JP2001261460A - Method for manufacturing high-temperature and high- pressure vessel, high-temperature and high-pressure container or the like - Google Patents

Method for manufacturing high-temperature and high- pressure vessel, high-temperature and high-pressure container or the like

Info

Publication number
JP2001261460A
JP2001261460A JP2000123364A JP2000123364A JP2001261460A JP 2001261460 A JP2001261460 A JP 2001261460A JP 2000123364 A JP2000123364 A JP 2000123364A JP 2000123364 A JP2000123364 A JP 2000123364A JP 2001261460 A JP2001261460 A JP 2001261460A
Authority
JP
Japan
Prior art keywords
temperature
pressure
tank
ceramic material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000123364A
Other languages
Japanese (ja)
Inventor
Ryohei Mihara
良平 三原
Yasutaka Tomohara
保孝 智原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000123364A priority Critical patent/JP2001261460A/en
Publication of JP2001261460A publication Critical patent/JP2001261460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a container, heat exchanger, engine, or the like, each of which is durable under corrosive, high-temperature and high-pressure environmental conditions, from a composite material using as its constituent materials a metallic material and a ceramic material. SOLUTION: This method is used for manufacturingg a high-temperature and high-pressure composite vessel (or container) consisting of a ceramic material placed of the inner side and steel 3 placed on the outer side, and for example, comprises: casting a fused ceramic material 2 into a space between the inner side ceramic material and the outer side steel 3 preheated to 1,000 deg.C, in such a state that the space is vacuum-evacuated from the opposite side to a casting port in order to uniformly cast the fused ceramic material 2; or in the above process, further, while rotating the preheated outer side steel 3, bonding the fused ceramic material 2 to the steel 3 being in a thermally expanded state, by the centrifugal force; or preheating the outer side steel 3, placing an inner cylinder 1 (core) for controlling the fusion bonding and thickness of an inner side ceramic material 2, casting the fused inner side ceramic material 2 into the space between the inner cylinder 1 and the outer side steel 3 in such a state that the space is vacuum-evacuated while applying centrifugal force to the fused ceramic material 2 by rotating the outer side steel 3, and finally, removing the inner cylinder 1 from the thus formed body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】この発明は、金属材料とセラミックを用
い、互いの材料の持っている長所を生かし、欠点を補い
最大限に槽(容器)である高温高圧に耐え、熱交換器、
エンジン部品等にも応用しようとするものであり、金属
材料とセラミックスの接合部を温度圧力に関係なし、ス
キマが生じない製造方法である。これにより、金属側の
腐食要素(成分、加工度熱処理、表面状況)と接液(ガ
ス)側の条件を少なくするため、溶液(ガス)側を耐腐
食に強い、セラミックを溶着することに関するものであ
る。
[0001] The present invention uses a metal material and a ceramic material, makes use of the advantages of each other's materials, compensates for the drawbacks, and withstands the high temperature and high pressure of the tank (container) to the utmost.
The method is intended to be applied to engine parts and the like, and is a manufacturing method in which a gap between a metal material and a ceramic is not generated regardless of temperature and pressure. In this way, to reduce corrosion factors (components, heat treatment, surface conditions) on the metal side and the conditions on the liquid (gas) side, so that the solution (gas) side is resistant to corrosion and welds ceramic. It is.

【0002】[0002]

【従来の技術】金属とセラミックを一体にする方法は、
一般的に溶射する方法でセラミックの厚みは数ミリ単位
で高温、高圧が並用する機器には不都合が生じ、今だ解
決が出来てない。
2. Description of the Related Art A method of integrating metal and ceramic is as follows.
In general, the thermal spraying method has a ceramic thickness of a few millimeters, which is inconvenient for equipment that is commonly used at high temperatures and high pressures.

【0003】セラミックの持つ特徴を生かすため、金属
との組合せは高温、高圧でも、金属とセラミックの圧力
差、温度差が少ない個所で金属のクリップ又は、ネジ止
めやシールを保つためOリング等を使用している。
[0003] In order to take advantage of the characteristics of ceramics, the combination with metal may be made of metal clips or O-rings to keep screws or seals at places where the pressure difference and temperature difference between the metal and ceramic are small even at high temperature and high pressure. I'm using

【0004】一方容器等については、セラミックに外筒
を取付け、保護しているのが現状で、いずれも金属とセ
ラミック接合部にはスキマが生じているが用途により、
これらを工夫しているが、高温、高圧槽(容器)でい
う、温度、圧力差が大きな個所には不向きである。
On the other hand, as for containers and the like, at present, an outer cylinder is attached to a ceramic to protect it.
Although these are devised, they are not suitable for places where there is a large difference between temperature and pressure in a high-temperature, high-pressure tank (vessel).

【0005】[0005]

【発明が解決しようとする課題】圧力槽及び容器等にお
ける、液体やガス体を亜臨界、超臨界装置で処理する場
合、圧力、温度差が大となり槽(容器)には応力、特に
熱応力は、金属が温度を受け、引張応力や圧縮応力が働
き、局部には応力集中が発生する。
When a liquid or a gaseous substance in a pressure vessel or a vessel is treated by a subcritical or supercritical apparatus, the pressure and temperature differences become large and the vessel (vessel) is subjected to stress, especially thermal stress. In the case of metal, tensile stress or compressive stress acts on the metal, and stress concentration occurs locally.

【0006】この高温高圧の条件下では、金属材料の破
壊が生じ使用する液体、気体に接する個所は、延性破
壊、脆性破壊、クリープ破壊、疲労破壊があり、摩耗な
ども破壊の一種に連がる。
[0006] Under the conditions of high temperature and high pressure, the metal material is destroyed and the parts in contact with the liquid or gas used are ductile fracture, brittle fracture, creep fracture, and fatigue fracture. You.

【0007】特に金属は、使用する条件が悪い方向(高
温高圧)や金属に接する液体、気体の成分により金属な
環境中でその他の不必要な化学反応を起こし、腐食が生
じる。特に腐食の中でも湿食があり局部腐食として、c
lによる腐食が進むと応力腐食割れや粒間腐食が生じ
る。又乾食の中には、酸化やガス腐食として水素侵食、
高温硫化が生じる。金属材料は使用する材料の選定及び
分解蒸発等使用する液体(気体)により劣化や破壊に連
がる。
[0007] In particular, a metal causes other unnecessary chemical reactions in a metallic environment due to poor use conditions (high temperature and high pressure) and liquid and gas components in contact with the metal, thereby causing corrosion. In particular, there is wet corrosion among corrosion, and as local corrosion, c
As the corrosion proceeds, stress corrosion cracking and intergranular corrosion occur. In addition, during dry eating, hydrogen attack as oxidation or gas corrosion,
Hot sulfidation occurs. Deterioration or destruction of the metal material is caused by the selection of the material to be used and the liquid (gas) used such as decomposition and evaporation.

【0008】液体や気体の腐食媒の種類でHCl、ベン
ゼン素、水酸化ナトリウム等多種多様の成分は、高温高
圧になるほど粒界割れ貧粒割れや腐食が生じる。
Various types of liquid or gaseous corrosion media, such as HCl, benzene, sodium hydroxide, and the like, are subject to grain boundary cracking, poor grain cracking, and corrosion at higher temperatures and pressures.

【0009】これらの金属材料は材料、応力、環境(温
度、圧力、使用する液体、気体)に適する材料を選定す
るにも、現段階ではなく経年劣化診断等、定期的に検査
を実施し、修理や取替を行っている。
In order to select a material suitable for the material, stress, and environment (temperature, pressure, liquid, gas used) for these metal materials, periodic inspections, such as aging diagnosis, not at the present stage, are carried out. Repairs or replacements.

【0010】特に化学成分と圧力、温度による劣化破壊
等を防ぐには耐化学成分反応に耐える材料を選定し、圧
力温度にも耐応出来るものとして、内面に液体気体を使
用する場合、外部に金属材料を用い強度(圧力、温度熱
に耐える)保ち、内面にセラミックを溶融した状態で真
空状態にて溶浸し、耐化学成分による応力腐食割れ等材
料におよぼす要因を軽滅しようとする製造方法を本発明
にて解決しようとするものである。
In particular, in order to prevent deterioration due to chemical components, pressure and temperature, a material resistant to the reaction of chemical components should be selected. A manufacturing method that uses metal materials to maintain strength (withstands pressure and temperature heat), infiltrate in a vacuum state with a ceramic melted on the inner surface, and reduce factors affecting the material such as stress corrosion cracking due to chemical resistance components Is to be solved by the present invention.

