section of an optical sheet according to a second embodiment of the present invention.

【図6】本発明の実施例3の光学シート断面の模式図FIG. 6 is a schematic diagram of a cross section of an optical sheet according to a third embodiment of the present invention.

【図7】本発明の実施例4の光学シート断面の模式図FIG. 7 is a schematic cross-sectional view of an optical sheet according to a fourth embodiment of the present invention.

【図8】本発明の比較例1の光学シート断面の模式図FIG. 8 is a schematic view of a cross section of an optical sheet of Comparative Example 1 of the present invention.

【図9】本発明の比較例2の光学シート断面の模式図FIG. 9 is a schematic view of a cross section of an optical sheet of Comparative Example 2 of the present invention.

【図10】本発明の比較例3の光学シート断面の模式図FIG. 10 is a schematic diagram of a cross section of an optical sheet of Comparative Example 3 of the present invention.

【図11】本発明の比較例4の光学シート断面の模式図FIG. 11 is a schematic view of a cross section of an optical sheet of Comparative Example 4 of the present invention.

【図12】光学シートに対する入射光の方向を説明する
ための模式図
FIG. 12 is a schematic diagram for explaining a direction of incident light with respect to an optical sheet.

【図13】本発明の光学シートの使用方法の一例を示す
模式図
FIG. 13 is a schematic view showing an example of a method for using the optical sheet of the present invention.

【符号の説明】[Explanation of symbols]

1…透光性基体、2…結着層、3…球状微粒子 a…球状微粒子の体積平均粒子径 b…球状微粒子の突出部の頂点から透光性基体表面まで
の距離 c…結着層厚 L…光学シート
DESCRIPTION OF SYMBOLS 1 ... Transparent base | substrate, 2 ... Binder layer, 3 ... Spherical fine particles a ... Volume average particle diameter of spherical fine particles b ... Distance from the vertex of the protrusion of spherical fine particles to the surface of the light transmitting substrate c ... Binding layer thickness L: Optical sheet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透光性基体と、該透光性基体上に積層さ
れた結着層を有し、該結着層上に粒子径分布の値が0.
8〜1.0である球状微粒子が単層で結着層の表面から
一部が突出する状態で埋め込まれており、かつ、該球状
微粒子の突出部の頂点から透光性基体表面までの距離が
該球状微粒子の体積平均粒子径の100〜110%であ
ることを特徴とする光学シート。
1. A light-transmitting substrate, and a binding layer laminated on the light-transmitting substrate, wherein the particle size distribution of the binder layer is 0.
The spherical fine particles having a particle diameter of 8 to 1.0 are embedded in a single layer in a state where a part thereof protrudes from the surface of the binder layer, and the distance from the top of the protruding portion of the spherical fine particles to the surface of the light-transmitting substrate. Is 100 to 110% of the volume average particle diameter of the spherical fine particles.
【請求項2】 前記結着層の厚さが前記球状微粒子の体
積平均粒子径の10〜90%であることを特徴とする請
求項1に記載の光学シート。
2. The optical sheet according to claim 1, wherein the thickness of the binder layer is 10% to 90% of the volume average particle diameter of the spherical fine particles.
【請求項3】 前記結着層に用いる樹脂のガラス転移点
が、−65℃〜−15℃であることを特徴とする請求項
1または2に記載の光学シート。
3. The optical sheet according to claim 1, wherein the resin used for the binder layer has a glass transition point of −65 ° C. to −15 ° C.
JP2000081620A 2000-03-23 2000-03-23 Optical sheet Expired - Fee Related JP3741415B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000081620A JP3741415B2 (en) 2000-03-23 2000-03-23 Optical sheet
US09/811,602 US6596375B2 (en) 2000-03-23 2001-03-20 Optical sheet and production process thereof
TW090106588A TW500928B (en) 2000-03-23 2001-03-21 Optical sheet with the product method
KR10-2001-0015237A KR100447671B1 (en) 2000-03-23 2001-03-23 Optical seat and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000081620A JP3741415B2 (en) 2000-03-23 2000-03-23 Optical sheet

Publications (2)

