JP2001263341A - Dynamic pressure gas bearing device - Google Patents

Dynamic pressure gas bearing device

Info

Publication number
JP2001263341A
JP2001263341A JP2000072027A JP2000072027A JP2001263341A JP 2001263341 A JP2001263341 A JP 2001263341A JP 2000072027 A JP2000072027 A JP 2000072027A JP 2000072027 A JP2000072027 A JP 2000072027A JP 2001263341 A JP2001263341 A JP 2001263341A
Authority
JP
Japan
Prior art keywords
thrust
hub
shaft
bearing plate
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000072027A
Other languages
Japanese (ja)
Inventor
Keigo Kusaka
圭吾 日下
隆文 ▲浅▼田
Takafumi Asada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000072027A priority Critical patent/JP2001263341A/en
Publication of JP2001263341A publication Critical patent/JP2001263341A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant
    • F16C33/101Details of the bearing surface, e.g. means to generate pressure such as lobes or wedges
    • F16C33/1015Pressure generating grooves

Abstract

PROBLEM TO BE SOLVED: To provide a dynamic pressure gas bearing to increase a total sum of a pressure in a thrust direction. SOLUTION: A through-hole 8 is formed in a thrust bearing plate 5. Gas boosted in a dynamic pressure generating groove 2b of a shaft 2 is guided therethrough to a recessed part 9 of a thrust flange 4 and a pressure in a thrust inner space 4a is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は動圧型の非接触軸受
装置の一つである動圧気体軸受装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure gas bearing device which is one of dynamic pressure type non-contact bearing devices.

【0002】[0002]

【従来の技術】近年、ディスクを用いた記録装置等はそ
の性能が向上し、またデータの転送速度が高速化してい
るため、この種の記録装置に用いられる回転モータ部は
高速、高精度の回転が必要となり、その回転主軸部には
動圧型の非接触軸受装置が用いられようとしている。
2. Description of the Related Art In recent years, the performance of a recording device using a disk has been improved and the data transfer speed has been increased. Therefore, a rotary motor unit used in this type of recording device has a high speed and high precision. Rotation is required, and a dynamic pressure type non-contact bearing device is being used for the rotating main shaft portion.

【0003】以下、図面を参照しながら従来の動圧気体
軸受装置について説明する。図4は従来の動圧気体軸受
装置の構成を示す断面図、図5は従来の動圧気体軸受装
置におけるスラスト内空間に発生するスラスト方向の圧
力分布図である。
Hereinafter, a conventional hydrodynamic gas bearing device will be described with reference to the drawings. FIG. 4 is a cross-sectional view showing the configuration of a conventional dynamic pressure gas bearing device, and FIG. 5 is a distribution diagram of pressure in a thrust direction generated in a thrust internal space in the conventional dynamic pressure gas bearing device.

【0004】図4において、筒状の回転するハブ13の
軸受穴13bに軸12が填め合わされ、ハブ13の軸1
2との対向部の下部に軸12下端のスラスト受面12d
とその上面が対向する略環状のスラスト軸受板15が固
定される。軸12は同軸上にスラスト軸受板15の下方
へ伸びる突出軸部12cを有し、この突出軸部12cに
はスラスト軸受板15にその上面が対向するスラストフ
ランジ14が固定され、さらに、スラストフランジ14
の基部はフレーム11に固定される。12bはラジアル
方向に圧力を発生する動圧発生溝、15a,15bはス
ラスト方向に圧力を発生する動圧発生溝、16はモータ
ステータ、17はモータロータである。
In FIG. 4, a shaft 12 is fitted into a bearing hole 13b of a cylindrical rotating hub 13, and the shaft 1 of the hub 13 is rotated.
Thrust receiving surface 12d at the lower end of shaft 12
And a substantially annular thrust bearing plate 15 whose upper surface faces each other is fixed. The shaft 12 has a protruding shaft portion 12c coaxially extending below the thrust bearing plate 15, and a thrust flange 14 whose upper surface is opposed to the thrust bearing plate 15 is fixed to the protruding shaft portion 12c. 14
Is fixed to the frame 11. 12b is a dynamic pressure generating groove for generating pressure in the radial direction, 15a and 15b are dynamic pressure generating grooves for generating pressure in the thrust direction, 16 is a motor stator, and 17 is a motor rotor.

【0005】次に、以上のように構成された従来の動圧
気体軸受装置について、その動作を説明する。図4にお
いて、まず、モータステータ16に通電されると、モー
タロータ17は、ハブ13,スラスト軸受板15と共に
矢印B方向に回転を始める。この時、軸12の外周面1
2aの動圧発生溝12bは気体をかき集め、ラジアル方
向に圧力を発生してハブ13を浮上させる。一方、スラ
スト軸受板15の動圧発生溝15aはスラスト受面12
dとの間で圧力を発生し、ハブ13を押し下げる方向に
圧力を発生すると共に、スラスト軸受板15の動圧発生
溝15bはハブ13を逆に押し上げる方向に圧力を発生
して双方向の力のバランスで、ハブ13の回転位置は定
まり非接触で回転する。
Next, the operation of the conventional hydrodynamic gas bearing device configured as described above will be described. In FIG. 4, when the motor stator 16 is first energized, the motor rotor 17 starts rotating in the direction of arrow B together with the hub 13 and the thrust bearing plate 15. At this time, the outer peripheral surface 1 of the shaft 12
The dynamic pressure generating groove 12b of 2a collects gas, generates pressure in the radial direction, and causes the hub 13 to float. On the other hand, the dynamic pressure generating groove 15a of the thrust bearing plate 15 is
d, a pressure is generated in the direction of pushing down the hub 13, and the dynamic pressure generating groove 15 b of the thrust bearing plate 15 generates a pressure in the direction of pushing up the hub 13 in the opposite direction to generate a bidirectional force. With this balance, the rotational position of the hub 13 is determined, and the hub 13 rotates without contact.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな構成では、油と比較して粘性の低い気体を流体とし
て用いているために、軸受のスラスト方向の剛性および
負荷容量を大きくする必要があり、次のような問題点が
発生する。なお、軸受のスラスト方向の剛性とは、ハブ
13等に接続された負荷(外部負荷)が軸受装置に及ぼ
すスラスト方向の外力に対するハブ13等のスラスト方
向へのずれにくさを言い、また、負荷容量とは、スラス
ト方向でのハブ13のずれが設計上の許容限度となるよ
うな前記外力の大きさで、スラスト内空間14aの気体
がハブ13に及ぼすスラスト方向の圧力の総和に実質的
に相当する。
However, in such a configuration, since a gas having a lower viscosity than oil is used as the fluid, it is necessary to increase the rigidity in the thrust direction and the load capacity of the bearing. However, the following problems occur. The rigidity of the bearing in the thrust direction refers to the difficulty of the hub 13 or the like from shifting in the thrust direction with respect to the external force in the thrust direction exerted on the bearing device by the load (external load) connected to the hub 13 or the like. The capacity is the magnitude of the external force such that the displacement of the hub 13 in the thrust direction becomes an allowable limit in design, and is substantially equal to the sum of the thrust direction pressure exerted on the hub 13 by the gas in the thrust internal space 14a. Equivalent to.

【0007】ここで、軸受のスラスト方向の剛性および
負荷容量を大きくすると、ハブ13の回転に外部負荷の
外力が与える影響を小さくできる。これにより、ハブ1
3の回転の安定性が向上することになり、このような観
点から、従来の動圧気体軸受装置で、所定の回転数にお
けるスラスト方向の剛性および負荷容量を大きくするに
は、動圧発生溝15a,15bを有するスラスト軸受板
15の面積を大きくすることが考えられる。しかし、ス
ラスト軸受板15の径は、軸受装置の大きさや加工精度
等により制約され、大きさに限界がある。したがって、
軸受装置はある一定の大きさの中で前記剛性と負荷容量
を大きくする必要があり、換言すれば、スラスト内空間
14aに発生するスラスト方向の圧力の総和を大きくす
るために単位面積あたりの圧力を高くすることが必要で
ある。しかしながら、この従来の動圧気体軸受装置にあ
っては、図5に示すようにスラスト方向圧力成分はその
回転中心部近傍ではやや高くなるものの、周辺部に至る
につれて激減してしまい十分な圧力を得ることができな
いという問題点があった。
Here, when the rigidity in the thrust direction and the load capacity of the bearing are increased, the influence of the external force of the external load on the rotation of the hub 13 can be reduced. Thereby, the hub 1
From this point of view, in order to increase the thrust direction rigidity and load capacity at a predetermined number of rotations in the conventional dynamic pressure gas bearing device, the dynamic pressure generating groove is required. It is conceivable to increase the area of the thrust bearing plate 15 having 15a and 15b. However, the diameter of the thrust bearing plate 15 is restricted by the size of the bearing device, processing accuracy, and the like, and there is a limit to the size. Therefore,
In the bearing device, it is necessary to increase the rigidity and load capacity within a certain size. In other words, in order to increase the total sum of the thrust direction pressure generated in the thrust internal space 14a, the pressure per unit area is increased. Need to be higher. However, in this conventional hydrodynamic gas bearing device, as shown in FIG. 5, the thrust direction pressure component slightly increases near the center of rotation, but decreases drastically toward the periphery, so that sufficient pressure is not obtained. There was a problem that it could not be obtained.

【0008】本発明は上記従来の問題点を解決するもの
であり、スラスト方向の圧力の総和を大きくすることが
できる動圧気体軸受装置を提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a hydrodynamic gas bearing device capable of increasing the total pressure in the thrust direction.

【0009】[0009]

【課題を解決するための手段】本発明の動圧気体軸受装
置は、筒状の内周面を有する回転可能なハブと、外周面
が前記ハブの内周面と対向するように挿入され、前記ハ
ブを相対的に回転可能とする軸と、前記ハブの軸方向下
部に配置され、前記軸の下端面を受ける略環状のスラス
ト軸受板と、前記軸と同軸で前記スラスト軸受板の下方
へ伸びる突出軸部と、前記突出軸部に固定され、前記ス
ラスト軸受板にその上面が対向するスラストフランジ
と、互いに対向する前記軸の外周面または前記ハブの内
周面の少なくとも一方に設けられ、ラジアル方向に支持
力を発生させる動圧発生溝と、前記スラスト軸受板と前
記軸の下端の対向面の少なくとも何れか一方、および前
記スラスト軸受板と前記スラストフランジの対向面の少
なくとも何れか一方に設けられ、スラスト方向に支持力
を発生させる動圧発生溝と、前記突出軸部の下端部を固
定するベースと、前記ハブに前記軸と相対的な回転力を
作用させるハブ回転駆動手段を有する動圧気体軸受装置
であって、前記スラスト軸受板に少なくとも一本以上の
貫通穴を設けると共に、前記スラストフランジの前記貫
通穴に対向する部分に凹部を設けたものである。
A dynamic pressure gas bearing device according to the present invention is inserted into a rotatable hub having a cylindrical inner peripheral surface and an outer peripheral surface facing the inner peripheral surface of the hub. A shaft that enables the hub to relatively rotate, a substantially annular thrust bearing plate that is disposed axially below the hub and that receives the lower end surface of the shaft, and that is coaxial with the shaft and below the thrust bearing plate. An extending protruding shaft portion, a thrust flange fixed to the protruding shaft portion and having an upper surface facing the thrust bearing plate, and provided on at least one of an outer peripheral surface of the shaft or an inner peripheral surface of the hub facing each other, A dynamic pressure generating groove for generating a supporting force in a radial direction, at least one of an opposing surface of the thrust bearing plate and a lower end of the shaft, and at least one of an opposing surface of the thrust bearing plate and the thrust flange; And a dynamic pressure generating groove for generating a supporting force in a thrust direction, a base for fixing a lower end portion of the protruding shaft portion, and a hub rotation driving means for applying a rotational force to the hub relative to the shaft. In a dynamic pressure gas bearing device, at least one or more through holes are provided in the thrust bearing plate, and a concave portion is provided in a portion of the thrust flange facing the through hole.

【0010】この発明によれば、スラスト軸受板に設け
た貫通穴により、ラジアルで増圧された気体をスラスト
フランジの凹部に導き、スラストにおける低圧部の気体
の圧力を高めることができるので、スラスト方向の圧力
の総和を大きくすることができる。
According to the present invention, the through-hole provided in the thrust bearing plate guides the gas, which has been radially intensified, to the concave portion of the thrust flange, thereby increasing the pressure of the gas in the low-pressure portion of the thrust. The sum of the pressures in the directions can be increased.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。図1は本発明の動圧
気体軸受装置の一実施の形態における構成を示す断面
図、図2は本発明の動圧気体軸受装置の一実施の形態に
おけるスラスト軸受板の平面図であり、図2(a)は上
面図、図2(b)は背面図である。図3は本発明の動圧
気体軸受装置の一実施の形態におけるスラスト内空間に
発生するスラスト方向の圧力分布図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a configuration of a dynamic pressure gas bearing device according to an embodiment of the present invention, and FIG. 2 is a plan view of a thrust bearing plate according to an embodiment of the dynamic pressure gas bearing device of the present invention. 2A is a top view, and FIG. 2B is a rear view. FIG. 3 is a diagram showing the distribution of pressure in the thrust direction in the thrust space in the embodiment of the dynamic pressure gas bearing device according to the present invention.

【0012】図1において、軸2には回転自在にハブ3
の筒状の軸受穴3aが填め合わされ、軸2の下端には突
出軸部2cを有している。軸2の外周面2aには、動圧
発生溝2bが設けられ、この動圧発生溝2bのパターン
は、そのジグザグ形状の頂点を通るラジアル方向の線に
対して非対称に形成されている。なお、この動圧発生溝
2bはハブ3の内周面3bに設けてもよい。ハブ3に
は、軸2の下端のスラスト受面2dとその上面が対向す
る図2(a)に示す動圧発生溝5aを有する略環状のス
ラスト軸受板5が固定されている。また、突出軸部2c
には図2(b)に示す動圧発生溝5bを有するスラスト
軸受板5の背面にその上面が対向するスラストフランジ
4が固定されている。スラスト軸受板5には少なくとも
一本以上の貫通穴8を有し、スラストフランジ4の貫通
穴8に対向する部分には凹部9が設けられている。な
お、1はスラストフランジ4とモータステータ6を固定
するフレーム、7はモータステータ6と対向する位置の
ハブ3に取付けられたモータロータでハブ3と軸2に相
対的な回転力を作用させるハブ回転手段を構成してい
る。
In FIG. 1, a hub 3 is rotatably mounted on a shaft 2.
The shaft 2 has a protruding shaft portion 2c at a lower end thereof. A dynamic pressure generating groove 2b is provided on the outer peripheral surface 2a of the shaft 2, and the pattern of the dynamic pressure generating groove 2b is formed asymmetrically with respect to a radial line passing through the vertex of the zigzag shape. The dynamic pressure generating groove 2b may be provided on the inner peripheral surface 3b of the hub 3. A substantially annular thrust bearing plate 5 having a dynamic pressure generating groove 5a shown in FIG. 2A and having a top surface opposed to a thrust receiving surface 2d at the lower end of the shaft 2 is fixed to the hub 3. Also, the protruding shaft portion 2c
A thrust flange 4 whose upper surface is opposed to the back of a thrust bearing plate 5 having a dynamic pressure generating groove 5b shown in FIG. The thrust bearing plate 5 has at least one or more through holes 8, and a recess 9 is provided in a portion of the thrust flange 4 facing the through holes 8. Reference numeral 1 denotes a frame for fixing the thrust flange 4 and the motor stator 6. Reference numeral 7 denotes a motor rotor mounted on the hub 3 at a position facing the motor stator 6, which rotates the hub 3 and the shaft 2 to exert a relative rotational force. Means.

