JP2001256773A - Access method of magnetic memory cell, and magnetic memory cell - Google Patents

Access method of magnetic memory cell, and magnetic memory cell

Info

Publication number
JP2001256773A
JP2001256773A JP2000065913A JP2000065913A JP2001256773A JP 2001256773 A JP2001256773 A JP 2001256773A JP 2000065913 A JP2000065913 A JP 2000065913A JP 2000065913 A JP2000065913 A JP 2000065913A JP 2001256773 A JP2001256773 A JP 2001256773A
Authority
JP
Japan
Prior art keywords
magnetic
layer
memory cell
closed
magnetic memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000065913A
Other languages
Japanese (ja)
Other versions
JP3738165B2 (en
Inventor
Ryoji Namikata
量二 南方
Masashi Michijima
正司 道嶋
Hidekazu Hayashi
秀和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000065913A priority Critical patent/JP3738165B2/en
Priority to EP00126994A priority patent/EP1107329B1/en
Priority to US09/733,646 priority patent/US6519179B2/en
Priority to CNB001310593A priority patent/CN1193441C/en
Publication of JP2001256773A publication Critical patent/JP2001256773A/en
Application granted granted Critical
Publication of JP3738165B2 publication Critical patent/JP3738165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that in magnetic memory using conventional magnetic tunnel junction(MTJ) elements, a ferro-magnetic layer forming a memory layer is magnetized in the direction of the surface inside, therefore, demagnetizing influence by the magnetic poles at both end parts increases with micronizing of the element and magnetization of the memory layer becomes unstable. SOLUTION: A bit line 12 is arranged within a closed magnetic path of a magnetic memory cell 11 having a closed magnetic path structure, and a word line 13 is arranged to be orthogonal to the bit line 12 on the magnetic memory cell 11 via an insulating layer 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気メモリセルのア
クセス方法及び磁気メモリセルに関するものである。
The present invention relates to a magnetic memory cell access method and a magnetic memory cell.

【0002】[0002]

【従来の技術】近年、磁気トンネル接合(MTJ)素子
は、従来の異方性磁気抵抗効果(AMR)素子や巨大磁
気抵抗効果(GMR)素子に比べて大きな出力が得られ
ることから、HDD用再生ヘッドや磁気メモリへの応用
が考えられている。
2. Description of the Related Art In recent years, a magnetic tunnel junction (MTJ) element has a larger output than conventional anisotropic magnetoresistive (AMR) elements or giant magnetoresistive (GMR) elements, and has been used for HDDs. Applications to read heads and magnetic memories are being considered.

【0003】特に、磁気メモリにおいては、半導体メモ
リと同じく稼動部の無い固体メモリであり、電源が断た
れても情報を失わない、繰り返し回数が無限回である、
放射線が入射しても記録内容が消失する危険性が無い
等、半導体メモリと比較して有用である。
[0003] In particular, a magnetic memory is a solid-state memory having no moving parts like a semiconductor memory, does not lose information even when power is cut off, and has an infinite number of repetitions.
It is more useful than a semiconductor memory, for example, there is no danger of erasing recorded contents even when radiation is incident.

【0004】従来のMTJ素子の構成例を図4に示す。
なお、このような構造はたとえば特開平9―10651
4号公報に示されている。
FIG. 4 shows a configuration example of a conventional MTJ element.
Such a structure is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-10651.
No. 4 discloses this.

【0005】図4のMTJ素子は、反強磁性層41、強
磁性層42、絶縁層43、強磁性層44を積層したもの
である。強磁性層42及び強磁性層44の磁化はいずれ
も膜面内にあり、平行もしくは反平行となるように実効
的な一軸磁気異方性を有している。そして、強磁性層4
2の磁化は反強磁性層41との交換結合により実質的に
一方向に固定され、強磁性層44の磁化の方向で記録を
保持する。
The MTJ element shown in FIG. 4 has an antiferromagnetic layer 41, a ferromagnetic layer 42, an insulating layer 43, and a ferromagnetic layer 44 laminated. The magnetizations of the ferromagnetic layer 42 and the ferromagnetic layer 44 are both in the plane of the film and have an effective uniaxial magnetic anisotropy such that they are parallel or antiparallel. And the ferromagnetic layer 4
The magnetization of No. 2 is substantially fixed in one direction by exchange coupling with the antiferromagnetic layer 41, and the recording is held in the direction of the magnetization of the ferromagnetic layer 44.

【0006】反強磁性層41としてはFeMn、NiM
n、PtMn、IrMn等の合金が用いられ、強磁性層
42及び強磁性層44としてはFe、Co、Ni或はこ
れらの合金が用いられる。また、絶縁層43としては各
種の酸化物や窒化物が検討されているが、現在はAl2
3膜の場合に最も高い磁気抵抗(MR)比が得られる
ことが知られている。
The antiferromagnetic layer 41 is made of FeMn, NiM
Alloys such as n, PtMn, and IrMn are used, and the ferromagnetic layers 42 and 44 are made of Fe, Co, Ni, or an alloy thereof. Various oxides and nitrides have been studied for the insulating layer 43, but Al 2 O 3 is currently used.
It is known that the highest magnetoresistance (MR) ratio can be obtained in the case of an O 3 film.

【0007】また、この他に、反強磁性層41を除いた
構成で、強磁性層42と強磁性層44の保磁力差を利用
したMTJ素子の提案もなされている。
[0007] In addition, there has been proposed an MTJ element having a configuration excluding the antiferromagnetic layer 41 and utilizing a coercive force difference between the ferromagnetic layers 42 and 44.

【0008】図4の構造のMTJ素子をランダムアクセ
ス可能な磁気メモリに用いた場合の概略図を図5に示
す。トランジスタ51は読み出し時にMTJ素子52を
選択する役割を有している。“0”、“1”の情報は図
4に示すMTJ素子の強磁性層44の磁化方向によって
記録されており、強磁性層42の磁化方向は固定されて
いる。そして、強磁性層42と強磁性層44の磁化が平
行の時は抵抗値が低く、反平行の時は抵抗値が高くなる
という磁気抵抗効果を利用して情報を読み出す。一方、
書込みは、ビット線53とワード線54が形成する合成
磁界によって強磁性層44の磁化の向きを反転すること
で実現される。なお、55はプレートラインである。
FIG. 5 is a schematic diagram showing a case where the MTJ element having the structure shown in FIG. 4 is used in a magnetic memory that can be accessed randomly. The transistor 51 has a role of selecting the MTJ element 52 at the time of reading. The information of “0” and “1” is recorded by the magnetization direction of the ferromagnetic layer 44 of the MTJ element shown in FIG. 4, and the magnetization direction of the ferromagnetic layer 42 is fixed. Information is read using the magnetoresistance effect that the resistance value is low when the magnetizations of the ferromagnetic layers 42 and 44 are parallel and high when the magnetizations are antiparallel. on the other hand,
Writing is realized by reversing the direction of magnetization of the ferromagnetic layer 44 by a combined magnetic field formed by the bit line 53 and the word line 54. In addition, 55 is a plate line.

【0009】[0009]

【発明が解決しようとする課題】ところで、上記構造の
MTJ素子では強磁性層42及び強磁性層44の磁化が
面内方向であるため、両端部には磁極が発生する。磁気
メモリの高密度化を図るにはMTJ素子を微細化する必
要があるが、素子の微細化にともない両端部の磁極によ
る反磁界の影響が大きくなる。
By the way, in the MTJ element having the above structure, the magnetization of the ferromagnetic layers 42 and 44 is in the in-plane direction, so that magnetic poles are generated at both ends. To increase the density of the magnetic memory, it is necessary to miniaturize the MTJ element. However, as the element is miniaturized, the influence of the demagnetizing field due to the magnetic poles at both ends increases.

【0010】強磁性層42については反強磁性層41と
交換結合していることから、上記の反磁界の影響は少な
く、また、米国特許5841692号公報に開示されて
いるように、強磁性層42を反強磁性結合する二つの強
磁性層で構成することにより、端部に発生する磁極を実
質的にゼロにすることができる。
Since the ferromagnetic layer 42 is exchange-coupled with the antiferromagnetic layer 41, the influence of the above-described demagnetizing field is small, and as disclosed in US Pat. No. 5,841,692. By configuring 42 with two ferromagnetic layers that are antiferromagnetically coupled, the magnetic pole generated at the end can be made substantially zero.

【0011】一方、メモリ層となる強磁性層44につい
ては同様の手法を取ることができないことから、パター
ンが微細化するに連れて端部磁極の影響により磁化が不
安定となり、記録の保持が困難となってしまう。
On the other hand, since the same method cannot be used for the ferromagnetic layer 44 serving as a memory layer, the magnetization becomes unstable due to the influence of the end magnetic poles as the pattern becomes finer, and the recording can be maintained. It will be difficult.

【0012】そこで、メモリ層となる強磁性層44を閉
磁路構造とすることで端部磁極の影響を低減することが
考えられる。この時、ビット線とワード線を両方ともこ
の閉磁路内を通る構成とすれば、書込み時に効率よく強
磁性層44の磁化を反転できる効果が得られるが、ビッ
ト線とワード線はMTJ素子部で同じ方向に配線される
ため、図5に示すような簡単な直交配列を取ることが困
難になる。閉磁路構造の例は特開平10−302456
号公報等に見られるが、その時の最適な磁気メモリセル
のアクセス方法については開示されていない。
Therefore, it is conceivable to reduce the influence of the end magnetic pole by forming the ferromagnetic layer 44 serving as a memory layer into a closed magnetic circuit structure. At this time, if both the bit line and the word line pass through this closed magnetic path, the effect of efficiently reversing the magnetization of the ferromagnetic layer 44 at the time of writing can be obtained. Therefore, it is difficult to obtain a simple orthogonal arrangement as shown in FIG. An example of a closed magnetic circuit structure is disclosed in JP-A-10-302456.
However, there is no disclosure of an optimal method for accessing the magnetic memory cells at that time.

【0013】本発明は上記課題を解決するために、メモ
リ層となる強磁性層44に閉磁路構造を導入しても、磁
気メモリのセル密度が低下しない磁気メモリセルのアク
セス方法を提供することを目的とする。
An object of the present invention is to provide a method of accessing a magnetic memory cell in which the cell density of a magnetic memory does not decrease even when a closed magnetic circuit structure is introduced into a ferromagnetic layer 44 serving as a memory layer. With the goal.

【0014】[0014]

【課題を解決するための手段】本発明の第1発明は、磁
気メモリセルの記憶を保持する磁性層上に閉磁路層を設
け、該磁性層と該閉磁路層とが構成する閉磁路内に第一
の電流線を配置し、該閉磁路外に第二の電流線を配置す
るとともに、該第一の電流線に該閉磁路層の磁化は反転
するが該磁性層の磁化は反転しない電流を流し、該二の
電流線に単独では該磁性層の磁化は反転しないが該ビッ
ト線との合成磁界は該磁性層の磁化を反転する電流を流
すことにより該磁性層の磁化方向を変えることを特徴と
する。
According to a first aspect of the present invention, there is provided a closed magnetic path layer provided on a magnetic layer for holding a memory of a magnetic memory cell, wherein a closed magnetic path layer is formed by the magnetic layer and the closed magnetic path layer. And a second current line is disposed outside the closed magnetic circuit, and the magnetization of the closed magnetic circuit layer is reversed but the magnetization of the magnetic layer is not reversed in the first current line. A current flows, and the magnetization of the magnetic layer does not reverse by itself on the two current lines, but the combined magnetic field with the bit line changes the magnetization direction of the magnetic layer by passing a current that reverses the magnetization of the magnetic layer. It is characterized by the following.

【0015】また、第2発明は、第1発明のアクセス方
法を用いる磁気メモリセルにおいて、前記磁気メモリセ
ルは少なくとも第1磁性層、絶縁層、第2磁性層を順に
積層した磁気トンネル接合素子からなり、且つ少なくと
も該第1又は第2磁性層の該磁性層の該絶縁層積層側と
異なる側に中央部を離間して前記閉磁路層を設け、第1
磁性層及び閉磁路層又は第2磁性層及び閉磁路層により
閉磁路が構成されていることを特徴とする。
According to a second aspect of the present invention, there is provided a magnetic memory cell using the access method of the first aspect, wherein the magnetic memory cell comprises a magnetic tunnel junction element in which at least a first magnetic layer, an insulating layer, and a second magnetic layer are sequentially stacked. And providing the closed magnetic path layer at least on the first or second magnetic layer on a side of the magnetic layer different from the insulating layer lamination side, with a central portion separated from the first or second magnetic layer.
A closed magnetic circuit is formed by the magnetic layer and the closed magnetic circuit layer or the second magnetic layer and the closed magnetic circuit layer.

【0016】更にまた、第3発明は、第1発明のアクセ
ス方法を用いる磁気メモリセルにおいて、前記磁気メモ
リセルは少なくとも第1磁性層、絶縁層、第2磁性層を
順に積層した磁気トンネル接合素子からなり、且つ少な
くとも該第1又は第2磁性層の該絶縁層積層側と異なる
側に、金属層を介するとともに中央部を離間して前記閉
磁路層を設け、第1磁性層及び閉磁路層又は第2磁性層
及び閉磁路層により閉磁路が構成されていることを特徴
とする。
Further, a third invention is a magnetic memory cell using the access method of the first invention, wherein the magnetic memory cell is a magnetic tunnel junction device in which at least a first magnetic layer, an insulating layer, and a second magnetic layer are sequentially stacked. And providing the closed magnetic circuit layer at least on a side of the first or second magnetic layer different from the insulating layer lamination side with a metal layer interposed therebetween and with a central portion separated therefrom, the first magnetic layer and the closed magnetic circuit layer Alternatively, a closed magnetic circuit is constituted by the second magnetic layer and the closed magnetic circuit layer.

【0017】[0017]

【発明の実施の形態】以下、図をもとに本発明の磁気メ
モリセルのアクセス方法及び磁気メモリセルについて詳
細に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a magnetic memory cell access method and a magnetic memory cell according to the present invention;

【0018】本発明の実施例を図1に示す。磁気メモリ
セル11はビット線12とワード線13の交点に配置さ
れている。磁気メモリセル11は図面の縦方向に閉磁路
構造を有しており、磁化も同じ方向を向いている。図1
のAB断面図を図2に示す。簡単化のために一個の磁気
メモリセルのみを示している。
FIG. 1 shows an embodiment of the present invention. The magnetic memory cell 11 is arranged at the intersection of the bit line 12 and the word line 13. The magnetic memory cell 11 has a closed magnetic circuit structure in the vertical direction in the drawing, and the magnetization is also oriented in the same direction. FIG.
2 is shown in FIG. Only one magnetic memory cell is shown for simplicity.

【0019】図2に示すように、磁気メモリセル11は
反強磁性層21、強磁性層22、絶縁層23、強磁性層
24からなるMTJ素子上に閉磁路層25が設けられて
いる。そして、反強磁性層21と強磁性層22は交換結
合している。また、強磁性層24と閉磁路層25は両端
部で接合し、中央部では離間している。この中央離間部
にビット線12が設けられ、MTJ素子と電気的に接続
し、また、ワード線13は磁気メモリセル11上に絶縁
層26を介して設けられている。
As shown in FIG. 2, the magnetic memory cell 11 has a closed magnetic circuit layer 25 provided on an MTJ element including an antiferromagnetic layer 21, a ferromagnetic layer 22, an insulating layer 23, and a ferromagnetic layer 24. The antiferromagnetic layer 21 and the ferromagnetic layer 22 are exchange-coupled. The ferromagnetic layer 24 and the closed magnetic circuit layer 25 are joined at both ends, and are separated at the center. The bit line 12 is provided at the centrally separated portion, and is electrically connected to the MTJ element. The word line 13 is provided on the magnetic memory cell 11 via the insulating layer 26.

【0020】従って、MTJ素子の片側はビット線12
と電気的に接続しており、もう一方は図示されていない
選択トランジスタのコレクタに接続されている。また、
ワード線はMTJ素子とは電気的に絶縁されており、図
示されていない選択トランジスタのゲートに接続されて
いる。その結果、図5に示すランダムアクセスの可能な
レイアウトが構成されている。
Therefore, one side of the MTJ element is connected to the bit line 12.
And the other is connected to the collector of a selection transistor (not shown). Also,
The word line is electrically insulated from the MTJ element and is connected to the gate of a select transistor (not shown). As a result, a layout capable of random access shown in FIG. 5 is configured.

【0021】磁気メモリセルの情報は強磁性層24の磁
化方向で記憶される。一方、強磁性層22の磁化方向は
反強磁性層21との交換結合で固定されている。従っ
て、強磁性層22と強磁性層24の磁化方向が平行、反
平行でMTJ素子の抵抗が変化することを利用して、磁
気メモリセルに記憶された情報即ち強磁性層の磁化方向
を検出する。
The information of the magnetic memory cell is stored in the magnetization direction of the ferromagnetic layer 24. On the other hand, the magnetization direction of the ferromagnetic layer 22 is fixed by exchange coupling with the antiferromagnetic layer 21. Therefore, utilizing the fact that the magnetization directions of the ferromagnetic layers 22 and 24 are parallel and antiparallel and the resistance of the MTJ element changes, the information stored in the magnetic memory cell, that is, the magnetization direction of the ferromagnetic layer is detected. I do.

【0022】磁気メモリセルの情報の書換えはビット線
12とワード線13に電流を流し、強磁性層24の磁化
方向を変えることで実現される。この時、電流を流すビ
ット線12とワード線13の交点にある磁気メモリセル
11以外の磁気メモリセルの強磁性層12は磁化方向が
変わらないことが必要である。これは、以下のようにし
て実現できる。
Rewriting of information in the magnetic memory cell is realized by passing a current through the bit line 12 and the word line 13 and changing the magnetization direction of the ferromagnetic layer 24. At this time, it is necessary that the magnetization directions of the ferromagnetic layers 12 of the magnetic memory cells other than the magnetic memory cell 11 at the intersection of the bit line 12 and the word line 13 through which current flows do not change. This can be achieved as follows.

【0023】強磁性層24は情報を保持でき、しかも記
録電流で書換えが可能な程度の保磁力を有している。一
方、閉磁路層25は、強磁性層24に比して保磁力が小
さい材料で構成されている。磁気メモリセル11の情報
を書換える場合には、閉磁路層25の磁化は反転する
が、強磁性層24の磁化は反転しない大きさの電流をビ
ット線12に流す。更に、ビット線12との合成磁界は
強磁性層24の磁化を反転するが、単独では反転できな
い大きさの電流をワード線13に流す。この時、ビット
線12上にある磁気メモリセル11以外のセルにはワー
ド線13からの磁界は印加されないため、強磁性層24
の磁化方向は変化しない。一方、ワード線13上にある
磁気メモリセル11以外のセルにはビット線12からの
磁界は印加されないため、強磁性層24の磁化方向は変
化しない。
The ferromagnetic layer 24 has a coercive force that can hold information and can be rewritten with a recording current. On the other hand, the closed magnetic circuit layer 25 is made of a material having a smaller coercive force than the ferromagnetic layer 24. When rewriting the information in the magnetic memory cell 11, a current having a magnitude that reverses the magnetization of the closed magnetic circuit layer 25 but does not reverse the magnetization of the ferromagnetic layer 24 flows to the bit line 12. Further, the combined magnetic field with the bit line 12 causes the current of the ferromagnetic layer 24 to be inverted, but a current of a magnitude that cannot be inverted alone flows through the word line 13. At this time, since the magnetic field from the word line 13 is not applied to cells other than the magnetic memory cell 11 on the bit line 12, the ferromagnetic layer 24
Does not change. On the other hand, since the magnetic field from the bit line 12 is not applied to cells other than the magnetic memory cell 11 on the word line 13, the magnetization direction of the ferromagnetic layer 24 does not change.

【0024】上記のように、強磁性層24及び閉磁路層
25の磁気特性と、ビット線12及びワード線13に流
す電流の大きさを制御することにより、ビット線12と
ワード線13の交点にある磁気メモリセル11の磁化方
向のみを変えることができる。
As described above, by controlling the magnetic characteristics of the ferromagnetic layer 24 and the closed magnetic circuit layer 25 and the magnitude of the current flowing through the bit line 12 and the word line 13, the intersection between the bit line 12 and the word line 13 is controlled. Can be changed only in the magnetization direction of the magnetic memory cell 11 in FIG.

【0025】本実施例によれば、ビット線12は強磁性
層24と閉磁路層25とで構成する閉磁路構造内に有る
ことから、十分低い電流で閉磁路層25の磁化を反転さ
せることができ、強磁性層24に有効に磁界を印可する
ことができる。一方、ワード線13もまた絶縁層を介し
て閉磁路層25に近接して設けられているので、閉磁路
層25を通じて強磁性層24に有効に磁界を印可するこ
とができる。従って、図4に示す従来の構造に比して、
十分に低い電流で磁気メモリセル11の磁化方向を変え
ることができる。従って、閉磁路層25を高透磁率材料
で構成すれば記録電流の低減化に有効である。
According to this embodiment, since the bit line 12 is in the closed magnetic circuit structure composed of the ferromagnetic layer 24 and the closed magnetic circuit layer 25, the magnetization of the closed magnetic circuit layer 25 can be reversed with a sufficiently low current. Thus, a magnetic field can be effectively applied to the ferromagnetic layer 24. On the other hand, since the word line 13 is also provided close to the closed magnetic circuit layer 25 via the insulating layer, it is possible to effectively apply a magnetic field to the ferromagnetic layer 24 through the closed magnetic circuit layer 25. Therefore, as compared with the conventional structure shown in FIG.
The magnetization direction of the magnetic memory cell 11 can be changed with a sufficiently low current. Therefore, if the closed magnetic circuit layer 25 is made of a material having a high magnetic permeability, it is effective to reduce the recording current.

【0026】図1に示す磁気メモリセル11の他の構成
例を図3に示す。図2との相違は強磁性層24と閉磁路
層25が金属層27を介して接合していることである。
この金属層27の膜厚は、強磁性層24と閉磁路層25
とが反強磁性結合するように設定されている。従って、
磁気メモリセル11の情報の書換えが上記と同様に行わ
れた際、磁気メモリセル11以外の書換えが行われなか
ったセルにおいて、強磁性層24と閉磁路層25の磁化
は、金属層27を介した反強磁性結合により、確実に閉
磁路を構成するようになる。
FIG. 3 shows another configuration example of the magnetic memory cell 11 shown in FIG. The difference from FIG. 2 is that the ferromagnetic layer 24 and the closed magnetic circuit layer 25 are joined via the metal layer 27.
The thickness of the metal layer 27 depends on the ferromagnetic layer 24 and the closed magnetic circuit layer 25.
Are set to be antiferromagnetically coupled. Therefore,
When the information of the magnetic memory cell 11 is rewritten in the same manner as described above, the magnetization of the ferromagnetic layer 24 and the closed magnetic circuit layer 25 in the cells other than the magnetic memory cell 11 that have not been rewritten is the same as that of the metal layer 27. Due to the interposed antiferromagnetic coupling, a closed magnetic circuit is reliably formed.

【0027】上記の実施例においては、閉磁路構造を有
する磁気メモリセルとして、MTJ素子を用いた二つの
例を示したが、その他の閉磁路構造を有する磁気メモリ
セルを用いることも可能である。また、上記の実施例に
おいては、ワード線はビット線の上に設けられていた
が、MTJ素子の下に設けることも可能である。また、
ビット線をMTJ素子から絶縁する、或いは、ビット線
とワード線を入れ替える、或いは、記録用と読み出し用
にビット線もしくはワード線を別個に設ける等も可能で
あり、本発明はビット線とワード線及び閉磁路構造につ
いて上記の実施例に制限されるものでないことは明らか
である。
In the above embodiment, two examples using the MTJ element as the magnetic memory cell having a closed magnetic circuit structure have been described. However, magnetic memory cells having other closed magnetic circuit structures can be used. . Further, in the above embodiment, the word line is provided above the bit line, but may be provided below the MTJ element. Also,
It is also possible to insulate the bit line from the MTJ element, replace the bit line and the word line, or provide separate bit lines or word lines for recording and reading. It is clear that the closed magnetic circuit structure is not limited to the above embodiment.

【0028】[0028]

【発明の効果】以上のように、本発明の磁気メモリセル
のアクセス方法によれば、強磁性層及び閉磁路層の磁気
特性と、ビット線及びワード線に流す電流の大きさを制
御することにより、単一の磁気メモリセルのみをアクセ
スできるとともに記録電流を低減することができる。ま
た、磁気メモリセルの端部磁極の影響を低減できること
から、パターンが微細化されても安定した磁化状態を保
持することができるとともに、より高い集積度の磁気メ
モリを実現することができる。また、メモリ層となる強
磁性層が閉磁路構造を取ることから、外部漏洩磁界に対
して安定となる。更にまた、本発明により磁気メモリの
消費電力を低減することができる。
As described above, according to the method for accessing a magnetic memory cell of the present invention, it is possible to control the magnetic characteristics of the ferromagnetic layer and the closed magnetic circuit layer and the magnitude of the current flowing through the bit line and the word line. Accordingly, only a single magnetic memory cell can be accessed, and the recording current can be reduced. Further, since the influence of the end magnetic pole of the magnetic memory cell can be reduced, a stable magnetization state can be maintained even when the pattern is miniaturized, and a magnetic memory with a higher degree of integration can be realized. Further, since the ferromagnetic layer serving as the memory layer has a closed magnetic circuit structure, the structure is stable against an external leakage magnetic field. Furthermore, according to the present invention, the power consumption of the magnetic memory can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の実施例にある磁気メモリセルの断面図
である。
FIG. 2 is a sectional view of a magnetic memory cell according to an embodiment of the present invention.

【図3】本発明の実施例にある磁気メモリセルの他の断
面図である。
FIG. 3 is another sectional view of the magnetic memory cell according to the embodiment of the present invention.

【図4】従来のMTJ素子の構成を示す図である。FIG. 4 is a diagram showing a configuration of a conventional MTJ element.

【図5】従来の磁気メモリの概略図である。FIG. 5 is a schematic diagram of a conventional magnetic memory.

【符号の説明】[Explanation of symbols]

11 磁気メモリセル 12 ビット線 13 ワード線 21、41 反強磁性層 22、24、42、44 強磁性層 23、43 絶縁層 25 閉磁路層 26 絶縁層 27 金属層 51 トランジスタ 52 MTJ素子 53 ビット線 54 ワード線 55 プレートライン Reference Signs List 11 magnetic memory cell 12 bit line 13 word line 21, 41 antiferromagnetic layer 22, 24, 42, 44 ferromagnetic layer 23, 43 insulating layer 25 closed magnetic circuit layer 26 insulating layer 27 metal layer 51 transistor 52 MTJ element 53 bit line 54 Word line 55 Plate line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 秀和 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 5D091 CC05 CC26 HH20 5F083 FZ10 GA11 KA01 KA05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hidekazu Hayashi 22-22 Nagaikecho, Abeno-ku, Osaka City, Osaka F-term (reference) 5D091 CC05 CC26 HH20 5F083 FZ10 GA11 KA01 KA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁気メモリセルの記憶を保持する磁性層
上に閉磁路層を設け、該磁性層と該閉磁路層とが構成す
る閉磁路内に第一の電流線を配置し、該閉磁路外に第二
の電流線を配置するとともに、該第一の電流線に該閉磁
路層の磁化は反転するが該磁性層の磁化は反転しない電
流を流し、該第二の電流線に単独では該磁性層の磁化は
反転しないが該第一の電流線との合成磁界は該磁性層の
磁化を反転する電流を流すことにより、該磁性層の磁化
方向を変えることを特徴とする磁気メモリセルのアクセ
ス方法。
1. A closed magnetic circuit layer is provided on a magnetic layer holding data stored in a magnetic memory cell, and a first current line is arranged in a closed magnetic circuit formed by the magnetic layer and the closed magnetic circuit layer. A second current line is disposed outside the road, and a current in which the magnetization of the closed magnetic circuit layer is reversed but the magnetization of the magnetic layer is not reversed flows in the first current line, and the second current line is singly applied to the second current line. Wherein the magnetization of the magnetic layer is not reversed, but the combined magnetic field with the first current line changes the magnetization direction of the magnetic layer by passing a current that reverses the magnetization of the magnetic layer. Cell access method.
【請求項2】 請求項1記載のアクセス方法を用いる磁
気メモリセルにおいて、前記磁気メモリセルは少なくと
も第1磁性層、絶縁層、第2磁性層を順に積層した磁気
トンネル接合素子からなり、且つ少なくとも該第1又は
第2磁性層の該磁性層の該絶縁層積層側と異なる側に中
央部を離間して前記閉磁路層を設け、第1磁性層及び閉
磁路層又は第2磁性層及び閉磁路層により閉磁路が構成
されていることを特徴とする磁気メモリセル。
2. The magnetic memory cell using the access method according to claim 1, wherein said magnetic memory cell comprises at least a magnetic tunnel junction element in which a first magnetic layer, an insulating layer, and a second magnetic layer are sequentially stacked, and at least. The first or second magnetic layer is provided with the closed magnetic path layer on a side different from the insulating layer lamination side of the magnetic layer at a center portion thereof, and the first magnetic layer and the closed magnetic path layer or the second magnetic layer and the closed magnetic layer are provided. A magnetic memory cell, wherein a closed magnetic path is formed by a path layer.
【請求項3】 請求項1記載のアクセス方法を用いる磁
気メモリセルにおいて、前記磁気メモリセルは少なくと
も第1磁性層、絶縁層、第2磁性層を順に積層した磁気
トンネル接合素子からなり、且つ少なくとも該第1又は
第2磁性層の該絶縁層積層側と異なる側に、金属層を介
するとともに中央部を離間して前記閉磁路層を設け、第
1磁性層及び閉磁路層又は第2磁性層及び閉磁路層によ
り閉磁路が構成されていることを特徴とする磁気メモリ
セル。
3. The magnetic memory cell using the access method according to claim 1, wherein the magnetic memory cell is formed of a magnetic tunnel junction element in which at least a first magnetic layer, an insulating layer, and a second magnetic layer are sequentially stacked, and at least. A first magnetic layer and a closed magnetic path layer or a second magnetic layer, wherein the closed magnetic path layer is provided on a side of the first or second magnetic layer different from the insulating layer lamination side with a metal layer interposed therebetween and with a central portion separated therefrom; And a closed magnetic circuit layer comprising a closed magnetic circuit layer.
JP2000065913A 1999-12-10 2000-03-10 Magnetic memory cell Expired - Fee Related JP3738165B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000065913A JP3738165B2 (en) 2000-03-10 2000-03-10 Magnetic memory cell
EP00126994A EP1107329B1 (en) 1999-12-10 2000-12-08 Magnetic tunnel junction device, magnetic memory adopting the same, magnetic memory cell and access method of the same
US09/733,646 US6519179B2 (en) 1999-12-10 2000-12-08 Magnetic tunnel junction device, magnetic memory adopting the same, magnetic memory cell and access method of the same
CNB001310593A CN1193441C (en) 1999-12-10 2000-12-09 Magnetic tunnel device, magnetic storage and element using said device and its access method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000065913A JP3738165B2 (en) 2000-03-10 2000-03-10 Magnetic memory cell

