JP2001256664A - Recording/reproducing head using plasmon and its manufacturing method - Google Patents

Recording/reproducing head using plasmon and its manufacturing method

Info

Publication number
JP2001256664A
JP2001256664A JP2000068605A JP2000068605A JP2001256664A JP 2001256664 A JP2001256664 A JP 2001256664A JP 2000068605 A JP2000068605 A JP 2000068605A JP 2000068605 A JP2000068605 A JP 2000068605A JP 2001256664 A JP2001256664 A JP 2001256664A
Authority
JP
Japan
Prior art keywords
recording
light
reproducing head
metal body
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000068605A
Other languages
Japanese (ja)
Inventor
Midori Katou
美登里 加藤
Masafumi Kiguchi
雅史 木口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000068605A priority Critical patent/JP2001256664A/en
Publication of JP2001256664A publication Critical patent/JP2001256664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform optical recording of super-high density. SOLUTION: Light is made incident on a flat substrate, into which a fine metal body is embedded, localized plasmon is excited to locally reinforce photoelectric field in the vicinity of the fine body, and information is recorded/ reproduced to/from a fine area exceeding the diffraction limit by using the light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズモンを用い
た光記録に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical recording using plasmons.

【0002】[0002]

【従来の技術】光記録においては、レーザ光をレンズで
媒体上に小さいスポットに集光し、それによって発生す
る熱や光反応によって、媒体の微小領域の特性を変化さ
せ記録する方式をとっている。この方法を用いると、集
光できるスポット径の大きさは記録に用いるレーザ光の
波長で限定される。そのため、より小さいスポットを書
き込むためには、より波長の短い光源を用いなければな
らなかった。
2. Description of the Related Art In optical recording, a method is used in which a laser beam is focused on a small spot on a medium by a lens, and the characteristics of a minute area of the medium are changed by heat or photoreaction generated thereby to perform recording. I have. When this method is used, the size of the spot diameter that can be focused is limited by the wavelength of the laser beam used for recording. Therefore, in order to write a smaller spot, a light source having a shorter wavelength had to be used.

【0003】また、アプライド・フィジックス・レター
65(1994年)第388頁(Appl. Phys. Lett.
Vol.65, pp388(1994))や特開平5−189796号
に記載のような、固体液浸レンズ(solid immersion
lens)を用いて記録する例が報告されている。このレン
ズを用いると、屈折率の2乗に比例してレンズの開口数
を大きくすることができるので、通常のレンズより小さ
い領域に光を絞り込むことができる。
Further, Applied Physics Letter 65 (1994), p. 388 (Appl. Phys. Lett.
Vol. 65, pp 388 (1994)) and JP-A-5-189796.
lens). When this lens is used, the numerical aperture of the lens can be increased in proportion to the square of the refractive index, so that light can be narrowed to a region smaller than a normal lens.

【0004】他に超高密度記録として、微小開口を具備
したプローブを用いた近接場光記録法がある。例えばジ
ャーナル・オブ・アプライド・フィジックス79(19
96年)第8082頁(J. Appl. Phys. Vol.79, p
p8082(1996))に記載のように、微小開口近傍の光によ
り媒体のごく微小領域の温度を上げて相変化をさせるも
のなどがある。これらの方法を用いると、用いる波長に
よらず、光の局在する領域が開口の大きさ程度となるた
め、回折限界を超えた微小スポットの書き込みや読み込
みができる。
As another ultra-high density recording, there is a near-field optical recording method using a probe having a minute aperture. For example, Journal of Applied Physics 79 (19
1996) p.8082 (J. Appl. Phys. Vol. 79, p.
As described in p8082 (1996), there is a method in which the temperature of a very small region of a medium is increased by light near a minute opening to cause a phase change. When these methods are used, a region where light is localized is about the size of an aperture, regardless of the wavelength used, so that a minute spot exceeding the diffraction limit can be written or read.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、超高
密度な光記録および再生を達成させるため、回折限界を
超えた微小光源を実現することにある。
SUMMARY OF THE INVENTION An object of the present invention is to realize a minute light source exceeding the diffraction limit in order to achieve ultra-high density optical recording and reproduction.

【0006】波長を短くすることによって、集光スポッ
ト径を小さくすることができるが、紫外領域まで波長が
短くなると、これまで用いられてきた安価なレンズ等の
光学系では紫外光を吸収してしまうため用いることがで
きなくなる。また、そのように波長の短い光源自体も、
コンパクトで安定したものはいまだ実現されていない。
したがって光源の波長を最適化することによる高密度化
は現実的ではないと言える。固体液浸レンズにおいて
も、波長の制限を受けると言う点では同様である。
By shortening the wavelength, the diameter of the condensed spot can be reduced. However, when the wavelength is shortened to the ultraviolet region, inexpensive optical systems such as inexpensive lenses that have been used absorb ultraviolet light. It cannot be used. In addition, the light source itself with such a short wavelength also has
Compact and stable things have not yet been realized.
Therefore, it can be said that increasing the density by optimizing the wavelength of the light source is not practical. The same applies to the solid immersion lens in that the wavelength is limited.

【0007】また、微小開口をもつプローブを利用した
記録の場合、開口が小さいことによって光のスループッ
トが悪く、書き込みのためにパワーの大きなレーザが必
要であったり、書き込みや読み込みに時間がかかるなど
の問題があった。
Further, in the case of recording using a probe having a small aperture, light throughput is poor due to the small aperture, a laser with a large power is required for writing, and it takes time to write and read. There was a problem.

【0008】[0008]

【課題を解決するための手段】通常のレーザ光をレンズ
等で集光しても、使用するレーザの波長の二分の一程度
までしか絞り込むことはできない(回折限界)。そのた
め、記録スポットの大きさもその程度に留まってしま
う。それより狭い領域で光強度を集中させるために、微
小開口から漏れ出す近接場光を利用した記録方法もある
が、利用できる光のパワーの弱さが問題であった。
Even if ordinary laser light is condensed by a lens or the like, it can be narrowed down to only about half the wavelength of the laser used (diffraction limit). Therefore, the size of the recording spot also remains at that level. There is also a recording method using near-field light leaking from a minute aperture in order to concentrate the light intensity in a narrower area, but there is a problem with the weak power of the available light.

【0009】金属の微粒子に光を照射するとプラズモン
が励起されることが知られている。波長の二分の一より
小さい金属体の近傍で発生するプラズモンを利用すれ
ば、プラズモンの励起により金属体近傍の電場強度が増
強されるので、回折限界を超えて強い電場を集中させる
ことができる。この電場を書き込みに用いれば、従来よ
りも小さいスポットを書き込むことができ、高密度記録
が可能となる。
It is known that irradiating metal fine particles with light excites plasmons. If a plasmon generated near a metal body smaller than half the wavelength is used, the electric field intensity near the metal body is enhanced by the excitation of the plasmon, so that a strong electric field exceeding the diffraction limit can be concentrated. If this electric field is used for writing, a smaller spot than before can be written, and high-density recording becomes possible.

【0010】ここで、金属の微粒子の形状が、真球より
楕円球体の方が励起される電場強度はより増強される
(サーフェス・サイエンス156(1985年)第67
8頁(Surface Science, Vol.156, pp678(198
5)))。楕円球体のように、細長い形状をしている場
合、その長手方向に偏光した光を入射することにより効
率よくプラズモンを励起でき、増強される光電場強度は
数十倍になる。
Here, the electric field intensity in which the shape of the fine metal particles is excited in an ellipsoidal sphere than in a true sphere is further enhanced (Surface Science 156 (1985) No. 67).
8 pages (Surface Science, Vol.156, pp678 (198
Five))). In the case of an elongated shape such as an ellipsoidal sphere, plasmons can be efficiently excited by irradiating light polarized in the longitudinal direction, and the enhanced electric field intensity becomes several tens times.

【0011】また、真球の場合、p偏光を入射すると、
増強の度合いがさらに強まることが報告されている(オ
プティカル・レビュー6(1999年)第211頁(Op
tical Review, Vol.6, 211(1999)))。
In the case of a true sphere, when p-polarized light is incident,
It has been reported that the degree of enhancement is further enhanced (Optical Review 6 (1999), p. 211 (Op.
tical Review, Vol. 6, 211 (1999)).

【0012】このように、金属体近傍に励起されたプラ
ズモンによる電場を光記録の書き込みに用いれば、その
空間的広がりは金属体の大きさ程度であり、その付近だ
け飛び抜けて電場強度が強くなる。レンズで光を金属体
に集光すると、記録媒体の他の部分にも光が照射される
ことにはなるが、記録のおこる電場強度のしきい値が、
プラズモン電場強度とレンズで集光した光による電場強
度の間にあればよい。例えば相変化ディスクであれば、
プラズモンにより増強された電場強度で相変化が起き、
レンズで集光した光では変化が起きないように、記録媒
質の材料と入射光強度の関係を調整すればよい。
As described above, when an electric field due to plasmons excited near a metal body is used for writing an optical record, the spatial spread is about the size of the metal body, and the electric field strength increases by jumping only in the vicinity of the metal body. . When light is condensed on a metal body by a lens, the light is also irradiated to other parts of the recording medium, but the threshold of the electric field intensity at which recording occurs,
What is necessary is just to be between the plasmon electric field intensity and the electric field intensity by the light condensed by the lens. For example, if it is a phase change disk,
A phase change occurs with the electric field strength enhanced by the plasmon,
The relationship between the material of the recording medium and the intensity of the incident light may be adjusted so that the light collected by the lens does not change.

【0013】また、集光するレンズとして、固体液浸レ
ンズを用いると、効率よく集光することができる。この
レンズは、球レンズの一部を切り取った形状をしてお
り、その端面に光が集光するようになっている。開口数
が非常に高いため、通常のレンズより集光効率が高い。
When a solid immersion lens is used as a focusing lens, the focusing can be performed efficiently. This lens has a shape in which a part of a spherical lens is cut out, and light is condensed on an end face thereof. Since the numerical aperture is very high, the light collection efficiency is higher than that of a normal lens.

【0014】さらに、このレンズを楕円球体ないしは円
柱のように、細長い形状の金属微小体と組み合わせた場
合、微小体の長手方向がヘッドの平坦面すなわち固体液
浸レンズの平坦面と直行するように配置することによっ
て、さらに電場強度の増強が期待できる。なぜなら、通
常のレンズであれば、レンズで集光された光の波数ベク
トルは、端面に対して斜めであり、プラズモンを励起で
きる方向(平坦面に垂直な方向)に振動する電場強度
は、本来の電場強度に入射角の余弦を乗じた量となっ
て、入射光強度を十分に利用できない。固体液浸レンズ
で光を絞り込んだ場合、集光された光は端面に対してよ
り高角度で入射する。これはすなわち入射角の余弦が大
きくなるので、励起に寄与できる光強度が増える。ま
た、全反射臨界角より大きな角度で入射した光について
は、エバネセント波となって端面に平行な波数ベクトル
を持つ、すなわちその光強度は全てプラズモン励起に寄
与でき、効率的にプラズモンを励起することができる。
Further, when this lens is combined with an elongated metal minute body such as an ellipsoidal sphere or a cylinder, the longitudinal direction of the minute body is perpendicular to the flat surface of the head, that is, the flat surface of the solid immersion lens. The arrangement can be expected to further increase the electric field strength. Because, with a normal lens, the wave vector of the light condensed by the lens is oblique to the end face, and the electric field strength oscillating in the direction that can excite plasmons (the direction perpendicular to the flat surface) is originally And the cosine of the incident angle multiplied by the electric field strength of the light source, and the incident light intensity cannot be fully utilized. When light is narrowed down by the solid immersion lens, the condensed light enters the end face at a higher angle. This means that the cosine of the incident angle increases, so that the light intensity that can contribute to excitation increases. In addition, light incident at an angle larger than the critical angle for total reflection becomes an evanescent wave and has a wave vector parallel to the end face. Can be.

【0015】また、平坦な基板に金属微小体を埋め込ん
だ形状にすれば、光ヘッドとしたとき、スライダーに搭
載することができる。高速で回るディスク上を障害無
く、衝突無く記録再生を行うことができる。
[0015] Further, if the flat substrate is formed into a shape in which metal micro-objects are embedded, it can be mounted on a slider when an optical head is formed. Recording and reproduction can be performed on a rotating disk at high speed without any obstacle and without collision.

【0016】[0016]

【発明の実施の形態】本発明の一実施例を、図1を用い
て説明する。図1は実施例の光ヘッドの基本部分の構成
を示した断面図である。ヘリウムカドミウムレーザの5
33nmの波長の光101をレンズ102を通して絞り込
み、この光に対して透明な材質でできた基板103に作
られた微小金属体104に裏側から集光する。レーザ光
101は基板103の平坦面に垂直に入射し、レンズ1
02を基板の真上に位置させることでコンパクトな構造
としている。金属体104は記録媒体(ここでは図示せ
ず)上を移動する際、障害にならないように基板103
に埋め込む形で作成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional view showing a configuration of a basic portion of the optical head of the embodiment. Helium-cadmium laser 5
A light 101 having a wavelength of 33 nm is narrowed down through a lens 102 and focused on a minute metal body 104 formed on a substrate 103 made of a material transparent to the light from the back side. The laser beam 101 is vertically incident on the flat surface of the substrate 103,
02 is located just above the substrate to provide a compact structure. The metal body 104 moves on a recording medium (not shown here) so that it does not hinder the substrate 103.
It is created to be embedded in.

【0017】基板103の作製法は後で詳しく述べる
が、ここでは、直径50nm、深さ100nm程度の円柱形
の穴を開け、そこに微小金属体104として金を埋め込
んだ。レンズ102は、基板103に対して上下左右に
微動できる構造を有しており、焦点のちょうど中央に微
小金属体104が来るようにレンズ102の位置を調整
し、固定した。ヘッドとして用いる場合、これらを一体
化した構造にし、自動焦点機構を付加してもよい。
Although a method of forming the substrate 103 will be described in detail later, here, a cylindrical hole having a diameter of 50 nm and a depth of about 100 nm was formed, and gold was embedded as a minute metal body 104 therein. The lens 102 has a structure capable of finely moving up, down, left, and right with respect to the substrate 103, and the position of the lens 102 is adjusted and fixed so that the minute metal body 104 is located exactly at the center of the focal point. When used as a head, they may be integrated into a structure, and an automatic focusing mechanism may be added.

【0018】このヘッドにおいてレーザ光101を入射
すると、金属体104で局在プラズモンが励起され、金
属体104近傍の電場強度が増強される。この場合は微
小金属体104が円柱形であり、その底面が媒体に面し
たヘッド平坦面にあるので、増強された電場の広がり
は、底面の円の直径程度、すなわち50nm程度である。
このヘッドを記録媒体との距離を制御する機能を有する
記録再生装置に搭載し、記録媒体に一定距離接近させる
と、光の広がり程度のスポット径で情報を記録すること
ができる。
When a laser beam 101 is incident on this head, localized plasmons are excited in the metal body 104, and the electric field intensity near the metal body 104 is increased. In this case, since the minute metal body 104 is cylindrical and its bottom surface is on the flat surface of the head facing the medium, the spread of the enhanced electric field is about the diameter of the circle on the bottom surface, that is, about 50 nm.
When this head is mounted on a recording / reproducing apparatus having a function of controlling the distance to a recording medium, and is brought close to the recording medium by a certain distance, information can be recorded with a spot diameter that is about equal to the spread of light.

【0019】ここで、上記実施例では微小金属体104
の形状を円柱形としたが、非対称な形状のものなら、楕
円柱、回転楕円体、円錐、角柱、角錐などでもよい。長
手方向がヘッド平坦面に垂直になるように配置すればよ
い。
Here, in the above embodiment, the minute metal body 104
Is a cylindrical shape, but may be an elliptic cylinder, a spheroid, a cone, a prism, a pyramid, or the like as long as the shape is asymmetric. What is necessary is just to arrange | position so that a longitudinal direction may become perpendicular to a head flat surface.

【0020】この際の記録媒体としては、これまで用い
られてきたものと同じ素材であれば同様に用いることが
できるが、記録されるしきい値が、微小金属体104近
傍で増強された光強度より小さく、それ以外のレンズで
集光された部分の光強度より大きい必要がある。したが
って媒体の感度と入射光強度をあらかじめ調整する必要
がある。また、ヘッドに近い方が光強度が大きいので、
媒体上部の保護層などがない方が記録は効率的になると
考えられる。
As a recording medium at this time, the same material as that used so far can be used in the same manner, but the threshold value to be recorded is increased in the vicinity of the minute metal body 104. It is necessary to be smaller than the intensity and larger than the light intensity of the portion focused by the other lenses. Therefore, it is necessary to adjust the sensitivity of the medium and the incident light intensity in advance. Also, since the light intensity is higher near the head,
It is considered that the recording becomes more efficient if there is no protective layer on the medium.

【0021】再生については、記録時よりも入射光強度
を弱くした光を用い、反射あるいは透過した信号を検出
する。検出のしきい値を、プラズモンで増強された電場
からの信号強度と、それ以外のレンズで集光された部分
からの信号強度との間に設定し、プラズモンで増強され
た光からの信号以外はとらないようにする。これにより
回折限界以下の微小領域に書き込まれた情報を再生する
ことができる。
For reproduction, the reflected or transmitted signal is detected using light whose incident light intensity is weaker than during recording. The detection threshold is set between the signal intensity from the electric field enhanced by the plasmon and the signal intensity from the part focused by the other lens, and the signal other than the signal from the light enhanced by the plasmon is set. Do not take off. This makes it possible to reproduce information written in a minute area below the diffraction limit.

【0022】図2はレンズとして固体液浸レンズを用い
たヘッドの要部を示した図である。レーザ光101を固
体液浸レンズ105を通して絞り込み、図1に示したも
のと同様の基板103中の微小金属体104に照射す
る。微小金属体104は、固体液浸レンズ105の端面
に直接作成してもよいが、ちょうど集光される位置に金
属体を作製するのが難しいので、ここでは基板とレンズ
を同素材で別に作成し、間に紫外光硬化性の光学接着剤
を薄くはさんだ。光強度を測定しながら、最も強くなる
ような位置に基板とレンズを配置し、紫外光を全体に照
射して硬化させてレンズ105と基板103を一体化
し、ヘッドの基本部分とした。図では平行光が入射する
ように描いているが、あらかじめレンズで絞った光を入
射してもよい。
FIG. 2 is a diagram showing a main part of a head using a solid immersion lens as a lens. A laser beam 101 is narrowed down through a solid immersion lens 105 and irradiated on a minute metal body 104 in a substrate 103 similar to that shown in FIG. The minute metal body 104 may be formed directly on the end face of the solid immersion lens 105. However, it is difficult to manufacture the metal body at a position where light is condensed. Then, a thin layer of UV-curable optical adhesive was sandwiched between them. While measuring the light intensity, the substrate and the lens were arranged at the position where the intensity became the strongest, and the entire surface was irradiated with ultraviolet light and cured to integrate the lens 105 and the substrate 103, thereby forming a basic part of the head. In the figure, parallel light is illustrated as being incident, but light that has been previously focused by a lens may be incident.

【0023】図3は、図2で示された光ヘッド近傍の光
強度を示したグラフである。ヘッド下部の、媒体に対す
る平坦面上を近接場光学顕微鏡で金属微小体上を通るよ
うに走査し、発生している光をプローブでピックアップ
してその強度を測定した。作成された金属微小体の大き
さとほぼ同程度の幅を持つ、光強度が増幅された場所が
観察された。
FIG. 3 is a graph showing the light intensity near the optical head shown in FIG. A flat surface with respect to the medium under the head was scanned by a near-field optical microscope so as to pass over the metal micro-object, and the generated light was picked up by a probe and its intensity was measured. A place where the light intensity was amplified and which had a width approximately equal to the size of the formed metal microparticles was observed.

【0024】図4は固体液浸レンズを用いた別のヘッド
の要部を示した図である。本実施例では、レーザ光10
1が照射されている固体液浸レンズ105の中央部分に
遮光部分106を設けている。ここでは金属のクロムを
蒸着した。遮光する機構は、レンズに直接設けなくと
も、瞳フィルタのようなものを入射するレーザの光路に
挿入して、リング状の光をレンズに照射するように構成
してもよい。
FIG. 4 is a diagram showing a main part of another head using a solid immersion lens. In this embodiment, the laser light 10
A light-shielding portion 106 is provided at a central portion of the solid immersion lens 105 to which 1 is irradiated. Here, metal chromium was deposited. The light blocking mechanism may be configured to irradiate the lens with ring-shaped light by inserting something like a pupil filter into the optical path of the incident laser without directly providing the lens with a light.

【0025】遮光する範囲は、これにより遮光される光
の基板に入射する角度θが全反射臨界角よりも小さい範
囲となるよう決定される。このような構造にすると、微
小金属体に照射される光は、全反射臨界角よりも大きな
入射角をもつものが主になる。このような光は、ヘッド
の下部で全反射をおこし、界面近傍にエバネセント波を
発生させる。
The range of light shielding is determined so that the angle θ at which the light blocked by the light enters the substrate is smaller than the critical angle for total reflection. With such a structure, the light irradiated to the minute metal body mainly has an incident angle larger than the critical angle for total reflection. Such light causes total reflection at the lower part of the head, and generates an evanescent wave near the interface.

【0026】界面近傍のエバネセント波は、界面に平行
な方向に波数ベクトルを持つため、その偏波面は界面に
垂直である。したがって、界面に垂直方向に細長い形状
をした微小金属体の局在プラズモンを効率よく励起でき
る。
Since the evanescent wave near the interface has a wave vector in a direction parallel to the interface, its polarization plane is perpendicular to the interface. Therefore, it is possible to efficiently excite localized plasmons of a minute metal body elongated in a direction perpendicular to the interface.

【0027】全反射を起こさない光を遮光することで、
入射光全体の強度は下がるが、プラズモンの励起効率は
上がるので、プラズモンによって増強された電場強度と
それ以外のレンズで集光された部分の電場強度とのコン
トラストを上げることができる。したがって、プラズモ
ン励起で増強された電場以外のレンズで集光された部分
において、誤って径の広いスポットが記録されるといっ
たエラー発生を抑えることができる。また、記録に要す
る光強度のしきい値としてとりうる範囲がひろがり、設
計が容易になるという利点がある。
By blocking light that does not cause total reflection,
Although the intensity of the entire incident light decreases, the excitation efficiency of the plasmon increases, so that the contrast between the electric field intensity enhanced by the plasmon and the electric field intensity of the other portion focused by the lens can be increased. Therefore, it is possible to suppress occurrence of an error such that a spot having a large diameter is erroneously recorded in a portion focused by a lens other than the electric field enhanced by plasmon excitation. Further, there is an advantage that the range which can be taken as a threshold value of the light intensity required for recording is widened, and the design becomes easy.

【0028】図5にはさらに別な実施例を示した。前述
の実施例で作成した、微小金属体104を具備した基板
103に、プリズム107を介して基板下部で全反射す
るようにレーザ光を入射する。このとき、入射するレー
ザ光の偏光方向はp偏光、すなわち偏光方向が入射面に
含まれる方向にした。この場合も、全反射によって生じ
るエバネセント波で励起するので、効率よくプラズモン
を励起できる。図では平行光を入射するように描いてい
るが、レンズで絞った光を入射してもよい。
FIG. 5 shows still another embodiment. Laser light is incident on the substrate 103 provided with the minute metal body 104 formed in the above-described embodiment through the prism 107 so as to be totally reflected at the lower part of the substrate. At this time, the polarization direction of the incident laser light was p-polarization, that is, the direction in which the polarization direction was included in the incident plane. Also in this case, the plasmon can be efficiently excited because it is excited by an evanescent wave generated by total reflection. In the figure, parallel light is illustrated as being incident, but light focused by a lens may be incident.

【0029】以下では、図1、2、4で示した微小金属
体を埋め込んだ光ヘッドのような構造をもつ基板の作製
方法を説明する。使用する波長で透明である平板誘電体
基板を収束イオンビームで加工し、50nm程度の直径、
深さ100nm程度の穴をあける。ここに金属を蒸着し、
そののち、全体が同じ高さになるよう表面を研摩する。
これによって、誘電体の表面の微小な領域の一部を金属
で置き換えた構造ができる。
Hereinafter, a method of manufacturing a substrate having a structure like an optical head in which the fine metal body shown in FIGS. 1, 2, and 4 is embedded will be described. A flat dielectric substrate that is transparent at the wavelength to be used is processed with a focused ion beam and has a diameter of about 50 nm.
Drill a hole with a depth of about 100 nm. Metal is deposited here,
After that, the surface is polished so that the whole is at the same height.
As a result, a structure in which a part of the minute region on the surface of the dielectric is replaced with metal can be obtained.

【0030】穴のあけ方は、収束イオンビームでなくと
も、リソグラフィでも、微小構造を基板に写し取るスタ
ンプ法でもよい。金属の種類は用いる波長と埋め込む基
板の光学特性との兼ね合いとなるが、安定性、プラズモ
ンの励起効率、と言う点から金を用いることが好まし
い。
The method of making the holes is not limited to a focused ion beam, but may be lithography or a stamp method for transferring a microstructure onto a substrate. The type of metal depends on the wavelength to be used and the optical characteristics of the substrate to be embedded. However, it is preferable to use gold in terms of stability and plasmon excitation efficiency.

【0031】基板に高屈折率ガラスを用いた場合、50
0nm付近の波長で局在プラズモンを励起できるので、ヘ
リウムネオンレーザやネオジウムヤグレーザの2倍波、
半導体レーザなどの緑色の光を用いることができる。局
在プラズモンの場合、表面プラズモンに比べて励起の条
件が比較的緩やかなので、入射角や波長などに厳しい制
限がない。
When a high refractive index glass is used for the substrate, 50
Because localized plasmons can be excited at wavelengths around 0 nm, the second harmonic of helium neon laser or neodymium yag laser,
Green light such as a semiconductor laser can be used. In the case of localized plasmons, the conditions for excitation are relatively mild as compared with surface plasmons, and thus there are no strict restrictions on the incident angle, wavelength, and the like.

【0032】[0032]

【発明の効果】本発明を用いれば、光記録において、回
折限界で半波長程度の大きさに制限されていたスポット
径よりも小さなスポットを光記録媒体に書き込むことが
できる。
According to the present invention, in optical recording, a spot smaller than the spot diameter, which is limited to about half a wavelength at the diffraction limit, can be written on an optical recording medium.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の基本的な構成を示した縦断面
図。
FIG. 1 is a longitudinal sectional view showing a basic configuration of an embodiment of the present invention.

【図2】本発明の別な実施例の基本的な構成を示した縦
断面図。
FIG. 2 is a longitudinal sectional view showing a basic configuration of another embodiment of the present invention.

【図3】図2で示したヘッドから発する光強度の空間分
布を表したグラフ。
FIG. 3 is a graph showing a spatial distribution of light intensity emitted from the head shown in FIG.

【図4】本発明の別な実施例の基本的な構成を示した縦
断面図。
FIG. 4 is a longitudinal sectional view showing a basic configuration of another embodiment of the present invention.

【図5】本発明の別な実施例の基本的な構成を示した縦
断面図。
FIG. 5 is a longitudinal sectional view showing a basic configuration of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101…レーザ光、102…レンズ、103…基板、1
04…微小金属体、105…固体液浸レンズ、106…
遮光部分、107…プリズム。
101 laser light, 102 lens, 103 substrate, 1
04 ... minute metal body, 105 ... solid immersion lens, 106 ...
Light shielding part, 107 ... prism.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11B 7/22 G11B 7/22 G12B 21/06 G12B 1/00 601C Fターム(参考) 2H087 KA13 LA01 NA00 RA00 5D119 AA11 AA22 AA43 BA01 CA06 DA01 DA05 EC27 JA44 JA70 9A001 KK16 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) G11B 7/22 G11B 7/22 G12B 21/06 G12B 1/00 601C F-term (Reference) 2H087 KA13 LA01 NA00 RA00 5D119 AA11 AA22 AA43 BA01 CA06 DA01 DA05 EC27 JA44 JA70 9A001 KK16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】光によって媒体に記録再生する記録再生ヘ
ッドにおいて、記録再生に用いる光に対して透明かつ媒
質に対する面が平坦な部分を有し、当該平坦面に記録再
生に用いる光の波長以下の大きさの微小金属体が埋め込
まれ、その微小金属体近傍で発生するプラズモンによっ
て増強された電磁場を用いて記録または再生をすること
を特徴とする記録再生ヘッド。
A recording / reproducing head for recording / reproducing information on / from a medium by light has a portion which is transparent to light used for recording / reproduction and has a flat surface with respect to the medium, and the flat surface has a wavelength equal to or less than the wavelength of light used for recording / reproduction. A recording / reproducing head, wherein a recording / reproducing head is embedded with a small metal body having a size of, and performs recording or reproduction using an electromagnetic field enhanced by plasmons generated near the small metal body.
【請求項2】請求項1に記載の記録再生ヘッドにおい
て、微小金属体の形状が、ある一つの方向に関して他よ
り長く、その方向がヘッドの平坦面と直行する方向にあ
ることを特徴とする記録再生ヘッド。
2. The recording / reproducing head according to claim 1, wherein the shape of the minute metal body is longer in one direction than in the other direction, and the direction is perpendicular to the flat surface of the head. Recording / playback head.
【請求項3】請求項1または2に記載の記録再生ヘッド
において、ヘッドの平坦面に垂直に入射する光を微小金
属体に集光するためのレンズをヘッド上部に有すること
を特徴とする記録再生ヘッド。
3. A recording / reproducing head according to claim 1, further comprising a lens at an upper portion of the head for condensing light perpendicularly incident on a flat surface of the head onto a minute metal body. Playhead.
【請求項4】請求項3に記載の記録再生ヘッドにおい
て、微小金属体に集光するレンズが固体液浸レンズであ
ることを特徴とする記録再生ヘッド。
4. The recording / reproducing head according to claim 3, wherein the lens that focuses on the minute metal body is a solid immersion lens.
【請求項5】請求項4に記載の記録再生ヘッドにおい
て、微小金属体を埋め込んだ面への入射角が全反射臨界
角よりも小さい光、すなわちレンズの中央部に入射する
光を一部遮蔽する構造を有することを特徴とする記録再
生ヘッド。
5. A recording / reproducing head according to claim 4, wherein light having an incident angle on the surface in which the minute metal body is embedded is smaller than the critical angle for total reflection, that is, light incident on the central portion of the lens is partially shielded. A recording / reproducing head characterized by having a structure to perform.
【請求項6】請求項1または2に記載の記録再生ヘッド
において、入射する光の偏光方向が、入射面に含まれる
方向であることを特徴とする記録再生ヘッド。
6. The recording / reproducing head according to claim 1, wherein the polarization direction of the incident light is a direction included in the incident surface.
【請求項7】請求項1から6のいずれかに記載の記録再
生ヘッドの作製法において、収束イオンビームまたはリ
ソグラフィ技術を用いて基板に微小な穴を掘り、金属を
蒸着して穴を埋め、全体を研摩して平坦面にして作成す
ることを特徴とする記録再生ヘッドの作製法。
7. A method for manufacturing a recording / reproducing head according to claim 1, wherein a fine hole is dug in the substrate by using a focused ion beam or lithography technique, and a metal is deposited to fill the hole. A method for manufacturing a recording / reproducing head, characterized in that the entire surface is polished and made flat.
JP2000068605A 2000-03-08 2000-03-08 Recording/reproducing head using plasmon and its manufacturing method Pending JP2001256664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068605A JP2001256664A (en) 2000-03-08 2000-03-08 Recording/reproducing head using plasmon and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068605A JP2001256664A (en) 2000-03-08 2000-03-08 Recording/reproducing head using plasmon and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001256664A true JP2001256664A (en) 2001-09-21