【0011】今日では常識となっている臨界現象は19
世紀の中頃イギリスの科学者アンドルースによって発見
されたが、一世紀半後の現在になって、臨界点近傍の特
異な流体物性が脚光を溶び、それを応用するプロセスの
動伺としては本発明が解決しようとする0005〜00
10で説明したようにその高温高圧流体技術分野では 天然物から菜用成分の抽出分離 水熱酸化分解法による、有機廃棄物処理 ポリマー電池用プラスチック素材の複合化 マイクロウェーブを併用する電磁波防止材料の開発等用
途も山積するが、本発明の名称高温高圧の槽(容器)が
課題になっている。
The critical phenomena that have become common knowledge today are 19
Discovered by the British scientist Andrews in the middle of the century, but a century and a half later, the unique fluid properties near the critical point melt into the limelight, and the process of applying it is a book SUMMARY OF THE INVENTION
As explained in 10 above, in the field of high-temperature and high-pressure fluid technology, extraction and separation of vegetable ingredients from natural products Treatment of organic waste by hydrothermal oxidative decomposition method Combination of plastic materials for polymer batteries Although there are many uses for development and the like, the subject of the present invention is a high-temperature high-pressure tank (vessel).

【0012】[0012]

【課題を解決する為の手段】上記の課題を解決するた
め、本願の発明に於いては、高温高圧槽(容器)で、亜
臨界、又は、超臨界で、液体、気体を熱分解現反応を生
じる装置において、強度漏えい耐圧、耐熱構造物は一般
の鋼を用いる。処理使用とする液体、気体の接触する部
位には、熱、圧力により、化学反応による腐食、応力割
れ等防止するためセラミックを使用。
In order to solve the above-mentioned problems, in the present invention, a subcritical or supercritical liquid or gas is thermally decomposed in a high-temperature high-pressure tank (vessel). In the device that generates the above, general steel is used for the strength leakage pressure resistance and heat-resistant structure. Ceramics are used to prevent corrosion and stress cracking due to chemical reactions due to heat and pressure at the parts where liquids and gases used for processing are in contact.

【0013】セラミックを一般の鋼に取付るには、従来
の方法では高温高圧の温度差、圧力差が大きい場合はセ
ラミックスの溶着が一番難問であり、スキマがあると温
度圧力により破壊するため本発明では、セラミックスの
厚みを保ち鋼とのスキマを生じなく、高温高圧でも破損
しない。
In order to attach ceramics to general steel, it is the most difficult for conventional methods to weld ceramics when the temperature difference between high and high pressures is large and the pressure difference is large. In the present invention, the thickness of the ceramic is maintained, there is no gap with the steel, and the ceramic is not damaged even at high temperature and high pressure.

【0014】まず接液(気体)部が、内側の場合、外部
の鋼は温度1000°C近傍に予熱をし、金属材料を膨
張さす一方セラミックス(炭化珪素、モリプデン、珪
素、炭素、アルミナ、ガラス、マグネシューム類)の材
料を溶融する。セラミックスを溶浸する場合均等に厚み
と、素材がむらなく流れ込むため注入口の反対側より真
空状態にし流し込む。
First, when the liquid (gas) portion is inside, the outer steel is preheated to a temperature of about 1000 ° C. to expand the metallic material while the ceramics (silicon carbide, molybdenum, silicon, carbon, alumina, glass , Magnesium). In the case of infiltrating ceramics, the thickness and the material are uniformly flowed, so that the material is flowed evenly from the opposite side of the injection port.

【0015】セラミックスを流し込む場合均等な厚さ保
持のためと材質の均一化を図るため、真空状態で熱した
鋼を回転させ、遠心力により鋼の熱膨張した環境にセラ
ミックスが溶着する。
When pouring ceramics, in order to maintain a uniform thickness and to make the material uniform, the heated steel is rotated in a vacuum state, and the ceramic is welded to the thermally expanded environment of the steel by centrifugal force.

【0016】またもう一つの方法として、外側の鋼を加
熱し、内側にセラミックス溶着と厚さ管理のため、内筒
を設け外側と内筒の中間に溶融したセラミックスを真空
状態で回転遠心か静止状態で流し込む。
Another method is to heat the outer steel, provide an inner cylinder for welding the ceramic and control the thickness on the inner side, and rotate the melted ceramic between the outer and inner cylinders in a vacuum state by rotary centrifugation or stationary. Pour in the state.

【0017】いずれも冷却すると、外側の金属は冷却と
ともに内側に圧縮し、セラミックスの厚み管理のため内
筒を使用した場合切削により、セラミックス面が表れる
ように寸法管理をする。
In any case, when cooled, the outer metal is compressed inward with cooling, and when the inner cylinder is used to control the thickness of the ceramic, the dimensions are controlled so that the ceramic surface appears by cutting.

【0018】請求項3においては、外部の金属材料のは
め込側を凹凸なく寸法管理し、表面を研磨する。一方、
内側に組込むセラミックスは、金属に接する面を凹凸な
く表面を研磨する。
According to a third aspect of the present invention, the side on which the external metal material is inserted is dimensionally controlled without unevenness, and the surface is polished. on the other hand,
Ceramics incorporated inside polish the surface in contact with metal without unevenness.

【0019】この方法における組込みは焼ばめのため鋼
を1000°C〜1200°C近傍に加熱し、熱膨張さ
せ、焼ばめ寸法管理をした膨張代を考慮しセラミックス
(常温)を加圧注入する。
In this method, the steel is heated to about 1000 ° C. to 1200 ° C. for shrink fitting, thermally expanded, and the ceramic (normal temperature) is pressurized in consideration of the expansion allowance for shrink fitting dimension control. inject.

【0020】槽(容器)は冷却することにより、セラミ
ックスと鋼は圧着状態になり隙間がなくなり、高温高圧
で使用する(例、650°C 亜臨界、臨界状態)条件
下でも耐酸、耐アルカリ、温度、圧力にも耐えることが
出来る。
By cooling the vessel (vessel), the ceramic and steel are brought into a press-bonded state without any gap, and even under conditions of high temperature and high pressure (eg, 650 ° C. subcritical, critical state), acid resistance, alkali resistance, It can withstand temperature and pressure.

【0021】請求項4においてセラミックスの槽(容
器)を内、外面に組込みセラミックスとセラミックスの
隙間は強度圧力に耐える空間を作り、そこに溶融した金
属約1300〜1400°Cのものを流し込んで槽(容
器)を製造することにより金属で強度を保ちセラミック
スで酸アルカリ等化学成分による腐食要因を防止出来、
応力腐食割れ等にも防止効果がある。
In claim 4, a ceramic vessel (container) is incorporated on the inner and outer surfaces, and a gap between the ceramics and the ceramics forms a space capable of withstanding the strength pressure, into which a molten metal having a temperature of about 1300 to 1400 ° C. is poured. By manufacturing (container), it is possible to maintain strength with metal and prevent corrosion factors due to chemical components such as acid and alkali with ceramics,
It also has an effect of preventing stress corrosion cracking.

【0022】[0022]

【発明の実施の形態】金属とセラミックスの槽(容器)
等については、前記にも記したが従来から製造し利用さ
れているが、高温高圧で温度差が600°C〜1000
°C圧力差が200〜350以上に耐え酸、アルカリ等
化学成分の耐食性、耐塩酸性、耐アリカリ性、粒間腐食
や応力腐食割れ等に耐え、耐熱、耐圧と材料に対し、悪
い要因が重なると、現在でも解決が出来てない、これを
解決するため、金属とセラミックスの製造方法で解決が
出来た。
BEST MODE FOR CARRYING OUT THE INVENTION Metal and ceramic tanks (containers)
As described above, etc., as described above, they are conventionally manufactured and used.
Withstands pressure difference between 200 ° C and 200 ° C or higher. Corrosion resistance of chemical components such as acids and alkalis, hydrochloric acid resistance, anti-corrosion resistance, withstands intergranular corrosion and stress corrosion cracking, etc. The problem has not been solved even now. To solve this problem, a method for producing metal and ceramics was used.

【0023】処理しようとする、液体やガス体は高温高
圧の亜臨界や超臨界の条件では、腐食について、溶液や
分解によるガスの媒質側の要因が無数にあるため、使用
条件のすべてを網羅して槽(容器)は困難である。金属
の持つ特長とセラミックスの特長を生かすため本製造方
法として金属を約1000〜1200°C加熱し、熱膨
張さす。(但し、液体等処理する温度は700°Cであ
る)
Under the conditions of subcritical or supercritical conditions of high temperature and high pressure, the liquid or gaseous substance to be treated has a myriad of factors on the medium side of the gas due to solution or decomposition. And the tank (container) is difficult. In order to make use of the features of the metal and the features of the ceramics, the metal is heated at about 1000 to 1200 ° C. and thermally expanded as the present manufacturing method. (However, the temperature for treating liquid etc. is 700 ° C)

【0024】この外部高温金属槽(容器)に内部、ガイ
ド筒等の間を真空状態に保ち流し込むため、むらなくセ
ラミックス溶液が注入出来厚みも確保出来る。
Since the inside and the space between the guide cylinders and the like are poured into the external high-temperature metal tank (vessel) while maintaining a vacuum state, the ceramic solution can be poured uniformly and the thickness can be secured.

【0025】また溶融したセラミックスを流し込んだ
後、全体を回転さすことにより、より緻密に金属と密着
効率がよい。冷却された後セラミックスを流し込むため
のガイド筒等を外す。
By rotating the whole after pouring in the molten ceramic, the adhesion efficiency to the metal is improved more densely. After cooling, remove the guide tube for pouring the ceramics.

【0026】このため金属の腐食因子である、要因はセ
ラミックスで保護し、水溶液や、溶融塩類である非水溶
液(塩類)と化学性ガスから成る耐腐食に耐えることが
出来た、その上外部の金属が耐圧に耐える構造のため腐
食耐圧、耐熱に対応出来、これも金属とセラミックスと
の間を作らない製法のため耐食性、耐熱性、耐圧性が解
決出来た。
For this reason, the metal corrosion factor was protected by ceramics, and was able to withstand corrosion resistance consisting of an aqueous solution or a non-aqueous solution (salts) as a molten salt and a chemical gas. Since the structure withstands the pressure resistance of metal, it can cope with corrosion pressure and heat resistance. This method can solve corrosion resistance, heat resistance and pressure resistance because of the manufacturing method that does not make a gap between metal and ceramics.

【0027】[0027]

【実施例】上記に記載した装置は、まず金属(一般鋼
管)を圧力250気圧、温度650゜Cに耐える。15
0Aの鋼管を選定、長さは2.5メートルとした(完成
品は2.0メートル)この鋼管を約1000°C均一に
加熱し、
DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus described above first withstands a metal (general steel pipe) at a pressure of 250 atm and a temperature of 650 ° C. Fifteen
A steel pipe of 0A was selected and the length was set to 2.5 meters (the finished product was 2.0 meters).

【0028】セラミックス高温溶液を金属内面に流し込
むため、ガイド内筒を組込み、下部より間から真空ポン
プ(−650〜700mAg)で吸引しながらセラミッ
クスを流し込む、肉厚は最小仕上げ10mmを確保する
ため余肉を保たす。
In order to pour the high temperature solution of ceramics into the metal inner surface, a guide inner cylinder is incorporated, and the ceramics are poured in from below through a vacuum pump (−650 to 700 mAg) while suction is applied. Keep the meat.

【0029】外側の金属の高温状態でセラミックスの溶
融した状態で全体を1800回転〜3600回転さすこ
とにより金属が冷却収縮と同時にセラミックスが遠心力
で外側の金属に密着するとともに空気も分離され均一な
セラミックスが固着した。その後ガイド筒等を削除す
る。
By rotating the whole body 1800 to 3600 rotations in a state where the ceramic is melted in a high temperature state of the outer metal, the metal adheres to the outer metal by centrifugal force at the same time as the metal is cooled and contracted, and the air is also separated and uniform. Ceramics adhered. Thereafter, the guide tube and the like are deleted.

【0030】一方上下のフランジ面もセラミックスと鋼
の組合せで槽(容器)を作った。このため今迄耐圧、耐
熱、耐食に適した亜臨界から超臨界での液体、ガス体を
有害物質の処理に目処がついたと考えている。
On the other hand, a tank (container) was made of a combination of ceramics and steel on the upper and lower flange surfaces. For this reason, it is believed that subcritical to supercritical liquids and gas bodies suitable for pressure resistance, heat resistance, and corrosion resistance have been treated for harmful substances.

【0031】[0031]

【発明の効果】【The invention's effect】

【表1】 [Table 1]

【0032】上記の高温高圧を同条件化でA従来の鋼製
B、発明槽製、製造した。 常温で水の圧力実験し2回
以後は、有機塩素化合物の中からPCBという、毒性を
えらび表のように実験したところA従来品では、10回
100時間で腐食が起き圧力がかからなくなり、回数を
上げるたびに圧力減少してしまい150時間目には槽
(容器)として使用することが出来なく不良になった。
それに対してBの本発明品で全体の重量は上がるものの
150時間使用しても、まったく変化をみられなく良効
であったことにより、新槽(容器)の発明として確信し
ている。
Under the same conditions of high temperature and high pressure as described above, A was made of conventional steel B, and was manufactured and manufactured by the invention tank. The water pressure test was conducted at room temperature. After that, the PCB was selected from the organochlorine compounds, and the toxicity was selected. As shown in the table, the conventional product A was corroded 10 times for 100 hours and the pressure was not applied. Each time the pressure was increased, the pressure was reduced, and it could not be used as a tank (container) at 150 hours, resulting in a failure.
On the other hand, although the total weight of the product of the present invention B was increased, even if it was used for 150 hours, it did not show any change and was effective, so it is convinced that it was an invention of a new tank (container).

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のセラミック注入方法のプロセス図で
ある。
FIG. 1 is a process diagram of a ceramic injection method of the present invention.

【図2】 高温高圧槽(容器)の製作方法構成図[Fig. 2] Configuration diagram of manufacturing method of high-temperature high-pressure tank (container)

【符号の説明】[Explanation of symbols]

1.セラミック 2.溶融セラミック 3.鋼材 1. Ceramic 2. Molten ceramic Steel

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属、材料とセラミックとを用い、外部に
金属、内部にセラミックの複合材を製造し、高温高圧に
耐え、耐酸、耐アルカリ、及び反応ガス等による槽、又
は、圧力容器が腐食、減肉、応力に耐える、高温高圧槽
や熱交換器、エンジン部品等、製造することを特徴とす
る製造方法。
1. A composite material of a metal, a material and a ceramic, a metal on the outside and a ceramic on the inside is manufactured, and the tank or pressure vessel withstands high temperature and high pressure, and is resistant to acid, alkali and reaction gas. A method for producing a high-temperature high-pressure tank, a heat exchanger, an engine part, or the like, which is resistant to corrosion, thinning, and stress.
【請求項2】高温高圧槽で、炭化珪素、モリプデン、珪
素、炭素、アルミナ、ガラス、マグネシュウム類の材料
で、槽の内部に充填し、外部に金属材料で耐圧、耐温に
耐える槽で腐食に耐える内部と外部の異種材料の接触部
にスキマをなくすために、外部金属材料に対し、溶触し
た高温の炭化珪素、モリプデン、珪素、炭素、アルミ
ナ、ガラス、マグネシュウム類を外部金属を高温加熱に
し、真空状態で溶触した炭化珪素、モリプデン等を溶浸
することを特徴とする製造方法。
2. A high-temperature and high-pressure tank, which is made of a material such as silicon carbide, molybdenum, silicon, carbon, alumina, glass, and magnesium. The inside of the tank is filled. In order to eliminate the gap between the contact parts of different materials inside and outside, which are resistant to heat, the outside metal material is heated to high temperature by welding the contacted high temperature silicon carbide, molybdenum, silicon, carbon, alumina, glass and magnesium to the outside metal material. And a method of infiltrating silicon carbide, molybdenum, or the like, which has been contacted in a vacuum state.
【請求項3】内部槽のセラミックを表面の凹凸を研磨
し、又外部の槽(容器)も凹凸とも研磨する。この内部
と外部の槽を組込む場合、外部の槽である金属を加熱
し、内部の槽をさし込み、焼ばめ状態にすることを特徴
とする製造方法。
3. The ceramic of the inner tank is polished for unevenness on the surface, and the outer tank (container) is also polished for unevenness. When incorporating the inner and outer tanks, a manufacturing method characterized by heating the metal as the outer tank, inserting the inner tank, and shrink-fitting.
【請求項4】内部の槽と外部の槽は互いにセラミックを
用い、内、外との空間を保ち耐圧、耐温に耐える寸法と
そこに金属類を約1400°C溶かし込んで成る高温、
高圧槽を製造することを特徴とする製造方法。
4. An inner tank and an outer tank are made of ceramics each other. The inner and outer tanks maintain a space between the inside and the outside, and have a size capable of withstanding pressure and temperature, and a high temperature formed by melting metals at about 1400 ° C.
A method for producing a high-pressure tank.
JP2000123364A 2000-03-21 2000-03-21 Method for manufacturing high-temperature and high- pressure vessel, high-temperature and high-pressure container or the like Pending JP2001261460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000123364A JP2001261460A (en) 2000-03-21 2000-03-21 Method for manufacturing high-temperature and high- pressure vessel, high-temperature and high-pressure container or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000123364A JP2001261460A (en) 2000-03-21 2000-03-21 Method for manufacturing high-temperature and high- pressure vessel, high-temperature and high-pressure container or the like

Publications (1)

Publication Number Publication Date
JP2001261460A true JP2001261460A (en) 2001-09-26

Family

ID=18633677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123364A Pending JP2001261460A (en) 2000-03-21 2000-03-21 Method for manufacturing high-temperature and high- pressure vessel, high-temperature and high-pressure container or the like

Country Status (1)

Country Link
JP (1) JP2001261460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101756756B1 (en) 2015-09-24 2017-07-27 한국원자력연구원 High-temperature gas-cooled reactor pressure vessel and manufacturing method of it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101756756B1 (en) 2015-09-24 2017-07-27 한국원자력연구원 High-temperature gas-cooled reactor pressure vessel and manufacturing method of it

Similar Documents

Publication Publication Date Title
US10000422B2 (en) Ceramic to ceramic joining method
EP0090762B1 (en) Method of welding by hot isostatic pressing
JPS6277484A (en) Method for washing metal product
US20080268279A1 (en) Method of Joining Clad Metals and Vessel Produced Thereby
US10760139B2 (en) Method for repairing defects on hot parts of turbomachines through hybrid hot isostatic pressing (HIP) process
JP2010091172A (en) Wire-wound type pressure vessel
JP2001261460A (en) Method for manufacturing high-temperature and high- pressure vessel, high-temperature and high-pressure container or the like
NO812605L (en) PROCEDURE FOR APPLYING A COAT ON A SUBSTRATE
CN106735755B (en) A kind of bobbin carriage pine lining structure and preparation method thereof
US4311505A (en) Method of manufacturing glass-lined metal tubes
US10711335B2 (en) Bubble pump resistant to attack by molten aluminum
CN216429809U (en) Marine diesel engine high-pressure oil pipe with high-frequency brazing conical sealing surface
JP2001200931A (en) Heating cylinder for plastic molding with composite alloy sleeve
JP5519270B2 (en) Repair method for glass lining equipment
Siddique et al. Finite element simulation of mechanical stress relieving in welded pipe—Flange joint
JPH02194107A (en) Manufacture of combined alloy cylinder
JP2003001393A (en) Relining method for hollow member with wear-resistant layer on inner circumferential surface
JP2009162443A (en) Winding type pressure vessel
AU663801B2 (en) Welding procedure for a closed tube assembly
CN116475269A (en) Production process of novel high-tightness anticorrosive material steel lining butterfly valve
JPH02133191A (en) Preventing method for stress corrosion cracking of vessel through-pipe
Lehrheuer High-Temperature Solid-State Welding
Peacock et al. Repair of a Melter Pour Spout Using an Expanding Ring
JP2002331382A (en) Inner face lining method for cylindrical part
JPS61223129A (en) Heat treatment for providing high resistance to hydrogen exfoliation cracking