Publications (2)

Publication Number Publication Date
JP2001256773A true JP2001256773A (en) 2001-09-21
JP3738165B2 JP3738165B2 (en) 2006-01-25

Family

ID=18585361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000065913A Expired - Fee Related JP3738165B2 (en) 1999-12-10 2000-03-10 Magnetic memory cell

Country Status (1)

Country Link
JP (1) JP3738165B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085902A (en) * 2003-09-05 2005-03-31 Tdk Corp Magnetoresistance effect element, magnetic storage cell, and magnetic memory device
US7016221B2 (en) 2002-09-13 2006-03-21 Tdk Corporation Magnetoresistive effect element, magnetic memory device and method of fabricating the same
KR100862183B1 (en) * 2007-06-29 2008-10-09 고려대학교 산학협력단 Magnetic memory device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211058A (en) 2007-02-27 2008-09-11 Toshiba Corp Magnetic random access memory and writing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016221B2 (en) 2002-09-13 2006-03-21 Tdk Corporation Magnetoresistive effect element, magnetic memory device and method of fabricating the same
JP2005085902A (en) * 2003-09-05 2005-03-31 Tdk Corp Magnetoresistance effect element, magnetic storage cell, and magnetic memory device
JP4544396B2 (en) * 2003-09-05 2010-09-15 Tdk株式会社 Magnetic storage cell and magnetic memory device
KR100862183B1 (en) * 2007-06-29 2008-10-09 고려대학교 산학협력단 Magnetic memory device

Also Published As

Publication number Publication date
JP3738165B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
KR100439288B1 (en) Method for writing information to or reading information from a magnetic-resistive effect memory cell
US8331141B2 (en) Multibit cell of magnetic random access memory with perpendicular magnetization
US6985385B2 (en) Magnetic memory element utilizing spin transfer switching and storing multiple bits
US8988934B2 (en) Multibit cell of magnetic random access memory with perpendicular magnetization
WO2007020823A1 (en) Magnetic memory cell, magnetic random access memory and method for reading/writing data in magnetic random access memory
JPH11213650A (en) Magnetic thin film device and magnetic thin film memory device and recording and reproducing method for the same
TW200414497A (en) Magnetic memory device having yoke layer and its manufacturing method
WO2007119446A1 (en) Mram and mram data reading/writing method
US6519179B2 (en) Magnetic tunnel junction device, magnetic memory adopting the same, magnetic memory cell and access method of the same
JP7267623B2 (en) Magnetoresistive element and magnetic memory
JP2001273759A (en) Magnetic memory cell and magnetic memory device
JP3977576B2 (en) Magnetic memory device
JP2003197875A (en) Magnetic storage device
TWI422083B (en) Magnetic memory lattice and magnetic random access memory
WO2010053039A1 (en) Initialization method for a magnetic storage element
JP3634761B2 (en) Magnetoresistive element, memory element using the magnetoresistive element, magnetic random access memory, and recording / reproducing method
KR20070058364A (en) Storage element and memory
JP2008171862A (en) Magnetoresistive effect element and mram
JP2001273758A (en) Magnetic memory
JP2004281599A (en) Magnetoresistive effect element and magnetic memory device
JP2004087870A (en) Magnetoresistive effect element and magnetic memory device
JP2002353417A (en) Magnetoresistive effect element and magnetic memory device
JP2004158766A (en) Magnetoresistive effect element and magnetic memory device
JP3738165B2 (en) Magnetic memory cell
JP2001217479A (en) Magnetic tunnel junction element and magnetic memory using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees