JP2001256868A - Operating apparatus for circuit breaker - Google Patents

Operating apparatus for circuit breaker

Info

Publication number
JP2001256868A
JP2001256868A JP2000066279A JP2000066279A JP2001256868A JP 2001256868 A JP2001256868 A JP 2001256868A JP 2000066279 A JP2000066279 A JP 2000066279A JP 2000066279 A JP2000066279 A JP 2000066279A JP 2001256868 A JP2001256868 A JP 2001256868A
Authority
JP
Japan
Prior art keywords
contact
electromagnet
movable member
fixed
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000066279A
Other languages
Japanese (ja)
Inventor
Tetsushi Koshiyama
哲志 越山
Toshiharu Yamazaki
利春 山崎
Akihira Morishita
明平 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba FA Systems Engineering Corp
Original Assignee
Toshiba Corp
Toshiba FA Systems Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba FA Systems Engineering Corp filed Critical Toshiba Corp
Priority to JP2000066279A priority Critical patent/JP2001256868A/en
Publication of JP2001256868A publication Critical patent/JP2001256868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately control velocity of a movable member at the time of closing operation and breaking operation. SOLUTION: A magnetic circuit comprises a fixed member; a permanent magnet: the movable member; and an electromagnet 9 wherein a reactor 23, which is electrically connected in series with the electromagnet, is provided in a position not interlinking with a magnetic flux of the magnetic circuit. Thereby, at the time of closing or breaking operation, when the magnetic flux of the magnetic circuit is changed and a counterelectromotive current is induced in the electromagnet, by discharging the energy accumulated in the reactor, a decline of excited current of the electromagnet generated by the counterelectromotive current is compensated. thus the decline of moving velocity of the movable member at the time of closing or breaking can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石と電磁石
を組合せた電磁アクチュエータを用いて真空バルブ等の
真空開閉機器の開閉動作を行う遮断器用操作装置に係
り、特に、投入又は遮断時の電磁石の励磁駆動力を略一
定に制御し得る遮断器用操作装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operating device for a circuit breaker which performs opening and closing operations of a vacuum switching device such as a vacuum valve by using an electromagnetic actuator in which a permanent magnet and an electromagnet are combined. The present invention relates to a circuit breaker operating device capable of controlling the excitation driving force of the circuit breaker substantially constant.

【0002】[0002]

【従来の技術】従来、真空バルブ等の真空開閉機器を開
閉動作させる遮断器用操作装置としては、従来から機械
式のものが多く用いられている。しかしながら、近年、
機械式のものに代えて、永久磁石と電磁石とを組合せた
電磁アクチュエータが、構造の簡素さ、部品点数の少な
さ、機械式でないために部品の摩耗がない等、多くの利
点を有する点から次第に用いられつつある。
2. Description of the Related Art Conventionally, as a circuit breaker operating device for opening and closing a vacuum switching device such as a vacuum valve, a mechanical device has been widely used. However, in recent years,
Electromagnetic actuators that combine permanent magnets and electromagnets in place of mechanical ones have many advantages, such as simplicity of structure, small number of parts, and non-mechanical, so there is no wear of parts. It is being used gradually.

【0003】この種の電磁アクチュエータとしては、例
えば特願平10−59557号に示す構成の他、多くの
構成が提案されている。但し、基本的には、永久磁石の
吸引力あるいはバネの押付け力により真空開閉機器の投
入状態又は遮断状態を維持した状態において、電磁石を
励磁し、遮断動作あるいは投入動作を行わせる構成とな
っている。
As this type of electromagnetic actuator, for example, many configurations have been proposed in addition to the configuration disclosed in Japanese Patent Application No. 10-59557. However, basically, in a state in which the closing state or the closing state of the vacuum switching device is maintained by the attraction force of the permanent magnet or the pressing force of the spring, the electromagnet is excited to perform the closing operation or the closing operation. I have.

【0004】図13は係る電磁アクチュエータの代表的
な構成を示す模式図である。この電磁アクチュエータ1
は、支持フレーム2に取り付けられて固定接触子3a及
び可動接触子3bを有する真空バルブ3の可動接触子3
bに対し、同軸的に連結された絶縁性の操作ロッド4を
介して接続されている。
FIG. 13 is a schematic diagram showing a typical configuration of such an electromagnetic actuator. This electromagnetic actuator 1
Is a movable contact 3 of the vacuum valve 3 attached to the support frame 2 and having a fixed contact 3a and a movable contact 3b.
b is connected via an insulating operation rod 4 coaxially connected.

【0005】この操作ロッド4は、内部空間を有する固
定部材5を貫通しつつ軸方向に移動可能に支持されてい
る。固定部材5は磁性体で製作され、その内部には操作
ロッド4に固着された磁性体製の可動部材6が軸方向に
直線運動可能に配置されている。
The operating rod 4 is supported movably in the axial direction while penetrating through a fixing member 5 having an internal space. The fixed member 5 is made of a magnetic material, and a movable member 6 made of a magnetic material fixed to the operation rod 4 is arranged inside the fixed member 5 so as to be able to linearly move in the axial direction.

【0006】また、永久磁石7が可動部材6を取り囲む
ように固定部材5の内側に配置され、可動部材6、永久
磁石7、固定部材5で形成される磁気回路8の内部には
電磁石9が配置されている。この電磁石9は、図示しな
い励磁電源回路により、投入時に永久磁石7を吸引励
磁、遮断時に反発励磁が可能になっている。
A permanent magnet 7 is arranged inside the fixed member 5 so as to surround the movable member 6, and an electromagnet 9 is provided inside a magnetic circuit 8 formed by the movable member 6, the permanent magnet 7 and the fixed member 5. Are located. The electromagnet 9 is capable of attracting and exciting the permanent magnet 7 when turned on and repulsive exciting when shut off, by means of an excitation power supply circuit (not shown).

【0007】さらに、操作ロッド4の下端部と固定部材
5との間には、操作ロッド4に外挿されてこの操作ロッ
ド4を下方に付勢するようにバネ10が取付けられてい
る。また、固定部材5と真空バルブ3との間には、同様
に操作ロッド4に外挿されてこの操作ロッド4を下方に
付勢するようにバネ11が取り付けられている。なお、
各バネ10,11は、操作ロッド4を下方に付勢するこ
とにより、上方の真空バルブ3の可動接触子3bを固定
接触子3aから離間させて遮断状態を得るためのもので
ある。
Further, a spring 10 is attached between the lower end of the operating rod 4 and the fixing member 5 so as to be externally inserted into the operating rod 4 and urge the operating rod 4 downward. Further, a spring 11 is attached between the fixing member 5 and the vacuum valve 3 so as to be similarly externally inserted into the operation rod 4 and urge the operation rod 4 downward. In addition,
Each of the springs 10 and 11 urges the operating rod 4 downward to separate the movable contact 3b of the upper vacuum valve 3 from the fixed contact 3a to obtain a closed state.

【0008】なお、図13は真空バルブ3の投入状態を
示している。この投入状態においては、可動部材6が上
方の永久磁石7に吸引され、バネ10,11が圧縮され
て固定接触子3aと可動接触子3bとの閉状態が維持さ
れる。
FIG. 13 shows the closed state of the vacuum valve 3. In the closed state, the movable member 6 is attracted to the upper permanent magnet 7, and the springs 10 and 11 are compressed, so that the closed state of the fixed contact 3a and the movable contact 3b is maintained.

【0009】これら投入状態と遮断状態とは、磁気回路
8内に配置された電磁石9の通電方向の制御により、可
動部材6に作用する磁力(上方吸引力)とバネ力(下方
付勢力(反発力))との大小関係を交替させて切替可能
となっている。
The closed state and the closed state are controlled by controlling the energizing direction of the electromagnet 9 disposed in the magnetic circuit 8 so that the magnetic force (upward attraction) acting on the movable member 6 and the spring force (downward biasing force (repulsive force) are applied. )) Can be switched by changing the magnitude relationship between them.

【0010】ここで、図14は可動部材6に作用する電
磁力とバネ力との関係を示している。図14中、横軸は
可動部のストローク(可動部材6と固定部材5との空隙
距離)を示し、縦軸は可動部材6に作用する力を示して
いる。
FIG. 14 shows the relationship between the electromagnetic force acting on the movable member 6 and the spring force. 14, the horizontal axis represents the stroke of the movable part (the gap distance between the movable member 6 and the fixed member 5), and the vertical axis represents the force acting on the movable member 6.

【0011】また、3つの曲線12a〜12cは、可動
部材6を上方に吸引する吸引力を示している。ここで、
曲線12aは永久磁石単独の吸引力(磁力)を示し、曲
線12bは電磁石9へ逆方向に通電した場合の吸引力を
示し、曲線12cは順方向に通電した場合の吸引力を示
している。ここで、通電方向に関する2つの曲線12
b,12cは、電磁石9のアンペアターンを一定として
得られている。
Further, three curves 12a to 12c show the suction force for sucking the movable member 6 upward. here,
Curve 12a shows the attraction (magnetic force) of the permanent magnet alone, curve 12b shows the attraction when the electromagnet 9 is energized in the reverse direction, and curve 12c shows the attraction when the electromagnet 9 is energized in the forward direction. Here, two curves 12 related to the energization direction
b and 12c are obtained with the ampere turn of the electromagnet 9 being constant.

【0012】一方、階段状の折れ線13は、操作ロッド
4を下方に付勢するバネ10,11の反発力を示してい
る。バネの反発力は、バネ10,11の組合せにより、
投入状態から遮断状態に移行する際に階段状に変化して
いる。
On the other hand, a step-shaped bent line 13 indicates the repulsive force of the springs 10 and 11 for urging the operation rod 4 downward. The repulsive force of the spring is determined by the combination of the springs 10 and 11
It changes stepwise when shifting from the closing state to the closing state.

【0013】すなわち、図14は、上方への吸引力を示
す曲線12a〜12cと、下方への反発力を示す折れ線
13との大小関係に応じて、真空バルブ3が投入状態又
は遮断状態を取ることを示す。
That is, FIG. 14 shows that the vacuum valve 3 is in a closed state or a closed state according to the magnitude relationship between the curves 12a to 12c indicating the upward suction force and the broken line 13 indicating the downward repulsive force. Indicates that

【0014】例えば、投入状態では、折れ線13のバネ
力よりも永久磁石7の吸引力12aが大きいので、永久
磁石7の吸引力のみにてバネ10,11が圧縮されて両
接触子12a,12bの閉状態が維持される。
For example, in the closed state, the attraction force 12a of the permanent magnet 7 is larger than the spring force of the broken line 13, so that the springs 10, 11 are compressed only by the attraction force of the permanent magnet 7, and the two contacts 12a, 12b Is maintained in the closed state.

【0015】次に、電磁石9に逆方向に通電すると、磁
気回路8の吸引力が曲線12bで示す値まで小さくな
る。これにより、バネ10,11の反発力が可動部材6
の上方への吸引力を越えるため、可動部材6が下方に移
動し、両接触子3a,3bが離間して遮断状態に移行す
る(遮断動作)。
Next, when the electromagnet 9 is energized in the reverse direction, the attractive force of the magnetic circuit 8 decreases to the value shown by the curve 12b. As a result, the repulsive force of the springs 10 and 11
, The movable member 6 moves downward, and the two contacts 3a and 3b are separated from each other to shift to a blocking state (blocking operation).

【0016】この遮断状態では、永久磁石7の単独の吸
引力の曲線12aよりもバネ10,11の反発力の折れ
線13の方が大きい為、両接触子3a,3bが離間した
開状態を維持する。
In this cut-off state, since the broken line 13 of the repulsive force of the springs 10 and 11 is larger than the curve 12a of the attraction force of the permanent magnet 7 alone, the open state where both contacts 3a and 3b are separated is maintained. I do.

【0017】次に、電磁石9に順方向に通電すると、磁
気回路8の吸引力が曲線12cで示す値まで大きくな
る。これにより、バネ10,11の反発力が可動部材6
の上方への吸引力を下回るため、可動部材6が上方に移
動し(投入動作)、バネ10,11を圧縮しつつ両接触
子3a,3bが接触して投入状態に移行する。
Next, when the electromagnet 9 is energized in the forward direction, the attractive force of the magnetic circuit 8 increases to the value shown by the curve 12c. As a result, the repulsive force of the springs 10 and 11
The movable member 6 moves upward (injection operation) to reduce the upward suction force, and the two contacts 3a and 3b come into contact with each other while compressing the springs 10 and 11 to shift to the input state.

【0018】続いて、このような投入状態と遮断状態と
を切替える際の通電動作に関し、本発明者らが提案した
特願平11−169967号を例に挙げて図15により
説明する。なお、この説明は、電磁石9の前述した励磁
電源回路に対応する。まず、主電源(商用交流電源等の
電力供給源)14の電力は、変成器15に供給され、こ
の変成器15により、電磁石9の励磁に適した電力に変
成される。この変成された電力は、整流器16及び平滑
器17によって直流に整流され、互いにブリッジ接続さ
れた投入励磁接点21a,21b及び遮断励磁接点22
a,22bのうち、いずれかの組の励磁接点21a,2
1b又は22a,22bを介してブリッジ中央の電磁石
9を順方向(投入動作)又は逆方向(遮断動作)に励磁
する。
Next, a description will be given of the energizing operation when switching between the closed state and the closed state with reference to FIG. 15 taking the example of Japanese Patent Application No. 11-169967 proposed by the present inventors as an example. This description corresponds to the above-described excitation power supply circuit of the electromagnet 9. First, power from a main power supply (power supply source such as a commercial AC power supply) 14 is supplied to a transformer 15, which transforms the power into a power suitable for exciting the electromagnet 9. The transformed electric power is rectified into direct current by the rectifier 16 and the smoothing device 17 and bridge-connected to the excitation excitation contacts 21a and 21b and the cut-off excitation contact 22.
a, 22b, any of the excitation contacts 21a, 21b
The electromagnet 9 at the center of the bridge is excited in the forward direction (closing operation) or in the reverse direction (cutoff operation) via 1b or 22a, 22b.

【0019】ここで、電磁石9の一端部をA点とし、他
端部をB点とした際に、A点からB点方向に電流を流す
場合を順方向通電とし、その逆のB点からA点に電流を
流す場合を逆方向通電とする。
Here, when one end of the electromagnet 9 is set to point A and the other end is set to point B, a case where a current flows from the point A to the direction of the point B is defined as forward energization. A case where a current flows through the point A is defined as a reverse direction current.

【0020】このとき、順方向通電では、投入励磁接点
21a,21bの閉極によりA点からB点方向に通電さ
れて実線sで示す回路が成立し、投入方向に励磁駆動力
が発生して真空バルブ3が投入状態に移行する。
At this time, in forward energization, current is applied from point A to point B by closing the closing excitation contacts 21a and 21b to form a circuit indicated by a solid line s, and an excitation driving force is generated in the closing direction. The vacuum valve 3 shifts to a closed state.

【0021】また、逆方向通電では、遮断励磁接点22
a,22bの閉極によりB点からA点方向に通電されて
破線dで示す回路が成立し、遮断方向に励磁駆動力が発
生して真空バルブ3が遮断状態に移行する。
In the case of reverse energization, the cut-off excitation contact 22
Due to the closing of the poles a and 22b, current is supplied from point B to point A, and a circuit indicated by a broken line d is established. Excitation driving force is generated in the blocking direction, and the vacuum valve 3 shifts to the blocking state.

【0022】なお、順方向通電又は逆方向通電の通電時
間と電流値は、投入点速度又は初開離速度等で表される
適正な速度を保つように設計する必要がある。
It is necessary to design the energizing time and the current value of the forward energization or the reverse energization so as to maintain an appropriate speed represented by the input point speed or the initial opening speed.

【0023】[0023]

【発明が解決しようとする課題】しかしながら、以上の
ような遮断器用操作装置では、次に述べる幾つかの可能
性に伴い、投入時又は遮断時の励磁駆動力の制御に関し
て改良が望まれている。例えば、電磁石9を励磁して可
動部材6が運動を開始すると、磁気回路8中の磁束が変
化してレンツの法則(コイルの鎖交磁束が変化して誘起
する起電力の方向は、磁束変化を妨げる方向に発生す
る)に応じ、電磁石9に逆起電流が発生して電磁石9の
励磁電流が低下する。このため、大きな開極速度を要す
る遮断動作の開始時点において可動部材6に十分な速度
を与えられない可能性がある。
However, in the circuit breaker operating device as described above, there is a need for an improvement in the control of the excitation driving force at the time of closing or at the time of shutting down in accordance with the following several possibilities. . For example, when the electromagnet 9 is excited and the movable member 6 starts to move, the magnetic flux in the magnetic circuit 8 changes and Lenz's law (the direction of the induced electromotive force caused by the change in the flux linkage of the coil changes according to the magnetic flux change). Occurs in a direction that obstructs the electromagnet 9), a back electromotive current is generated in the electromagnet 9 and the exciting current of the electromagnet 9 decreases. For this reason, there is a possibility that a sufficient speed cannot be given to the movable member 6 at the start of the shut-off operation requiring a large opening speed.

【0024】また、遮断状態では、可動部材6と固定部
材5との間の空隙距離が大きいため、図14に示すよう
に、可動部材6に作用する電磁力が相対的に小さい。こ
のため、投入動作の開始時点において、相対的に大きな
電流を電磁石9に流す必要がある。
In the shut-off state, since the gap distance between the movable member 6 and the fixed member 5 is large, the electromagnetic force acting on the movable member 6 is relatively small as shown in FIG. Therefore, it is necessary to supply a relatively large current to the electromagnet 9 at the start of the closing operation.

【0025】但し、投入動作を開始すると、空隙距離が
短くなると共に電磁力が大きくなり、可動部材6が次第
に加速されるため、可動接触子3bが過大な速度で固定
接触子3aに接触し、両接触子3a,3bを損傷する可
能性がある。
However, when the closing operation is started, the gap distance is shortened and the electromagnetic force is increased, and the movable member 6 is gradually accelerated, so that the movable contact 3b contacts the fixed contact 3a at an excessive speed. There is a possibility that both contacts 3a and 3b may be damaged.

【0026】本発明は上記実情を考慮してなされたもの
で、投入動作時や遮断動作時の可動部材の移動速度を適
切に制御し得る遮断器用操作装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a circuit breaker operating device capable of appropriately controlling the moving speed of a movable member during a closing operation or a closing operation.

【0027】[0027]

【課題を解決するための手段】上記目的を達成するため
に本発明は、接離可能に設けられた可動接触子と固定接
触子とを有する遮断器を操作するための遮断器用操作装
置であって、前記可動接触子に固定され、この可動接触
子を固定接触子に対して接離させる方向に移動可能に保
持された絶縁性の操作ロッドと、この操作ロッドに固着
された磁性体製の可動部材と、この可動部材に取付けら
れた電磁石と、この電磁石及び可動部材を内部に収容し
つつ前記操作ロッドを移動可能に保持する固定部材と、
前記固定部材の内部にて前記可動部材に対向配置され、
前記可動接触子を前記固定接触子側に接触させる向きの
投入方向に、前記可動部材を吸引する永久磁石と、前記
可動接触子を前記固定接触子から離間させる向きの遮断
方向に、前記操作ロッドを付勢する弾性部材と、前記電
磁石を励磁するための電源回路と、を備えた遮断器用操
作装置を対象とし、以下のような技術を付加している。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to an operating device for a circuit breaker for operating a circuit breaker having a movable contact and a fixed contact which are provided so as to be able to contact and separate. An insulative operating rod fixed to the movable contact and held movably in a direction to move the movable contact toward and away from the fixed contact; and a magnetic material fixed to the operating rod. A movable member, an electromagnet attached to the movable member, a fixed member that movably holds the operation rod while accommodating the electromagnet and the movable member therein,
The movable member is disposed inside the fixed member so as to face the movable member,
A permanent magnet that attracts the movable member in a closing direction in which the movable contact is brought into contact with the fixed contact, and an operating rod in a blocking direction in which the movable contact is separated from the fixed contact. And a power supply circuit for exciting the electromagnet, and the following technology is added to the circuit breaker operating device.

【0028】本発明の第1の局面は、前記固定部材、前
記永久磁石、前記可動部材及び前記電磁石からなる磁気
回路の磁束と鎖交しない位置に配置され、前記電磁石に
電気的に直列に接続されたリアクトルを備えた構成であ
る。
According to a first aspect of the present invention, there is provided a magnetic circuit comprising the fixed member, the permanent magnet, the movable member, and the electromagnet, which is not linked to a magnetic flux, and electrically connected to the electromagnet in series. It is a configuration provided with a reactor that is provided.

【0029】ここで、前記リアクトルは、投入動作時の
電流経路、遮断動作時の電流経路、又はその両動作時に
共通の電流経路のいずれに配置されてもよい。
Here, the reactor may be arranged on any one of a current path during a closing operation, a current path during a breaking operation, and a common current path during both operations.

【0030】次に、本発明の第2の局面は、前記電磁石
の両端部に夫々電気的に接続され、前記可動部材を前記
投入方向に移動させるように前記電磁石を全区間に亘っ
て励磁するための複数の投入励磁接点と、前記電磁石の
一端部及び前記中間タップに夫々電気的に接続され、前
記可動部材を前記遮断方向に移動させるように前記電磁
石を中間タップから一端部までの区間に亘って励磁する
ための複数の遮断励磁接点とを備えた構成である。
Next, according to a second aspect of the present invention, both ends of the electromagnet are electrically connected to each other, and the electromagnet is excited over the entire section so as to move the movable member in the closing direction. A plurality of closing excitation contacts for electrically connecting one end of the electromagnet to the one end and the intermediate tap, respectively, and moving the electromagnet in a section from the intermediate tap to one end so as to move the movable member in the blocking direction. And a plurality of cut-off excitation contacts for exciting over the same.

【0031】ここで、投入動作時に電磁石を全区間に亘
って励磁し、遮断動作時に電磁石を中間タップから一端
部までの区間に亘って励磁する方式としては、前述した
ように励磁接点を設けて電流経路を切替える方式の他、
ダイオードを接続して電流経路を切替える方式が使用可
能となっている。
Here, as a method of exciting the electromagnet over the entire section at the time of the closing operation and exciting the electromagnet over the section from the intermediate tap to one end at the time of the breaking operation, the exciting contacts are provided as described above. In addition to the method of switching the current path,
A method of connecting a diode to switch a current path has become available.

【0032】次に、本発明の第3の局面は、前記固定部
材、前記永久磁石、前記可動部材及び前記電磁石からな
る磁気回路の磁束と鎖交する位置に設置された前記逆起
電流発生コイルを備えた構成である。
Next, a third aspect of the present invention is directed to a back electromotive current generating coil installed at a position interlinked with a magnetic flux of a magnetic circuit including the fixed member, the permanent magnet, the movable member and the electromagnet. It is a configuration provided with.

【0033】ここで、逆起電流の制御のため、前記逆起
電流発生コイルの終端間に、ダイオードを接続してもよ
い。
Here, a diode may be connected between the ends of the back electromotive current generating coil for controlling the back electromotive current.

【0034】次に、本発明の第4の局面は、前記電磁石
を互いに並列接続された複数の電磁石からなる構成と
し、且つ、前記各電磁石のうちの一方の電磁石の一端部
に接続され、前記可動部材を前記投入方向に移動させる
ときに閉極に制御され、前記遮断方向に移動させるとき
に開極に制御される投入励磁接点を備えた構成となって
いる。
Next, according to a fourth aspect of the present invention, the electromagnet includes a plurality of electromagnets connected in parallel with each other, and is connected to one end of one of the electromagnets. A closing excitation contact is controlled when the movable member is moved in the closing direction, and is controlled to be open when the movable member is moved in the closing direction.

【0035】ここで、前記投入励磁接点に代えて、前記
可動部材を前記投入方向に移動させる向きの励磁電流が
流れるように、前記各電磁石のうちの一方の電磁石の一
端部に順方向に接続された投入用ダイオードを備えても
よい。
Here, instead of the closing excitation contact, a forward direction connection is made to one end of one of the electromagnets so that an exciting current for moving the movable member in the closing direction flows. May be provided.

【0036】(作用)従って、本発明の第1の局面は以
上のような手段を講じたことにより、磁気回路の磁束と
鎖交しない位置に配置されたリアクトルが、励磁電流の
低下の際にその低下分に応じてエネルギーを放出して励
磁電流を略一定に制御するので、投入動作時や遮断動作
時の可動部材の移動速度を適切に制御することができ
る。
(Operation) Therefore, according to the first aspect of the present invention, by taking the above-described means, the reactor arranged at a position that does not interlink with the magnetic flux of the magnetic circuit can be used when the exciting current decreases. Since the exciting current is controlled to be substantially constant by releasing energy in accordance with the decrease, the moving speed of the movable member during the closing operation or the closing operation can be appropriately controlled.

【0037】次に、本発明の第2の局面は、電磁石に中
間タップを設け、投入動作時には電磁石を全区間に亘っ
て励磁し、遮断動作時には電磁石を中間タップから一端
部までの区間に亘って励磁する構成としたので、投入動
作時には弾性部材の反発力に対向するための大きな電磁
力を得ると共に、遮断動作時には弾性部材の反発力を利
用するだけの小さな電磁力を得られるので、投入動作時
や遮断動作時の可動部材の移動速度を適切に制御するこ
とができる。
Next, according to a second aspect of the present invention, an intermediate tap is provided on the electromagnet, the electromagnet is excited over the entire section during the closing operation, and the electromagnet is excited over the section from the intermediate tap to one end during the shutoff operation. In the closing operation, a large electromagnetic force to oppose the repulsive force of the elastic member is obtained, and in the shut-off operation, a small electromagnetic force that only utilizes the repulsive force of the elastic member is obtained. It is possible to appropriately control the moving speed of the movable member at the time of the operation or the breaking operation.

【0038】次に、本発明の第3の局面は、磁気回路の
磁束と鎖交する位置に設置された逆起電流発生コイル
が、投入動作時や遮断動作時の過大な移動速度を減じる
ように逆起電流を生じて電磁石の励磁電流を低下させる
ので、投入動作時や遮断動作時の可動部材の移動速度を
適切に制御することができる。
Next, a third aspect of the present invention is to provide a counter electromotive current generating coil installed at a position interlinked with the magnetic flux of the magnetic circuit so as to reduce an excessive moving speed at the time of a closing operation or a breaking operation. As a result, a back electromotive force is generated to reduce the exciting current of the electromagnet, so that the moving speed of the movable member during the closing operation or the closing operation can be appropriately controlled.

【0039】次に、本発明の第4の局面は、電磁石を互
いに並列接続された複数の電磁石からなる構成とし、投
入動作時には全ての電磁石を励磁し、遮断動作時にはい
ずれかの電磁石を励磁しない構成としたので、投入動作
時には弾性部材の反発力に対向するための大きな電磁力
を得ると共に、遮断動作時には弾性部材の反発力を利用
するだけの小さな電磁力を得られるので、投入動作時や
遮断動作時の可動部材の移動速度を適切に制御すること
ができる。
Next, according to a fourth aspect of the present invention, the electromagnet is constituted by a plurality of electromagnets connected in parallel to each other, and all the electromagnets are excited during the closing operation, and none of the electromagnets is excited during the shutoff operation. With the configuration, a large electromagnetic force for opposing the repulsive force of the elastic member is obtained at the time of the closing operation, and a small electromagnetic force sufficient to utilize the repulsive force of the elastic member is obtained at the time of the breaking operation. The moving speed of the movable member during the shutoff operation can be appropriately controlled.

【0040】[0040]

【発明の実施の形態】以下、本発明の各実施形態につい
て図面を参照して説明する。なお、以下の各実施形態は
全て投入動作時や遮断動作時の可動部材の移動速度を適
切に制御するものであるが、その具体的な手法が異なる
ものとなっている。 (第1の実施形態)図1は本発明の第1の実施形態に係
る遮断器用操作装置の制御回路を示す模式図であり、前
述した図面と同種の要素には同一符号を付してその詳し
い説明を省略し、ここでは異なる部分について主に述べ
る。すなわち、本実施形態は、励磁駆動力の略一定な制
御を図るものであり、具体的には、正側の投入励磁接点
21aと負側の遮断励磁接点22bとの第1直列回路
と、正側の遮断励磁接点22aと負側の投入励磁接点2
1bとの第2直列回路とが互いに並列接続され、且つ第
1直列回路内の両接点21a,22b間の接続点Pa
と、第2直列回路内の両接点22a,21b間の接続点
Pbとの間に電磁石9が接続された前述の励磁切換回路
において、接続点Paと、電磁石9のA点との間にリア
クトル23を介在させた構成となっている。
Embodiments of the present invention will be described below with reference to the drawings. In the following embodiments, the moving speed of the movable member during the closing operation or the closing operation is appropriately controlled, but the specific method is different. (First Embodiment) FIG. 1 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a first embodiment of the present invention. Detailed description is omitted, and different portions are mainly described here. That is, in the present embodiment, the excitation driving force is controlled to be substantially constant. Specifically, a first series circuit of the positive-side closing excitation contact 21a and the negative-side interruption excitation contact 22b, -Side shut-off excitation contact 22a and negative-side closing excitation contact 2
1b and the second series circuit are connected in parallel with each other, and a connection point Pa between the two contacts 21a and 22b in the first series circuit.
In the above-described excitation switching circuit in which the electromagnet 9 is connected between the contact point Pb between the two contacts 22a and 21b in the second series circuit, the reactor is connected between the connection point Pa and the point A of the electromagnet 9. 23.

【0041】ここで、リアクトル23は、図13に述べ
た磁気回路8中の磁束と鎖交しない位置に、電磁石9に
直列に接続されている。
Here, the reactor 23 is connected in series with the electromagnet 9 at a position that does not link with the magnetic flux in the magnetic circuit 8 described in FIG.

【0042】なお、励磁切換回路に電力を供給する電磁
石励磁電源24は、図1では電池の記号で表したが、電
池等の直流電源に限らず、図15に示した如き、交流を
整流及び平滑して直流に変換した励磁電源回路等でもよ
い。すなわち、電磁石励磁電源24は、電磁石9を励磁
するための電流を供給可能な電源であれば良い。
Although the electromagnet excitation power supply 24 for supplying power to the excitation switching circuit is represented by a battery symbol in FIG. 1, it is not limited to a DC power supply such as a battery, but may rectify an AC current as shown in FIG. An excitation power supply circuit or the like which is smoothed and converted to DC may be used. That is, the electromagnet excitation power supply 24 may be any power supply that can supply a current for exciting the electromagnet 9.

【0043】投入励磁接点21a,21b及び遮断励磁
接点22a,22bは、図1では、機械式接点の記号で
表したが、これに限らず、トランジスタやサイリスタ等
のスイッチング半導体でも良い。
Although the closing excitation contacts 21a and 21b and the cut-off excitation contacts 22a and 22b are represented by the symbols of mechanical contacts in FIG. 1, the invention is not limited thereto, and switching semiconductors such as transistors and thyristors may be used.

【0044】また、電磁石9をA点からB点方向に通電
する場合(可動部材6に対する固定部材5の電磁吸引力
を増加させる方向に電磁石9から電磁力を発生させる場
合)を投入励磁と称する。
The case where the electromagnet 9 is energized in the direction from the point A to the point B (the case where the electromagnet 9 generates an electromagnetic force in the direction of increasing the electromagnetic attraction force of the fixed member 5 with respect to the movable member 6) is referred to as energization excitation. .

【0045】さらに、電磁石9をB点からA点方向に通
電する場合(可動部材6に対する固定部材5の電磁吸引
力を減少させる方向に電磁石9から図示しない電磁力を
発生させる場合)を遮断励磁と称する。
Further, when the electromagnet 9 is energized in the direction from the point B to the point A (when an electromagnetic force (not shown) is generated from the electromagnet 9 in a direction to decrease the electromagnetic attraction of the fixed member 5 with respect to the movable member 6), the excitation is cut off. Called.

【0046】次に、以上のように構成された遮断器用操
作装置の動作を説明する。電磁石9を投入励磁するため
には、投入励磁接点21a,21bを閉極し、かつ、遮
断励磁接点22a,22bを開極することで、図1の実
線sで示す回路が成立し、リアクトル23にエネルギー
を貯えながら、投入励磁を行う。
Next, the operation of the circuit breaker operating device configured as described above will be described. To energize the electromagnet 9, the circuit shown by the solid line s in FIG. 1 is established by closing the closing excitation contacts 21 a and 21 b and opening the shut-off excitation contacts 22 a and 22 b, Excitation is performed while energy is being stored.

【0047】また、電磁石9を遮断励磁するためには、
遮断励磁接点22a,22bを閉極し、かつ、投入励磁
接点21a,21bを開極することで、図1の破線dで
示す回路が成立し、リアクトル23にエネルギーを貯え
ながら、遮断励磁を行う。
In order to excite the electromagnet 9,
By closing the closing excitation contacts 22a and 22b and opening the closing excitation contacts 21a and 21b, the circuit shown by the broken line d in FIG. 1 is established, and the breaking excitation is performed while storing energy in the reactor 23. .

【0048】次に、図7以降で示す可動部材6が投入方
向に移動を開始した場合、電磁石9のインダクタンスを
Lとし、抵抗をRとすると、この電磁石9には、次の
(1)式で示される逆起電圧vが発生する。
Next, when the movable member 6 shown in FIG. 7 and thereafter starts moving in the closing direction, assuming that the inductance of the electromagnet 9 is L and the resistance is R, this electromagnet 9 has the following equation (1). A back electromotive voltage v is generated.

【0049】v=−L(di/dt) …(1) これに伴い、電磁石9への励磁電流は、次の(2)式で
示す逆起電流iの値だけ減少して可動部材6の移動速度
を低下させる。
V = −L (di / dt) (1) Accordingly, the exciting current to the electromagnet 9 decreases by the value of the back electromotive current i shown in the following equation (2), and Decrease the moving speed.

【0050】i=v/R …(2) これは、可動部材6が遮断方向に移動を開始した場合で
も同様である。
I = v / R (2) This is the same even when the movable member 6 starts moving in the blocking direction.

【0051】次に、逆起電流iによって電磁石9への励
磁電流の低下が発生すると、回路の平衡を保つためにリ
アクトル23に貯えられているエネルギーがリアクトル
23の時定数に従って放出され始める。すなわち、励磁
電流の低下分を補うようにリアクトル23からエネルギ
ーが放出され、励磁電流が補給される。そして、励磁電
流の低下分に相当する逆起電流i分のエネルギーが放出
されると、正規の電磁石9の励磁電流値と平衡し、リア
クトル23からのエネルギーの放出が終了する。
Next, when the exciting current to the electromagnet 9 decreases due to the back electromotive current i, the energy stored in the reactor 23 starts to be released according to the time constant of the reactor 23 in order to maintain the balance of the circuit. That is, energy is released from reactor 23 to compensate for the decrease in the exciting current, and the exciting current is supplied. When the energy of the back electromotive current i corresponding to the decrease of the exciting current is released, the energy is balanced with the normal exciting current value of the electromagnet 9, and the emission of energy from the reactor 23 ends.

【0052】上述したように本実施形態によれば、投入
動作時あるいは遮断動作時に磁気回路8の磁束が変化し
て電磁石9に逆起電流iが誘起したとき、可動部材6の
移動速度を低下させる逆起電流iによる励磁電流の低下
をリアクトル23からのエネルギーの放出により補償
し、励磁電流を略一定に制御するので、可動部材6の移
動速度を略一定にでき、その結果、略一定な投入速度も
しくは遮断速度を実現できる。
As described above, according to the present embodiment, the moving speed of the movable member 6 is reduced when the magnetic flux of the magnetic circuit 8 changes at the time of the closing operation or the breaking operation and the back electromotive force i is induced in the electromagnet 9. The decrease in the exciting current due to the back electromotive current i is compensated for by the release of energy from the reactor 23, and the exciting current is controlled to be substantially constant, so that the moving speed of the movable member 6 can be made substantially constant. The closing speed or the closing speed can be realized.

【0053】(第2の実施形態)図2は本発明の第2の
実施形態に係る遮断器用操作装置の制御回路を示す模式
図である。本実施形態は、第1の実施形態の変形例であ
り、投入動作時において、励磁駆動力の略一定な制御を
図るものであり、具体的にはリアクトル23の位置を変
更し、リアクトル23を正側の投入励磁接点21aと接
続点Paとの間に接続した構成となっている。
(Second Embodiment) FIG. 2 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a second embodiment of the present invention. The present embodiment is a modification of the first embodiment, and aims at controlling the excitation driving force to be substantially constant during the closing operation. Specifically, the position of the reactor 23 is changed, and It is configured to be connected between the positive excitation contact 21a on the positive side and the connection point Pa.

【0054】ここで、リアクトル23は、前述同様に、
図13に述べた磁気回路8中の磁束と鎖交しない位置に
配置されている。また、磁気回路8の磁束と鎖交しない
位置に配置するという条件は、以下の全ての実施形態に
共通である。
Here, the reactor 23 is, as described above,
It is arranged at a position that does not interlink with the magnetic flux in the magnetic circuit 8 described in FIG. The condition that the magnetic circuit 8 is arranged at a position that does not interlink with the magnetic flux is common to all the following embodiments.

【0055】なお、リアクトル23は、負側の投入励磁
接点21bと接続点Pbとの間に接続した構成としても
よい。次に、以上のように構成された遮断器用操作装置
の動作を説明する。電磁石9を投入励磁するためには、
投入励磁接点21a,21bを閉極し、かつ遮断励磁接
点22a,22bを開極することで、図2の実線sで示
した回路が成立し、リアクトル23にエネルギーを貯え
ながら励磁を行う。
The reactor 23 may be connected between the negative excitation contact 21b on the negative side and the connection point Pb. Next, the operation of the circuit breaker operating device configured as described above will be described. To turn on and excite the electromagnet 9,
By closing the closing excitation contacts 21a and 21b and opening the closing excitation contacts 22a and 22b, the circuit shown by the solid line s in FIG. 2 is established, and the excitation is performed while storing energy in the reactor 23.

【0056】また、電磁石9を遮断励磁するためには、
遮断励磁接点22a,22bを閉極し、かつ、投入励磁
接点21a,21bを開極することで、図2の破線dで
示した回路が成立し、励磁を行う。但し、遮断励磁で
は、リアクトル23に通電されないのでリアクトル23
にエネルギーが貯えられない。
In order to excite the electromagnet 9 in a cut-off manner,
By closing the shut-off excitation contacts 22a and 22b and opening the closing excitation contacts 21a and 21b, the circuit shown by the broken line d in FIG. 2 is established and the excitation is performed. However, in the cut-off excitation, the reactor 23 is not energized, so the reactor 23
Can't store energy.

【0057】次に、可動部材6が投入側に移動し、電磁
石9への励磁電流が逆起電流により低下すると、第1の
実施形態と同様に、励磁電流がその低下分に応じてリア
クトル23から補給される。
Next, when the movable member 6 moves to the closing side and the exciting current to the electromagnet 9 is reduced by the back electromotive current, the exciting current is reduced according to the amount of the decrease in the reactor 23 as in the first embodiment. Replenished from.

【0058】次に、可動部材6が遮断側に移動する場合
は、破線dで示す回路中にリアクトル23が存在しない
為、励磁電流が補給されない。
Next, when the movable member 6 moves to the cutoff side, no exciting current is supplied because the reactor 23 does not exist in the circuit shown by the broken line d.

【0059】上述したように本実施形態によれば、投入
動作時のみ、リアクトル23に貯えられたエネルギーに
より逆起電流iによる励磁電流の低下を補償し、可動部
材6の移動速度を略一定に制御することができる。本実
施形態は、磁気回路8の設計が遮断速度に重きを置いて
なされて、投入速度が不十分な場合等に適用することが
できる。
As described above, according to the present embodiment, only during the closing operation, the energy stored in the reactor 23 compensates for the decrease in the exciting current due to the back electromotive current i, and the moving speed of the movable member 6 is made substantially constant. Can be controlled. This embodiment can be applied to a case where the design of the magnetic circuit 8 is made with emphasis on the cutoff speed and the closing speed is insufficient.

【0060】(第3の実施形態)図3は本発明の第3の
実施形態に遮断器用操作装置の制御回路を示す模式図で
ある。本実施形態は、第1の実施形態の変形例であり、
遮断時において、励磁駆動力の略一定な制御を図るもの
であり、具体的にはリアクトル23の位置を変更し、リ
アクトル23を正側の遮断励磁接点22aと接続点Pb
との間に接続した構成となっている。
(Third Embodiment) FIG. 3 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a third embodiment of the present invention. This embodiment is a modification of the first embodiment,
At the time of disconnection, the excitation driving force is controlled substantially constant. Specifically, the position of the reactor 23 is changed, and the reactor 23 is connected to the positive-side disconnection excitation contact 22a and the connection point Pb.
And is connected between them.

【0061】なお、リアクトル23は、負側の遮断励磁
接点22bと接続点Paとの間に接続した構成としても
よい。次に、以上のように構成された遮断器用操作装置
の動作を説明する。電磁石9を遮断励磁するためには、
遮断励磁接点22a,22bを閉極し、かつ、投入励磁
接点21a,21bを開極することで、図3の破線dで
示した回路が成立し、励磁を行う。
The reactor 23 may be connected between the negative exciting contact 22b and the connection point Pa. Next, the operation of the circuit breaker operating device configured as described above will be described. To cut off and excite the electromagnet 9,
By closing the shut-off excitation contacts 22a and 22b and opening the closing excitation contacts 21a and 21b, the circuit shown by the broken line d in FIG. 3 is established and the excitation is performed.

【0062】また、電磁石9を投入励磁するためには、
投入励磁接点21a,21bを閉極し、かつ遮断励磁接
点22a,22bを開極することで、図3の実線sで示
した回路が成立し、リアクトル23にエネルギーを貯え
ながら励磁を行う。但し、投入励磁では、リアクトル2
3に通電されないのでリアクトル23にエネルギーが貯
えられない。
To turn on and excite the electromagnet 9,
By closing the closing excitation contacts 21a and 21b and opening the closing excitation contacts 22a and 22b, the circuit indicated by the solid line s in FIG. 3 is established, and the excitation is performed while storing energy in the reactor 23. However, in closing excitation, reactor 2
3 is not energized, so no energy is stored in the reactor 23.

【0063】次に、可動部材6が遮断側に移動し、電磁
石9への励磁電流が逆起電流により低下すると、第1の
実施形態と同様に、励磁電流がその低下分に応じてリア
クトル23から補給される。
Next, when the movable member 6 moves to the cutoff side and the exciting current to the electromagnet 9 decreases due to the back electromotive current, the exciting current is reduced according to the amount of the decrease in the reactor 23 as in the first embodiment. Replenished from.

【0064】次に、可動部材6が投入側に移動する場合
は、破線dで示す回路中にリアクトル23が存在しない
為、励磁電流が補給されない。
Next, when the movable member 6 moves to the closing side, the exciting current is not supplied because the reactor 23 does not exist in the circuit shown by the broken line d.

【0065】上述したように本実施形態によれば、遮断
励磁の時のみ、リアクトル23に貯えられたエネルギー
により逆起電流iによる励磁電流の低下を補償し、可動
部材6の移動速度を略一定に制御することができる。ま
た、真空バルブ3の開極に必要な十分な遮断速度を得る
ことができる。
As described above, according to the present embodiment, only during the cut-off excitation, the energy stored in the reactor 23 compensates for the decrease in the excitation current due to the back electromotive current i, and the moving speed of the movable member 6 is kept substantially constant. Can be controlled. Further, a sufficient shutoff speed required for opening the vacuum valve 3 can be obtained.

【0066】(第4の実施形態)図4は本発明の第4の
実施形態に係る遮断器用操作装置の制御回路を示す模式
図である。本実施形態は、投入励磁時と遮断励磁時とで
それぞれ励磁駆動力の最適化を図るものであり、具体的
には電磁石9の両端部のA−B点間の任意の位置に中間
タップ9tを設け、中間タップ9tの端部のC点と接続
点Pc(=Pb)との間に遮断励磁接点22cを接続す
る一方、電磁石9のB点と接続点Pbとの間に投入励磁
接点21cを接続した構成となっている。
(Fourth Embodiment) FIG. 4 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a fourth embodiment of the present invention. In the present embodiment, the excitation driving force is optimized at the time of the closing excitation and at the time of the closing excitation, and more specifically, the intermediate tap 9t is placed at an arbitrary position between points AB at both ends of the electromagnet 9. Is provided, and the cut-off excitation contact 22c is connected between the point C at the end of the intermediate tap 9t and the connection point Pc (= Pb), while the closing excitation contact 21c is connected between the point B of the electromagnet 9 and the connection point Pb. Are connected.

【0067】次に、以上のように構成された遮断器用操
作装置の動作を説明する。電磁石9を投入励磁する場合
は、投入励磁接点21a,21b,21cを閉極し、か
つ、遮断励磁接点22a,22b,22cを開極するこ
とで、電磁石9のA点からB点間の、図4中の実線sで
示す回路が成立し、電磁石9より、投入方向への電磁力
が発生する。
Next, the operation of the circuit breaker operating device configured as described above will be described. When the electromagnet 9 is energized, the energizing contacts 21a, 21b, 21c are closed, and the shut-off energizing contacts 22a, 22b, 22c are opened, so that the electromagnet 9 can be moved from the point A to the point B. The circuit shown by the solid line s in FIG. 4 is established, and the electromagnet 9 generates an electromagnetic force in the closing direction.

【0068】また、電磁石9を遮断励磁する場合は、遮
断励磁接点22a,22b,22cを閉極し、かつ投入
励磁接点21a,21b,21cを開極することで、電
磁石9のC点からA点間の図4中の破線dで示す回路が
成立し、電磁石9より、遮断方向への電磁力が発生す
る。
When the electromagnet 9 is to be cut off and excited, the cut-off excitation contacts 22a, 22b and 22c are closed and the closing excitation contacts 21a, 21b and 21c are opened, so that the point A from the point C of the electromagnet 9 is reached. A circuit indicated by a broken line d in FIG. 4 between the points is established, and the electromagnet 9 generates an electromagnetic force in the cutoff direction.

【0069】ここで、投入励磁時と、遮断励磁時とで
は、励磁電流の経路における電磁石9の長さ(巻き数)
が異なることから、励磁電流の値を変えることができ
る。
Here, the length (the number of turns) of the electromagnet 9 in the path of the exciting current is different between when the excitation is applied and when the excitation is interrupted.
Are different, the value of the exciting current can be changed.

【0070】上述したように本実施形態によれば、投入
及び遮断に適した磁束が得られる為、可動部材6の投入
もしくは遮断における、最適な動作速度を得ることがで
きる。
As described above, according to the present embodiment, a magnetic flux suitable for closing and closing can be obtained, so that an optimum operating speed in closing or closing of the movable member 6 can be obtained.

【0071】詳しくは、電磁石9に中間タップ9tを設
け、投入動作時には電磁石9のA−B点間の全区間に通
電し、遮断動作時には電磁石9の中間タップ9tからA
点までの区間に通電することで、遮断動作時と投入動作
時との間で電磁石9のターン数を使い分けることができ
る。
More specifically, an intermediate tap 9t is provided on the electromagnet 9 so that electricity is supplied to the entire section between the points A and B of the electromagnet 9 during the closing operation, and the intermediate tap 9t extends from the intermediate tap 9t of the electromagnet 9 during the shutoff operation.
By energizing the section up to the point, the number of turns of the electromagnet 9 can be properly used between the breaking operation and the closing operation.

【0072】ここで、電磁石9の中間タップ9tの位置
は、遮断励磁に最適な速度を得られるように設計する。
Here, the position of the intermediate tap 9t of the electromagnet 9 is designed so as to obtain an optimum speed for cut-off excitation.

【0073】図14で示したように、遮断動作時にはバ
ネ10,11に貯えられたエネルギーを開放することに
より可動部材6の運動エネルギーを得る為、電磁石9へ
の励磁電流を比較的小さい値にできる。
As shown in FIG. 14, the kinetic energy of the movable member 6 is obtained by releasing the energy stored in the springs 10 and 11 during the breaking operation, so that the exciting current to the electromagnet 9 is set to a relatively small value. it can.

【0074】また、電磁石9の巻数が小さい方が逆起電
力iを抑制し易いので、遮断動作時には電磁石9のA点
から中間タップ9tまでの一部のみを用いる。
Since the smaller the number of turns of the electromagnet 9 is, the more easily the back electromotive force i can be suppressed, only a part of the electromagnet 9 from the point A to the intermediate tap 9t is used during the cutoff operation.

【0075】一方、投入動作時には電磁石9への励磁に
よりバネ10,11を圧縮する必要があるため、相対的
に大きなエネルギーを必要とするが、電磁石9の全区間
に通電することによりターン数を最大にでき、励磁電流
を制御回路に適した値に抑制することができる。
On the other hand, during the closing operation, it is necessary to compress the springs 10 and 11 by exciting the electromagnet 9, so that relatively large energy is required. However, by energizing the entire section of the electromagnet 9, the number of turns is reduced. It can be maximized, and the exciting current can be suppressed to a value suitable for the control circuit.

【0076】(第5の実施形態)図5は本発明の第5の
実施形態に係る遮断器用操作装置の制御回路を示す模式
図である。本実施形態は、第4の実施形態の変形例であ
り、投入励磁接点21cに代えて、投入時の励磁電流に
順方向となるように電磁石9のB点と接続点Pbとの間
に接続された遮断側励磁制限ダイオード21dと、遮断
励磁接点22cに代えて、遮断時の励磁電流に順方向と
なるように中間タップの端部のC点と接続点Pc(=P
b)との間に接続された投入側励磁制限ダイオード22
dとを備えている。
(Fifth Embodiment) FIG. 5 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a fifth embodiment of the present invention. This embodiment is a modification of the fourth embodiment. Instead of the closing excitation contact 21c, a connection is made between the point B of the electromagnet 9 and the connection point Pb so that the exciting current at the time of closing is in the forward direction. Instead of the cut-off excitation limit diode 21d and the cut-off excitation contact 22c, the point C at the end of the intermediate tap and the connection point Pc (= P
b) the excitation limit diode 22 connected to the input side.
d.

【0077】次に、以上のように構成された遮断器用操
作装置の動作を説明する。電磁石9を投入励磁する場合
は、投入励磁接点21a,21bを閉極し、かつ、遮断
励磁接点22a,22bを開極することで、電磁石9の
A点からB点間の、図4中の実線sで示す回路が成立す
る。
Next, the operation of the circuit breaker operating device configured as described above will be described. When the excitation of the electromagnet 9 is performed, the closing excitation contacts 21a and 21b are closed and the cut-off excitation contacts 22a and 22b are opened, so that the electromagnet 9 between the point A and the point B in FIG. The circuit indicated by the solid line s is established.

【0078】また、電磁石9を遮断励磁する場合は、遮
断励磁接点22a,22bを閉極し、かつ、投入励磁接
点21a,21bを閉極することで、電磁石9のB点か
らA点間の、図5中の破線dで示す回路が成立する。
When the electromagnet 9 is to be shut off and excited, the shutoff excitation contacts 22a and 22b are closed and the closing excitation contacts 21a and 21b are closed so that the electromagnet 9 can be moved from the point B to the point A. The circuit shown by the broken line d in FIG.

【0079】また、投入励磁時の電流(実線)は、電磁
石9の中間タップ9tからC点方向への流れが投入側励
磁制限ダイオード22dによって阻止される。同様に、
遮断励磁時の電流(破線)は、電磁石9のB点からA,
C点方向への流れが遮断側励磁制限ダイオード21dに
よって阻止される。
In addition, the current (solid line) at the time of energizing excitation is prevented from flowing from the intermediate tap 9t of the electromagnet 9 toward the point C by the energizing diode 22d. Similarly,
The current (broken line) at the time of the excitation is indicated by A,
The flow in the direction of the point C is blocked by the blocking-side excitation limiting diode 21d.

【0080】ここで、投入励磁する場合、投入側励磁制
限ダイオード22dも順方向となるが、投入側励磁制限
ダイオード22dのカソードよりも、電磁石9の中間タ
ップ9tの方が電位が高いので電流は流れず、同様に、
遮断励磁する場合も、電磁石9のB点の方が電位が高く
電流が流れないので、投入側励磁及び遮断側励磁共に、
励磁電流の環流は生じない。
Here, when the excitation is applied, the closing-side excitation limiting diode 22d also goes in the forward direction. However, since the potential of the middle tap 9t of the electromagnet 9 is higher than that of the cathode of the closing-side excitation limiting diode 22d, the current is reduced. Does not flow,
Also in the case of cut-off excitation, the potential is higher at the point B of the electromagnet 9 and no current flows.
No recirculation of the exciting current occurs.

【0081】上述したように本実施形態によれば、励磁
電流を適切な値に抑制するために必要な電磁石9のター
ン数の切換えを2つのダイオード21d,22dにより
実現できるので、電磁石9の励磁タップ切換に、機械式
接点もしくはスイッチング半導体等による断路機構が不
要になり、さらに、それらの断路機能を制御させる制御
回路が不要になる。このため、高速で且つ簡素な構成の
タップ切換機能により、投入及び遮断に適した電磁石9
のアンペアターンを得ることができ、投入動作時もしく
は遮断動作時における可動部材6の最適な動作速度を得
ることができる。
As described above, according to the present embodiment, the switching of the number of turns of the electromagnet 9 necessary for suppressing the exciting current to an appropriate value can be realized by the two diodes 21d and 22d. The tap switching does not require a disconnection mechanism using a mechanical contact or a switching semiconductor, and further eliminates the need for a control circuit for controlling those disconnection functions. For this reason, the electromagnet 9 suitable for closing and closing is provided by a tap switching function having a high-speed and simple configuration.
And the optimum operating speed of the movable member 6 during the closing operation or the closing operation can be obtained.

【0082】(第6の実施形態)図6は本発明の第6の
実施形態に係る遮断器用操作装置の制御回路を示す模式
図である。本実施形態は、第5の実施形態の変形例であ
り、可動部材等の機械的損傷の防止を図るものであり、
具体的には、前述した中間タップと2つのダイオードと
を有する回路構成において、各接点21a,21b,2
2a,22bの開閉動作を変更した方式となっている。
(Sixth Embodiment) FIG. 6 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a sixth embodiment of the present invention. This embodiment is a modification of the fifth embodiment, and aims to prevent mechanical damage to a movable member and the like.
Specifically, in the circuit configuration having the above-described intermediate tap and two diodes, each of the contacts 21a, 21b, 2
This is a system in which the opening and closing operations of 2a and 22b are changed.

【0083】すなわち、可動部材6を遮断位置から投入
位置に移動させるとき、電磁石9に投入励磁を開始する
ために投入励磁接点21a,21bを閉極し、その後、
投入位置に至る前に投入励磁接点21a,21bを開路
する機能を有する図示しない接点制御回路を備えてい
る。
That is, when the movable member 6 is moved from the blocking position to the closing position, the closing excitation contacts 21a and 21b are closed to start the closing excitation of the electromagnet 9, and thereafter,
A contact control circuit (not shown) having a function of opening the closing excitation contacts 21a and 21b before reaching the closing position is provided.

【0084】次に、以上のように構成された遮断器用操
作装置の動作を説明する。投入励磁接点21a,21b
を開極し、かつ、遮断励磁接点22a,22bを閉極す
ることで、電磁石9に遮断側に励磁電流が通電されて可
動部材6が遮断方向に動作を開始する。
Next, the operation of the circuit breaker operating device configured as described above will be described. Make-up excitation contacts 21a, 21b
And the closing excitation contacts 22a and 22b are closed, so that an exciting current is supplied to the electromagnet 9 on the blocking side, and the movable member 6 starts operating in the blocking direction.

【0085】次に、この可動部材6の動作中、遮断励磁
接点22a,22bを開極すると、電磁石9のB点か
ら、遮断側励磁制限ダイオード21dと、投入側励磁制
限ダイオード22dとを通り、電磁石9のC点に至る閉
回路が形成される。
Next, during the operation of the movable member 6, when the cut-off excitation contacts 22a and 22b are opened, the point B of the electromagnet 9 passes through the cut-off excitation limit diode 21d and the closing-side excitation limit diode 22d. A closed circuit reaching the point C of the electromagnet 9 is formed.

【0086】この閉回路では、可動部材6が遮断方向に
移動しているため、可動部材6の移動による磁気回路8
中の磁束が変化してその磁束変化が電磁石9のC−B点
間のコイル部分に誘起され、投入方向に図示しない電磁
力が発生するように、図示しない起電力が誘起する。こ
れにより、可動部材6の遮断方向への移動が抑制され
る。
In this closed circuit, since the movable member 6 is moving in the blocking direction, the magnetic circuit 8
The magnetic flux inside changes, and the change in the magnetic flux is induced in the coil portion between points C and B of the electromagnet 9, and an electromotive force (not shown) is induced such that an electromagnetic force (not shown) is generated in the closing direction. Thereby, the movement of the movable member 6 in the blocking direction is suppressed.

【0087】上述したように本実施形態によれば、初期
の適切な遮断速度を得るために、相当の励磁電流にて電
磁石9を励磁したとしても、遮断側の図示しない機構的
拘束点に可動部材6が到達する前に制動力を生成できる
ので、可動部材6やそれに伴う機構部品の機械的損傷を
防止することができる。
As described above, according to the present embodiment, even if the electromagnet 9 is excited with a considerable exciting current in order to obtain an appropriate initial shutoff speed, the electromagnet 9 can be moved to a mechanical constraint point (not shown) on the shutoff side. Since the braking force can be generated before the member 6 reaches, it is possible to prevent the movable member 6 and the mechanical components associated therewith from being mechanically damaged.

【0088】なお、電磁石9の巻き方向を反対方向にす
ると、可動部材6を投入位置から遮断方向に移動させる
際に、制動力を作用させることができる。 (第7の実施形態)図7は本発明の第7の実施形態に係
る遮断器用操作装置の磁気回路及びその周辺構成を示す
模式図である。本実施形態は、可動部材6の過度の投入
速度あるいは遮断速度を抑制して機構部品の保護を図る
ものであり、具体的には、永久磁石7、固定部材5及び
可動部材6からなる磁気回路の一部に、磁束25と鎖交
するように配置された逆起電流発生コイル26を備えて
いる。
When the winding direction of the electromagnet 9 is reversed, a braking force can be applied when the movable member 6 is moved from the closing position to the closing direction. (Seventh Embodiment) FIG. 7 is a schematic diagram showing a magnetic circuit of a circuit breaker operating device according to a seventh embodiment of the present invention and its peripheral configuration. The present embodiment is intended to protect the mechanical parts by suppressing the excessive closing speed or the closing speed of the movable member 6, and specifically, a magnetic circuit including the permanent magnet 7, the fixed member 5 and the movable member 6. Is provided with a back electromotive current generating coil 26 arranged so as to interlink with the magnetic flux 25.

【0089】ここで、逆起電流発生コイル26は、導電
性材料が1回以上巻かれて形成されたコイル状導体であ
ればよく、例えばアルミや銅等の導電性金属をリング状
に加工したものを用いてもよい。次に、以上のように構
成された遮断器用操作装置の動作を説明する。いま、永
久磁石7と、固定部材5と、可動部材6とによる磁束2
5が磁気回路中に存在している。このとき、投入もしく
は遮断方向への電磁石9の励磁により、可動部材6が動
作すると、電磁石9からの磁束及び可動部材6と固定部
材5との空隙距離の変化に応じて磁束25の量が変化す
る。
Here, the back electromotive current generating coil 26 may be a coil-shaped conductor formed by winding a conductive material at least once. For example, a conductive metal such as aluminum or copper is processed into a ring shape. A thing may be used. Next, the operation of the circuit breaker operating device configured as described above will be described. Now, the magnetic flux 2 generated by the permanent magnet 7, the fixed member 5, and the movable member 6
5 is present in the magnetic circuit. At this time, when the movable member 6 is operated by the excitation of the electromagnet 9 in the closing or closing direction, the amount of the magnetic flux 25 changes according to the change of the magnetic flux from the electromagnet 9 and the gap distance between the movable member 6 and the fixed member 5. I do.

【0090】次に、逆起電流発生コイル26に鎖交した
磁束25により、逆起電流発生コイル26に誘起電流2
7が発生する。
Next, the induced current 2 is applied to the back electromotive current generating coil 26 by the magnetic flux 25 linked to the back electromotive current generating coil 26.
7 occurs.

【0091】この誘起電流27は、可動部材6の移動方
向とは逆向きの電磁力を発生させる。この電磁力は可動
部材用に対する制動力として作用し、可動部材6の過度
の投入速度あるいは遮断速度を抑制させる。よって、操
作機構や両接触子3a,3bの衝突衝撃が低減され、機
械的損傷を防止することができる。
The induced current 27 generates an electromagnetic force in a direction opposite to the moving direction of the movable member 6. This electromagnetic force acts as a braking force for the movable member 6 and suppresses an excessive closing speed or cutoff speed of the movable member 6. Therefore, the collision impact of the operation mechanism and the contacts 3a and 3b is reduced, and mechanical damage can be prevented.

【0092】上述したように本実施形態によれば、磁気
回路中の磁束と鎖交するように逆起電流発生コイル26
を設けたことにより、可動部材6の移動によって発生し
た磁束変化を逆起電流発生コイル26に起電力として誘
起させることで可動部材6に対して制動力を作用させる
ことができ、機械的なダンパー等を不要とすることがで
きる。
As described above, according to the present embodiment, the back electromotive current generating coil 26 is linked to the magnetic flux in the magnetic circuit.
Is provided, a magnetic flux change generated by the movement of the movable member 6 is induced as an electromotive force in the back electromotive current generating coil 26, so that a braking force can be applied to the movable member 6, and a mechanical damper is provided. Etc. can be made unnecessary.

【0093】従って、例えば遮断動作や投入動作の最終
加速領域にて可動部と固定部との衝突速度を低下させる
ことができ、操作装置の駆動機構部分の長寿命化を図る
ことができる。 (第8の実施形態)図8は本発明の第8の実施形態に係
る遮断器用操作装置の磁気回路及びその周辺構成を示す
模式図である。本実施形態は、第7の実施形態の変形例
であり、投入動作時にのみ制動力を働かせるものであ
り、具体的には、逆起電流発生コイル26に直列に接続
された誘起電流遮断ダイオード21eを備えている。
Therefore, for example, the collision speed between the movable part and the fixed part can be reduced in the final acceleration region of the breaking operation or the closing operation, and the life of the drive mechanism of the operating device can be extended. (Eighth Embodiment) FIG. 8 is a schematic diagram showing a magnetic circuit of a circuit breaker operating device according to an eighth embodiment of the present invention and a peripheral configuration thereof. The present embodiment is a modification of the seventh embodiment, and applies a braking force only at the time of a closing operation. Specifically, the induced current cutoff diode 21e connected in series to the back electromotive current generating coil 26 It has.

【0094】ここで、誘起電流遮断ダイオード21e
は、投入動作時に逆起電流発生コイル26に誘起される
誘起電流を順方向に流す向きに、逆起電流発生コイル2
6の終端間に接続されている。
Here, the induced current cutoff diode 21e
Indicates that the induced current induced in the back electromotive current generating coil 26 during the closing operation flows in the forward direction.
6 are connected between the terminals.

【0095】次に、以上のように構成された遮断器用操
作装置の動作を説明する。いま、前述同様に、投入もし
くは遮断方向への電磁石9の励磁により、可動部材6が
動作すると、電磁石9からの磁束及び可動部材6と固定
部材5との空隙距離の変化に応じて磁束25の量が変化
する。
Next, the operation of the circuit breaker operating device configured as described above will be described. Now, as described above, when the movable member 6 operates by exciting the electromagnet 9 in the closing or closing direction, the magnetic flux 25 is changed according to the change in the magnetic flux from the electromagnet 9 and the gap distance between the movable member 6 and the fixed member 5. The amount changes.

【0096】次に、逆起電流発生コイル26に鎖交した
磁束25により、逆起電流発生コイル26に誘起電流2
7が発生する。なお、誘起電流27の向きは、レンツの
法則により電磁石9への励磁電流の向きの反対となる。
Next, the induced current 2 is applied to the back electromotive current generating coil 26 by the magnetic flux 25 linked to the back electromotive current generating coil 26.
7 occurs. The direction of the induced current 27 is opposite to the direction of the exciting current to the electromagnet 9 according to Lenz's law.

【0097】この誘起電流27は、可動部材6の移動方
向とは逆向きの電磁力を発生させる。この電磁力は可動
部材用に対する制動力として作用する。
The induced current 27 generates an electromagnetic force in a direction opposite to the moving direction of the movable member 6. This electromagnetic force acts as a braking force for the movable member.

【0098】但し、誘起電流遮断ダイオード21eによ
り、誘起電流27が投入動作時の制動力として働くとき
のみ流れるので、投入方向への可動部材6の移動時のみ
に制動力を作用させることができる。
However, the induced current interruption diode 21e allows the induced current 27 to flow only when acting as a braking force during the closing operation, so that the braking force can be applied only when the movable member 6 moves in the closing direction.

【0099】上述したように本実施形態によれば、投入
動作時に逆起電流発生コイル26に誘起される誘起電流
を順方向に流すように誘起電流遮断ダイオード21eを
接続したので、投入方向への可動部材6の移動時のみ
に、制動力を作用させることができる。
As described above, according to the present embodiment, the induced current blocking diode 21e is connected so that the induced current induced in the back electromotive current generating coil 26 flows in the forward direction during the closing operation. The braking force can be applied only when the movable member 6 moves.

【0100】換言すると、誘起電流遮断ダイオード21
eにより、可動部材6の遮断方向への移動時には逆起電
流発生コイル26の起電力を遮断し、可動部材6に対す
る制動力を発生させないことができる。
In other words, the induced current cutoff diode 21
By e, when the movable member 6 moves in the blocking direction, the electromotive force of the back electromotive current generating coil 26 is blocked, and the braking force on the movable member 6 can be prevented from being generated.

【0101】なお、本実施形態の変形例として、図9に
示すように、誘起電流遮断ダイオードの向きを逆にした
構成としてもよい。この場合、遮断動作時に逆起電流発
生コイル26に誘起される誘起電流を順方向に流すよう
に誘起電流遮断ダイオード22eを接続したので、遮断
方向への可動部材6の移動時のみに、制動力を作用させ
ることができる。
As a modified example of the present embodiment, as shown in FIG. 9, a configuration may be adopted in which the direction of the induced current blocking diode is reversed. In this case, since the induced current interruption diode 22e is connected so that the induced current induced in the back electromotive current generating coil 26 flows in the forward direction during the interruption operation, the braking force is applied only when the movable member 6 moves in the interruption direction. Can act.

【0102】換言すると、可動部材6の移動時に制動力
を作用させる逆起電流発生コイル26を設けた構成にお
いて、遮断動作時に誘起される誘起電流27を順方向に
流すように誘起電流遮断ダイオード22eを接続したこ
とにより、可動部材6の投入方向への移動時には逆起電
流発生コイル26の起電力を遮断し、可動部材6に対す
る制動力を発生させないことができる。
In other words, in the configuration in which the back electromotive current generating coil 26 for applying a braking force when the movable member 6 moves is provided, the induced current interrupting diode 22e is provided so that the induced current 27 induced during the interruption operation flows in the forward direction. When the movable member 6 is moved in the closing direction, the electromotive force of the back electromotive current generating coil 26 is shut off, and the braking force on the movable member 6 can be prevented from being generated.

【0103】(第9の実施形態)図10は本発明の第9
の実施形態に係る遮断器用操作装置の磁気回路及びその
周辺構成を示す模式図である。本実施形態は、第7の実
施形態の変形例であり、移動速度が所定値を越えたとき
に制動力を作用させるものであって、具体的には、逆起
電流発生コイル26の終端間に、互いに逆向きに直列接
続された2つの定電圧ダイオードからなる有効誘起電圧
規定ダイオード28が接続されている。
(Ninth Embodiment) FIG. 10 shows a ninth embodiment of the present invention.
It is a mimetic diagram showing a magnetic circuit of a circuit breaker operating device concerning an embodiment, and its peripheral composition. This embodiment is a modification of the seventh embodiment, in which a braking force is applied when the moving speed exceeds a predetermined value. Is connected to an effective induced voltage regulating diode 28 composed of two constant voltage diodes connected in series in opposite directions.

【0104】ここで、有効誘起電圧規定ダイオード28
は、それぞれ投入速度の上限値に対応した逆起電流発生
コイル26の誘起電圧vを降伏電圧とした第1の定電圧
ダイオードと、遮断速度の上限値に対応した誘起電圧v
を降伏電圧とした第2の定電圧ダイオードとからなる。
両定電圧ダイオードは、互いに同一の降伏電圧をもつ組
として設けてもよく、また、互いに異なる値の降伏電圧
をもつ組として設けてもよい。
Here, the effective induced voltage regulating diode 28
Are a first constant voltage diode in which the induced voltage v of the back electromotive current generating coil 26 corresponding to the upper limit value of the closing speed is a breakdown voltage, and an induced voltage v corresponding to the upper limit value of the cutoff speed.
And a second constant voltage diode having a breakdown voltage.
Both constant voltage diodes may be provided as a set having the same breakdown voltage, or may be provided as a set having different breakdown voltages.

【0105】次に、以上のように構成された遮断器用操
作装置の動作を説明する。いま、前述した通り、電磁石
9への励磁により発生した磁束及び可動部材6と固定部
材5との空隙距離の変化によって磁気回路中の磁束25
の量が変化したとする。このとき、その磁束25と鎖交
するように配置した逆起電流発生コイル26に誘起電流
27が発生して可動部材6に制動力が作用する。
Next, the operation of the circuit breaker operating device configured as described above will be described. Now, as described above, the magnetic flux 25 generated in the magnetic circuit by the excitation of the electromagnet 9 and the change in the gap distance between the movable member 6 and the fixed member 5 are changed.
Is changed. At this time, an induced current 27 is generated in the back electromotive current generating coil 26 arranged so as to link with the magnetic flux 25, and a braking force acts on the movable member 6.

【0106】ここで、鎖交磁束中の逆起電流発生コイル
26の誘起電圧vは、逆起電流発生コイル26のインダ
クタンスをL、逆起電流発生コイル26に流れる電流を
i、時間をtとしたとき、次の(3)式で示される。
Here, the induced voltage v of the back electromotive current generating coil 26 in the interlinkage magnetic flux is represented by L, the inductance of the back electromotive current generating coil 26, the current i flowing through the back electromotive current generating coil 26, and the time t. Then, it is expressed by the following equation (3).

【0107】v=−L(di/dt) …(3) また、逆起電流発生コイル26の巻数をN、可動部材6
の移動量をx、磁束量をφとしたとき、次の(4)〜
(5)式により、磁束25の変化の大きい部位(dφ/
dx:大)を高速(dx/dt:大)で移動する場合、
(3)式で述べた誘起電圧vは大きくなる。
V = -L (di / dt) (3) The number of turns of the back electromotive current generating coil 26 is N, and the movable member 6
When the amount of movement is x and the amount of magnetic flux is φ, the following (4) to
From the equation (5), a portion where the change of the magnetic flux 25 is large (dφ /
dx: large) at high speed (dx / dt: large),
The induced voltage v described in equation (3) increases.

【0108】 L=N(dφ/dt) …(4) dφ/dt=(dφ/dx)(dx/dt) …(5) 従って、可動部材6の速度が低速の状態では、逆起電流
発生コイル26の誘起電圧vが有効誘起電圧規定ダイオ
ード28の降伏電圧以下となる。このため、逆起電流発
生コイル26の誘起電流27は有効誘起電圧規定ダイオ
ード28によって遮断されて閉回路が成立せず、誘起電
流27による可動部材6への制動力が発生しない。
L = N 2 (dφ / dt) (4) dφ / dt = (dφ / dx) (dx / dt) (5) Therefore, when the speed of the movable member 6 is low, the back electromotive current is generated. The induced voltage v of the generating coil 26 becomes equal to or lower than the breakdown voltage of the effective induced voltage regulating diode 28. Therefore, the induced current 27 of the back electromotive current generating coil 26 is cut off by the effective induced voltage regulating diode 28, so that a closed circuit is not established, and no braking force is generated on the movable member 6 by the induced current 27.

【0109】一方、可動部材6の移動速度が増加する
と、逆起電流発生コイル26の誘起電圧vが有効誘起電
圧規定ダイオード28の降伏電圧を超える。このため、
有効誘起電圧規定ダイオード28が降伏により導通して
閉回路が成立し、誘起電流27による可動部材6への制
動力が発生する。
On the other hand, when the moving speed of the movable member 6 increases, the induced voltage v of the back electromotive current generating coil 26 exceeds the breakdown voltage of the effective induced voltage regulating diode 28. For this reason,
The effective induced voltage regulating diode 28 becomes conductive due to breakdown to form a closed circuit, and the induced current 27 generates a braking force on the movable member 6.

【0110】このとき、逆起電流発生コイル26の巻数
Nと、有効誘起電圧規定ダイオード28の降伏電圧値を
可動部材6への制動力として作用させる速度に調整する
ことで、可動部材6が低速で移動している状態では制動
力が発生せず、所定の速度を超えた場合にのみ、制動力
を作用させることができる。
At this time, by adjusting the number of turns N of the back electromotive current generating coil 26 and the breakdown voltage value of the effective induced voltage regulating diode 28 to a speed at which the movable member 6 acts as a braking force, the movable member 6 is driven at a low speed. No braking force is generated in the state where the vehicle is moving, and the braking force can be applied only when the speed exceeds a predetermined speed.

【0111】上述したように本実施形態によれば、可動
部材6に対して制動力を作用させたい速度に対応して逆
起電流発生コイル26の誘起電圧vを予め規定し、その
誘起電圧vを逆起電流発生コイル26の終端間に接続し
た定電圧ダイオードの降伏電圧とすることにより、可動
部材6の移動速度が規定値を超えた場合に定電圧ダイオ
ードを降伏させて逆起電流発生コイル26に電流を流
し、可動部材6に制動力を作用させることができる。
As described above, according to the present embodiment, the induced voltage v of the back electromotive current generating coil 26 is defined in advance in accordance with the speed at which the braking force is applied to the movable member 6, and the induced voltage v Is the breakdown voltage of the constant voltage diode connected between the ends of the back electromotive current generating coil 26, and when the moving speed of the movable member 6 exceeds a specified value, the constant voltage diode is broken down to An electric current can be applied to the movable member 26 to apply a braking force to the movable member 6.

【0112】(第10の実施形態)図11は本発明の第
10の実施形態に係る遮断器用操作装置の制御回路を示
す模式図である。本実施形態は、第4の実施形態と同様
に、投入励磁時と遮断励磁時とでそれぞれ励磁駆動力の
最適化を図るものであり、具体的には電磁石9が互いに
並列接続された2つの電磁石9a,9bとして設けら
れ、且つ一方の電磁石9bには投入励磁接点21cが直
列に接続された構成となっている。
(Tenth Embodiment) FIG. 11 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a tenth embodiment of the present invention. In the present embodiment, as in the fourth embodiment, the excitation driving force is optimized at the time of closing excitation and at the time of shutoff excitation, respectively. Specifically, two electromagnets 9 connected in parallel to each other are used. It is provided as electromagnets 9a and 9b, and one of the electromagnets 9b has a configuration in which a closing excitation contact 21c is connected in series.

【0113】すなわち、遮断動作励磁では、並列接続さ
れた一方の電磁石9aのみに通電し、投入動作励磁で
は、並列接続された両方の電磁石9a,9bに通電する
構成となっている。
That is, in the excitation of the cutoff operation, only one of the electromagnets 9a connected in parallel is energized, and in the excitation of the closing operation, the two electromagnets 9a and 9b connected in parallel are energized.

【0114】次に、以上のように構成された遮断器用操
作装置の動作を説明する。まず、投入動作においては、
投入励磁接点21a,21b,21cを閉極し、且つ遮
断励磁接点22a,22bを開極することで、図11の
実線sで示す回路が成立し、電磁石励磁電源24からの
励磁電流が、投入励磁接点21aを通り、電磁石9a,
9bを夫々AB方向に順方向に流れて励磁する。
Next, the operation of the circuit breaker operating device configured as described above will be described. First, in the closing operation,
By closing the closing excitation contacts 21a, 21b, 21c and opening the closing excitation contacts 22a, 22b, the circuit shown by the solid line s in FIG. 11 is established, and the excitation current from the electromagnet excitation power supply 24 is turned on. After passing through the excitation contact 21a, the electromagnets 9a,
9b flow in the AB direction in the forward direction, and are excited.

【0115】次に、遮断動作においては、遮断励磁接点
22a,22bを閉極し、且つ投入励磁接点21a,2
1b,21cを閉極することで、図11の破線dで示す
回路が成立し、電磁石励磁電源24からの励磁電流は、
遮断励磁接点22bを通り、電磁石9aのみをBA方向
に逆方向に流れて励磁する。
Next, in the breaking operation, the breaking excitation contacts 22a and 22b are closed, and the closing excitation contacts 21a and 2b are closed.
By closing poles 1b and 21c, a circuit indicated by a broken line d in FIG. 11 is established, and the excitation current from the electromagnet excitation power supply 24 becomes
Only the electromagnet 9a flows through the cut-off excitation contact 22b in the direction opposite to the BA direction to be excited.

【0116】ここで、2個の電磁石9a,9bのコイル
の巻数Nと抵抗値Rが等しく、電磁石励磁電源24の電
圧Eが直列又は並列接続時で同一である場合、電磁石励
磁電源24に1個の電磁石9を接続したときの励磁電流
Iに対して、直列接続では1個当りの電磁石9の励磁電
流はI/2であり、並列接続ではIと等しく、且つ電磁
石コイル9から発生する電磁力Fは、次の(6)式で表
されるから、直列接続よりも並列接続の方が強い電磁力
を得ることができる。
Here, if the number of turns N and the resistance value R of the coils of the two electromagnets 9a and 9b are equal and the voltage E of the electromagnet excitation power supply 24 is the same when connected in series or in parallel, 1 With respect to the exciting current I when the plurality of electromagnets 9 are connected, the exciting current of one electromagnet 9 in series connection is I / 2, and in the parallel connection, the exciting current is equal to I and the electromagnetic current generated from the electromagnet coil 9. Since the force F is expressed by the following equation (6), stronger electromagnetic force can be obtained in parallel connection than in series connection.

【0117】F∝(NI) …(6) すなわち、投入励磁時には、並列接続として強い電磁力
を用いて可動部材6を駆動し、遮断励磁時には、直列接
続として弱い電磁力(+バネ10,11の反発力)を用
いて可動部材6を駆動することができる。
F∝ (NI) 2 (6) That is, at the time of excitation, the movable member 6 is driven by using a strong electromagnetic force in parallel connection, and at the time of cut-off excitation, a weak electromagnetic force (+ spring 10, The movable member 6 can be driven by using the repulsive force of the movable member 6.

【0118】上述したように本実施形態によれば、大き
なエネルギーの必要な投入動作については投入励磁を2
つの電磁石9a,2bを並列接続することで大きな電磁
エネルギーが得られ、投入動作に比べ少ないエネルギー
ですむ遮断動作については遮断励磁を一方の電磁石9b
のみ励磁することで励磁電流を抑制することができる。
As described above, according to the present embodiment, for the energizing operation requiring large energy, the energizing is performed by two times.
By connecting the two electromagnets 9a and 2b in parallel, a large electromagnetic energy can be obtained.
Excitation only can suppress the excitation current.

【0119】本実施形態は、特に大きな投入エネルギー
を必要とする場合に有効で、2つの電磁石コイル9a,
9bを並列に接続することにより、同一操作電圧Eの場
合、直列接続の場合に比べ、電磁石から発生するアンペ
アターンで表される電磁力を増加させることができる。
This embodiment is effective particularly when a large input energy is required, and the two electromagnet coils 9a, 9a,
By connecting 9b in parallel, the electromagnetic force represented by ampere-turns generated from the electromagnet can be increased in the case of the same operating voltage E as compared with the case of serial connection.

【0120】(第11の実施形態)図12は本発明の第
11の実施形態に係る遮断器用操作装置の制御回路を示
す模式図である。本実施形態は、第10の実施形態の変
形例であり、投入励磁接点21cに代えて、投入時に流
れる励磁電流に順方向となるように接続点Paと電磁石
9bのA点との間に接続された遮断側励磁制限ダイオー
ド21dを備えている。
(Eleventh Embodiment) FIG. 12 is a schematic diagram showing a control circuit of a circuit breaker operating device according to an eleventh embodiment of the present invention. This embodiment is a modification of the tenth embodiment. Instead of the closing excitation contact 21c, a connection is made between the connection point Pa and the point A of the electromagnet 9b so that the exciting current flowing at the time of closing is in the forward direction. And a cutoff-side excitation limiting diode 21d.

【0121】次に、以上のように構成された遮断器用操
作装置の動作を説明する。投入励磁接点21a,21b
を閉極し、かつ、遮断励磁接点22a,22bを開極す
ることで、図12の実線sで示す回路が成立する。ま
ず、電磁石励磁電源24からの励磁電流は、投入励磁接
点21aを通り、電磁石9aをAB方向に順方向で励磁
する。
Next, the operation of the circuit breaker operating device configured as described above will be described. Make-up excitation contacts 21a, 21b
Is closed, and the cut-off excitation contacts 22a and 22b are opened, whereby a circuit indicated by a solid line s in FIG. 12 is established. First, the excitation current from the electromagnet excitation power supply 24 passes through the closing excitation contact 21a, and excites the electromagnet 9a in the AB direction in the forward direction.

【0122】さらに、電磁石励磁電源24からの励磁電
流は、遮断側励磁制限ダイオード21dを通り電磁石9
bをAB方向に順方向で励磁する。これにより、投入動
作時は2つの電磁石9a,9bが並列に接続されて励磁
される。
Further, the exciting current from the electromagnet excitation power supply 24 passes through the cutoff-side excitation limiting diode 21d and the electromagnet 9
b is excited in the AB direction in the forward direction. Thus, during the closing operation, the two electromagnets 9a and 9b are connected in parallel and excited.

【0123】次に、遮断励磁接点22a,22bを閉極
し、かつ、投入励磁接点21a,21bを開極すること
で、図12の破線dで示す回路が成立する。
Next, by closing the closing excitation contacts 22a and 22b and opening the closing excitation contacts 21a and 21b, the circuit shown by the broken line d in FIG. 12 is established.

【0124】まず、電磁石励磁電源24からの励磁電流
は、遮断励磁接点22bを通り電磁石9aをBA方向に
逆方向で励磁する。
First, the excitation current from the electromagnet excitation power supply 24 passes through the cut-off excitation contact 22b to excite the electromagnet 9a in the direction opposite to the BA direction.

【0125】しかしながら、電磁石9bは、遮断側励磁
制限ダイオード21dにより励磁電流が阻止されるため
に励磁されない。すなわち、遮断動作時は一方の電磁石
9aのみが励磁される。
However, the electromagnet 9b is not excited because the exciting current is blocked by the blocking-side excitation limiting diode 21d. That is, during the cutoff operation, only one electromagnet 9a is excited.

【0126】上述したように本実施形態によれば、第1
0の実施形態の効果に加え、遮断時には遮断側励磁制限
ダイオード21dを接続した方の電磁石9bが励磁され
ないので、電磁石9a,9bの接続切換えに機械式接点
もしくはスイッチング半導体等による断路機構が不要に
なり、さらに、それらの断路機能を制御させる制御装置
も不要になる。このため、高速で、かつ、簡素な構成の
接続切換機能で励磁方向による電磁石の接続切換えを比
較的廉価に実現させることができる。
As described above, according to the present embodiment, the first
In addition to the effect of the embodiment of FIG. 1, the electromagnet 9b connected to the cutoff-side excitation limiting diode 21d is not excited at the time of cutoff, so that the connection switching between the electromagnets 9a and 9b does not require a disconnection mechanism using a mechanical contact or a switching semiconductor. In addition, a control device for controlling these disconnection functions becomes unnecessary. Therefore, the connection switching of the electromagnet in the excitation direction can be realized at a relatively low cost by a connection switching function having a high speed and a simple configuration.

【0127】その他、本発明はその要旨を逸脱しない範
囲で種々変形して実施できる。
In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

【0128】[0128]

【発明の効果】以上説明したように本発明によれば、投
入動作時や遮断動作時の可動部材の移動速度を適切に制
御できる遮断器用操作装置を提供できる。
As described above, according to the present invention, it is possible to provide a circuit breaker operating device capable of appropriately controlling the moving speed of the movable member during the closing operation and the closing operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る遮断器用操作装
置の制御回路を示す模式図
FIG. 1 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態に係る遮断器用操作装
置の制御回路を示す模式図
FIG. 2 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a second embodiment of the present invention.

【図3】本発明の第3の実施形態に係る遮断器用操作装
置の制御回路を示す模式図
FIG. 3 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a third embodiment of the present invention.

【図4】本発明の第4の実施形態に係る遮断器用操作装
置の制御回路を示す模式図
FIG. 4 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施形態に係る遮断器用操作装
置の制御回路を示す模式図
FIG. 5 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施形態に係る遮断器用操作装
置の制御回路を示す模式図
FIG. 6 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a sixth embodiment of the present invention.

【図7】本発明の第7の実施形態に係る遮断器用操作装
置の磁気回路及びその周辺構成を示す模式図
FIG. 7 is a schematic diagram showing a magnetic circuit of a circuit breaker operating device according to a seventh embodiment of the present invention and its peripheral configuration.

【図8】本発明の第8の実施形態に係る遮断器用操作装
置の磁気回路及びその周辺構成を示す模式図
FIG. 8 is a schematic diagram showing a magnetic circuit of a circuit breaker operating device according to an eighth embodiment of the present invention and a peripheral configuration thereof.

【図9】本発明の第9の実施形態に係る遮断器用操作装
置の磁気回路及びその周辺構成を示す模式図
FIG. 9 is a schematic diagram showing a magnetic circuit and a peripheral configuration of a circuit breaker operating device according to a ninth embodiment of the present invention.

【図10】本発明の第10の実施形態に係る遮断器用操
作装置の磁気回路及びその周辺構成を示す模式図
FIG. 10 is a schematic diagram showing a magnetic circuit and a peripheral configuration of a circuit breaker operating device according to a tenth embodiment of the present invention.

【図11】本発明の第11の実施形態に係る遮断器用操
作装置の制御回路を示す模式図
FIG. 11 is a schematic diagram showing a control circuit of a circuit breaker operating device according to an eleventh embodiment of the present invention.

【図12】本発明の第12の実施形態に係る遮断器用操
作装置の制御回路を示す模式図
FIG. 12 is a schematic diagram showing a control circuit of a circuit breaker operating device according to a twelfth embodiment of the present invention.

【図13】一般的な電磁アクチュエータの代表的な構成
を示す模式図
FIG. 13 is a schematic view showing a typical configuration of a general electromagnetic actuator.

【図14】一般的な電磁アクチュエータの可動部材に作
用する電磁力とバネ力との関係を示す模式図
FIG. 14 is a schematic diagram showing a relationship between an electromagnetic force acting on a movable member of a general electromagnetic actuator and a spring force.

【図15】図13の電磁アクチュエータの状態切替時の
通電動作を説明するための回路図
FIG. 15 is a circuit diagram for explaining an energizing operation when switching the state of the electromagnetic actuator of FIG. 13;

【符号の説明】[Explanation of symbols]

1…電磁アクチュエータ 2…支持フレーム 3a…固定接触子 3b…可動接触子 3…真空バルブ 4…操作ロッド 5…固定部材 6…可動部材 7…永久磁石 8…磁気回路 9,9a,9b…電磁石 9t…中間タップ 10,11…バネ 12a〜12c…曲線 13…折れ線 21a〜21c…投入励磁接点 21d〜21e,22d〜22e,28…ダイオード 22a〜22c…遮断励磁接点 23…リアクトル 24…電磁石励磁電源 25…磁束 26…逆起電流発生コイル 27…誘起電流 Pa,Pb,Pc…接続点 DESCRIPTION OF SYMBOLS 1 ... Electromagnetic actuator 2 ... Support frame 3a ... Fixed contact 3b ... Movable contact 3 ... Vacuum valve 4 ... Operating rod 5 ... Fixed member 6 ... Movable member 7 ... Permanent magnet 8 ... Magnetic circuit 9, 9a, 9b ... Electromagnet 9t ... Intermediate tap 10,11 ... Spring 12a-12c ... Curve 13 ... Bent line 21a-21c ... Make excitation contact 21d-21e, 22d-22e, 28 ... Diode 22a-22c ... Disconnection excitation contact 23 ... Reactor 24 ... Electromagnetic excitation power supply 25 ... magnetic flux 26 ... counter electromotive current generating coil 27 ... induced current Pa, Pb, Pc ... connection point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 利春 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 森下 明平 東京都府中市東芝町1番地 株式会社東芝 府中工場内 Fターム(参考) 5G028 AA01 DB05 DB09 FD02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiharu Yamazaki 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Plant Co., Ltd. (72) Inventor Meihei 1 Toshiba-cho, Fuchu-shi Tokyo F term (reference) 5G028 AA01 DB05 DB09 FD02

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 接離可能に設けられた可動接触子と固定
接触子とを有する遮断器を操作するための遮断器用操作
装置であって、 前記可動接触子に固定され、この可動接触子を固定接触
子に対して接離させる方向に移動可能に保持された絶縁
性の操作ロッドと、 この操作ロッドに固着された磁性体製の可動部材と、 この可動部材に取付けられた電磁石と、 この電磁石及び可動部材を内部に収容しつつ前記操作ロ
ッドを移動可能に保持する固定部材と、 前記固定部材の内部にて前記可動部材に対向配置され、
前記可動接触子を前記固定接触子側に接触させる向きの
投入方向に、前記可動部材を吸引する永久磁石と、 前記可動接触子を前記固定接触子から離間させる向きの
遮断方向に、前記操作ロッドを付勢する弾性部材と、 前記電磁石を励磁するための電源回路と、 前記固定部材、前記永久磁石、前記可動部材及び前記電
磁石からなる磁気回路の磁束と鎖交しない位置に配置さ
れ、前記電磁石に電気的に直列に接続されたリアクトル
とを備えたことを特徴とする遮断器用操作装置。
1. An operating device for a circuit breaker for operating a circuit breaker having a movable contact and a fixed contact that are provided so as to be able to contact and separate from each other, wherein the operating device is fixed to the movable contact. An insulative operating rod held movably in the direction of moving toward and away from the fixed contact; a movable member made of a magnetic material fixed to the operating rod; an electromagnet attached to the movable member; A fixed member that movably holds the operation rod while accommodating an electromagnet and a movable member therein; and
A permanent magnet that attracts the movable member in a closing direction in which the movable contact is brought into contact with the fixed contact, and an operating rod in a blocking direction in which the movable contact is separated from the fixed contact. An elastic member for energizing the electromagnet; a power supply circuit for exciting the electromagnet; and And a reactor electrically connected in series to the operating device for a circuit breaker.
【請求項2】 請求項1に記載の遮断器用操作装置にお
いて、 前記リアクトルは、前記可動部材を前記投入方向に移動
させるように前記電磁石を励磁するための投入励磁接点
と、前記電磁石との間に配置されたことを特徴とする遮
断器用操作装置。
2. The operating device for a circuit breaker according to claim 1, wherein the reactor is provided between a closing excitation contact for exciting the electromagnet so as to move the movable member in the closing direction, and the electromagnet. An operating device for a circuit breaker, wherein the operating device is arranged in a device.
【請求項3】 請求項1に記載の遮断器用操作装置にお
いて、 前記リアクトルは、前記可動部材を前記遮断方向に移動
させるように前記電磁石を励磁するための遮断励磁接点
と、前記電磁石との間に配置されたことを特徴とする遮
断器用操作装置。
3. The operating device for a circuit breaker according to claim 1, wherein the reactor is provided between a breaking excitation contact for exciting the electromagnet so as to move the movable member in the breaking direction, and the electromagnet. An operating device for a circuit breaker, wherein the operating device is arranged in a device.
【請求項4】 接離可能に設けられた可動接触子と固定
接触子とを有する遮断器を操作するための遮断器用操作
装置であって、 前記可動接触子に固定され、この可動接触子を固定接触
子に対して接離させる方向に移動可能に保持された絶縁
性の操作ロッドと、 この操作ロッドに固着された磁性体製の可動部材と、 この可動部材に取付けられ、且つ中間タップを有する電
磁石と、 この電磁石及び可動部材を内部に収容しつつ前記操作ロ
ッドを移動可能に保持する固定部材と、 前記固定部材の内部にて前記可動部材に対向配置され、
前記可動接触子を前記固定接触子側に接触させる向きの
投入方向に、前記可動部材を吸引する永久磁石と、 前記可動接触子を前記固定接触子から離間させる向きの
遮断方向に、前記操作ロッドを付勢する弾性部材と、 前記電磁石を励磁するための電源回路と、 前記電磁石の両端部に夫々電気的に接続され、前記可動
部材を前記投入方向に移動させるように前記電磁石を全
区間に亘って励磁するための複数の投入励磁接点と、 前記電磁石の一端部及び前記中間タップに夫々電気的に
接続され、前記可動部材を前記遮断方向に移動させるよ
うに前記電磁石を中間タップから一端部までの区間に亘
って励磁するための複数の遮断励磁接点と、 を備えたことを特徴とする遮断器用操作装置。
4. An operating device for a circuit breaker for operating a circuit breaker having a movable contact and a fixed contact that are provided so as to be able to contact and separate from each other, wherein the movable contact is fixed to the movable contact. An insulating operating rod held movably in a direction to contact and separate from the fixed contact, a movable member made of a magnetic material fixed to the operating rod, and an intermediate tap attached to the movable member, An electromagnet having a fixed member that movably holds the operation rod while accommodating the electromagnet and the movable member therein, and that is disposed inside the fixed member so as to face the movable member,
A permanent magnet that attracts the movable member in a closing direction in which the movable contact is brought into contact with the fixed contact, and an operating rod in a blocking direction in which the movable contact is separated from the fixed contact. An elastic member for energizing the electromagnet; a power supply circuit for exciting the electromagnet; electrically connected to both ends of the electromagnet, and the electromagnet in all sections so as to move the movable member in the closing direction. A plurality of closing excitation contacts for exciting over the one end of the electromagnet, and one end of the electromagnet from the intermediate tap so as to move the movable member in the blocking direction, the one end being electrically connected to the one end of the electromagnet and the intermediate tap. And a plurality of shut-off excitation contacts for exciting over a section up to and including:
【請求項5】 接離可能に設けられた可動接触子と固定
接触子とを有する遮断器を操作するための遮断器用操作
装置であって、 前記可動接触子に固定され、この可動接触子を固定接触
子に対して接離させる方向に移動可能に保持された絶縁
性の操作ロッドと、 この操作ロッドに固着された磁性体製の可動部材と、 この可動部材に取付けられ、且つ中間タップを有する電
磁石と、 この電磁石及び可動部材を内部に収容しつつ前記操作ロ
ッドを移動可能に保持する固定部材と、 前記固定部材の内部にて前記可動部材に対向配置され、
前記可動接触子を前記固定接触子側に接触させる向きの
投入方向に、前記可動部材を吸引する永久磁石と、 前記可動接触子を前記固定接触子から離間させる向きの
遮断方向に、前記操作ロッドを付勢する弾性部材と、 前記電磁石を励磁するための電源回路と、 前記電磁石の一端部にアノードが接続された励磁用ダイ
オードと、 前記電磁石の中間タップにカソードが接続され、且つ前
記励磁用ダイオードのカソードに電気的にアノードが接
続された遮断用ダイオードとを備えたことを特徴とする
遮断器用操作装置。
5. An operation device for a circuit breaker for operating a circuit breaker having a movable contact and a fixed contact that are provided so as to be able to contact and separate from each other, the device being fixed to the movable contact, An insulating operating rod held movably in a direction to contact and separate from the fixed contact, a movable member made of a magnetic material fixed to the operating rod, and an intermediate tap attached to the movable member, An electromagnet having a fixed member that movably holds the operation rod while accommodating the electromagnet and the movable member therein, and that is disposed inside the fixed member so as to face the movable member,
A permanent magnet that attracts the movable member in a closing direction in which the movable contact is brought into contact with the fixed contact, and an operating rod in a blocking direction in which the movable contact is separated from the fixed contact. A power supply circuit for exciting the electromagnet; an exciting diode having an anode connected to one end of the electromagnet; a cathode connected to an intermediate tap of the electromagnet; An operating device for a circuit breaker, comprising: a breaking diode in which a cathode is electrically connected to a cathode of the diode.
【請求項6】 請求項5に記載の遮断器用操作装置にお
いて、 前記電磁石の他端部、前記励磁用ダイオードのカソード
及び前記遮断用ダイオードのアノードに夫々電気的に接
続された複数の励磁接点と、 前記可動部材の移動中、前記各励磁接点を開極に制御す
る接点制御回路とを備えたことを特徴とする遮断器用操
作装置。
6. The operating device for a circuit breaker according to claim 5, wherein a plurality of excitation contacts electrically connected to the other end of the electromagnet, a cathode of the excitation diode and an anode of the interruption diode, respectively. And a contact control circuit for controlling each of the excitation contacts to be opened while the movable member is moving.
【請求項7】 接離可能に設けられた可動接触子と固定
接触子とを有する遮断器を操作するための遮断器用操作
装置であって、 前記可動接触子に固定され、この可動接触子を固定接触
子に対して接離させる方向に移動可能に保持された絶縁
性の操作ロッドと、 この操作ロッドに固着された磁性体製の可動部材と、 この可動部材に取付けられ、且つ中間タップを有する電
磁石と、 この電磁石及び可動部材を内部に収容しつつ前記操作ロ
ッドを移動可能に保持する固定部材と、 前記固定部材の内部にて前記可動部材に対向配置され、
前記可動接触子を前記固定接触子側に接触させる向きの
投入方向に、前記可動部材を吸引する永久磁石と、 前記可動接触子を前記固定接触子から離間させる向きの
遮断方向に、前記操作ロッドを付勢する弾性部材と、 前記電磁石を励磁するための電源回路と、 前記固定部材、前記永久磁石、前記可動部材及び前記電
磁石からなる磁気回路の磁束と鎖交する位置に設置され
た前記逆起電流発生コイルとを備えたことを特徴とする
遮断器用操作装置。
7. An operating device for a circuit breaker for operating a circuit breaker having a movable contact and a fixed contact provided so as to be able to contact and separate from each other, wherein the operating device is fixed to the movable contact, and the movable contact is An insulating operating rod held movably in a direction to contact and separate from the fixed contact, a movable member made of a magnetic material fixed to the operating rod, and an intermediate tap attached to the movable member, An electromagnet having a fixed member that movably holds the operation rod while accommodating the electromagnet and the movable member therein, and that is disposed inside the fixed member so as to face the movable member,
A permanent magnet that attracts the movable member in a closing direction in which the movable contact is brought into contact with the fixed contact, and an operating rod in a blocking direction in which the movable contact is separated from the fixed contact. An elastic member for energizing the electromagnet; a power supply circuit for exciting the electromagnet; and the reverse member installed at a position interlinking with a magnetic flux of a magnetic circuit including the fixed member, the permanent magnet, the movable member, and the electromagnet. An operating device for a circuit breaker, comprising an electromotive current generating coil.
【請求項8】 請求項7に記載の遮断器用操作装置にお
いて、 前記逆起電流発生コイルの終端間に、前記可動部材が投
入方向に移動するときに誘起される誘起電流に対して順
方向に接続された誘起電流遮断ダイオードを備えたこと
を特徴とする遮断器用操作装置。
8. The circuit breaker operating device according to claim 7, wherein a forward direction of an induced current induced when the movable member moves in a closing direction is provided between ends of the back electromotive current generating coil. An operation device for a circuit breaker, comprising a connected induced current interruption diode.
【請求項9】 請求項7に記載の遮断器用操作装置にお
いて、 前記逆起電流発生コイルの終端間に、前記可動部材が遮
断方向に移動するときに誘起される誘起電流に対して順
方向に接続された誘起電流遮断ダイオードを備えたこと
を特徴とする遮断器用操作装置。
9. The operating device for a circuit breaker according to claim 7, wherein a forward direction is generated between an end of the back electromotive current generating coil and an induced current induced when the movable member moves in a blocking direction. An operation device for a circuit breaker, comprising a connected induced current interruption diode.
【請求項10】 請求項7に記載の遮断器用操作装置に
おいて、 前記逆起電流発生コイルの終端間に、互いに直列に且つ
逆極性に接続された複数の定電圧ダイオードを備えたこ
とを特徴とする遮断器用操作装置。
10. The operating device for a circuit breaker according to claim 7, further comprising: a plurality of constant voltage diodes connected in series and with opposite polarities between terminals of the back electromotive current generating coil. Operating device for circuit breakers.
【請求項11】 接離可能に設けられた可動接触子と固
定接触子とを有する遮断器を操作するための遮断器用操
作装置であって、 前記可動接触子に固定され、この可動接触子を固定接触
子に対して接離させる方向に移動可能に保持された絶縁
性の操作ロッドと、 この操作ロッドに固着された磁性体製の可動部材と、 この可動部材に取付けられ、互いに並列接続された複数
の電磁石と、 これら各電磁石及び可動部材を内部に収容しつつ前記操
作ロッドを移動可能に保持する固定部材と、 前記固定部材の内部にて前記可動部材に対向配置され、
前記可動接触子を前記固定接触子側に接触させる向きの
投入方向に、前記可動部材を吸引する永久磁石と、 前記可動接触子を前記固定接触子から離間させる向きの
遮断方向に、前記操作ロッドを付勢する弾性部材と、 前記各電磁石を励磁するための電源回路と、 前記各電磁石のうちの一方の電磁石の一端部に接続さ
れ、前記可動部材を前記投入方向に移動させるときに閉
極に制御され、前記遮断方向に移動させるときに開極に
制御される投入励磁接点とを備えたことを特徴とする遮
断器用操作装置。
11. An operating device for a circuit breaker for operating a circuit breaker having a movable contact and a fixed contact that are provided so as to be able to contact and separate from each other, wherein the movable contact is fixed to the movable contact. An insulating operating rod movably held in the direction of moving toward and away from the fixed contact, a movable member made of a magnetic material fixed to the operating rod, and attached to the movable member and connected in parallel with each other A plurality of electromagnets, a fixed member that movably holds the operation rod while accommodating each of these electromagnets and the movable member, and that is disposed inside the fixed member so as to face the movable member,
A permanent magnet that attracts the movable member in a closing direction in which the movable contact is brought into contact with the fixed contact, and an operating rod in a blocking direction in which the movable contact is separated from the fixed contact. An elastic member for urging the electromagnet; a power supply circuit for exciting each of the electromagnets; and a pole closed when one of the electromagnets is connected to one end of the electromagnet to move the movable member in the closing direction. And a closing excitation contact that is controlled to be open when moving in the breaking direction.
【請求項12】 請求項11に記載の遮断器用操作装置
において、 前記投入励磁接点に代えて、 前記可動部材を前記投入方向に移動させる向きの励磁電
流が流れるように、前記各電磁石のうちの一方の電磁石
の一端部に順方向に接続された投入用ダイオードを備え
たことを特徴とする遮断器用操作装置。
12. The operating device for a circuit breaker according to claim 11, wherein, instead of the closing excitation contact, an exciting current flows in a direction for moving the movable member in the closing direction. An operating device for a circuit breaker, comprising a closing diode connected to one end of one electromagnet in a forward direction.
JP2000066279A 2000-03-10 2000-03-10 Operating apparatus for circuit breaker Pending JP2001256868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066279A JP2001256868A (en) 2000-03-10 2000-03-10 Operating apparatus for circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066279A JP2001256868A (en) 2000-03-10 2000-03-10 Operating apparatus for circuit breaker

Publications (1)

Publication Number Publication Date
JP2001256868A true JP2001256868A (en) 2001-09-21

Family

ID=18585660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066279A Pending JP2001256868A (en) 2000-03-10 2000-03-10 Operating apparatus for circuit breaker

Country Status (1)

Country Link
JP (1) JP2001256868A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152631A (en) * 2002-10-30 2004-05-27 Hitachi Ltd Electromagnetic operation switching device
US6882515B2 (en) 2003-03-24 2005-04-19 Mitsubishi Denki Kabushiki Kaisha Operation circuit and power switching device employing the operation circuit
JP2008027720A (en) * 2006-07-21 2008-02-07 Mitsubishi Electric Corp Circuit breaker
WO2008038421A1 (en) * 2006-09-28 2008-04-03 Mitsubishi Electric Corporation Solenoid controlled opening/closing apparatus
JP2010262840A (en) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp Electromagnetic actuator, solenoid operation-type switching device using it, and its control method
WO2012084246A2 (en) * 2010-12-22 2012-06-28 Abb Technology Ag Interrupter insert for a circuit breaker arrangement
WO2020093132A1 (en) * 2018-11-05 2020-05-14 HYDRO-QUéBEC Bi-stable electromagnetic actuator
CN113436918A (en) * 2021-06-24 2021-09-24 福州大学 Series-parallel connection control method for batch electromagnetic switches
EP3301700B1 (en) * 2016-09-29 2023-03-29 ABB Schweiz AG A medium voltage contactor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152631A (en) * 2002-10-30 2004-05-27 Hitachi Ltd Electromagnetic operation switching device
US6882515B2 (en) 2003-03-24 2005-04-19 Mitsubishi Denki Kabushiki Kaisha Operation circuit and power switching device employing the operation circuit
JP2008027720A (en) * 2006-07-21 2008-02-07 Mitsubishi Electric Corp Circuit breaker
CN101523535B (en) * 2006-09-28 2012-07-11 三菱电机株式会社 Solenoid controlled opening/closing apparatus
WO2008038421A1 (en) * 2006-09-28 2008-04-03 Mitsubishi Electric Corporation Solenoid controlled opening/closing apparatus
US8040210B2 (en) 2006-09-28 2011-10-18 Mitsubishi Electric Corporation Electromagnetically operated switching device
JP2010262840A (en) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp Electromagnetic actuator, solenoid operation-type switching device using it, and its control method
WO2012084246A2 (en) * 2010-12-22 2012-06-28 Abb Technology Ag Interrupter insert for a circuit breaker arrangement
WO2012084246A3 (en) * 2010-12-22 2012-09-13 Abb Technology Ag Interrupter insert for a circuit breaker arrangement
CN103329235A (en) * 2010-12-22 2013-09-25 Abb技术股份公司 Interrupter insert for a circuit breaker arrangement
EP3301700B1 (en) * 2016-09-29 2023-03-29 ABB Schweiz AG A medium voltage contactor
WO2020093132A1 (en) * 2018-11-05 2020-05-14 HYDRO-QUéBEC Bi-stable electromagnetic actuator
CN113436918A (en) * 2021-06-24 2021-09-24 福州大学 Series-parallel connection control method for batch electromagnetic switches

Similar Documents

Publication Publication Date Title
JP4492610B2 (en) Circuit breaker and its switching method
JP4392555B2 (en) Single-coil solenoid with a permanent magnet and a permanent magnet, its manufacturing method, non-magnetic switch for single-coil solenoid, single-coil solenoid kit
US6611413B2 (en) Switching apparatus
US6373675B1 (en) Operating apparatus for switching device
JP3778329B2 (en) Switchgear
US20100165535A1 (en) Method and Device for Operating a Switching Device
WO2016028465A1 (en) Magnetically latching flux-shifting electromechanical actuator
JPWO2008038421A1 (en) Electromagnetic switchgear
JP5295858B2 (en) Electromagnetic actuator, electromagnetically operated switchgear using the same, and control method thereof
JP4971738B2 (en) Switch operating circuit and power switch using the same
US6674349B1 (en) Opening and/or closing control device, in particular for a switchgear apparatus such as a circuit breaker, and circuit breaker equipped with such a device
JP2001256868A (en) Operating apparatus for circuit breaker
JP5249704B2 (en) Electromagnetic operating mechanism drive circuit
JPH0344010A (en) Electromagnetically operating actuator
US9953786B2 (en) Self-holding magnet with a particularly low electric trigger voltage
JP3634758B2 (en) Electromagnet unit and solenoid valve using the electromagnet unit
JP2004342552A (en) Switching device
CN112074924B (en) Electromagnetic relay and control method thereof
JP4269156B2 (en) Electromagnetic operation method and electromagnetic operation device
US20040027775A1 (en) Electromagnet arragement for a switch
JP2002343200A (en) Breaker and its assembly method
RU112499U1 (en) BISTABLE ELECTROMAGNETIC DRIVE OF SWITCHING DEVICE
JP2004152628A (en) Electromagnet controlling apparatus
RU2310941C1 (en) Electromagnetic operating mechanism for high-voltage vacuum circuit breaker
JP4629271B2 (en) Operation device for power switchgear