JP2001252667A - Method and device for treating water containing nitrogen oxides - Google Patents

Method and device for treating water containing nitrogen oxides

Info

Publication number
JP2001252667A
JP2001252667A JP2000069054A JP2000069054A JP2001252667A JP 2001252667 A JP2001252667 A JP 2001252667A JP 2000069054 A JP2000069054 A JP 2000069054A JP 2000069054 A JP2000069054 A JP 2000069054A JP 2001252667 A JP2001252667 A JP 2001252667A
Authority
JP
Japan
Prior art keywords
anode
electrode
nitrogen
water containing
eluting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000069054A
Other languages
Japanese (ja)
Inventor
Koichi Fujie
幸一 藤江
Kouei Ko
洪営 胡
Toshiaki Tsubone
俊明 局
Kei Baba
圭 馬場
Kenichiro Mizuno
健一郎 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000069054A priority Critical patent/JP2001252667A/en
Publication of JP2001252667A publication Critical patent/JP2001252667A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treating method increased in reaction velocity, applicable also to highly concentrated raw water and not generating waste liquid, residue or solid matter, and also provide its device. SOLUTION: When the water containing NOx is electrolyzed, a soluble electrode is used as the anode in the presence of chlorine ion or an insoluble electrode is used in the presence of iron ion and chlorine ion to convert the NOx into ammoniacal nitrogen and further into nitrogen gas, and the water containing NOx is treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上水、下水や工場
廃水、工業用水等の酸化態窒素含有水をアンモニア態窒
素に還元し、さらには窒素ガスにする処理方法および処
理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing method and a processing apparatus for reducing water containing oxidized nitrogen, such as clean water, sewage, industrial wastewater, and industrial water, to ammonia nitrogen and further converting the water to nitrogen gas.

【0002】[0002]

【従来の技術】従来、水中の酸化態窒素、例えばNO
−NやNO−Nの処理には微生物を利用した生物処理
方法が用いられてきた。この生物処理においては、NO
−NやNO−NをNガスに生物のもつ還元作用を
利用して処理する方法が一般的にとられてきている。
2. Description of the Related Art Conventionally, oxidized nitrogen in water, for example, NO 2
The process of -N and NO 3 -N biological treatment method using microorganisms have been used. In this biological treatment, NO
Method of processing 2 -N and NO 3 -N using a reducing action with the organism N 2 gas have been taken generally.

【0003】また、物理・化学的な処理方法としては鉄
粉による還元の研究が行われてきている。アンモニア態
の窒素を不連続点塩素処理(ブレークポイントクロリネ
ーション法)により除去する方法や、塩素イオン存在下
で電解により不連続点塩素処理(ブレークポイントクロ
リネーション法)と同様の反応を起こさせアンモニア態
窒素を除去する方法(特開平07−100466号公
報)も知られている。さらに、膜分離法、吸着剤法、電
気透析法等が用いられている。
[0003] As a physical and chemical treatment method, reduction with iron powder has been studied. Ammonia-based nitrogen is removed by discontinuous point chlorination (breakpoint chlorination method), or the same reaction as discontinuous point chlorination (breakpoint chlorination method) is caused by electrolysis in the presence of chloride ions, resulting in ammonia. There is also known a method for removing nitrogen dioxide (Japanese Patent Laid-Open No. 07-100466). Further, a membrane separation method, an adsorbent method, an electrodialysis method and the like are used.

【0004】[0004]

【発明が解決しようとする課題】従来の生物を用いた方
法は優れた方法ではあるが、1)反応速度が小さく、特
に低水温の場合には反応速度は著しく低下する、2)高
濃度の酸化態窒素濃度の原水には適用できない、3)生
物に対する毒性物質を含む原水には適用できない、等の
問題点がある。
Although the conventional method using an organism is an excellent method, 1) the reaction rate is low, and the reaction rate is remarkably reduced particularly at a low water temperature. It cannot be applied to raw water with an oxidized nitrogen concentration, and 3) it cannot be applied to raw water containing toxic substances to living organisms.

【0005】鉄粉を用いた方法の場合には、鉄の溶解速
度が律速条件となるため、反応速度が小さいという欠点
がある。不連続点塩素処理(ブレークポイントクロリネ
ーション法)や特開平07−100466号公報に開示
の技術はアンモニア態窒素の除去は可能であるが、NO
−NやNO−Nの除去はできない。また、生成ガス
には地球温暖化の原因物質として指摘されている亜酸化
窒素が含まれると言う問題がある。膜分離法、吸着剤
法、電気透析法等は、いずれも原水から酸化態窒素を分
離するものであり、酸化態窒素を高濃度に含む濃縮廃液
や残査、固形物が発生しその処理が必要になるという問
題点がある。
The method using iron powder has the disadvantage that the reaction rate is low because the rate of dissolution of iron is the rate-determining condition. Discontinuous point chlorination (breakpoint chlorination method) and the technique disclosed in JP-A-07-100466 can remove ammonia nitrogen, but NO
Removal of 2 -N and NO 3 -N can not. Further, there is a problem that the generated gas contains nitrous oxide, which has been pointed out as a substance causing global warming. The membrane separation method, the adsorbent method, the electrodialysis method, etc. all separate oxide nitrogen from raw water, and concentrated waste liquids containing high concentrations of oxide nitrogen, residues, and solids are generated, and the treatment is performed. There is a problem that it becomes necessary.

【0006】そこで本発明は、反応速度が大きく、高濃
度の原水にも適用でき、廃液や残査、固形物の発生しな
い水処理方法およびその装置を提供することを目的とす
る。
Accordingly, an object of the present invention is to provide a water treatment method and apparatus which have a high reaction rate, can be applied to high-concentration raw water, and do not generate waste liquid, residue, or solid matter.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するため
に、本発明は、電極による電気分解を適用した水処理方
法およびその装置を提供するものであって、 (1) 酸化態窒素を含む水を電気分解処理する方法で
あって、陽極に溶出性電極を用いることを特徴とする酸
化態窒素含有水の処理方法。
In order to achieve the above object, the present invention provides a water treatment method and an apparatus using electrolysis with an electrode, and (1) a method including water containing nitrogen oxides. What is claimed is: 1. A method for electrolyzing water, comprising using an eluting electrode as an anode.

【0008】(2) 酸化態窒素を含む水を電気分解処
理する方法であって、陽極に非溶出性電極と溶出性電極
を用いることを特徴とする酸化態窒素含有水の処理方
法。
(2) A method for electrolyzing water containing nitrogen oxides, wherein a non-eluting electrode and an eluting electrode are used as anodes.

【0009】(3) 酸化態窒素を含む水を電気分解処
理する方法であって、陽極に非溶出性電極を用い、鉄イ
オンの存在下で行うことを特徴とする酸化態窒素含有水
の処理方法。
(3) A method for electrolyzing water containing oxidized nitrogen, which comprises using a non-elutable electrode as an anode in the presence of iron ions. Method.

【0010】(4) 酸化態窒素を含む水を電気分解処
理する方法であって、塩素イオンの存在下で行うことを
特徴とする(1)〜(4)に記載の酸化態窒素含有水の
処理方法。
(4) A method for electrolyzing water containing oxidized nitrogen, which is carried out in the presence of chlorine ions, wherein the water containing oxidized nitrogen is subjected to electrolysis. Processing method.

【0011】(5) 少なくとも一対の陽極と陰極を有
する電解槽を備え、前記陽極が溶出性電極であることを
特徴とする酸化態窒素含有水の処理装置。
(5) An apparatus for treating water containing oxidized nitrogen, comprising an electrolytic cell having at least a pair of an anode and a cathode, wherein the anode is an eluting electrode.

【0012】(6) 少なくとも一対の陽極と陰極を有
する電解槽を備え、前記陽極が溶出性電極と非溶出性電
極とからなることを特徴とする酸化態窒素含有水の処理
装置。
(6) An apparatus for treating water containing oxidized nitrogen, comprising an electrolytic cell having at least a pair of an anode and a cathode, wherein the anode comprises an eluting electrode and a non-eluting electrode.

【0013】(7) 少なくとも一対の陽極と陰極を有
する電解槽と、前記電解槽へ鉄イオンを供給する鉄イオ
ン供給手段を備え、前記陽極が非溶出性電極であること
を特徴とする酸化態窒素含有水の処理装置。
(7) An oxidation state comprising an electrolytic cell having at least a pair of an anode and a cathode, and an iron ion supplying means for supplying iron ions to the electrolytic cell, wherein the anode is a non-eluting electrode. Equipment for treating nitrogen-containing water.

【0014】(8) さらに前記電解槽へ塩素イオンを
供給する塩素イオン供給手段を備えていることを特徴と
する(5)〜(7)のいずれかに記載の酸化態窒素含有
水の処理装置である。
(8) The apparatus for treating oxidized nitrogen-containing water according to any one of (5) to (7), further comprising a chlorine ion supply means for supplying chlorine ions to the electrolytic cell. It is.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明においては、まず、酸化態窒素成分を含む原水
を、電気分解処理することにより水中から酸化態窒素成
分を除去する。この電気分解に際して陽極に溶出性電極
を用いる。これにより、電極の溶出時の還元力を利用し
てNO−NやNO−Nがアンモニア態窒素に還元さ
れる。電気分解法を適用することにより、鉄粉の溶解と
は比較にならないほどの鉄の溶出反応が起こるので、反
応速度が鉄粉を用いた方法と比較して還元量が飛躍的に
増大する。陽極に溶出性電極と非溶出性電極とを用いた
場合も同様である。ここで、電気分解の電流密度は原水
の濃度などの処理条件にもよるが、0.01〜1A/c
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, first, raw water containing an oxidized nitrogen component is electrolyzed to remove the oxidized nitrogen component from the water. In this electrolysis, an eluting electrode is used as the anode. As a result, NO 2 -N and NO 3 -N are reduced to ammonia nitrogen using the reducing power at the time of elution of the electrode. By applying the electrolysis method, an elution reaction of iron occurs that is incomparable to the dissolution of iron powder, so that the reduction rate is dramatically increased as compared with the method using iron powder. The same applies to the case where an eluting electrode and a non-eluting electrode are used for the anode. Here, the current density of the electrolysis depends on the processing conditions such as the concentration of raw water, but is 0.01 to 1 A / c.
m 2 is preferred.

【0016】また、陽極に非溶出性電極を用い、鉄イオ
ンの存在下で電気分解を行う方法でもよい。陽極に非溶
出性電極を用いた場合には、陽極での電極の溶出に伴う
還元力が得られないが、鉄イオンを存在させることによ
り、鉄イオンを介して酸化、還元反応が起こり、NO
−NやNO−Nがアンモニア態窒素に還元される。こ
の場合には電極材料の交換頻度を大幅に削減すること、
すなわち電極材料を半永久的に利用することが可能とな
る。Fe2+は還元触媒として作用するが、NH
酸化には阻害剤として作用するので、添加量には適正な
範囲がある。このため、鉄イオンの供給は、たとえば硫
酸第一鉄を添加することにより行い、その添加量は、
0.1〜5mg/Lが好ましい。
Further, a method may be employed in which a non-elutable electrode is used as the anode and electrolysis is performed in the presence of iron ions. When a non-eluting electrode is used for the anode, the reducing power associated with elution of the electrode at the anode cannot be obtained, but the presence of iron ions causes oxidation and reduction reactions via iron ions, resulting in NO 2
-N and NO 3 -N is reduced to ammonia nitrogen. In this case, the frequency of changing the electrode material should be significantly reduced,
That is, the electrode material can be used semi-permanently. Although Fe 2+ acts as a reduction catalyst, it acts as an inhibitor in the oxidation of NH 4 + , so the amount of addition has an appropriate range. For this reason, iron ions are supplied by, for example, adding ferrous sulfate, and the amount of addition is
0.1-5 mg / L is preferable.

【0017】また、陽極に溶出性電極、溶出性電極と非
溶出性電極、或いは、非溶出性電極を用いた場合に塩素
イオンの存在下で電気分解を行うのがよい。これによ
り、不連続点塩素処理と同様にアンモニア態窒素の窒素
ガス化が達成される。この際の生成ガスはほとんどすべ
て窒素ガスであり、亜酸化窒素は発生しない。塩素イオ
ンの供給は、たとえば食塩(NACl)を添加すること
により行い、その添加量は、被処理水の性状、濃度にも
よるが、100〜5000mg−Cl/Lが好ましい。
Further, it is preferable that the electrolysis is performed in the presence of chloride ions when an eluting electrode, an eluting electrode and a non-eluting electrode, or a non-eluting electrode is used as the anode. Thereby, nitrogen gasification of ammonia nitrogen is achieved in the same manner as in the discontinuous point chlorination. Almost all generated gas at this time is nitrogen gas, and no nitrous oxide is generated. The supply of chlorine ions is performed by, for example, adding salt (NACl), and the amount of addition depends on the nature and concentration of the water to be treated, but is preferably 100 to 5000 mg-Cl / L.

【0018】以下、図面を参照して本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the drawings.

【0019】図1は、本発明の一例を示す廃水処理装置
の概略図である。この廃水処理装置は、被処理水4(廃
水)を入れた反応タンク1内に陽極2と陰極3とを対向
して配置する。また、必要により鉄イオン供給管(図示
せず)、塩素イオン供給管(図示せず)を配置する。そ
して、電源1から陽極2,陰極3に直流電圧を与えるこ
とにより電気分解を行う。
FIG. 1 is a schematic diagram of a wastewater treatment apparatus showing an example of the present invention. In this wastewater treatment apparatus, an anode 2 and a cathode 3 are arranged opposite to each other in a reaction tank 1 containing water 4 (wastewater) to be treated. If necessary, an iron ion supply pipe (not shown) and a chlorine ion supply pipe (not shown) are provided. Then, electrolysis is performed by applying a DC voltage from the power source 1 to the anode 2 and the cathode 3.

【0020】電極の構成および共存物質は以下の(1)
〜(3)から選択する。
The structure of the electrode and the coexisting substance are as follows (1)
To (3).

【0021】(1)陽極:溶出性電極(例:鉄電極)、
陰極:溶出性電極あるいは非溶出性電極のいずれか。こ
の場合には、溶出性電極の溶出時に発生する還元力によ
りNO−NやNO −Nがアンモニア態窒素に還元さ
れる。さらに、この構成において、塩素イオンを添加し
た場合には、アンモニア性窒素の窒素ガス化反応が生じ
る。このことは発明者らが新たに見出したことである。
よって、この構成では、NO−NやNO−Nがアン
モニア態窒素に還元される反応と、アンモニア性窒素の
窒素ガス化反応が同時に起こることにより、全体として
は、NO−NやNO−Nが窒素ガス化が達成され
る。
(1) anode: eluting electrode (eg, iron electrode),
Cathode: either eluting or non-eluting electrode. This
In the case of, the reducing power generated during elution of the eluting electrode
No2-N or NO 3-N is reduced to ammonia nitrogen
It is. Furthermore, in this configuration, chlorine ions are added.
In this case, a nitrogen gasification reaction of ammoniacal nitrogen occurs.
You. This is what the inventors have newly found.
Therefore, in this configuration, NO2-N or NO3-N is Ann
The reaction reduced to monic nitrogen and the formation of ammoniacal nitrogen
As a result of the simultaneous nitrogen gasification reaction,
Is NO2-N or NO3-N has achieved nitrogen gasification
You.

【0022】(2)陽極:非溶出性電極(白金被覆電極
等)、陰極:溶出性電極あるいは非溶出性電極のいずれ
か。この構成の場合には、単に電気分解処理しただけで
はNO−NやNO−Nがアンモニア態窒素に還元さ
れる反応は起こらないが、鉄イオンを共存させることに
よりNO−NやNO−Nがアンモニア態窒素に還元
される。このことも発明者らが新たに見出したものであ
る。さらに、この構成において、鉄イオンを共存させた
上で、(1)同様に、塩素イオンを添加した場合には、
アンモニア性窒素の窒素ガス化反応が生じる。よって、
この構成では、NO−NやNO−Nがアンモニア態
窒素に還元される反応と、アンモニア性窒素の窒素ガス
化反応が同時に起こることにより、全体としては、NO
−NやNO−Nが窒素ガス化が達成される。
(2) Anode: non-eluting electrode (such as a platinum-coated electrode); Cathode: either eluting electrode or non-eluting electrode. In the case of this configuration, the reaction of reducing NO 2 —N or NO 3 —N to ammonia nitrogen does not occur simply by electrolysis treatment. However, NO 2 —N or NO 3 3- N is reduced to ammonia nitrogen. This has also been newly found by the inventors. Further, in this configuration, when iron ions are allowed to coexist and chlorine ions are added similarly to (1),
A nitrogen gasification reaction of ammoniacal nitrogen occurs. Therefore,
In this configuration, a reaction in which NO 2 —N or NO 3 —N is reduced to ammonia nitrogen and a nitrogen gasification reaction of ammonia nitrogen occur at the same time.
2 -N and NO 3 -N nitrogen gas is achieved.

【0023】(3)陽極:非溶出性電極(白金被覆電極
等)と溶出性電極(鉄電極)の両者、陰極:溶出性電極
あるいは非溶出性電極のいずれか。この構成の場合に
は、鉄電極の溶出時に発生する還元力と、溶出した鉄イ
オンの存在によりNO−NやNO−Nがアンモニア
態窒素に還元される。この際、塩素イオンを共存させる
ことによりアンモニア性窒素の窒素ガス化反応が生じ、
NO−NやNO−Nがアンモニア態窒素に還元され
る反応と、アンモニア性窒素の窒素ガス化反応が同時に
起こることにより、全体としては、NO−NやNO
−Nの窒素ガス化が達成される。このことは(1)の場
合と同様である。
(3) Anode: Both a non-eluting electrode (such as a platinum-coated electrode) and an eluting electrode (iron electrode), and a cathode: either an eluting electrode or a non-eluting electrode. In this configuration, NO 2 —N and NO 3 —N are reduced to ammonia nitrogen by the reducing power generated when the iron electrode is eluted and the presence of the eluted iron ions. At this time, a nitrogen gasification reaction of ammonia nitrogen occurs by coexisting chlorine ions,
A reaction in which NO 2 —N or NO 3 —N is reduced to ammonia nitrogen and a gasification reaction of ammonia nitrogen occur simultaneously, so that NO 2 —N or NO 3 as a whole is obtained.
Nitrogen gasification of -N is achieved. This is similar to the case (1).

【0024】本発明において、電極に通電する電流およ
び電圧は、装置構造(電極面積、電極間距離等)や、液
の電気伝導度、要求処理水質や処理時間等により変化さ
せるものであり、要望に応じて最適なものを採用する。
このことは、当業者が容易に想到できる設計事項であ
る。
In the present invention, the current and voltage applied to the electrodes are varied depending on the device structure (electrode area, distance between electrodes, etc.), the electric conductivity of the liquid, the required quality of the treated water, the treatment time, and the like. The best one is adopted according to
This is a design matter that can be easily conceived by those skilled in the art.

【0025】また、本発明によれば、鉄電極、あるいは
鉄イオンを用いた場合には溶液中のリン成分がリン酸鉄
として不溶化されるので、液側からのリンの除去および
リンの回収が可能となる。
Further, according to the present invention, when an iron electrode or iron ions are used, the phosphorus component in the solution is insolubilized as iron phosphate, so that phosphorus can be removed from the liquid side and phosphorus can be recovered. It becomes possible.

【0026】なお、鉄イオンを共存させた場合の鉄イオ
ンの挙動については現在、研究段階であるが、投入した
Fe2+からのFe3+への酸化量以上の量の反応が生
じていると見られることもあり、鉄イオンが電子伝達の
役割をになっているか、触媒的に作用している部分もあ
るものと推測される。
Although the behavior of iron ions in the presence of iron ions is currently in the research stage, it is considered that a reaction of an amount greater than the amount of oxidation of Fe 2+ into Fe 3+ is caused. It is presumed that iron ions play a role of electron transfer or that some parts act catalytically.

【0027】[0027]

【実施例】以下、具体例および比較例を示して本発明を
さらに詳細に説明する。まず、図2に示した実験装置を
用いて実験を行った。図2に示す反応装置は、反応槽1
1内に一対の電極12,13を設置して電気分解処理す
る装置で、槽内の試料水(30mM−N0.5l)をサ
ンプリングし、そのpHをpHコントローラー14で検
出し、この検出値に基づいてpH調整用HSOを槽
内に添加する。そして、反応で生じたガスをサンプリン
グするものである。
The present invention will be described in more detail with reference to specific examples and comparative examples. First, an experiment was performed using the experimental apparatus shown in FIG. The reaction apparatus shown in FIG.
A pair of electrodes 12 and 13 are installed in the apparatus 1 to perform an electrolysis treatment. A sample water (30 mM-N 0.5 l) in a tank is sampled, and its pH is detected by a pH controller 14. Then, H 2 SO 4 for pH adjustment is added into the tank. Then, the gas generated by the reaction is sampled.

【0028】図3は、陽極に鉄電極、陽極に鉄電極を用
いた場合の実験結果、図4は陽極に鉄電極、陰極に白金
電極を用いた場合の実験結果である。いずれの場合も、
鉄粉を用いた場合の還元速度(ほぼ4〜10mM/hr
程度の還元速度)や生物処理における還元速度(ほぼ
0.5〜2mM/hr程度の還元速度)を大幅に上回る
還元速度が得られた。
FIG. 3 shows an experimental result when an iron electrode is used for the anode and an iron electrode is used for the anode. FIG. 4 shows an experimental result when an iron electrode is used for the anode and a platinum electrode is used for the cathode. In either case,
Reduction rate using iron powder (approximately 4 to 10 mM / hr)
Reduction rate) and a reduction rate in biological treatment (reduction rate of about 0.5 to 2 mM / hr).

【0029】一方、陽極に白金電極を用いただけの場合
には、陰極の材質に関わらずNO−NやNO−Nの
還元反応は起こらなかった。しかしながら陽極に白金電
極を用いた場合においても、陰極の材質に関わらずFe
2+を共存させることによりNO−NやNO−Nの
還元反応が生じることが確認された(図5参照)。
On the other hand, when only a platinum electrode was used as the anode, no reduction reaction of NO 2 -N or NO 3 -N occurred regardless of the material of the cathode. However, even when a platinum electrode is used for the anode, Fe
It was confirmed that the coexistence of 2+ causes a reduction reaction of NO 2 -N and NO 3 -N (see FIG. 5).

【0030】また、塩素を添加して不連続点処理を行う
ことを検討したが、陽極に鉄電極を用いた場合には、N
−NやNO−Nのアンモニア態窒素までの還元は
起こるものの、アンモニア態窒素はNO−NやNO
−N量から計算される値とほぼ同じ濃度で残存し、アン
モニア態窒素の除去は達成できなかった。これに対し、
陽極に白金電極を用いた場合に、陰極の材質に関わらず
Fe2+を共存させ、かつ、塩素を添加させることによ
りNO−NやNO−Nの還元反応とアンモニア態窒
素の除去反応が一つの反応容器内で生じることが確認さ
れた(図6参照)。この際に発生したガスの組成分析を
行った結果、アンモニア態窒素は100%窒素ガスにな
っていることが確認された。
Further, it was examined to perform a discontinuous point treatment by adding chlorine. However, when an iron electrode was used for the anode, N
Although reduction of O 2 —N or NO 3 —N to ammonia nitrogen occurs, ammonia nitrogen is NO 2 —N or NO 3
The concentration remained almost the same as the value calculated from the -N amount, and removal of ammonia nitrogen could not be achieved. In contrast,
When a platinum electrode is used as the anode, the reduction reaction of NO 2 -N or NO 3 -N and the removal reaction of ammonia nitrogen can be performed by coexisting Fe 2+ and adding chlorine regardless of the material of the cathode. It was confirmed to occur in one reaction vessel (see FIG. 6). As a result of analyzing the composition of the gas generated at this time, it was confirmed that the ammonia nitrogen was 100% nitrogen gas.

【0031】以上のように、本発明は、適切な電極材料
を用いた電気分解と言う手法を用いたことにより、非常
に大きい反応速度を得ることができるとともに、適宜、
Fe 2+イオンや、塩素イオンを共存させることによ
り、NO−NやNO−Nからの最終生成物質を全く
無害な窒素ガスとすることができ、かつ、NO−Nや
NO−Nからのアンモニア態窒素への還元反応と、ア
ンモニア態窒素の窒素ガスへの酸化反応を同一容器内で
同時に進行させることができ、工業的価値は大きい。
As described above, the present invention relates to a method for forming a suitable electrode material.
The use of a technique called electrolysis using
A large reaction rate can be obtained, and
Fe 2+Ions and chloride ions coexist
No2-N or NO3-No final product from N
Can be harmless nitrogen gas and NO2-N or
NO3-N to ammonia nitrogen, and
Oxidation reaction of ammonia nitrogen to nitrogen gas in the same vessel
It can be advanced at the same time, and the industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例を示す廃水処理装置の概略図。FIG. 1 is a schematic diagram of a wastewater treatment apparatus showing an example of the present invention.

【図2】本発明の実験装置図。FIG. 2 is a diagram of an experimental apparatus of the present invention.

【図3】陽極に鉄電極、陽極に鉄電極を用いた場合の、
定電流:1.0A,電圧:15〜10V,pH=7にお
けるNH ,NO の濃度変化を示す実験結果説明
図。
FIG. 3 shows a case where an iron electrode is used for the anode and an iron electrode is used for the anode.
FIG. 4 is an explanatory diagram of experimental results showing a change in concentration of NH 4 + and NO 3 − at a constant current of 1.0 A, a voltage of 15 to 10 V, and a pH of 7.

【図4】陽極に鉄電極、陰極に白金電極を用いた場合
の、定電流:1.0A,電圧:4V,pH=7における
NH ,NO の濃度変化を示す実験結果説明図。
FIG. 4 is an explanatory diagram of an experimental result showing a change in the concentration of NH 4 + and NO 3 − at a constant current of 1.0 A, a voltage of 4 V, and a pH of 7 when an iron electrode is used as an anode and a platinum electrode is used as a cathode. .

【図5】陽極に白金電極を用いた場合に、2g/l−F
2+添加し、定電流:1.0A,電圧:5〜7.5
V,pH=3.4〜2におけるNH ,NO の濃
度変化を示す実験結果説明図。
FIG. 5 shows that when a platinum electrode is used as an anode, 2 g / l-F
e 2+ added, constant current: 1.0 A, voltage: 5 to 7.5
FIG. 5 is an explanatory diagram of an experimental result showing a change in concentration of NH 4 + and NO 3 at V and pH = 3.4 to 2 .

【図6】陽極に白金電極を用いた場合に、2g/l−F
2+及びCl添加し、定電流:1.0A,電圧:5
〜7.5V,pH=3.4〜2におけるNH ,NO
,の濃度変化を示す実験結果説明図。
FIG. 6 is a graph showing 2 g / l-F when a platinum electrode is used as an anode.
e2+And ClAddition, constant current: 1.0 A, voltage: 5
NH at ~ 7.5 V, pH = 3.4-24 +, NO
3 FIG. 4 is an explanatory diagram of an experimental result showing a change in the density of the graph of FIG.

【符号の説明】[Explanation of symbols]

1・・・電源 2・・・陽極 3・・・陰極 4・・・被処理水 5・・・反応タンク DESCRIPTION OF SYMBOLS 1 ... Power supply 2 ... Anode 3 ... Cathode 4 ... Water to be treated 5 ... Reaction tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 局 俊明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 馬場 圭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 水野 健一郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4D061 DA08 DB19 DC14 EA02 EA04 EB04 EB14 EB28 EB30 ED13 ED20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Toshiaki Inventor Bureau 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Kei Kei Baba 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun Inside the Honko Tube Co., Ltd. (72) Inventor Kenichiro Mizuno 1-2-1 Marunouchi, Chiyoda-ku, Tokyo F-term in the Nippon Kokan Co., Ltd. 4D061 DA08 DB19 DC14 EA02 EA04 EB04 EB14 EB28 EB30 ED20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 酸化態窒素を含む水を電気分解処理する
方法であって、陽極に溶出性電極を用いることを特徴と
する酸化態窒素含有水の処理方法。
1. A method for electrolyzing water containing oxidized nitrogen, comprising using an eluting electrode as an anode.
【請求項2】 酸化態窒素を含む水を電気分解処理する
方法であって、陽極に非溶出性電極と溶出性電極を用い
ることを特徴とする酸化態窒素含有水の処理方法。
2. A method for electrolyzing water containing oxidized nitrogen, comprising using a non-eluting electrode and an eluting electrode as an anode.
【請求項3】 酸化態窒素を含む水を電気分解処理する
方法であって、陽極に非溶出性電極を用い、鉄イオンの
存在下で行うことを特徴とする酸化態窒素含有水の処理
方法。
3. A method for electrolyzing water containing oxidized nitrogen, which comprises using a non-elutable electrode as an anode in the presence of iron ions. .
【請求項4】 酸化態窒素を含む水を電気分解処理する
方法であって、塩素イオンの存在下で行うことを特徴と
する請求項1〜4に記載の酸化態窒素含有水の処理方
法。
4. The method for treating water containing oxidized nitrogen according to claim 1, wherein the method comprises electrolyzing water containing oxidized nitrogen in the presence of chlorine ions.
【請求項5】 少なくとも一対の陽極と陰極を有する電
解槽を備え、前記陽極が溶出性電極であることを特徴と
する酸化態窒素含有水の処理装置。
5. An apparatus for treating water containing oxidized nitrogen, comprising: an electrolytic cell having at least a pair of an anode and a cathode, wherein the anode is an eluting electrode.
【請求項6】 少なくとも一対の陽極と陰極を有する電
解槽を備え、前記陽極が溶出性電極と非溶出性電極とか
らなることを特徴とする酸化態窒素含有水の処理装置。
6. An apparatus for treating water containing oxidized nitrogen, comprising: an electrolytic cell having at least a pair of an anode and a cathode, wherein the anode comprises an eluting electrode and a non-eluting electrode.
【請求項7】 少なくとも一対の陽極と陰極を有する電
解槽と、前記電解槽へ鉄イオンを供給する鉄イオン供給
手段とを備え、前記陽極が非溶出性電極であることを特
徴とする酸化態窒素含有水の処理装置。
7. An oxidation state comprising: an electrolytic cell having at least a pair of an anode and a cathode; and an iron ion supplying means for supplying iron ions to the electrolytic cell, wherein the anode is a non-eluting electrode. Equipment for treating nitrogen-containing water.
【請求項8】 さらに前記電解槽へ塩素イオンを供給す
る塩素イオン供給手段を備えていることを特徴とする請
求項5〜7のいずれかに記載の酸化態窒素含有水の処理
装置。
8. The apparatus for treating oxidized nitrogen-containing water according to claim 5, further comprising a chlorine ion supply means for supplying chlorine ions to said electrolytic cell.
JP2000069054A 2000-03-13 2000-03-13 Method and device for treating water containing nitrogen oxides Pending JP2001252667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000069054A JP2001252667A (en) 2000-03-13 2000-03-13 Method and device for treating water containing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000069054A JP2001252667A (en) 2000-03-13 2000-03-13 Method and device for treating water containing nitrogen oxides