Family

ID=18587636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068605A Pending JP2001256664A (en) 2000-03-08 2000-03-08 Recording/reproducing head using plasmon and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001256664A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003932A2 (en) * 2002-06-28 2004-01-08 Seagate Technology Llc Apparatus and method for producing a small spot of optical energy
US7272079B2 (en) 2004-06-23 2007-09-18 Seagate Technology Llc Transducer for heat assisted magnetic recording
US7330404B2 (en) 2003-10-10 2008-02-12 Seagate Technology Llc Near-field optical transducers for thermal assisted magnetic and optical data storage
US7412143B2 (en) 2002-06-28 2008-08-12 Seagate Technology Llc Heat assisted magnetic recording with heat profile shaping
JP2009231066A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Mass spectroscope
JP2009541742A (en) * 2006-06-21 2009-11-26 ユニバーシティ・オブ・デイトン Polarization design methods and application examples
JP2010020849A (en) * 2008-07-11 2010-01-28 Sony Corp Optical information recording medium, recording particle, method for reproducing optical information, optical information reproducing apparatus, method for recording optical information, and optical information recording apparatus
US7894308B2 (en) 2006-06-27 2011-02-22 Seagate Technology Llc Near-field optical transducers having a tilted metallic pin
US20110235495A1 (en) * 2010-03-29 2011-09-29 Kabushiki Kaisha Toshiba Optical head and optical recording/reproducing apparatus
US8059354B2 (en) 2009-01-29 2011-11-15 Seagate Technology Llc Transducer for data storage device
WO2012128323A1 (en) * 2011-03-22 2012-09-27 株式会社ニコン Optical element, illuminating apparatus, measuring apparatus, photomask, exposure method, and device manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003932A2 (en) * 2002-06-28 2004-01-08 Seagate Technology Llc Apparatus and method for producing a small spot of optical energy
US6795630B2 (en) 2002-06-28 2004-09-21 Seagate Technology Llc Apparatus and method for producing a small spot of optical energy
WO2004003932A3 (en) * 2002-06-28 2005-02-03 Seagate Technology Llc Apparatus and method for producing a small spot of optical energy
CN1666298B (en) * 2002-06-28 2010-05-05 希捷科技有限公司 Apparatus and method for producing a small spot of optical energy
US7412143B2 (en) 2002-06-28 2008-08-12 Seagate Technology Llc Heat assisted magnetic recording with heat profile shaping
JP2008123689A (en) * 2003-10-10 2008-05-29 Seagate Technology Llc Near field optical transducer for thermally assisted magneto optical data recording
US7330404B2 (en) 2003-10-10 2008-02-12 Seagate Technology Llc Near-field optical transducers for thermal assisted magnetic and optical data storage
JP4610625B2 (en) * 2003-10-10 2011-01-12 シーゲイト テクノロジー エルエルシー Near-field optical transducer for heat-assisted magnetic and optical data storage
US7272079B2 (en) 2004-06-23 2007-09-18 Seagate Technology Llc Transducer for heat assisted magnetic recording
JP2009541742A (en) * 2006-06-21 2009-11-26 ユニバーシティ・オブ・デイトン Polarization design methods and application examples
US7894308B2 (en) 2006-06-27 2011-02-22 Seagate Technology Llc Near-field optical transducers having a tilted metallic pin
CN101097748B (en) * 2006-06-27 2011-07-20 希捷科技有限公司 Near-field optical transducers having a tilted metallic pin
JP2009231066A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Mass spectroscope
JP2010020849A (en) * 2008-07-11 2010-01-28 Sony Corp Optical information recording medium, recording particle, method for reproducing optical information, optical information reproducing apparatus, method for recording optical information, and optical information recording apparatus
JP4591796B2 (en) * 2008-07-11 2010-12-01 ソニー株式会社 Optical information recording medium, optical information reproducing method, optical information reproducing device, optical information recording method, and optical information recording device
US8059354B2 (en) 2009-01-29 2011-11-15 Seagate Technology Llc Transducer for data storage device
US20110235495A1 (en) * 2010-03-29 2011-09-29 Kabushiki Kaisha Toshiba Optical head and optical recording/reproducing apparatus
JP2011210306A (en) * 2010-03-29 2011-10-20 Toshiba Corp Optical head and optical recording/reproducing apparatus
WO2012128323A1 (en) * 2011-03-22 2012-09-27 株式会社ニコン Optical element, illuminating apparatus, measuring apparatus, photomask, exposure method, and device manufacturing method
JPWO2012128323A1 (en) * 2011-03-22 2014-07-24 株式会社ニコン Optical element, illumination device, measurement device, photomask, exposure method, and device manufacturing method
US9389345B2 (en) 2011-03-22 2016-07-12 Nikon Corporation Optical element, illumination device, measurement apparatus, photomask, exposure method, and device manufacturing method

Similar Documents

Publication Publication Date Title
JP2001256664A (en) Recording/reproducing head using plasmon and its manufacturing method
JP4230087B2 (en) Optical reproduction recording method and optical apparatus
KR100377980B1 (en) Magneto-optical head device having integrated auxiliary lens and magnetic reproducing haed and recording and reproducing device using magneto-optical head device
JP4119846B2 (en) High-density optical recording medium, storage device thereof, and recording / reproducing method thereof
JP4004978B2 (en) Information recording / reproducing head and information recording / reproducing apparatus
US6552966B2 (en) Recording head for optical recording system
JP3155636B2 (en) Optical recording medium and optical recording / reproducing system
JP2001236685A (en) Optical head, magneto-optical head, disk device, and manufacturing method of optical head
JP3826684B2 (en) Recording / reproducing apparatus using plasmons and manufacturing method thereof
JP2007207395A (en) Optical information recording and reproducing device and optical information recording and reproducing method
JP3895076B2 (en) Optical device
JP4099943B2 (en) Optical head, magneto-optical head, disk device, and method of manufacturing optical head
EP0986058B1 (en) Near-field optical head
JP2006228289A (en) Optical lens device, near-field condenser lens device, optical pickup device, and optical recording and reproducing device
JP4296924B2 (en) Exposure apparatus, recording and / or reproducing apparatus
JP4425382B2 (en) Optical recording / reproducing method and optical apparatus using the same
KR100641092B1 (en) Near-field recording and reproducing system
JP3834765B2 (en) Fiber probe
JP2001291264A (en) Optical head
JP4265941B2 (en) Optical head device and optical information recording / reproducing device
JP3498139B2 (en) Optical recording medium, optical recording / reproducing device, and optical recording / reproducing method
JP2000099979A (en) Beam condensing optical device
KR20010103476A (en) optical pick-up device and method for fabricating the same and apparatus for record/playback of optical information using those
JP2003109241A (en) Optical probe and optical pickup device
JP2840794B2 (en) Optical pickup device