JP2001255089A - Cold accumulating device and method using clathrate hydrate - Google Patents

Cold accumulating device and method using clathrate hydrate

Info

Publication number
JP2001255089A
JP2001255089A JP2000071245A JP2000071245A JP2001255089A JP 2001255089 A JP2001255089 A JP 2001255089A JP 2000071245 A JP2000071245 A JP 2000071245A JP 2000071245 A JP2000071245 A JP 2000071245A JP 2001255089 A JP2001255089 A JP 2001255089A
Authority
JP
Japan
Prior art keywords
aqueous solution
petroleum gas
liquefied petroleum
cold storage
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000071245A
Other languages
Japanese (ja)
Other versions
JP3855016B2 (en
Inventor
Wakinori Maekawa
涌典 前河
Michio Takahashi
道夫 高橋
Katsunori Matsushita
勝典 松下
Junichi Watanabe
純一 渡邊
Ryoichi Yoshida
諒一 吉田
Tsutomu Uchida
努 内田
Takao Ebinuma
孝郎 海老沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAIDO CHIIKI GIJUTSU SHINKO
HOKKAIDO CHIIKI GIJUTSU SHINKO CENTER
SUZUKI SHOKO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
HOKKAIDO CHIIKI GIJUTSU SHINKO
HOKKAIDO CHIIKI GIJUTSU SHINKO CENTER
SUZUKI SHOKO KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAIDO CHIIKI GIJUTSU SHINKO, HOKKAIDO CHIIKI GIJUTSU SHINKO CENTER, SUZUKI SHOKO KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical HOKKAIDO CHIIKI GIJUTSU SHINKO
Priority to JP2000071245A priority Critical patent/JP3855016B2/en
Publication of JP2001255089A publication Critical patent/JP2001255089A/en
Application granted granted Critical
Publication of JP3855016B2 publication Critical patent/JP3855016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a cold accumulating medium derived from a gas hydrate within a range of 0 deg.C to minus 50 deg.C, without being subjected to the regulation of a high-pressure gas safety law and regulations. SOLUTION: A cold accumulating vessel is supplied with a specified quantity of liquefied petroleum gas after being charged with alcohol aqueous solution in specified concentration so as to cool that alcohol aqueous solution, and then liquefied petroleum gas of a specified quantity per unit time is sucked and is discharged into the above alcohol aqueous solution. It is to be desired that the alcohol aqueous solution should be ethylene glycol aqueous solution or ethanol aqueous solution. For liquefied petroleum gas, it is to be desired that one or more should be selected and used from among propane, butane, pentane, and hexane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、包摂水和物(ガスハイ
ドレート)を用いた蓄冷熱システムに係り、特に0℃以
下の冷却システムを実現するための方法および装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative heat storage system using inclusion hydrate (gas hydrate), and more particularly to a method and an apparatus for realizing a cooling system at 0.degree.

【0002】[0002]

【従来の技術】包摂水和物は、従来から冷熱の輸送媒体
として注目され、水分子で構成された籠状の包接格子の
中にメタン、エタン、プロパン、フロン11、フロン1
2等の気体分子がゲストとして包み込まれて結晶化する
化合物である。ゲスト分子がホスト分子に包み込まれる
過程で一定量の発熱があり、冷熱を蓄える蓄冷熱媒体が
生成される。従って冷熱の輸送媒体として使用すること
が出来る。
2. Description of the Related Art Inclusion hydrates have been attracting attention as a transport medium of cold heat, and methane, ethane, propane, chlorofluorocarbon 11 and chlorofluorocarbon 1 are contained in a cage-like inclusion lattice composed of water molecules.
A compound in which gas molecules such as 2 are encapsulated as guests and crystallized. A certain amount of heat is generated in the process in which the guest molecules are wrapped in the host molecules, and a cold storage medium that stores cold heat is generated. Therefore, it can be used as a transport medium for cold heat.

【0003】かかる包摂水和物を用いた蓄冷システムと
しては、従来、例えば特開平11−264681号公報
記載のものが知られている。これはゲスト分子として例
えばテトラn−ブチルアンモニウム塩等を用い、冷房空
調のための0℃以上の冷熱システムを実現する。また特
開平10−259978号公報記載の発明は、ゲスト分
子としてオニウム塩を使用し、0〜12℃の温度範囲に
おける冷却システムを実現する。
[0003] As a cold storage system using such a subsumed hydrate, for example, a system disclosed in Japanese Patent Application Laid-Open No. H11-264681 is conventionally known. This realizes a cooling system of 0 ° C. or higher for cooling air conditioning by using, for example, a tetra-n-butylammonium salt as a guest molecule. The invention described in Japanese Patent Application Laid-Open No. 10-259978 realizes a cooling system in a temperature range of 0 to 12 ° C. using an onium salt as a guest molecule.

【0004】[0004]

【発明が解決しようとする課題】ところで、ガスハイド
レート生成時の相変化潜熱を利用した従来の冷却システ
ムは、摂氏0度以上の蓄冷熱媒体輸送を前提とする技術
であり、とくに空調用蓄冷熱媒体の生成手法であった。
つまり従来提案されているガスハイドレート装置では、
摂氏マイナス0℃以下の冷却システムを実用装置(例え
ば冷凍庫、冷凍ケース)に適用出来ないという問題があ
る。
The conventional cooling system using the phase change latent heat at the time of gas hydrate generation is a technology on the premise of transporting a regenerative heat medium at 0 ° C. or more. It was a method of generating a heat medium.
In other words, in the conventionally proposed gas hydrate device,
There is a problem that a cooling system having a temperature of 0 ° C. or less cannot be applied to a practical device (for example, a freezer or a freezing case).

【0005】一方、百貨店やスーパーマーケットの食品
売場にある冷凍食品や生鮮品の冷却ケースないし保冷庫
は、マイナス0℃以下の冷却条件を必要とすることが少
なくない。またマイナス0℃以下における包摂水和物由
来の蓄冷熱媒体の生成が可能であれば、空調を含めた各
種の実用システムに蓄冷熱媒体を利用できることにな
る。とくに深夜電力を用いて夜間に蓄冷熱媒体を生成し
昼間に放冷すれば、電力需要を均等化できるほか、ユー
ザにとっては電力コストの削減ができる。また従来ピー
ク負荷に合わせていた冷凍設備能力を、平均負荷の冷凍
設備能力に低減し一定負荷で高効率運転できる等、各種
の利点を得ることが出来る。
[0005] On the other hand, a cooling case or a cool box for frozen foods or fresh foods in a food section of a department store or a supermarket often needs cooling conditions of minus 0 ° C or less. In addition, if it is possible to generate a cold storage medium derived from inclusion hydrate at minus 0 ° C. or lower, the cold storage medium can be used in various practical systems including air conditioning. In particular, if the cold storage heat medium is generated at night using electric power at midnight and allowed to cool in the daytime, the power demand can be equalized and the power cost can be reduced for the user. Also, various advantages can be obtained, such as reducing the capacity of the refrigeration facility that has conventionally been adjusted to the peak load to the capacity of the refrigeration facility with an average load and enabling high-efficiency operation at a constant load.

【0006】また、ガスハイドレート生成時のゲスト分
子として、実験では従来からプロパンを使用することが
知られている。しかしながらプロパンは常温低圧では気
体であり、大量のガスハイドレートを生成することは出
来ない。また液化させたプロパンを利用するには高圧ガ
スの取扱規制を受けることから、各種の店舗において実
用装置として稼働させるには法令や安全性確保の煩雑な
問題が残る。
It has been known in experiments that propane is conventionally used as a guest molecule when producing gas hydrate. However, propane is a gas at normal temperature and low pressure, and cannot produce a large amount of gas hydrate. In addition, since the use of liquefied propane is subject to restrictions on the handling of high-pressure gas, there are still complicated laws and regulations and safety issues to operate as a practical device in various stores.

【0007】プロパンの利点は入手のしやすさである。
しかし一般の利用価値が高いため市販コストが高いなど
不利な面があり、商業的な冷却システムに利用するには
コスト上の難点も残る。
[0007] An advantage of propane is its availability.
However, it has disadvantages such as high commercial cost due to its high utility value, and there is still a cost disadvantage in using it for a commercial cooling system.

【0008】そこで本発明の目的は、高圧ガスの取扱規
制を受けずに、0℃〜マイナス50℃の範囲でガスハイ
ドレート由来の蓄冷熱媒体を生成可能とする点にある。
また装置構成として、ガスハイドレートの生成効率を高
め運用ロスを最小限に抑えることを目的とする。
Accordingly, an object of the present invention is to make it possible to generate a cold storage medium derived from gas hydrate in the range of 0 ° C. to −50 ° C. without being restricted by the handling of high-pressure gas.
Another object of the present invention is to increase the gas hydrate generation efficiency and minimize the operation loss.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る蓄冷方法は、蓄冷熱槽内に所定濃度の
アルコール水溶液を充填し、当該アルコール水溶液を冷
却してから蓄冷熱槽内に所定量の液化石油ガスを供給し
た後、単位時間あたり所定量の液化石油ガスを吸引して
前記アルコール水溶液中に放出させる。アルコール水溶
液はエチレングリコール水溶液またはエタノール水溶液
であることが望ましい。液化石油ガスは、プロパン、ブ
タン、ペンタン、ヘキサンから一以上を選択して使用す
ることが望ましい。
In order to achieve the above object, a cold storage method according to the present invention is characterized in that a cold storage tank is filled with an aqueous alcohol solution having a predetermined concentration, the alcohol aqueous solution is cooled, and then the cold storage tank is cooled. After a predetermined amount of liquefied petroleum gas is supplied, a predetermined amount of liquefied petroleum gas is suctioned and discharged into the alcohol aqueous solution per unit time. The alcohol aqueous solution is preferably an ethylene glycol aqueous solution or an ethanol aqueous solution. The liquefied petroleum gas is desirably used by selecting one or more of propane, butane, pentane, and hexane.

【0010】また前記目的を達成するため、本発明に係
る蓄冷熱装置は、蓄冷熱槽と、当該蓄冷熱槽の内部を冷
却する冷却装置と、蓄冷熱槽で生成された包摂水和物を
後段へ送出する冷媒装置とを備え、前記蓄冷熱槽は、ア
ルコール水溶液の充填口と、減圧弁を介して供給される
液化石油ガスの充填口とを備えるとともに、略鉛直方向
に配した一以上の回転軸を備え、この回転軸は内部を中
空とし、適宜位置に当該回転軸の回転に伴って液化石油
ガスを吸入する吸引アームと、吸引した液化石油ガスを
アルコール水溶液に放出する排出アームとを備えてな
り、吸引アームおよび排出アームは、いずれも内部中空
で前記回転軸の中空部と連通してなり、吸引アームは、
前記回転軸の回転方向に向かって開設された開口を備え
る。
In order to achieve the above object, a regenerative heat storage device according to the present invention comprises a regenerative heat storage tank, a cooling device for cooling the inside of the regenerative heat storage tank, and a subsumed hydrate generated in the regenerative heat storage tank. A refrigerant device to be sent out to the subsequent stage, and the regenerative heat storage tank includes a filling port for an aqueous alcohol solution, and a filling port for liquefied petroleum gas supplied through a pressure reducing valve, and one or more disposed in a substantially vertical direction. A rotary arm having a hollow inside, and a suction arm for sucking liquefied petroleum gas in accordance with the rotation of the rotary shaft at an appropriate position, and a discharge arm for discharging the sucked liquefied petroleum gas into an aqueous alcohol solution. Wherein the suction arm and the discharge arm are both hollow inside and communicate with the hollow portion of the rotary shaft.
An opening is provided in the rotation direction of the rotation shaft.

【0011】排出アームは、回転軸から略直角に突出す
るストレート管であって、回転軸の回転方向に対して約
45度の角度をもって斜め方向にカットされた開口を備
え、当該開口は、回転方向と逆向きの方向に開設されて
いることが望ましい。
The discharge arm is a straight tube projecting substantially at right angles from the rotation axis, and has an opening cut obliquely at an angle of about 45 degrees with respect to the rotation direction of the rotation axis. It is desirable to be opened in the direction opposite to the direction.

【0012】[0012]

【作用】本発明は、ホストとなるアルコール水溶液を冷
却し、そこにゲストである液化石油ガスを供給すること
によって、石油ガスの低圧液化を図る。低圧下での液化
であるから高圧ガス保安法の規制を受けない。尚、低圧
とはより具体的には35℃以下の温度で、0.2MPa以
下の系内圧力をいう(以下同じ)。
According to the present invention, an alcohol aqueous solution serving as a host is cooled, and a liquefied petroleum gas serving as a guest is supplied thereto, thereby achieving low-pressure liquefaction of the petroleum gas. Because it is liquefied under low pressure, it is not subject to the regulations of the High Pressure Gas Safety Law. More specifically, the low pressure refers to a pressure within the system of 0.2 MPa or less at a temperature of 35 ° C. or less (the same applies hereinafter).

【0013】液化した石油ガスはアルコール水溶液とは
別の層を形成する。通常のLPGの場合はアルコール水
溶液の上部に層を形成する。このため上層部に液化した
石油ガスを吸い込み、それを下層のアルコール水溶液中
に放出分散させることは装置構造として各種の構成を採
ることが出来る。
The liquefied petroleum gas forms a separate layer from the aqueous alcohol solution. In the case of ordinary LPG, a layer is formed on the alcohol aqueous solution. For this reason, various configurations can be adopted as a device structure in which liquefied petroleum gas is sucked into the upper layer portion and released and dispersed in the lower alcohol aqueous solution.

【0014】但し、包摂水和物の生成効率を考えれば、
最終的に入熱的になるゲストガスの攪拌は最小限に止め
ることが望ましい。このため本発明装置では、上下方向
に延設した回転軸の回転に伴って吸引アームの開口から
流入させた液状のゲストガスを、回転軸の中空部を通し
て下部に流動させ、下部に設けた排出アームの開口から
遠心力(および負圧効果)によってアルコール水溶液
(ホスト)中に吐出させる。これに伴いガスハイドレー
トが生成され、アルコール水溶液の濃度に応じて、畜冷
熱媒体の生成濃度すなわち蓄冷温度のコントロールがで
きる。ゲストとして液化石油ガスを用いた場合の実用上
の制御温度範囲は0℃以下、最大マイナス50℃の範囲
である。
[0014] However, considering the production efficiency of the inclusion hydrate,
It is desirable to minimize the agitation of the guest gas, which eventually causes heat input. For this reason, in the device of the present invention, the liquid guest gas flowing from the opening of the suction arm with the rotation of the rotating shaft extending in the vertical direction is caused to flow downward through the hollow portion of the rotating shaft, and is discharged at the lower portion. The liquid is discharged into the aqueous alcohol solution (host) by centrifugal force (and negative pressure effect) from the opening of the arm. Accordingly, gas hydrate is generated, and the generated concentration of the cooling medium, that is, the cold storage temperature can be controlled according to the concentration of the aqueous alcohol solution. When liquefied petroleum gas is used as the guest, the practical control temperature range is 0 ° C. or less, and the maximum is −50 ° C.

【0015】尚、本発明は下記の理由により、不活性ガ
スを添加することを制限するものではない。すなわち、
本発明に係る蓄冷熱温度(0〜マイナス50℃)の範囲
では液化せずかつ水溶液に溶解しない不活性ガス(窒素
ガス等)を、蓄冷熱槽の上部LPG層に約50モル%以上
の比率で添加しておけば、爆発の危険をより確実に抑制
できるからである。また液化石油ガス流体の組み合わせ
によっては過度の減圧操作になる可能性があるが、それ
を防止するためにも圧力の緩衝用として不活性ガスを用
いる場合があり得る。
The present invention does not limit the addition of an inert gas for the following reasons. That is,
An inert gas (nitrogen gas, etc.) that is not liquefied and does not dissolve in an aqueous solution in the range of the cold storage temperature (0 to minus 50 ° C.) according to the present invention is added to the upper LPG layer of the cold storage tank at a ratio of about 50 mol% or more. This is because the risk of explosion can be more reliably suppressed by adding in the above. Further, depending on the combination of the liquefied petroleum gas fluids, there is a possibility that the operation of reducing the pressure excessively. However, in order to prevent this, an inert gas may be used for buffering the pressure.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る蓄冷技術を、
各種の冷却庫(商品ケース/保冷庫等)に適用する場合
を例にとって説明する。まず図1に基づき、全体の装置
システムを説明する。符号11は、冷却ケースであり、
例えば冷凍食品、野菜、魚介等の生鮮品、チーズや氷菓
等の要冷蔵食品、飲料を納める。冷却ケース11の設定
温度はそれぞれ異なっても構わない。また冷却ケース1
1はフロンガス等を用いた既存の冷却装置41を備え
る。尚、冷却ケースは通常複数あるが図面の簡単のため
一つだけを例示した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a cold storage technology according to the present invention will be described.
An example in which the present invention is applied to various types of refrigerators (commodity cases / refrigerators) will be described. First, an overall device system will be described with reference to FIG. Reference numeral 11 denotes a cooling case,
For example, fresh foods such as frozen foods, vegetables and seafood, refrigerated foods such as cheese and frozen desserts, and beverages are delivered. The set temperatures of the cooling cases 11 may be different from each other. Cooling case 1
1 is provided with an existing cooling device 41 using Freon gas or the like. Although there are usually a plurality of cooling cases, only one is illustrated for simplification of the drawing.

【0017】一方、符号20は、ガスハイドレート由来
の蓄冷熱媒体を生成するための蓄冷熱槽である。生成し
た蓄冷熱媒体は、ポンプ31、循環パイプ32、流量調
整弁33を介して冷却ケース11に循環供給する。
On the other hand, reference numeral 20 denotes a cold storage tank for generating a cold storage medium derived from gas hydrate. The generated regenerative heat medium is circulated and supplied to the cooling case 11 via a pump 31, a circulation pipe 32, and a flow control valve 33.

【0018】符号40は、蓄冷熱槽20の内部を設定温
度に冷却するための冷却装置であり。冷凍機41、チラ
ー42、ポンプ43、冷媒循環パイプ44を備える。冷
媒循環パイプ44は、蓄冷熱槽20の内部空間を通過す
るように配する。この冷媒循環パイプ44は、蓄冷熱槽
20内に充填されているアルコール水溶液を冷却するも
のであるから、熱交換速度を向上させるため例えば螺旋
形状に設計し、アルコール水溶液との接触面積を増加さ
せることが望ましい。尚、冷媒循環パイプ44の本数は
一本に限らない。蓄冷熱槽20の内容積に応じて複数本
設けても良い。
Reference numeral 40 denotes a cooling device for cooling the inside of the cold storage tank 20 to a set temperature. The refrigerator includes a refrigerator 41, a chiller 42, a pump 43, and a refrigerant circulation pipe 44. The refrigerant circulation pipe 44 is disposed so as to pass through the internal space of the cold storage heat tank 20. Since the refrigerant circulation pipe 44 cools the alcohol aqueous solution filled in the cold storage heat tank 20, the refrigerant circulation pipe 44 is designed, for example, in a spiral shape in order to improve the heat exchange rate, and increases the contact area with the alcohol aqueous solution. It is desirable. The number of the refrigerant circulation pipes 44 is not limited to one. A plurality may be provided according to the internal volume of the cold storage heat tank 20.

【0019】蓄冷熱槽20には、アルコール水溶液の供
給口21と、液化石油ガスの供給口22を設ける。尚、
24は所定配合の石油ガスを高圧液化させたLPGボン
ベ、25は減圧弁、26はストップ弁、27は安全弁、
28は保安弁、29は圧力計である。また符号Qはアル
コール水溶液(ホスト)、Gは液化させた石油ガス(ゲ
スト)である。
The cold storage tank 20 is provided with a supply port 21 for an aqueous alcohol solution and a supply port 22 for liquefied petroleum gas. still,
24 is an LPG cylinder obtained by liquefying high-pressure liquefied petroleum gas, 25 is a pressure reducing valve, 26 is a stop valve, 27 is a safety valve,
28 is a security valve, 29 is a pressure gauge. Reference symbol Q denotes an alcohol aqueous solution (host), and G denotes liquefied petroleum gas (guest).

【0020】ホストとなるアルコール水溶液は、エタノ
ール、メタノール等の低級アルコールの水溶液であって
も良いが、高濃度では消防法上危険物の規制を受ける。
従ってエタノール水溶液の場合は濃度を落として、例え
ば60Wt%未満で使用することが望ましい。エチレン
グリコールの場合は全濃度範囲で同規制を受けない。従
って実用化に際してはエチレングリコール水溶液が好ま
しい。
The alcohol aqueous solution serving as a host may be an aqueous solution of a lower alcohol such as ethanol or methanol, but at a high concentration, it is regulated by dangerous substances under the Fire Service Law.
Therefore, in the case of an ethanol aqueous solution, it is desirable to lower the concentration and use it at, for example, less than 60 Wt%. Ethylene glycol is not subject to the same regulations over the entire concentration range. Therefore, in practical use, an ethylene glycol aqueous solution is preferable.

【0021】また蓄冷熱槽20には、モータ23によっ
て回転する回転軸50を設ける。回転軸50の本数は限
定されない。この実施例では一本の回転軸50だけを例
示してある。回転軸50は中空パイプを用いる。丸管、
角管を問わない。また回転軸50は上下方向に延設す
る。モータ23の配設位置は問わない。この実施例では
モータ23を蓄冷熱槽20の上部に配し回転軸50を直
接駆動する。
The regenerator tank 20 is provided with a rotating shaft 50 that is rotated by the motor 23. The number of rotating shafts 50 is not limited. In this embodiment, only one rotation shaft 50 is illustrated. The rotating shaft 50 uses a hollow pipe. Round tube,
Regardless of the square tube. The rotating shaft 50 extends in the up-down direction. The arrangement position of the motor 23 does not matter. In this embodiment, the motor 23 is disposed above the regenerative heat storage tank 20, and the rotating shaft 50 is directly driven.

【0022】回転軸50の上端近傍には石油ガスの吸引
アーム51を設ける。また回転軸50の下部には石油ガ
スの排出アーム57,58を設ける。吸引アーム51お
よび排出アーム57,58は回転軸50に対して略垂直
方向に突出させる。配設本数は限定されない。目的とす
る装置能力に応じて吸引量や排出量は適宜設計変更可能
だからである。但し、回転軸50を中心として対称位置
に配置することが望ましい。回転軸50の運動バランス
を均衡させるためである。
An oil / gas suction arm 51 is provided near the upper end of the rotating shaft 50. In addition, oil gas exhaust arms 57 and 58 are provided below the rotating shaft 50. The suction arm 51 and the discharge arms 57 and 58 project in a direction substantially perpendicular to the rotation shaft 50. The number of arrangements is not limited. This is because the design of the amount of suction and the amount of discharge can be changed as appropriate in accordance with the desired device performance. However, it is desirable to arrange them symmetrically with respect to the rotation axis 50. This is to balance the motion balance of the rotating shaft 50.

【0023】吸引アーム51は、例えば図2に示すよう
に、回転軸50の回転方向(矢印Xで例示する)に向か
って開いた吸入開口52を備える。好ましくは、例えば
図3に示すように湾曲部53を備えるエルボー管を用い
る。エルボー管を使用した場合は、液化石油ガスの流入
がスムースとなり蓄冷熱媒体の生成効率が確実に高ま
る。
The suction arm 51 has a suction opening 52 that opens in the direction of rotation of the rotation shaft 50 (illustrated by an arrow X), for example, as shown in FIG. Preferably, for example, an elbow tube having a curved portion 53 as shown in FIG. 3 is used. When the elbow pipe is used, the flow of the liquefied petroleum gas is smooth, and the efficiency of generating the cold storage heat medium is reliably increased.

【0024】一方、排出アーム57,58は、端末部に
排出開口55を備えるパイプ材を用いる。形状は問わな
い。遠心力によって液化石油ガスを吐出できれば良いか
らである。但し、好ましくは例えば図4に示すように、
回転軸50の回転方向(矢印X)と逆向きに斜めにカッ
トした排出開口55を設ける。
On the other hand, for the discharge arms 57 and 58, a pipe material having a discharge opening 55 at a terminal portion is used. The shape does not matter. This is because liquefied petroleum gas can be discharged by centrifugal force. However, preferably, for example, as shown in FIG.
A discharge opening 55 cut obliquely in a direction opposite to the rotation direction (arrow X) of the rotation shaft 50 is provided.

【0025】排出開口55を回転方向と反対の向きに斜
めにカットするのは、負圧の利用によって液化石油ガス
の吐出効率を高めるためである。また斜めにカットする
ことによって同一内径のパイプであっても、開口面積が
大きくなるため、排出アーム57,58を小さく軽量化
出来る等の利点もある。尚、カット成形する際の角度θ
は約45度とすることが望ましい。排出開口55の付近
に均一に低圧部分が発生するからである。また蓄熱槽内
壁にバッフル板を設置することにより、界面を水平に
し、高密度な液相として効率的に吸い込むことも効果的
である。
The reason why the discharge opening 55 is cut obliquely in the direction opposite to the rotation direction is to increase the discharge efficiency of the liquefied petroleum gas by utilizing the negative pressure. Further, even if the pipes have the same inner diameter by being cut obliquely, the opening area becomes large, so that there is an advantage that the discharge arms 57 and 58 can be made smaller and lighter. The angle θ at the time of cut molding
Is desirably about 45 degrees. This is because a low-pressure portion is uniformly generated near the discharge opening 55. By installing a baffle plate on the inner wall of the heat storage tank, it is also effective to level the interface and efficiently suck the liquid phase as a high-density liquid phase.

【0026】次に、かかる装置を用いて蓄冷熱媒体を生
成し利用する手順について説明する(図5参照)。ま
ず、以下の手順で準備運転を行う。 規定の相変化温度(例えば−25〜−30℃)に見
合ったエチレングリコール濃度(60Wt%)の水溶液
を供給口21から蓄冷熱槽20に規定量(例えば蓄冷熱
槽20の内容積の80vol%)を充填する(S1)。
尚、相変化温度は、アルコール水溶液の濃度に依存す
る。そしてゲストガスとして液化石油ガスを用いる場合
は0℃以下〜マイナス50℃の範囲で蓄冷温度を制御で
きる。 回転軸50を規定速度(例えば200RPM)で回転
させ、エチレングリコール水溶液を均等に混合する(S
2)。 冷凍機41、ポンプ43を起動し、冷媒循環パイプ
44を介して蓄冷熱媒体を蓄冷熱槽20内に流動させる
(S3)。この後、蓄冷熱槽20のエチレングリコール
水溶液を徐々に例えば−20℃まで冷却する(S4)。
この場合の冷却温度は、LPGガスの成分によって異な
る。準備運転での冷却の目的はLPGガスを低圧下で液
化させることにあるから、ブタン(沸点−0.5℃)、
ペンタン(沸点36.1℃)、ヘキサン(沸点68.7
4℃)のように沸点が比較的高い石油ガスを用いる場合
は、−20℃まで冷却するまでもなく低圧で液化でき
る。
Next, a procedure for generating and using a cold storage medium using such an apparatus will be described (see FIG. 5). First, a preparation operation is performed in the following procedure. An aqueous solution having an ethylene glycol concentration (60 Wt%) corresponding to a specified phase change temperature (for example, −25 to −30 ° C.) is supplied from the supply port 21 to the cool storage heat tank 20 in a predetermined amount (for example, 80 vol% of the internal volume of the cool storage heat tank 20). ) Is filled (S1).
Note that the phase change temperature depends on the concentration of the alcohol aqueous solution. When liquefied petroleum gas is used as the guest gas, the cold storage temperature can be controlled in the range of 0 ° C. or less to −50 ° C. The rotating shaft 50 is rotated at a specified speed (for example, 200 RPM) to uniformly mix the ethylene glycol aqueous solution (S
2). The refrigerator 41 and the pump 43 are started, and the cold storage medium flows into the cold storage tank 20 via the refrigerant circulation pipe 44 (S3). Then, the ethylene glycol aqueous solution in the cold storage heat tank 20 is gradually cooled to, for example, −20 ° C. (S4).
The cooling temperature in this case differs depending on the components of the LPG gas. Since the purpose of cooling in the preparatory operation is to liquefy LPG gas under low pressure, butane (boiling point -0.5 ° C),
Pentane (boiling point 36.1 ° C), hexane (boiling point 68.7)
When using a petroleum gas having a relatively high boiling point, such as 4 ° C.), it can be liquefied at a low pressure without cooling to −20 ° C.

【0027】本実施例において−20℃まで蓄冷熱槽2
0を冷却させるのは、現時点で最も利用しやすいプロパ
ン混合ガスを用いた場合を例にとって説明するためであ
る。プロパンは沸点−42.1℃であり、ブタン、ペン
タンとの混合物を用いた場合、とくにプロパンを主成分
とする市販のLPGガスを用いた場合は−20℃程度で
低圧液化させることが出来る。尚、プロパンは沸点が低
く低圧下での液化が難しいことから、本発明に係るホス
トガスとしてプロパンを使用する場合でもプロパンの使
用量は50Wt%を越えないように配慮し、ブタン以下
の重油を適宜混合して使用する。尚、メタン、エタンは
さらに沸点が低く、低圧下での液化は困難であり、実質
的にゲストとしての使用は困難である。 回転軸50を最低速度(例;100RPM)に落とし
て運転する(S5)。 蓄冷熱槽20が−20℃に到達したら、LPGボンベ
から減圧弁25を介して、LPGを蓄冷熱槽20に徐々に
充填する(S6)。この場合、蓄冷熱槽20の内圧が
0.15MPaを越えないように圧力計29で圧力を監視
しながら充填する。またエチレングリコール水溶液の上
部に液化して積層してくるLPG層(G)を覗き窓(図示
せず)で確認しながら充填する。
In this embodiment, the regenerative heat storage tank 2 up to -20.degree.
The reason why 0 is cooled is to explain an example in which a propane mixed gas that is most easily used at the present time is used. Propane has a boiling point of -42.1 ° C, and when a mixture of butane and pentane is used, particularly when a commercially available LPG gas containing propane as a main component is used, low-pressure liquefaction can be performed at about -20 ° C. In addition, since propane has a low boiling point and is difficult to liquefy under low pressure, even when propane is used as the host gas according to the present invention, the amount of propane used should not exceed 50 Wt%, and heavy oil of butane or less should be used. Mix and use as appropriate. Methane and ethane have even lower boiling points, are difficult to liquefy under low pressure, and are practically difficult to use as guests. The operation is performed with the rotating shaft 50 lowered to the minimum speed (eg, 100 RPM) (S5). When the temperature of the cold storage tank 20 reaches -20 ° C., the cold storage tank 20 is gradually filled with LPG from the LPG cylinder through the pressure reducing valve 25 (S6). In this case, filling is performed while monitoring the pressure with the pressure gauge 29 so that the internal pressure of the cold storage heat tank 20 does not exceed 0.15 MPa. The LPG layer (G), which is liquefied and laminated on the upper part of the ethylene glycol aqueous solution, is filled while being checked with a viewing window (not shown).

【0028】尚、最初に使用するバージンな水溶液は過
冷却が起こりやすい。しかし一回でもガスハイドレート
が生成した履歴のある水溶液はそれ以降は過冷却が起こ
りにくい。これはガスハイドレートが一度生成し解離す
ると、液化石油ガスは一般に水溶液に不溶といわれてい
るが、0.016モル%以上は溶解するため、2回目以
降のガスハイドレート生成の際に、この既に水溶液中に
溶解し細かく分散している液化石油ガス成分がガスハイ
ドレート生成の核となり、過冷却を抑制するためであ
る。したがって実装置では、過冷却を完全に防止するた
めに本運転に先立って、十分に液化石油ガスを溶解させ
ておく。 規定の高さ(例えば蓄冷熱槽20の約90VOL%)
に達したところでストップ弁26を閉じてLPGの充填を
停止する(S7)。 この場合、安全確保のため、保安弁28を例えば
0.17MPaに設定して蓄冷熱槽20を設定圧以下に保
つ。さらに安全弁27を例えば0.19MPaに設定し、
万が一の圧力上昇から蓄冷熱槽20の破裂を防ぐ。以上
で準備運転が終了する。
The virgin aqueous solution used first tends to be supercooled. However, an aqueous solution having a history of gas hydrate generation even once is less likely to be supercooled thereafter. This is because once gas hydrate is generated and dissociated, liquefied petroleum gas is generally said to be insoluble in an aqueous solution. However, since 0.016 mol% or more is dissolved, the liquefied petroleum gas is not dissolved in the second or subsequent gas hydrate generation. The reason is that the liquefied petroleum gas component already dissolved and finely dispersed in the aqueous solution becomes a nucleus for gas hydrate generation and suppresses supercooling. Therefore, in the actual apparatus, the liquefied petroleum gas is sufficiently dissolved before the main operation in order to completely prevent the supercooling. Specified height (for example, about 90 VOL% of cold storage heat tank 20)
Is reached, the stop valve 26 is closed to stop the filling of LPG (S7). In this case, in order to ensure safety, the safety valve 28 is set to, for example, 0.17 MPa, and the temperature of the cold storage heat tank 20 is maintained at a set pressure or less. Further, the safety valve 27 is set to, for example, 0.19 MPa,
The rupture of the regenerative heat storage tank 20 is prevented from occurring due to an increase in pressure. Thus, the preparation operation is completed.

【0029】次に、以下の手順で蓄冷運転を行う。 冷凍機41を規定能力に、ポンプ43の駆動により
蓄冷熱媒体を規定流量に、モータ23の駆動により回転
軸50を規定回転数(例えば200RPM)に上げて蓄冷
運転に入る(S8)。蓄冷運転は、夜間の安価な電力を
用いる。これらの規定値は蓄冷運転に許される時間を勘
案し決定する。(過冷却を防止したり伝熱面での氷の固
着を防ぐため、出来る限りゆっくり時間をかけて実施す
ることが望ましい)。 規定時間を経過した時点で、冷凍機41,回転軸5
0、ポンプ43(蓄冷熱媒体流量)を最低能力に落とす
(S9)。このとき、覗き窓(図示せず)より、LPG層
Gの層高さを確認し、また他の覗き窓(図示せず)によ
りエチレングリコール水溶液(Q)中のガスハイドレー
ドをそれぞれ確認できる。運転数値を確実にするにはド
レンから内容物を抜き出し、水溶液中のエチレングリコ
ール濃度の比重を測定しても良いし、または屈折法によ
りガスハイドレードの生成濃度を算出しても良い。但
し、覗き窓からの視認によって蓄冷熱媒体の生成状況は
ほぼ確実に把握することが出来る。 最後に、蓄冷熱媒体生成の終点段階をチェックし
(S10)、蓄冷運転を終了する(S11)。停止チェ
ックは、視認、エチレングリコール濃度の比重測定、あ
るいは屈折法によるガスハイドレードの生成濃度の算出
によって行う。通常運転であれば時間測定も運転停止の
参考材料となる。ガスハイドレードの生成の終点では、
ホスト水溶液中の水分が欠乏してきて、ガスハイドレー
ドの生成速度が低下し、蓄冷熱媒体の蓄冷熱槽20の出
口温度T2が急激に低下する(図6)。この現象が生ずる
と、伝熱面に熱伝導度の極めて悪い氷が固着する可能性
があるため、この現象は可能な限り避けて運転すること
が望まれる。これは次の通りである。
Next, the cold storage operation is performed in the following procedure. The refrigerating machine 41 is set to a specified capacity, the pump 43 drives the regenerative heat storage medium to a specified flow rate, and the motor 23 drives the rotating shaft 50 to a specified number of revolutions (for example, 200 RPM) to start a cool storage operation (S8). Cold storage operation uses inexpensive nighttime power. These specified values are determined in consideration of the time allowed for the cold storage operation. (It is desirable to take the time as slowly as possible to prevent overcooling and prevent ice from sticking to the heat transfer surface). When the specified time has elapsed, the refrigerator 41 and the rotating shaft 5
0, the pump 43 (cooling storage medium flow rate) is reduced to the minimum capacity (S9). At this time, the layer height of the LPG layer G can be confirmed from the viewing window (not shown), and the gas hydrate in the ethylene glycol aqueous solution (Q) can be confirmed from the other viewing windows (not shown). To ensure the operation value, the contents may be extracted from the drain and the specific gravity of the ethylene glycol concentration in the aqueous solution may be measured, or the gas hydrate formation concentration may be calculated by a refraction method. However, the state of generation of the cold storage heat medium can be grasped almost certainly by visual recognition from the viewing window. Finally, the end point stage of the cold storage medium generation is checked (S10), and the cold storage operation is terminated (S11). The stop check is performed by visual inspection, by measuring the specific gravity of the ethylene glycol concentration, or by calculating the gas hydrate generation concentration by a refraction method. For normal operation, time measurement is also a reference for stopping operation. At the end of the gas hydrate production,
As the water in the host aqueous solution becomes scarce, the generation rate of gas hydrate decreases, and the outlet temperature T2 of the cold storage heat storage tank 20 of the cold storage heat medium rapidly decreases (FIG. 6). If this phenomenon occurs, there is a possibility that ice with extremely poor thermal conductivity may adhere to the heat transfer surface, and it is therefore desirable to operate the apparatus while avoiding this phenomenon as much as possible. This is as follows.

【0030】例えば、図6の液化石油ガスを含まないエ
チレングリコール水溶液を単に冷却したり、液化石油ガ
スを含めた場合でも冷却速度に不溶性の液化石油ガス流
体の水溶液中への供給が追いつかないときは、ガスハイ
ドレートの生成が起こらずに過冷却現象が起こり、図6
のII線に伴い氷単独の析出が起きる。このようにして析
出した単独の固体の氷は、緻密でかつ硬く蓄冷熱槽内の
冷却コイル(冷媒循環パイプ44)に固く固着し、大き
な伝熱抵抗となり、総括伝熱係数で表される冷却速度の
著しい低下を招き、蓄冷熱槽自体が機能を果たせなくな
る。
For example, when the ethylene glycol aqueous solution containing no liquefied petroleum gas shown in FIG. 6 is simply cooled, or even when liquefied petroleum gas is included, the supply of the liquefied petroleum gas fluid that is insoluble in the cooling rate cannot keep up with the aqueous solution. FIG. 6 shows that a supercooling phenomenon occurred without generation of gas hydrate,
Ice alone precipitates with the II line. The single solid ice deposited in this manner is dense and hard and firmly adheres to the cooling coil (refrigerant circulation pipe 44) in the cold storage heat tank, has a large heat transfer resistance, and has a cooling heat represented by the overall heat transfer coefficient. A remarkable decrease in speed is caused, and the regenerative heat storage tank itself cannot function.

【0031】液化石油ガス流体を含む系において、以上
の如く装置上の工夫を凝らして、冷却速度に見合った液
化石油ガス流体の水溶液への供給が可能であれば、図6
のI線のごとく、氷単独で析出した温度より約10度高
い温度で液化石油ガスと水から構成されるガスハイドレ
ートが生成する。このガスハイドレートは非常に微細で
さらさらしており、冷却面に付着しにくく、ほぼ一定の
高い冷却速度が長時間にわたって持続する。また表面積
が大きく生成および逆の解離が容易であるため、蓄冷熱
槽値での最大の問題のひとつである過冷却現象も殆ど起
きない。これは複数の水分子により形成された形での篭
の中に液化石油ガス流体が取り込まれたガスハイドレー
トの立体的構造に起因している。
In a system containing a liquefied petroleum gas fluid, if it is possible to supply the liquefied petroleum gas fluid to the aqueous solution according to the cooling rate by elaborating the apparatus as described above, FIG.
As shown in line I, a gas hydrate composed of liquefied petroleum gas and water is generated at a temperature about 10 degrees higher than the temperature at which the ice alone precipitates. This gas hydrate is very fine and free flowing, and hardly adheres to the cooling surface, and a substantially constant high cooling rate is maintained for a long time. In addition, since the surface area is large and the generation and reverse dissociation are easy, the supercooling phenomenon, which is one of the biggest problems in the regenerative heat storage tank value, hardly occurs. This is due to the three-dimensional structure of the gas hydrate in which the liquefied petroleum gas fluid is taken in a basket formed by a plurality of water molecules.

【0032】これらの特徴により、蓄冷段階での過冷却
が抑制でき、冷却速度の著しい低下も現れずに、最初に
添加された水溶液中の大部分の水が潜熱蓄冷媒体のガス
ハイドレートとして生成することにより、本発明のよう
な蓄冷密度の高い蓄冷熱装置が実現できる。
Due to these characteristics, supercooling in the regenerative cooling stage can be suppressed, and a large portion of water in the aqueous solution initially added is generated as a gas hydrate of the latent heat storage medium without a significant decrease in the cooling rate. By doing so, a cold storage heat device having a high cold storage density as in the present invention can be realized.

【0033】以上のようにして蓄冷熱槽20に蓄えたガ
スハイドレート由来の蓄冷熱媒体は、次のようにして放
冷運転する。 ポンプ31を起動し、ガスハイドレート由来の蓄冷
熱媒体を、蓄冷熱槽20から冷却ケース11へ流動させ
る(S12)。冷却ケース11の蓄冷熱媒体流量は、流
量調整弁33の調整によってコントロールする。 冷却ケース11は、収納する商品により保冷温度レ
ベルが異なるが、コントロール温度範囲は+/−2〜3
℃の精度であり、実用上は、それほど厳密な温度コント
ロールは要求されない。 随時、冷却ケース11内の温度を測定し(S1
3)、それに会わせ、冷却ケース11に流す各蓄冷熱媒
体流量を調整する(S14)。冷却ケースが複数ある場
合は流量調整によってそれぞれの規定範囲に保つ。
The cold storage medium derived from gas hydrate stored in the cold storage tank 20 as described above is operated to cool down as follows. The pump 31 is started, and the cold storage medium derived from the gas hydrate flows from the cold storage tank 20 to the cooling case 11 (S12). The flow rate of the cold storage heat medium in the cooling case 11 is controlled by adjusting the flow rate adjusting valve 33. The cooling case 11 has a different cooling temperature level depending on the product to be stored, but the control temperature range is +/− 2 to 3.
It is an accuracy of ° C., and so strict temperature control is not required for practical use. At any time, the temperature in the cooling case 11 is measured (S1
3) At that time, the flow rates of the respective regenerative heat storage media flowing through the cooling case 11 are adjusted (S14). When there are a plurality of cooling cases, the flow rates are adjusted to keep the respective ranges within specified ranges.

【0034】以上の放冷運転は、夜間の保冷、昼間の冷
却能力の増加など、使用目的に応じて行う。大量のガス
ハイドレート由来の蓄冷熱媒体生成により、所定サイク
ルで(例えば24時間サイクルで)自由な蓄冷熱媒体の
活用が出来る。蓄冷時および放冷時に使用される電力は
従来の冷凍システムに較べて格段に少なく、蓄冷と放冷
との間に時間のラグがあるため、低コスト電力を用いて
蓄冷熱媒体を自由に使い回すことが可能となり、マイナ
ス温度を必要とする各種の冷却設備において省力化、装
置能力の飛躍的向上など、実用面においてさまざまな有
用性を発揮する。
The cooling operation described above is performed according to the purpose of use, such as keeping cold during the night and increasing the cooling capacity during the day. By generating a large amount of cold storage medium derived from gas hydrate, free use of the cold storage medium in a predetermined cycle (for example, in a 24-hour cycle) is possible. The power used during cold storage and cooling is much less than in conventional refrigeration systems, and there is a time lag between cold storage and cooling, so low-cost power can be used freely to use the cold storage medium. This makes it possible to turn around, and exhibits various usefulness in practical use, such as labor saving and dramatic improvement in equipment capacity in various cooling facilities that require a minus temperature.

【0035】[0035]

【発明の効果】以上説明したように本発明に係る蓄冷方
法及び装置によれば、高圧ガス保安法の規制を受けず
に、0℃〜マイナス50℃の範囲でガスハイドレート由
来の蓄冷熱媒体を生成することが可能となる。また装置
構成として、とくににゲストガスの流入とホストガスへ
の放出・分散を効率化する回転系の装置(吸入/排出ア
ーム)を設けることによって包摂水和物の生成効率を確
実に高めることを可能とした。
As described above, according to the cold storage method and apparatus according to the present invention, the cold storage heat medium derived from gas hydrate can be used in the temperature range of 0 ° C. to −50 ° C. without being restricted by the High Pressure Gas Safety Law. Can be generated. In addition, as a device configuration, it is possible to reliably increase the efficiency of producing subsumed hydrates by providing a rotating device (suction / discharge arm) for improving the efficiency of inflow of guest gas and release / dispersion to host gas. Made it possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るシステムの一実施形態を例示する
図である。
FIG. 1 is a diagram illustrating an embodiment of a system according to the present invention.

【図2】本発明に係る吸引アームの開口を例示する図で
ある。
FIG. 2 is a diagram illustrating an opening of a suction arm according to the present invention.

【図3】本発明に係る吸引アームの好ましい開口例を示
す図である。
FIG. 3 is a view showing a preferred opening example of a suction arm according to the present invention.

【図4】本発明に係る排出アームを例示する図である。FIG. 4 is a diagram illustrating a discharge arm according to the present invention.

【図5】本発明に係るシステムを運転する手順を例示す
るブロック図である。
FIG. 5 is a block diagram illustrating a procedure for operating the system according to the present invention.

【図6】氷生成及びガスハイドレート生成に伴う冷却速
度の相違を示すグラフ図である。
FIG. 6 is a graph showing a difference in cooling rate due to ice generation and gas hydrate generation.

【符号の説明】[Explanation of symbols]

11 冷却ケース 20 蓄冷熱槽 21 アルコール水溶液の供給口 22 石油ガスの供給口 23 モータ 24 LPGボンベ 25 減圧弁 26 ストップ弁 27 安全弁 28 保安弁 29 圧力計 31 ポンプ 32 循環パイプ 33 流量調整弁 40 冷却装置 41 冷凍機 42 チラー 43 ポンプ 44 冷媒循環パイプ 50 回転軸 51 吸引アーム 52 吸入開口 55 排出開口 57,58 排出アーム DESCRIPTION OF SYMBOLS 11 Cooling case 20 Cold storage heat tank 21 Alcohol aqueous solution supply port 22 Petroleum gas supply port 23 Motor 24 LPG cylinder 25 Pressure reducing valve 26 Stop valve 27 Safety valve 28 Security valve 29 Pressure gauge 31 Pump 32 Circulation pipe 33 Flow control valve 40 Cooling device 41 refrigerator 42 chiller 43 pump 44 refrigerant circulation pipe 50 rotating shaft 51 suction arm 52 suction opening 55 discharge opening 57, 58 discharge arm

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 23/00 F28D 20/00 G 25/00 C09K 5/00 F (72)発明者 前河 涌典 北海道札幌市豊平区月寒東2条12丁目6番 1号 (72)発明者 高橋 道夫 神奈川県横須賀市大矢部3丁目27番7号 (72)発明者 松下 勝典 北海道札幌市豊平区月寒東4条17丁目14番 1号 ドミ25月寒東302 (72)発明者 渡邊 純一 神奈川県川崎市幸区北加瀬1丁目38番5号 (72)発明者 吉田 諒一 北海道札幌市豊平区月寒東2条17丁目2番 1号 工業技術院北海道工業技術研究所内 (72)発明者 内田 努 北海道札幌市豊平区月寒東2条17丁目2番 1号 工業技術院北海道工業技術研究所内 (72)発明者 海老沼 孝郎 北海道札幌市豊平区月寒東2条17丁目2番 1号 工業技術院北海道工業技術研究所内 Fターム(参考) 3E072 AA03 DA01 DB10 3L093 NN01 PP09 PP19 RR01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F25B 23/00 F28D 20/00 G 25/00 C09K 5/00 F (72) Inventor Wakinori Maekawa Sapporo, Hokkaido Michio Takahashi 3-27-7 Oyabe, Yokosuka City, Kanagawa Prefecture, Japan (72) Inventor Katsunori Matsushita Katsunori Matsushita 4-Jo 17-Chome, Toyohira-ku, Sapporo-shi, Hokkaido 14-1 No. 1 Domi 25 May Kanto 302 (72) Inventor Junichi Watanabe 1-38-5 Kitakase, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture No. 1 Inside the Institute of Industrial Science and Technology, Hokkaido Institute of Industrial Technology (72) Inventor Tsutomu Uchida No. 2-1, 17-2 Tsukikanhigashi, Toyohira-ku, Sapporo City, Hokkaido Inside the Institute of Industrial Science and Technology, Hokkaido Institute of Technology (72) Inventor Ebinuma Takaro F-term (reference) 3E072 AA03 DA01 DB10 3L093 NN01 PP09 PP19 RR01 2-1, 17-2, Tsukikanto, Toyohira-ku, Sapporo-city, Hokkaido, Japan

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】蓄冷熱槽内に所定濃度のアルコール水溶液
を充填し、当該アルコール水溶液を冷却してから蓄冷熱
槽内に所定量の液化石油ガスを供給した後、単位時間あ
たり所定量の液化石油ガスを吸引して前記アルコール水
溶液中に放出分散させることを特徴とする包摂水和物を
用いた蓄冷方法。
An aqueous alcohol solution having a predetermined concentration is filled in a cold storage tank, and after cooling the aqueous alcohol solution, a predetermined amount of liquefied petroleum gas is supplied into the cold storage tank. A cold storage method using a subsumed hydrate, wherein the petroleum gas is sucked and released and dispersed in the alcohol aqueous solution.
【請求項2】前記アルコール水溶液はエチレングリコー
ル水溶液またはエタノール水溶液であることを特徴とす
る請求項1記載の包摂水和物を用いた蓄冷方法。
2. The method according to claim 1, wherein the alcohol aqueous solution is an ethylene glycol aqueous solution or an ethanol aqueous solution.
【請求項3】前記液化石油ガスは、プロパン、ブタン、
ペンタン、ヘキサンから一以上を選択して使用すること
を特徴とする請求項1または請求項2記載の包摂水和物
を用いた蓄冷方法。
3. The liquefied petroleum gas is propane, butane,
The method according to claim 1 or 2, wherein at least one selected from pentane and hexane is used.
【請求項4】蓄冷熱槽と、当該蓄冷熱槽の内部を冷却す
る冷却装置と、蓄冷熱槽で生成された包摂水和物を後段
へ送出する冷媒装置とを備え、 前記蓄冷熱槽は、 アルコール水溶液の充填口と、減圧弁を介して供給され
る液化石油ガスの充填口とを備えるとともに、略鉛直方
向に配した一以上の回転軸を備え、 この回転軸は、内部を中空とし、 適宜位置に当該回転軸の回転に伴って液化石油ガスを吸
入する吸引アームと、吸引した液化石油ガスをアルコー
ル水溶液に放出分散する排出アームとを備えてなり、 吸引アームおよび排出アームは、いずれも内部中空で前
記回転軸の中空部と連通してなり、 吸引アームは、前記回転軸の回転方向に向かって開設さ
れた開口を備えることを特徴とする包摂水和物を用いた
蓄冷熱装置。
4. A regenerative heat storage tank, a cooling device for cooling the inside of the regenerative heat storage tank, and a refrigerant device for sending the subhydrated hydrate generated in the regenerative heat storage tank to a subsequent stage. A filling port for an aqueous alcohol solution and a filling port for liquefied petroleum gas supplied through a pressure reducing valve, and one or more rotating shafts arranged in a substantially vertical direction. The rotating shaft has a hollow inside. A suction arm for sucking the liquefied petroleum gas in accordance with the rotation of the rotating shaft, and a discharge arm for releasing and dispersing the liquefied petroleum gas into the alcohol aqueous solution at an appropriate position, wherein the suction arm and the discharge arm are either A regenerative heat storage device using a subsumed hydrate, characterized in that the suction arm has an opening opened in the rotation direction of the rotation shaft. .
【請求項5】前記排出アームは、回転軸から略直角に突
出するストレート管であって、回転軸の回転方向に対し
て約45度の角度をもって斜め方向にカットされた開口
を備え、当該開口は、回転方向と逆向きの方向に開設さ
れていることを特徴とする請求項4記載の包摂水和物を
用いた蓄冷熱装置。
5. The discharge arm is a straight pipe protruding at a right angle from a rotation axis, and has an opening cut obliquely at an angle of about 45 degrees with respect to the rotation direction of the rotation axis. 5. The regenerative heat storage device using a subsumed hydrate according to claim 4, wherein the device is opened in a direction opposite to the rotation direction.
JP2000071245A 2000-03-14 2000-03-14 Cold storage method and cold storage device using inclusion hydrate Expired - Lifetime JP3855016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000071245A JP3855016B2 (en) 2000-03-14 2000-03-14 Cold storage method and cold storage device using inclusion hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000071245A JP3855016B2 (en) 2000-03-14 2000-03-14 Cold storage method and cold storage device using inclusion hydrate

Publications (2)

Publication Number Publication Date
JP2001255089A true JP2001255089A (en) 2001-09-21
JP3855016B2 JP3855016B2 (en) 2006-12-06

Family

ID=18589861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000071245A Expired - Lifetime JP3855016B2 (en) 2000-03-14 2000-03-14 Cold storage method and cold storage device using inclusion hydrate

Country Status (1)

Country Link
JP (1) JP3855016B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350075A (en) * 2001-05-29 2002-12-04 Ishikawajima Harima Heavy Ind Co Ltd Method and system for cold storage
WO2015118921A1 (en) * 2014-02-05 2015-08-13 株式会社豊田自動織機 Chemical thermal storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360447B (en) * 2019-06-25 2021-04-23 常州瑞凯化工装备有限公司 Ethylene cold storage gasification system and method for producing ethylbenzene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350075A (en) * 2001-05-29 2002-12-04 Ishikawajima Harima Heavy Ind Co Ltd Method and system for cold storage
JP4590781B2 (en) * 2001-05-29 2010-12-01 株式会社Ihi Cold storage method and apparatus
WO2015118921A1 (en) * 2014-02-05 2015-08-13 株式会社豊田自動織機 Chemical thermal storage device
JP2015165178A (en) * 2014-02-05 2015-09-17 株式会社豊田自動織機 chemical heat storage device

Also Published As

Publication number Publication date
JP3855016B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
CN103717980B (en) Startup logic for refrigeration system
Zhang et al. An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems
CN207881304U (en) Cryogen cold energy use technique
JPH09509732A (en) Tandem cooling system
CN106247649B (en) A kind of liquid hydrogen degree of supercooling acquisition device
WO2008109696A1 (en) Method and apparatus for cooling a container
JP2014517248A (en) Condenser / evaporator for cooling device and method thereof
KR100983259B1 (en) Refrigeration apparatus and method for refrigeration top car
JP2014016143A (en) Manufacturing method for hydrate slurry, manufacturing device for hydrate slurry, and hydrate heat storage type air conditioning system
CN208519907U (en) Double-working-condition air-conditioning system and its plate heat exchanger defroster
JP2001255089A (en) Cold accumulating device and method using clathrate hydrate
CN205027017U (en) Direct expansion formula ice thick liquid circulation dynamic system ice device
US20140157823A1 (en) Systems and methods for distributed production of liquified natural gas
TWI470071B (en) Production method of hydrocarbon mixed refrigerant
Verpe et al. Cold thermal energy storage with low-temperature plate freezing of fish on offshore vessels
JP6298554B1 (en) Ice slurry cooling system
CN206235067U (en) Cold-storage dispensing vehicle
CN208688048U (en) A kind of low cost direct-cooling type ice machine
CN201740332U (en) Quick beverage cooler
CN207006672U (en) Recirculated water cooling refrigerator and vehicle for vehicle
JP2001208436A (en) Compression freezing device for common use in subcritical operation and supercritical operation
CN203980770U (en) Cold-storage freshness preserving plate and the cold accumulation system that comprises it
CN219889795U (en) Refrigerating device
CN108826777A (en) A kind of spiral scraper formula dynamic ice-making sizing device
JPH0942717A (en) Icemaking cool storage apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Ref document number: 3855016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term