Publications (1)

Publication Number Publication Date
JP2001252667A true JP2001252667A (en) 2001-09-18

Family

ID=18588014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069054A Pending JP2001252667A (en) 2000-03-13 2000-03-13 Method and device for treating water containing nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2001252667A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068340A1 (en) * 2001-02-28 2002-09-06 Sanyo Electric Co., Ltd. Drain treating method, drain treating device and drain treating system
WO2002068339A1 (en) * 2001-02-26 2002-09-06 Sanyo Electric Co., Ltd. Method and system for treating nitrogen-containing compound
WO2003086980A1 (en) * 2002-04-18 2003-10-23 Sanyo Electric Co., Ltd. Method of wastewater treatment and wastewater treatment apparatus
US7011750B2 (en) 2001-09-04 2006-03-14 Sanyo Electric Co., Ltd. Water treatment device
JP2020146647A (en) * 2019-03-14 2020-09-17 住友金属鉱山エンジニアリング株式会社 Treatment method of oxidized nitrogen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068339A1 (en) * 2001-02-26 2002-09-06 Sanyo Electric Co., Ltd. Method and system for treating nitrogen-containing compound
WO2002068340A1 (en) * 2001-02-28 2002-09-06 Sanyo Electric Co., Ltd. Drain treating method, drain treating device and drain treating system
US6875362B2 (en) 2001-02-28 2005-04-05 Sanyo Electric Co., Ltd. Waste water treating method, waste water treating apparatus, and waste water treating system
US7011750B2 (en) 2001-09-04 2006-03-14 Sanyo Electric Co., Ltd. Water treatment device
WO2003086980A1 (en) * 2002-04-18 2003-10-23 Sanyo Electric Co., Ltd. Method of wastewater treatment and wastewater treatment apparatus
US7300591B2 (en) 2002-04-18 2007-11-27 Sanyo Electronic Co., Ltd. Wastewater treating method and wastewater treating apparatus
JP2020146647A (en) * 2019-03-14 2020-09-17 住友金属鉱山エンジニアリング株式会社 Treatment method of oxidized nitrogen
JP7279993B2 (en) 2019-03-14 2023-05-23 住友金属鉱山エンジニアリング株式会社 Method for treating nitrogen oxides

Similar Documents

Publication Publication Date Title
Oturan et al. Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials
Cotillas et al. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation
Li et al. Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method
US3926754A (en) Electrochemical contaminant removal from aqueous media
Huang et al. Case study on the bioeffluent of petrochemical wastewater by electro-Fenton method
Shu et al. Manganese recovery and ammonia nitrogen removal from simulation wastewater by pulse electrolysis
JP2882727B2 (en) Water treatment method
US5326439A (en) In-situ chromate reduction and heavy metal immobilization
CN107298490B (en) Electrochemical reactor, method for removing chloride ions in wastewater through electric flocculation, precipitated product and application
JP2003126861A (en) Method and apparatus for water treatment
CN108314149B (en) Method for integrating desulfurization wastewater electrolysis and product denitration
HUT71990A (en) Method for electrochemical reduction of nitrate
TWI637917B (en) Fluoride removal method of flue-gas desulfurization wastewater and fluoride removal system thereof
JP2001252667A (en) Method and device for treating water containing nitrogen oxides
EP0291330A2 (en) Ground-water treatment
JP2003205290A (en) Waste water treating system and its method
US3582485A (en) Water purification
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
RU2207982C2 (en) Water treatment method
KR101914027B1 (en) Method for electrochemical water treatment using carbon electrodes and system thereof
Aitbara et al. Electrocoagulation and Fenton hybrid processes for dairy water purification: In situ generation of H2O2
SU1112000A1 (en) Method for purifying solution from organic impurities
JPH06182344A (en) Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution
Mukimin et al. Removal Efficiency of Nitrite and Sulfide Pollutants by Electrochemical Process by Using Ti/RuIrO 2 Anode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614