【0013】次に、以上のように構成された動圧気体軸
受装置の動作について説明する。図1において、まず、
モータステータ6に通電されると、モータロータ7はハ
ブ3,スラスト軸受板5と共に矢印A方向に回転を始め
る。この時、軸2の外周面2aに設けた動圧発生溝2b
によりラジアル方向に圧力を発生しハブ3を浮上させ
る。一方、非対称パターンの動圧発生溝2bにより増圧
された軸2の下端部のスラスト内空間4aの気体は、図
2(a)に示すスラスト軸受板5の動圧発生溝5aによ
りさらにスラスト受面2dとの間で圧力を高め、ハブ3
を押し下げる方向に圧力を発生する。また、同じく非対
称パターンの動圧発生溝2bにより増圧された軸2の下
端部の気体は、スラスト軸受板5に設けられた貫通穴8
をとおりスラストフランジ4の凹部9に流れ、図2
(b)に示すスラスト軸受板5の動圧発生溝5bによ
り、さらにハブ3を逆に押し上げる方向に圧力を発生し
て双方向の力のバランスでハブ3の回転位置は定まり非
接触で安定に回転する。
Next, the operation of the thus configured hydrodynamic gas bearing device will be described. In FIG. 1, first,
When the motor stator 6 is energized, the motor rotor 7 starts rotating together with the hub 3 and the thrust bearing plate 5 in the direction of arrow A. At this time, the dynamic pressure generating groove 2b provided on the outer peripheral surface 2a of the shaft 2
As a result, pressure is generated in the radial direction to cause the hub 3 to float. On the other hand, the gas in the thrust inner space 4a at the lower end of the shaft 2 which has been increased in pressure by the asymmetric pattern of the dynamic pressure generating grooves 2b is further subjected to thrust receiving by the dynamic pressure generating grooves 5a of the thrust bearing plate 5 shown in FIG. Increase the pressure between the surface 2d and the hub 3
Generates pressure in the direction of pushing down. Further, the gas at the lower end of the shaft 2, which has been pressurized by the dynamic pressure generating groove 2 b having the asymmetric pattern, is supplied to the through hole 8 provided in the thrust bearing plate 5.
Through the recess 9 of the thrust flange 4 as shown in FIG.
By the dynamic pressure generating grooves 5b of the thrust bearing plate 5 shown in FIG. 3B, pressure is further generated in the direction of pushing up the hub 3 in the reverse direction, and the rotational position of the hub 3 is determined by the balance of the bidirectional force and stably without contact. Rotate.

【0014】このように、スラスト軸受板5に増圧気体
を導く貫通穴8を設けたことで低圧部の圧力が高まり、
図3に示すように、図5に示す従来のスラスト方向の圧
力分布における圧力の総和(面積)より、ハブ3をスラ
スト方向に支持する圧力の総和が大きくなり、軸受のス
ラスト方向の剛性および負荷容量を大きくすることがで
きる。
As described above, the provision of the through hole 8 for guiding the pressure-increasing gas to the thrust bearing plate 5 increases the pressure in the low-pressure portion,
As shown in FIG. 3, the sum of the pressures for supporting the hub 3 in the thrust direction is larger than the sum of the pressures (area) in the conventional pressure distribution in the thrust direction shown in FIG. The capacity can be increased.

【0015】以上のように、本実施の形態によれば、比
較的低い回転数においても気体のスラスト方向の圧力の
総和を十分大きくすることができ、ハブ等の回転が安定
に保たれる。また、ハブ等の回転開始時および停止時に
おいて接触しているスラスト軸受板とスラストフランジ
の対向面とは低回転で安定に離間し、所定位置に安定す
るので、スラスト内空間での摩耗粉の発生が抑えられ、
動圧気体軸受装置としての信頼性が向上する。
As described above, according to this embodiment, the total sum of the pressures in the thrust direction of the gas can be sufficiently increased even at a relatively low rotational speed, and the rotation of the hub and the like can be stably maintained. Also, the thrust bearing plate and the opposing surface of the thrust flange, which are in contact at the start and stop of rotation of the hub and the like, are stably separated at a low rotation speed and stabilized at a predetermined position. The occurrence is suppressed,
The reliability as a hydrodynamic gas bearing device is improved.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、軸受の
スラスト方向の剛性および負荷容量を高めることができ
るので、スラスト方向の圧力の総和が大きくなり、ハブ
の回転の安定性と、その信頼性を向上させることができ
るという有利な効果が得られる。
As described above, according to the present invention, the rigidity and load capacity of the bearing in the thrust direction can be increased, so that the total pressure in the thrust direction increases, and the stability of the rotation of the hub and the stability of the hub can be improved. The advantageous effect that the reliability can be improved is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の動圧気体軸受装置の一実施の形態にお
ける構成を示す断面図
FIG. 1 is a cross-sectional view showing a configuration of a dynamic pressure gas bearing device according to an embodiment of the present invention.

【図2】本発明の動圧気体軸受装置の一実施の形態にお
けるスラスト軸受板の平面図
FIG. 2 is a plan view of a thrust bearing plate in one embodiment of the dynamic pressure gas bearing device of the present invention.

【図3】本発明の動圧気体軸受装置の一実施の形態にお
けるスラスト内空間に発生するスラスト方向の圧力分布
FIG. 3 is a distribution diagram of a pressure in a thrust direction generated in a space in a thrust in the embodiment of the dynamic pressure gas bearing device of the present invention.

【図4】従来の動圧気体軸受装置の構成を示す断面図FIG. 4 is a cross-sectional view showing a configuration of a conventional hydrodynamic gas bearing device.

【図5】従来の動圧気体軸受装置におけるスラスト内空
間に発生するスラスト方向の圧力分布図
FIG. 5 is a diagram of a pressure distribution in a thrust direction generated in a thrust internal space in a conventional dynamic pressure gas bearing device.

【符号の説明】[Explanation of symbols]

1 フレーム 2 軸 2a 外周面 2b 動圧発生溝 2c 突出軸部 2d スラスト受面 3 ハブ 3a 軸受穴 3b 内周面 4 スラストフランジ 4a スラスト内空間 5 スラスト軸受板 5a,5b 動圧発生溝 6 モータステータ 7 モータロータ 8 貫通穴 9 凹部 Reference Signs List 1 frame 2 shaft 2a outer peripheral surface 2b dynamic pressure generating groove 2c protruding shaft portion 2d thrust receiving surface 3 hub 3a bearing hole 3b inner peripheral surface 4 thrust flange 4a thrust inner space 5 thrust bearing plate 5a, 5b dynamic pressure generating groove 6 motor stator 7 Motor rotor 8 Through hole 9 Recess

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 筒状の内周面を有する回転可能なハブ
と、外周面が前記ハブの内周面と対向するように挿入さ
れ、前記ハブを相対的に回転可能とする軸と、前記ハブ
の軸方向下部に配置され、前記軸の下端面を受ける略環
状のスラスト軸受板と、前記軸と同軸で前記スラスト軸
受板の下方へ伸びる突出軸部と、前記突出軸部に固定さ
れ、前記スラスト軸受板にその上面が対向するスラスト
フランジと、互いに対向する前記軸の外周面または前記
ハブの内周面の少なくとも一方に設けられ、ラジアル方
向に支持力を発生させる動圧発生溝と、前記スラスト軸
受板と前記軸の下端の対向面の少なくとも何れか一方、
および前記スラスト軸受板と前記スラストフランジの対
向面の少なくとも何れか一方に設けられ、スラスト方向
に支持力を発生させる動圧発生溝と、前記突出軸部の下
端部を固定するベースと、前記ハブに前記軸と相対的な
回転力を作用させるハブ回転駆動手段を有する動圧気体
軸受装置であって、前記スラスト軸受板に少なくとも一
本以上の貫通穴を設けると共に、前記スラストフランジ
の前記貫通穴に対向する部分に凹部を設けたことを特徴
とする動圧気体軸受装置。
A rotatable hub having a cylindrical inner peripheral surface, a shaft inserted so that an outer peripheral surface thereof faces an inner peripheral surface of the hub, and a shaft capable of relatively rotating the hub; A substantially annular thrust bearing plate that is arranged at a lower portion in the axial direction of the hub and receives a lower end surface of the shaft, a protruding shaft portion coaxial with the shaft and extending below the thrust bearing plate, and fixed to the protruding shaft portion, A thrust flange having an upper surface opposed to the thrust bearing plate, a dynamic pressure generating groove provided on at least one of an outer peripheral surface of the shaft or an inner peripheral surface of the hub opposed to each other, and generating a supporting force in a radial direction; At least one of the thrust bearing plate and the lower end facing surface of the shaft,
A dynamic pressure generating groove provided on at least one of the opposing surfaces of the thrust bearing plate and the thrust flange to generate a supporting force in a thrust direction; a base for fixing a lower end of the protruding shaft portion; and the hub. A hydrodynamic gas bearing device having hub rotation driving means for applying a rotational force relative to the shaft, wherein at least one or more through holes are provided in the thrust bearing plate, and the through holes of the thrust flange are provided. A hydrodynamic gas bearing device, characterized in that a concave portion is provided in a portion facing the gas bearing.
JP2000072027A 2000-03-15 2000-03-15 Dynamic pressure gas bearing device Pending JP2001263341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000072027A JP2001263341A (en) 2000-03-15 2000-03-15 Dynamic pressure gas bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072027A JP2001263341A (en) 2000-03-15 2000-03-15 Dynamic pressure gas bearing device

Publications (1)

Publication Number Publication Date
JP2001263341A true JP2001263341A (en) 2001-09-26

Family

ID=18590501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072027A Pending JP2001263341A (en) 2000-03-15 2000-03-15 Dynamic pressure gas bearing device

Country Status (1)

Country Link
JP (1) JP2001263341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044327A1 (en) * 2008-10-14 2010-04-22 Ntn株式会社 Fluid bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044327A1 (en) * 2008-10-14 2010-04-22 Ntn株式会社 Fluid bearing device
CN102177354A (en) * 2008-10-14 2011-09-07 Ntn株式会社 Fluid bearing device
US8821021B2 (en) 2008-10-14 2014-09-02 Ntn Corporation Fluid dynamic bearing device

Similar Documents

Publication Publication Date Title
JP3514958B2 (en) Fluid bearing device
JP2001107964A (en) Fluid bearing
WO2005046029A1 (en) Motor
JP2003009462A (en) Spindle motor
JP2001263341A (en) Dynamic pressure gas bearing device
JP2002364637A (en) Kinetic pressure gas bering device
US7432621B2 (en) Fluid dynamic bearing motor
KR100376998B1 (en) Hydrostatic bearing motor
JP4078628B2 (en) Pump-in pump-out judgment method
KR100213880B1 (en) Fluid bearing system with an increased volume of fluid input
JP2003023751A (en) Motor for driving recording disc
JP2004108546A (en) Hydrodynamic bearing device and spindle motor using the same
KR100224603B1 (en) Apparatus for adjusting clearance in rotating axis for which fluid bearing is adapted
KR100228891B1 (en) Fluid bearing apparatus
KR100196936B1 (en) Fluid bearing system
JP2001271831A (en) Dynamic pressure bearing unit
JPH074428A (en) Bearing device
JP2000046057A (en) Dynamic pressure bearing device for fan motor
KR100224609B1 (en) Apparatus for adjusting clearance in rotating axis for which fluid bearing is adapted
KR100224616B1 (en) Fluid bearing apparatus having a groove which fluid goes against the stream
KR100224604B1 (en) Journal bearing apparatus
KR100459876B1 (en) Spindle system for HDD
JP2001263342A (en) Dynamic pressure gas bearing device
JP2001254728A (en) Dynamic pressure gas bearing system
JP2004019708A (en) Dynamic pressure bearing, spindle motor using the same, and disc driving device with spindle motor