Publication Number Publication Date
JP2001264517A true JP2001264517A (en) 2001-09-26
JP3741415B2 JP3741415B2 (en) 2006-02-01

Family

ID=18598532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000081620A Expired - Fee Related JP3741415B2 (en) 2000-03-23 2000-03-23 Optical sheet

Country Status (1)

Country Link
JP (1) JP3741415B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121618A (en) * 2001-10-11 2003-04-23 Fuji Photo Film Co Ltd Light scattering film, method for manufacturing light scattering film, polarizing plate and liquid crystal display device
CN100363809C (en) * 2002-12-28 2008-01-23 鸿富锦精密工业(深圳)有限公司 Back light module
JP2009223312A (en) * 2008-02-29 2009-10-01 Eternal Chemical Co Ltd Brightness enhancement reflective film
JP2011186008A (en) * 2010-03-04 2011-09-22 Fujifilm Corp Optical film, polarizing plate, and image display device
JP2014500983A (en) * 2010-12-03 2014-01-16 中国楽凱膠片集団公司 Light diffusion film and liquid crystal display backlight using the same
JP2014052636A (en) * 2013-09-10 2014-03-20 Teijin Dupont Films Japan Ltd Reflective film for liquid crystal display device
JP2015002319A (en) * 2013-06-18 2015-01-05 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121618A (en) * 2001-10-11 2003-04-23 Fuji Photo Film Co Ltd Light scattering film, method for manufacturing light scattering film, polarizing plate and liquid crystal display device
CN100363809C (en) * 2002-12-28 2008-01-23 鸿富锦精密工业(深圳)有限公司 Back light module
JP2009223312A (en) * 2008-02-29 2009-10-01 Eternal Chemical Co Ltd Brightness enhancement reflective film
JP2011186008A (en) * 2010-03-04 2011-09-22 Fujifilm Corp Optical film, polarizing plate, and image display device
JP2014500983A (en) * 2010-12-03 2014-01-16 中国楽凱膠片集団公司 Light diffusion film and liquid crystal display backlight using the same
JP2015002319A (en) * 2013-06-18 2015-01-05 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
JP2014052636A (en) * 2013-09-10 2014-03-20 Teijin Dupont Films Japan Ltd Reflective film for liquid crystal display device

Also Published As

Publication number Publication date
JP3741415B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
KR100447671B1 (en) Optical seat and method for manufacturing the same
TWI429725B (en) Adhesive for optical functional film, optical functional film with adhesive and method for producing it
TW518429B (en) Optical reflective plate, process for manufacturing the same and reflective liquid crystal display device
JP4814946B2 (en) Light diffusion sheet for backlight unit and manufacturing method thereof
JP3686348B2 (en) Optical film and manufacturing method thereof
TWI293979B (en) Pressure-sensitive adhesive sheet for protecting surface and preparation thereof
KR100662534B1 (en) Method for forming single-layered powder coating film
JP5903794B2 (en) Polarizing plate set, liquid crystal panel and liquid crystal display device
JP3906802B2 (en) Light diffusion resin film and light diffusion film
JP6062923B2 (en) Edge light type backlight device and light diffusing member
TW201131212A (en) Light diffusing sheet and backlight using same
TWI334937B (en) Light-diffusing sheet for backlight unit
JP3741415B2 (en) Optical sheet
JP6062922B2 (en) Edge light type backlight device and light diffusing member
JP2001356207A (en) Light diffusing member
JP3509703B2 (en) Optical sheet and method for manufacturing the same
JP3587437B2 (en) Manufacturing method of filler lens
JP2001108806A (en) Filler lens and method of manufacturing the same
JP2002006124A (en) Semi-transparent and semi-reflective sheet
JP2005121811A (en) Optical diffusion layer transfer sheet and method for forming the optical diffusion layer
JP3734387B2 (en) Filler lens and manufacturing method thereof
JP2001108805A (en) Filler lens and method of manufacturing the same
JP2001228311A (en) Filler lens and method for producing same
JP3630396B2 (en) Manufacturing method of filler lens
JP2001100012A (en) Filler lens and its production method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040212

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees