JP2001255320A - Method for trace component analysis in steel with high accuracy - Google Patents

Method for trace component analysis in steel with high accuracy

Info

Publication number
JP2001255320A
JP2001255320A JP2000068958A JP2000068958A JP2001255320A JP 2001255320 A JP2001255320 A JP 2001255320A JP 2000068958 A JP2000068958 A JP 2000068958A JP 2000068958 A JP2000068958 A JP 2000068958A JP 2001255320 A JP2001255320 A JP 2001255320A
Authority
JP
Japan
Prior art keywords
iron
solution
analysis
steel
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000068958A
Other languages
Japanese (ja)
Inventor
Kaoru Mizuno
薫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000068958A priority Critical patent/JP2001255320A/en
Publication of JP2001255320A publication Critical patent/JP2001255320A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for a trace component analysis in steel with high accuracy by enabling the rapid removal of a matrix component capable of corresponding even to inductive coupling plasma mass analysis supplying an electrolytic solution continuously. SOLUTION: In a method for quantitatively analyzing a trace amount of a target component in steel by continuously supplying an acid to the surface of the block-shaped steel sample arranged in an electrolytic cell to obtain an electrolytic solution and subjecting the electrolytic solution to inductively coupled plasma mass analysis, in a front stage for guiding the electrolytic solution to the inductively coupled plasma mass analysis, iron being a matrix component becoming an obstacle in the analysis of a trace amount of the component is removed by an ion exchange resin. In the separation and removal of iron by the ion exchange resin, nitric acid and oxalic acid are added to a sample solution at the time of ion exchange and iron is preferably converted to an oxalite complex of Fe3+ being an anion so as not to be absorbed by a cation exchange resin before separated and removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉄鋼中微量成分の高
精度分析方法に関わり、さらに詳しくは、誘導結合プラ
ズマ質量分析において、マトリクス成分である鉄を分離
除去することによる鉄鋼中微量成分の高精度分析方法に
関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for high-accuracy analysis of trace components in steel, and more particularly, to high-accuracy analysis of trace components in steel by separating and removing iron as a matrix component in inductively coupled plasma mass spectrometry. Involved in accuracy analysis methods.

【0002】[0002]

【従来の技術】鉄鋼材料に要求される特性は不純物や添
加成分の影響を受ける。特に最近の高純度材料では従来
問題とならなかったような極微量成分の管理のための分
析が必要となってきた。材料中の微量成分分析には従来
は材料を酸などで加熱溶解して水溶液とし、これを原子
吸光計や誘導結合プラズマ(以下ICPと略記する。)
発光分光計で濃度を測定する方法がとられてきた。
2. Description of the Related Art The characteristics required of steel materials are affected by impurities and added components. In particular, recent high-purity materials require analysis for managing trace components, which has not been a problem in the past. Conventionally, for analysis of trace components in a material, the material is heated and dissolved with an acid or the like to form an aqueous solution, which is then analyzed by an atomic absorption spectrometer or inductively coupled plasma (hereinafter abbreviated as ICP).
A method of measuring the concentration with an emission spectrometer has been adopted.

【0003】しかし、上記方法においては試料の分解に
時間がかかる上、最近の材料の高純度化に伴う極微量分
析への要求を満たすことができない。材料の迅速分解方
法としては特開平8−122322号公報に開示されて
いる金属試料連続電解装置などが、ICP発光分光計に
用いる試料の溶解供給装置として公知となっている。こ
の方法を用いると試料を電解により分解し、そのままI
CP発光分光計に導入することにより迅速に分析を行う
ことができる。
However, in the above-mentioned method, it takes a long time to decompose the sample, and it cannot meet the demand for the ultra-trace analysis accompanying the recent high purity of the material. As a method for rapidly decomposing a material, a metal sample continuous electrolysis apparatus disclosed in JP-A-8-122322 is known as a sample dissolution supply apparatus used in an ICP emission spectrometer. According to this method, the sample is decomposed by electrolysis, and
The analysis can be performed quickly by introducing it into a CP emission spectrometer.

【0004】しかしながらマトリクス成分によるスペク
トルの妨害や、試料溶液の塩濃度が高くなるために試料
導入部での詰まりを起こすなどの問題がある。そのため
に、特に最近の高純度材料分析のための方法においては
マトリクス成分を除去することが必要となってきた。ま
た、ICP発光分析計でも測定できないような微量の成
分を分析する必要があるときには、ICP質量分析計を
用いることが考えられるが、ICP質量分析計の場合に
は高感度であるため、よりマトリクス成分の影響を受け
やすく、マトリクス成分の除去は必須である。
[0004] However, there are problems such as interference of the spectrum by the matrix component and clogging of the sample introduction part due to the high salt concentration of the sample solution. For this reason, it has become necessary to remove matrix components, particularly in recent methods for analyzing high-purity materials. When it is necessary to analyze a trace amount of components that cannot be measured by an ICP emission spectrometer, an ICP mass spectrometer may be used. It is susceptible to components and removal of matrix components is essential.

【0005】従来マトリクスである鉄を除去する方法と
して4−メチル−2−ペンタノンによる溶媒抽出法がも
っとも広く用いられてきた。しかし迅速溶解法として金
属試料連続電解装置を用いて試料を分解しても、溶媒抽
出によってマトリクス成分の分離を行っていては迅速性
が損なわれてしまい、また有害な有機溶剤を用いること
や作業が煩雑であるといった問題点が残る。
[0005] Conventionally, a solvent extraction method using 4-methyl-2-pentanone has been most widely used as a method for removing iron as a matrix. However, even if the sample is decomposed using a continuous electrolysis apparatus for metal samples as a rapid dissolution method, the rapidity is impaired if the matrix components are separated by solvent extraction. However, there remains a problem that the operation is complicated.

【0006】また、鉄と共にSb,Mo,Sn,Vなど
の元素が溶媒に抽出されてしまうため、これらの元素の
分析法としては使えないという欠点もある。この対策と
して簡便で有機溶剤を用いない方法にイオン交換樹脂を
用いる特開平7−43353などに開示されている方法
がある。しかし、この方法ではフッ酸を用いる必要があ
るため、廃液の処理や器具の取り扱いなどの点で問題が
残る。
In addition, since elements such as Sb, Mo, Sn, and V are extracted into a solvent together with iron, there is a drawback that they cannot be used as a method for analyzing these elements. As a countermeasure to this, there is a method disclosed in Japanese Patent Application Laid-Open No. 7-43353 which uses an ion exchange resin as a simple method using no organic solvent. However, in this method, it is necessary to use hydrofluoric acid, so that problems remain in treatment of waste liquid and handling of equipment.

【0007】また、フッ酸以外の酸を用いる方法として
は塩酸溶液にシュウ酸を加えて鉄オキサラト錯体を形成
し、鉄は陰イオン錯体として陽イオン交換カラムに吸着
しないようにし、オキソ酸系以外の金属は陽イオンとし
て陽イオン交換カラムに吸着させる方法が公知である。
その場合三価の鉄がシュウ酸によって二価に還元される
ことを防ぐため、酸化剤として過酸化水素を加える必要
があるが、気泡が発生してICP分析装置に導入すると
きに試料の吸い上げを阻害して定量性が低下するという
欠点があった。
As a method using an acid other than hydrofluoric acid, oxalic acid is added to a hydrochloric acid solution to form an iron oxalato complex, and iron is prevented from being adsorbed on a cation exchange column as an anion complex. A method for adsorbing a metal as a cation on a cation exchange column is known.
In this case, it is necessary to add hydrogen peroxide as an oxidizing agent to prevent trivalent iron from being reduced to divalent by oxalic acid. However, when bubbles are generated and the sample is introduced into the ICP analyzer, the sample is sucked up. And there is a disadvantage that the quantitative property is lowered by inhibiting the above.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記のような
問題点を解決し、連続的に電解溶液を供給するICP質
量分析にも対応可能な迅速なマトリックス成分除去を可
能とすることにより、鉄鋼中微量成分の高精度分析方法
を提供せんとするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and enables rapid matrix component removal that can also be used for ICP mass spectrometry that continuously supplies an electrolytic solution. It is intended to provide a high-precision analysis method of trace components in steel.

【0009】[0009]

【課題を解決するための手段】本発明は、連続的に電解
溶液を供給するICP質量分析において、ICP質量分
析に電解溶液を導く前処理として、イオン交換樹脂によ
りマトリックスである鉄を分離除去するが、特に、イオ
ン交換時の試料溶液中に酸化剤として硝酸を含有させ、
電解溶液の連続供給を阻害することなくFe3+のオキサ
ラト錯体を安定に存在せしめて、分離除去することを特
徴とするもので、その要旨とするところは以下の通りで
ある。
According to the present invention, in ICP mass spectrometry for continuously supplying an electrolytic solution, iron as a matrix is separated and removed by an ion exchange resin as a pretreatment for leading the electrolytic solution to the ICP mass spectrometry. However, in particular, nitric acid is contained in the sample solution during ion exchange as an oxidizing agent,
The method is characterized in that the oxalate complex of Fe 3+ is stably present without inhibiting the continuous supply of the electrolytic solution, and is separated and removed. The gist thereof is as follows.

【0010】(1)ブロック状鉄鋼試料を電解セル内に
配置し、該試料の表面に電解液を連続的に供給して電解
しつつ連続的に電解した溶液を誘導結合プラズマ質量分
析することにより目的の微量成分を定量する分析方法に
おいて、該電解した溶液を誘導結合プラズマ質量分析に
導く前段階で、微量成分の分析の障害となるマトリクス
成分である鉄をイオン交換樹脂によって、あらかじめ分
離除去することを特徴とする誘導結合プラズマ質量分析
による鉄鋼中微量成分の高精度分析方法。
(1) A block-shaped steel sample is placed in an electrolytic cell, and an electrolytic solution is continuously supplied to the surface of the sample to conduct electrolysis, and the continuously electrolyzed solution is subjected to inductively coupled plasma mass spectrometry. In an analysis method for quantifying a target trace component, before the electrolyzed solution is led to inductively coupled plasma mass spectrometry, iron, which is a matrix component that hinders trace component analysis, is separated and removed in advance by an ion exchange resin. A high-precision analysis method for trace components in steel by inductively coupled plasma mass spectrometry.

【0011】(2)前記イオン交換樹脂による鉄の分離
除去において、イオン交換時の前記電解した溶液中に硝
酸とシュウ酸を含有させて、鉄を陰イオンであるFe3+
のオキサラト錯体とすることにより、陽イオン交換樹脂
に吸着されないようにして分離除去することを特徴とす
る前記(1)に記載の鉄鋼中微量成分の高精度分析方
法。
(2) In the separation and removal of iron by the ion-exchange resin, nitric acid and oxalic acid are contained in the electrolyzed solution at the time of ion-exchange, so that iron is converted to Fe 3+ which is an anion.
(1) The method for high-precision analysis of trace components in steel according to the above (1), wherein the oxalato complex is separated and removed so as not to be adsorbed on the cation exchange resin.

【0012】[0012]

【発明の実施の形態】本発明の詳細を図を参照しながら
説明する。図1は、本発明における試料溶解、マトリク
ス分離および分析装置を組み合わせたシステムの一例を
概略的に示すものである。金属試料2に電圧を印加する
ための電源1、電解液を供給するための装置3、電解セ
ル4などが図示されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described with reference to the drawings. FIG. 1 schematically shows an example of a system in which a sample dissolution, a matrix separation, and an analyzer according to the present invention are combined. A power supply 1 for applying a voltage to the metal sample 2, a device 3 for supplying an electrolytic solution, an electrolytic cell 4, and the like are illustrated.

【0013】電解セル4の内部は金属試料2と適宜の隙
間を有するように電極が金属試料2の試料面と対向して
設置され、金属試料2が正極、対極が負極となるように
電源1と接続されている。このように構成された電解セ
ル4に電解液が供給され、定電圧が印加されることによ
り金属試料2が電気分解される。電解液はポンプ5およ
びバルブ6を通して電解セルに供給される。電源1およ
びポンプ5・バルブ6はコンピュータ7によって制御さ
れている。
Electrodes are placed inside the electrolysis cell 4 so as to have an appropriate gap with the metal sample 2 so as to face the sample surface of the metal sample 2, and the power supply 1 is arranged so that the metal sample 2 is a positive electrode and the counter electrode is a negative electrode. Is connected to The electrolytic solution is supplied to the electrolytic cell 4 configured as described above, and the metal sample 2 is electrolyzed by applying a constant voltage. The electrolytic solution is supplied to the electrolytic cell through the pump 5 and the valve 6. The power supply 1 and the pump 5 and the valve 6 are controlled by a computer 7.

【0014】電解後の溶液は同じくコンピュータ7によ
って制御されたポンプ8・バルブ9によって気液分離管
10へと輸送される。気液分離管10では電解後の溶液
と電解によって発生したガスとを分離し、ガス成分はガ
ス抜き口29へ、溶液成分はポンプ11・バルブ12を
介して混合槽13へと進む。混合槽13の前段には超純
水供給装置14、硝酸供給装置15、シュウ酸供給装置
16がそれぞれコンピュータ7によって制御されたポン
プ17、19、21・バルブ18、20、22を介して
接続されており、適宜各薬品を試料溶液に添加すること
ができる。
The solution after electrolysis is transported to a gas-liquid separation tube 10 by a pump 8 and a valve 9 also controlled by a computer 7. The gas-liquid separation pipe 10 separates the solution after electrolysis from the gas generated by electrolysis, and the gas component goes to the gas vent 29 and the solution component goes to the mixing tank 13 via the pump 11 and the valve 12. An ultrapure water supply device 14, a nitric acid supply device 15, and an oxalic acid supply device 16 are connected to the preceding stage of the mixing tank 13 via pumps 17, 19, 21 and valves 18, 20, 22 controlled by the computer 7, respectively. Therefore, each chemical can be appropriately added to the sample solution.

【0015】混合槽13で混合された試料溶液および希
硝酸、シュウ酸は陽イオン交換カラム23に導入され
る。ここでは鉄イオンはシュウ酸によってFe3+からF
2+に還元されるのを硝酸の酸化作用で防ぎながら、鉄
をオキサラト錯体の陰イオンとして保ち、陽イオン交換
樹脂に吸着しないようにし、流出した溶液はドレイン2
4に廃棄する。
The sample solution, diluted nitric acid and oxalic acid mixed in the mixing tank 13 are introduced into a cation exchange column 23. Here, iron ions are converted from Fe 3+ to F by oxalic acid.
While preventing the reduction to e.sup.2 + by the oxidizing action of nitric acid, iron is kept as an anion of the oxalato complex so as not to be adsorbed on the cation exchange resin, and the effluent solution is drain 2
Discard at 4.

【0016】一方、他の金属イオンは陽イオンとして吸
着させることによってカラム23に残留するので目的元
素を鉄から分離できる。陽イオン交換樹脂に吸着した金
属陽イオンは希硝酸によってカラムを洗浄し、カラムに
残留していた鉄イオンを洗い流した後、濃硝酸にて溶離
する。カラム洗浄の際、希硝酸にシュウ酸を添加するこ
とで洗浄効果が高まり、鉄の分離能が高まる。濃硝酸に
よって溶離した目的元素の溶液はバルブ25を切り替え
て試料供給容器28に回収され、ICP質量分析計26
へと導入される。なお、酸溶液中でオキソ酸を形成し、
陰イオンとなるSb,Mo,Sn,Vなどの元素につい
てはシュウ酸の添加は行わず、イオン交換カラムの前段
の混合槽に超純水供給装置から超純水を供給して、気液
分離管から供給された試料溶液と混合して希釈すること
で酸濃度を下げることにより、鉄の陽イオンは陽イオン
交換樹脂に吸着させ、オキソ酸を形成して陰イオンにな
っている元素のみをイオン交換カラムから流出せしめ、
これをICP質量分析計に導入して分析することができ
る。
On the other hand, since other metal ions remain in the column 23 by being adsorbed as cations, the target element can be separated from iron. The metal cations adsorbed on the cation exchange resin are washed with dilute nitric acid to wash the column, and the iron ions remaining in the column are washed away, and then eluted with concentrated nitric acid. At the time of column washing, adding oxalic acid to dilute nitric acid enhances the washing effect and increases the iron separation ability. The solution of the target element eluted by the concentrated nitric acid is collected in the sample supply container 28 by switching the valve 25, and the ICP mass spectrometer 26
Introduced to. In addition, oxo acid is formed in an acid solution,
Oxalic acid is not added to elements such as Sb, Mo, Sn, and V that become anions, and ultrapure water is supplied from the ultrapure water supply device to the mixing tank at the preceding stage of the ion exchange column to perform gas-liquid separation. By lowering the acid concentration by mixing and diluting with the sample solution supplied from the tube, the iron cations are adsorbed on the cation exchange resin, and only the elements that form oxo acids and become anions are removed. Flow out of the ion exchange column,
This can be introduced into an ICP mass spectrometer for analysis.

【0017】なお、試料溶液や洗浄液にシュウ酸を添加
する際、別の陽イオン交換樹脂カラム27を通すことに
より、シュウ酸中の金属不純物を除去することができ、
添加剤による分析試料の汚染を防止できる。また、希硝
酸にシュウ酸を添加した液は分析の前段階におけるカラ
ムの洗浄液としても機能する。試料の分解に先だって、
超純水供給装置および硝酸供給装置からそれぞれ超純水
と硝酸を供給することにより、電解セルや試料管、イオ
ン交換カラム、気液分離管、混合槽などを適宜超純水で
希釈した硝酸で洗浄することができる。そのためのバル
ブおよびポンプの操作はコンピュータによって制御でき
る。
In addition, when oxalic acid is added to a sample solution or a washing solution, the metal impurities in oxalic acid can be removed by passing through another cation exchange resin column 27,
Contamination of the analysis sample by the additive can be prevented. The solution obtained by adding oxalic acid to dilute nitric acid also functions as a column washing solution in a stage prior to analysis. Prior to the decomposition of the sample,
By supplying ultrapure water and nitric acid from the ultrapure water supply device and nitric acid supply device, respectively, the electrolytic cell, sample tube, ion exchange column, gas-liquid separation tube, mixing tank, etc. are appropriately diluted with nitric acid by ultrapure water. Can be washed. The operation of the valves and pumps for that can be controlled by a computer.

【0018】[0018]

【実施例】本発明を用いて実際にCuの量が表1に示す
ような濃度で既知であるブロック状鋼材a,bを、電解
液として硝酸水溶液(硝酸と水の混合率が例えば1:
1)を用いて硝酸の水溶液の流速0.5ml/min
で、鉄の溶解速度が例えば50mg/minになるよう
に定電位電解法で分解し、電解後の溶液を気液分離管で
ガス成分を除いた後、バルブを介して混合槽に導入し、
同時に超純水供給装置から超純水を2.5ml/min
の速度で、シュウ酸供給装置からシュウ酸10%の水溶
液をイオン交換カラムに通して不純物を除去したもの
を、混合槽に2.5ml/minの流速で導入し、最終
的に混合槽における混合比率が、鉄:60%濃硝酸:
水:シュウ酸=1g:5ml:95ml:5gとなるよ
うにした。
DETAILED DESCRIPTION OF THE INVENTION Using the present invention, a block-like steel material a, b whose Cu amount is actually known at a concentration as shown in Table 1 is used as an electrolytic solution in a nitric acid aqueous solution (mixing ratio of nitric acid and water is, for example, 1: 1).
Using 1), the flow rate of the aqueous solution of nitric acid is 0.5 ml / min.
Then, the iron is dissolved by a constant potential electrolysis method so that the dissolution rate of iron becomes, for example, 50 mg / min, and the solution after the electrolysis is removed from a gas component by a gas-liquid separation tube, and then introduced into a mixing tank via a valve.
At the same time, ultrapure water is supplied from the ultrapure water supply device at 2.5 ml / min.
At a rate of 10%, an aqueous solution of 10% oxalic acid from an oxalic acid supply device was passed through an ion exchange column to remove impurities, and introduced into the mixing tank at a flow rate of 2.5 ml / min, and finally mixed in the mixing tank. The ratio is iron: 60% concentrated nitric acid:
Water: oxalic acid = 1 g: 5 ml: 95 ml: 5 g.

【0019】鉄とシュウ酸との比率は鉄がシュウ酸と錯
体〔Fe(III )(C2 4 3 3-を形成するために
重量比で1:4.7以上でなければならない。混合槽で
混合された試料溶液は陽イオン交換樹脂を充填したイオ
ン交換カラムに導入される。ただし、イオン交換カラム
はあらかじめ超純水供給装置と硝酸供給装置から供給さ
れ、混合槽で60%濃硝酸:水=1:1の混合比で混合
された洗浄液で洗浄して不純物を取り除いたのち、超純
水供給装置と硝酸供給装置とシュウ酸供給装置から供給
され、混合槽中で、60%濃硝酸:水:シュウ酸=5m
l:95ml:5gの比率で混合されたコンディショニ
ング液でコンディショニングを行ってある。
The ratio of iron to oxalic acid is such that iron is complexed with oxalic acid.
Body [Fe (III) (CTwoOFour)Three] 3-To form
Must be at least 1: 4.7 by weight. In the mixing tank
The mixed sample solution is ion-exchanged with cation exchange resin.
Introduced to the exchange column. However, ion exchange columns
Is supplied from the ultrapure water supply unit and the nitric acid supply unit in advance.
Mixed in a mixing tank at a mixing ratio of 60% concentrated nitric acid: water = 1: 1
After removing impurities by washing with
Supply from water supply unit, nitric acid supply unit and oxalic acid supply unit
In a mixing tank, 60% concentrated nitric acid: water: oxalic acid = 5 m
Conditioner mixed at a ratio of 1: 95ml: 5g
Conditioning with a cleaning solution.

【0020】イオン交換カラムでは分析目的のCu陽イ
オンが吸着され、鉄は〔Fe(III)(C2 4 3
3-となっているため吸着されない。このときの鉄を含む
溶出液をバルブの切り替えによりドレインに廃棄し、次
に前出のコンディショニング液を20mlカラムに通
し、カラムに残留している鉄をさらにドレインに廃棄す
る。
In the ion exchange column, a Cu cation for analysis is adsorbed, and iron is [Fe (III) (C 2 O 4 ) 3 ].
It is not adsorbed because it is 3- . At this time, the eluate containing iron is discarded to the drain by switching the valve, and then the conditioning solution is passed through a 20 ml column, and the iron remaining in the column is further discarded to the drain.

【0021】次に、超純水供給装置と硝酸供給装置から
超純水と60%濃硝酸を混合槽に1:1の混合比率とな
るように供給し(これを溶離液とする)、イオン交換カ
ラムに導入する。ここでCuは溶離液によって溶離され
るので、この溶液をバルブを切り替えて、ICP質量分
析計試料容器に供給する。試料溶液をイオン交換カラム
に供給する流速と時間の積と溶離液の流速とこれをイオ
ン交換カラムに供給する時間との積を任意に変えること
により、分析目的元素であるCuの濃縮率を任意に変え
ることができる。さらに超純水供給装置によりICP質
量分析計試料容器に超純水を供給することにより酸濃度
とCuの濃縮率を任意に変えることができる。
Next, ultrapure water and 60% concentrated nitric acid are supplied to the mixing tank at a mixing ratio of 1: 1 from the ultrapure water supply device and the nitric acid supply device (this is used as an eluent), Introduce to the exchange column. Here, since Cu is eluted by the eluent, this solution is supplied to an ICP mass spectrometer sample container by switching a valve. By arbitrarily changing the product of the flow rate and the time for supplying the sample solution to the ion exchange column, the product of the flow rate of the eluent, and the time for supplying the same to the ion exchange column, the concentration ratio of Cu, which is the element to be analyzed, can be arbitrarily determined. Can be changed to Further, by supplying ultrapure water to the ICP mass spectrometer sample container by the ultrapure water supply device, the acid concentration and the Cu concentration rate can be arbitrarily changed.

【0022】試料の電解を5分間行い、上記の流速と混
合比で鉄とCuと硝酸と超純水とシュウを含む溶液をイ
オン交換カラムに供給し、上記のコンディショニング液
を流した後、溶離液を溶離液の供給速度を5ml/mi
nとして1分間供給して溶離液をICP質量分析計で分
析したところ、表1に示すような濃度が計測された。表
1にはこの濃度を鉄鋼中の濃度に換算した値も併記して
ある。鉄鋼中の濃度に換算した値が認証値に一致してお
り、本発明により鉄鋼中微量成分の高精度分析を迅速に
行うことができる。
Electrolysis of the sample is performed for 5 minutes, and a solution containing iron, Cu, nitric acid, ultrapure water, and shu is supplied to the ion exchange column at the above flow rate and mixing ratio, and the above conditioning liquid is flowed. The eluent was supplied at a rate of 5 ml / mi.
When the eluate was supplied for 1 minute as n and analyzed by an ICP mass spectrometer, the concentrations shown in Table 1 were measured. Table 1 also shows a value obtained by converting this concentration into a concentration in steel. The value converted to the concentration in the steel is consistent with the certified value, and the present invention can quickly perform a high-accuracy analysis of a trace component in the steel.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明によれば、ブロック状鉄鋼試料の
分解と、目的成分の分析に妨害となるマトリクス成分の
分離除去を迅速に行い、目的成分をICP質量分析計に
供給できるので、迅速かつ高精度な鉄鋼中微量成分の分
析を行うことができる。
According to the present invention, the decomposition of the block-like steel sample and the separation and removal of the matrix component which hinders the analysis of the target component can be rapidly performed, and the target component can be supplied to the ICP mass spectrometer. In addition, highly accurate analysis of trace components in steel can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における試料溶解、マトリクス分解およ
び分析装置を組合わせたシステムの概略図を示す。
FIG. 1 shows a schematic diagram of a system in which a sample dissolution, matrix decomposition, and analysis device are combined in the present invention.

【符号の説明】[Explanation of symbols]

1…電源 2…金属試料 3…電解液供給装置 4…電解セル 5…ポンプ 6…バルブ 7…コンピュータ 8…ポンプ 9…バルブ 10…気液分離管 11…ポンプ 12…バルブ 13…ポンプ 14…バルブ 15…硝酸供給装置 16…シュウ酸供給装置 17…ポンプ 18…バルブ 19…ポンプ 20…バルブ 21…ポンプ 22…バルブ 23…陽イオン交換カラム 24…ドレイン 25…バルブ 26…ICP質量分析計 27…陽イオン交換樹脂カラム 28…試料供給容器 29…ガス抜き口 DESCRIPTION OF SYMBOLS 1 ... Power supply 2 ... Metal sample 3 ... Electrolyte supply device 4 ... Electrolysis cell 5 ... Pump 6 ... Valve 7 ... Computer 8 ... Pump 9 ... Valve 10 ... Gas-liquid separation tube 11 ... Pump 12 ... Valve 13 ... Pump 14 ... Valve 15 ... nitric acid supply device 16 ... oxalic acid supply device 17 ... pump 18 ... valve 19 ... pump 20 ... valve 21 ... pump 22 ... valve 23 ... cation exchange column 24 ... drain 25 ... valve 26 ... ICP mass spectrometer 27 ... positive Ion exchange resin column 28 ... sample supply container 29 ... gas vent

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ブロック状鉄鋼試料を電解セル内に配置
し、該試料の表面に電解液を連続的に供給して電解しつ
つ連続的に電解した溶液を誘導結合プラズマ質量分析す
ることにより目的の微量成分を定量する分析方法におい
て、 該電解した溶液を誘導結合プラズマ質量分析に導く前段
階で、微量成分の分析の障害となるマトリクス成分であ
る鉄をイオン交換樹脂によって、あらかじめ分離除去す
ることを特徴とする誘導結合プラズマ質量分析による鉄
鋼中微量成分の高精度分析方法。
An object of the present invention is to dispose a block-like steel sample in an electrolytic cell and continuously supply an electrolytic solution to the surface of the sample to perform electrolysis while performing inductively coupled plasma mass spectrometry on the continuously electrolyzed solution. In an analysis method for quantifying trace components of iron, iron which is a matrix component that hinders the analysis of the trace components is separated and removed in advance by an ion exchange resin before the electrolyzed solution is led to inductively coupled plasma mass spectrometry. High-precision analysis of trace components in steel by inductively coupled plasma mass spectrometry.
【請求項2】 前記イオン交換樹脂による鉄の分離除去
において、 イオン交換時の前記電解した溶液中に硝酸とシュウ酸を
含有させて、鉄を陰イオンであるFe3+のオキサラト錯
体とすることにより、陽イオン交換樹脂に吸着されない
ようにして分離除去することを特徴とする請求項1に記
載の鉄鋼中微量成分の高精度分析方法。
2. In the separation and removal of iron by the ion exchange resin, nitric acid and oxalic acid are contained in the electrolyzed solution at the time of ion exchange so that iron is converted to an oxalate complex of Fe 3+ which is an anion. 2. The method for analyzing trace components in steel according to claim 1, wherein the components are separated and removed so as not to be adsorbed on the cation exchange resin.
JP2000068958A 2000-03-13 2000-03-13 Method for trace component analysis in steel with high accuracy Withdrawn JP2001255320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068958A JP2001255320A (en) 2000-03-13 2000-03-13 Method for trace component analysis in steel with high accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068958A JP2001255320A (en) 2000-03-13 2000-03-13 Method for trace component analysis in steel with high accuracy

Publications (1)

Publication Number Publication Date
JP2001255320A true JP2001255320A (en) 2001-09-21

Family

ID=18587930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068958A Withdrawn JP2001255320A (en) 2000-03-13 2000-03-13 Method for trace component analysis in steel with high accuracy

Country Status (1)

Country Link
JP (1) JP2001255320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426345A (en) * 2019-08-02 2019-11-08 淮北市君意达金属科技有限责任公司 It is a kind of for direct-reading spectrometer laser station for sample clamping and fixing device
CN111307784A (en) * 2018-12-11 2020-06-19 中核北方核燃料元件有限公司 Method for determining content of impurity elements in uranium boride solid sample
CN112213299A (en) * 2019-07-12 2021-01-12 张家港市国泰华荣化工新材料有限公司 Method for measuring TMSB in lithium battery electrolyte

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307784A (en) * 2018-12-11 2020-06-19 中核北方核燃料元件有限公司 Method for determining content of impurity elements in uranium boride solid sample
CN112213299A (en) * 2019-07-12 2021-01-12 张家港市国泰华荣化工新材料有限公司 Method for measuring TMSB in lithium battery electrolyte
CN110426345A (en) * 2019-08-02 2019-11-08 淮北市君意达金属科技有限责任公司 It is a kind of for direct-reading spectrometer laser station for sample clamping and fixing device
CN110426345B (en) * 2019-08-02 2024-01-30 安徽中色研达科技有限公司 Sample clamping and fixing device for direct-reading spectrometer laser table

Similar Documents

Publication Publication Date Title
Pohl et al. Pre-concentration of Cd, Co, Cu, Ni and Zn using different off-line ion exchange procedures followed by the inductively coupled plasma atomic emission spectrometric detection
Ball et al. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis
US20050051485A1 (en) Electrodialysis method and apparatus for trace metal analysis
CN1292499A (en) Method and device for analysing free fluorine in solution containing hydrofluoric acid
JP2001255320A (en) Method for trace component analysis in steel with high accuracy
US7387720B2 (en) Electrolytic method and apparatus for trace metal analysis
Arguillarena et al. Circular economy in hot-dip galvanizing with zinc and iron recovery from spent pickling acids
Coedo et al. A micro-scale mercury cathode electrolysis procedure for on-line flow injection inductively coupled plasma mass spectrometry trace elements analysis in steel samples
CN106734142A (en) Eluent and application method that a kind of cupro-nickel combined pollution place drip washing is repaired
JP2004077299A (en) Device and method for concentrating test water
Lysenko et al. Electrohydrodynamic method of pH regulation at soil decontamination
Brajter et al. The efficiency of cellix-p for the preconcentration of lead and other trace metals from waters
US20110042234A1 (en) Integrated electrolytic and chemical method for producing clean treated water wherein cyanide species concentration is less than 1 milligram per liter
JP7235593B2 (en) Method for preparing sample for quantitative determination and method for producing silver chloride
JP2798134B2 (en) On-line decomposition apparatus and decomposition method for aqueous hydrogen peroxide in semiconductor manufacturing process
Nakai et al. Ion-pair formation of a copper (II)-ammine complex with an anionic surfactant and the recovery of copper (II) from ammonia medium by the surfactant-gel extraction method
Swain et al. High purity scandium and ion-exchangers: Application in neutron activation analysis
JP4889608B2 (en) Method for analyzing impurities in aluminum-based ceramics
JP2007271409A (en) Analysis method of uranium and/or thorium in soil
TWI646052B (en) A method of recovery of rare earth lanthanum ions
JP2014159992A (en) Method for measuring trace amount of zinc in high concentration metallic solution
Sabba et al. Use of membranes in copper hydrometallurgy
JP2007170915A (en) Mass spectrum analysis method excluding obstruction of salting agent
WO2023053876A1 (en) Method and device for analyzing ionic components in ultrapure water
JP2013181219A (en) Etchant regenerating apparatus and etchant regenerating method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605