JP2001249712A - Work instructing apparatus - Google Patents

Work instructing apparatus

Info

Publication number
JP2001249712A
JP2001249712A JP2000059351A JP2000059351A JP2001249712A JP 2001249712 A JP2001249712 A JP 2001249712A JP 2000059351 A JP2000059351 A JP 2000059351A JP 2000059351 A JP2000059351 A JP 2000059351A JP 2001249712 A JP2001249712 A JP 2001249712A
Authority
JP
Japan
Prior art keywords
work
progress
effective
range
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000059351A
Other languages
Japanese (ja)
Other versions
JP4368487B2 (en
Inventor
Tomohiko Maeda
智彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000059351A priority Critical patent/JP4368487B2/en
Publication of JP2001249712A publication Critical patent/JP2001249712A/en
Application granted granted Critical
Publication of JP4368487B2 publication Critical patent/JP4368487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Abstract

PROBLEM TO BE SOLVED: To improve production efficiency by inputting an optimal work instruction to each processing facility in a process system producing factory adopting a job shop style production system. SOLUTION: A proper work-in-process capable of rapidly reducing that of each processing facility is set based on simulation, and a valid work-in-process being the target of each processing facility is obtained based on the proper work-in-process and the present work-in-process, and each processing facility is instructed to process the valid work-in-process in the order of the dates of delivery. Thus, the work-in-process quantity can be reduced according to the most valid mechanism state of each processing facility, and the work object of each processing facility can be limited to the valid work-in-process. Therefore, it is possible to improve the production efficiency by making the present work- in-process quickly approach the proper one.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、作業指示装置に関
し、特に、生産変動が激しく生産工程が複雑なプロセス
系生産工場において、各処理設備に適切な作業指示を行
うことができる作業指示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a work instructing device, and more particularly to a work instructing device capable of giving an appropriate work instruction to each processing facility in a process-based production plant where production fluctuations are intense and the production process is complicated. .

【0002】[0002]

【従来の技術】半導体等を生産するプロセス系生産工場
においては、生産する品種が多く生産工程が複雑なた
め、ベルトコンベア等を使用したインライン形式の生産
形態をとることができず、処理対象をロット単位で処理
設備に運搬し処理するジョブショップ形式の生産形態を
とっている。
2. Description of the Related Art In a process-based production plant for producing semiconductors and the like, since there are many types of products to be produced and the production process is complicated, it is not possible to take an in-line production form using a belt conveyor or the like. The production format is a job shop format in which each lot is transported to processing equipment and processed.

【0003】このようなジョブショップ形式の生産形態
では、生産工場をコンピュータ上にモデル化してシミュ
レーションを行い、その結果を作業計画として採用する
ことで生産効率の向上が図られる。
In such a job shop style production mode, the production factory is modeled on a computer, a simulation is performed, and the result is adopted as a work plan to improve production efficiency.

【0004】図19は、プロセス系生産工場の一例であ
る半導体製造工場の模式図である。半導体製造工場に
は、半導体ウェハ80に対して各種の処理を行うスパッタ
20、カーブトレーサ30、ウェハプローバ40、ステッパ5
0、エッチング装置60、研削盤70等の処理設備と、各処
理設備に処理順等の作業指示を行う作業指示装置10とが
設けられる。半導体ウェハ80は、処理工程に従ってロッ
ト単位で各処理設備に運搬され、作業指示装置10からの
指示に従って処理される。
FIG. 19 is a schematic diagram of a semiconductor manufacturing plant which is an example of a process-based production plant. The semiconductor manufacturing plant has a sputter that performs various processes on the semiconductor wafer 80.
20, curve tracer 30, wafer prober 40, stepper 5
0, processing equipment such as an etching device 60, a grinding machine 70, and the like, and a work instruction device 10 for giving a work instruction such as a processing order to each processing equipment are provided. The semiconductor wafer 80 is transported to each processing facility in lot units according to the processing steps, and processed according to instructions from the work instruction device 10.

【0005】図20は半導体製造プロセスの1例であ
る。半導体は、半導体ウェハ80に様々な処理を行うこと
により製造されるが、半導体製造プロセスの工程には、
例えば、研削盤70により半導体ウェハ80の表面を研磨す
るA工程、ステッパ50によりゲート層を露光するB工
程、エッチング装置60によりゲート層をエッチングする
C工程、ステッパ50によりドレイン層を露光するD工
程、エッチング装置60によりドレイン層をエッチングす
るE工程、スパッタ20によりアルミニウム配線を行うF
工程等がある。
FIG. 20 shows an example of a semiconductor manufacturing process. The semiconductor is manufactured by performing various processes on the semiconductor wafer 80.
For example, an A step of polishing the surface of the semiconductor wafer 80 by the grinder 70, a B step of exposing the gate layer by the stepper 50, a C step of etching the gate layer by the etching device 60, and a D step of exposing the drain layer by the stepper 50 Step E of etching the drain layer by the etching apparatus 60, and Step F of forming aluminum wiring by sputtering 20.
There are processes.

【0006】このように半導体は様々な工程を経て製造
されるが、プロセス系生産工場では、例えばB、D工程
又はC、E工程等の異なる工程に、ステッパ50又はエッ
チング装置60等の同じ処理設備を繰り返し使用する場合
が多い。このため、各処理設備において工程の異なる半
導体ウェハ80をどのような順番で処理すれば生産効率が
向上するかを判断することが難しく、通常、各処理設備
において仕掛の納期順に処理が行われる。
As described above, a semiconductor is manufactured through various processes. However, in a process-based production plant, the same process such as the stepper 50 or the etching apparatus 60 is performed in different processes such as the B and D processes or the C and E processes. Equipment is often used repeatedly. For this reason, it is difficult to judge in what order the semiconductor wafers 80 having different processes are processed in each processing facility to improve the production efficiency, and the processing is usually performed in each processing facility in the order of the in-process delivery date.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、プロセ
ス系生産工場は、生産変動が激しく生産工程が複雑なた
め、各処理設備において仕掛を単に納期順に処理する
と、ある処理設備では仕掛が過剰になり、別の処理設備
では仕掛が不足する事態が発生し、作業渋滞のため生産
効率が低下することが多い。
However, in a process-based production factory, production fluctuations are so severe that the production process is complicated. Therefore, if the processing in each processing equipment is simply processed in the order of delivery date, the processing in some processing equipment becomes excessive. In other processing facilities, a situation in which the work in process is insufficient occurs, and the production efficiency often decreases due to work congestion.

【0008】プロセス系生産工場では、各処理設備又は
各工程において適正な量の仕掛がある場合に生産効率が
最も高くなるが、生産品種が多く生産工程が複雑なプロ
セス系生産工場では、各処理設備又は各工程における適
正な量の仕掛を求めることは非常に難しい。
[0008] In a process-based production plant, the production efficiency is highest when there is an appropriate amount of work in each processing facility or each process. It is very difficult to find the right amount of work in equipment or each process.

【0009】例えば、シミュレーションに基づいて作業
計画を立案する場合でも、その作業計画は、処理設備の
故障を考慮しなかったり、処理設備の故障を単に確率的
に取り入れたものである。このため、処理設備で実際に
発生する故障やオペレータの着手ミスなどの予測不可能
な事態により仕掛の分布状態がくずれ、生産効率を著し
く低下させていた。
For example, even when a work plan is made based on a simulation, the work plan does not consider the failure of the processing equipment or simply takes in the failure of the processing equipment stochastically. For this reason, unpredictable situations, such as a failure that actually occurs in the processing equipment and an operator's mistake in starting the work, disrupt the distribution state of the work in process, and significantly reduce the production efficiency.

【0010】そこで、本発明の目的は、ジョブショップ
形式の生産形態をとるプロセス系生産工場において、各
処理設備に適切な作業指示を行って生産効率を向上させ
ることができる作業指示装置を提供することにある。
[0010] Therefore, an object of the present invention is to provide a work instruction apparatus capable of improving production efficiency by giving appropriate work instructions to each processing facility in a process-based production factory taking a production form of a job shop format. It is in.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の一つの側面は、シミュレーションに基づ
いて各処理設備の仕掛を急速に低減させることができる
適正仕掛を設定し、適正仕掛と現状仕掛に基づいて各処
理設備の作業対象となる有効仕掛を求め、有効仕掛を納
期順に処理するように各処理設備に指示することを特徴
とする。本発明によれば、各処理設備の作業対象を仕掛
低減に有効な有効仕掛に限定することができるので、現
状仕掛を速やかに適正仕掛に近づけて生産効率を向上さ
せることができる。
In order to achieve the above object, one aspect of the present invention is to set a proper work in which the work in each processing equipment can be rapidly reduced based on a simulation, The present invention is characterized in that an effective work in process of each processing equipment is obtained based on the work in progress and the current work in progress, and each processing equipment is instructed to process the effective work in order of delivery date. According to the present invention, the work target of each processing facility can be limited to the effective work that is effective in reducing the work, so that the current work can be quickly brought close to the proper work and the production efficiency can be improved.

【0012】上記の目的を達成するために、本発明の別
の側面は、異なる処理を行う複数の処理設備に、異なる
工程により製造される複数の仕掛の処理順を指示する作
業指示装置において、前記複数の処理設備が前記複数の
仕掛を処理するシミュレーションを行い、各処理設備の
仕掛が所定期間内に所定の値に収束する長期最良解を求
める長期最良解シミュレーション実行手段と、前記長期
最良解の仕掛推移を微分して仕掛変動速度を求め、前記
仕掛推移の変動域又は安定域を検出する仕掛変動微分手
段と、前記仕掛変動微分手段が変動域を検出した場合
に、前記長期最良解の仕掛推移を二回微分して仕掛変動
加速度を求め、更に前記仕掛変動加速度と前記仕掛との
積により仕掛変動エネルギーを求め、前記仕掛変動エネ
ルギーが最大となる時点における前記長期最良解の仕掛
分布を変動域における工程別の最適仕掛とする変動域仕
掛生成手段と、前記仕掛変動微分手段が安定域を検出し
た場合に、前記安定域における前記長期最良解の仕掛分
布を安定域における工程別の最適仕掛とする安定域仕掛
生成手段とを有し、前記変動域又は安定域の工程別の適
正仕掛に基づいて、各処理設備に作業指示を行うことを
特徴とする。
In order to achieve the above object, another aspect of the present invention is a work instruction apparatus for instructing a plurality of processing facilities for performing different processings in a processing order of a plurality of processes manufactured in different processes. A long-term best solution simulation executing means for performing a simulation in which the plurality of processing facilities process the plurality of processes and obtaining a long-term best solution in which the processes of each processing facility converge to a predetermined value within a predetermined period; and Differentiating the in-process transition to determine the in-process fluctuation speed, and in-process fluctuation differentiating means for detecting the fluctuation range or stable area of the in-process transition, and when the in-process fluctuation differentiating means detects the fluctuation range, the long-term best solution In-process transition is differentiated twice to obtain the in-process fluctuation acceleration, and further, the in-process fluctuation energy is obtained by the product of the in-process fluctuation acceleration and the in-process, and the in-process fluctuation energy is maximized. A work area distribution of the long-term best solution at the point where the work-in-progress distribution of the long-term best solution in the stable area is detected. A stable area in-process generation means for making the in-process distribution an optimal in-process for each process in the stable area, and instructing each processing facility based on the appropriate in-process for the process in the variable area or the stable area. And

【0013】本発明によれば、各処理設備の仕掛が多く
速やかに仕掛を低減させる必要がある場合は、長期最良
解において仕掛を急速に低減させることが可能な変動域
の仕掛分布を適正仕掛とし、各処理設備において仕掛の
安定した処理が可能である場合は、長期最良解の安定域
の仕掛分布を適正仕掛とする。従って、適正仕掛は各処
理設備の仕掛状態に応じて仕掛低減に最も有効な仕掛量
となるので、各処理設備の生産効率を向上させることが
できる。
According to the present invention, when the number of works in each processing facility is large and it is necessary to reduce the work quickly, the work-in-progress distribution in a variable region where the work in the long-term best solution can be rapidly reduced is determined. If the processing can be performed stably in each processing facility, the processing distribution in the stable region of the long-term best solution is determined as the appropriate processing. Therefore, the appropriate work in process is the most effective work amount for reducing the work in progress according to the work state of each processing facility, so that the production efficiency of each processing facility can be improved.

【0014】また、上記の発明において、その好ましい
態様は、前記変動域又は安定域の工程別の適正仕掛及び
各工程の現状仕掛に基づいて、各工程において作業対象
となる工程別の有効仕掛を算出する有効仕掛設定手段
と、前記工程別の有効仕掛を処理設備別に分類し、処理
設備別の有効仕掛を納期に基づいて処理するように各処
理設備に指示する作業指示生成手段とを有することを特
徴とする。
Further, in the above-mentioned invention, a preferable aspect is that, based on the appropriate work in process in the above-mentioned fluctuation range or the stable range and the current work in each process, an effective work in each process to be worked in each process. Effective work in progress setting means to be calculated, and work instruction generating means for classifying the effective work in each process by processing equipment and instructing each processing equipment to process the effective work in each processing equipment based on a delivery date. It is characterized by.

【0015】本発明によれば、現状仕掛をそのまま各処
理設備の作業対象にするのではなく、仕掛の効率的処理
に有効な有効仕掛を作業対象にするため、現状仕掛が適
正仕掛より多い仕掛過剰状態においても作業対象を絞り
込むことが可能となり、現状仕掛を短期間で適正仕掛へ
誘導することができる。
According to the present invention, the current work-in-process is larger than the appropriate work-in-process in order not to use the current work-in-process as the work target of each processing facility but to set the effective work-in-process effective for the efficient processing of the work-in-process. Even in an excessive state, it is possible to narrow down the work targets, and to guide the current work in progress to an appropriate work in a short time.

【0016】更に、上記の発明において、その好ましい
態様は、各工程又は各処理設備における前記有効仕掛と
現状仕掛の比が所定の範囲を外れた場合に、前記長期最
良解シミュレーション実行手段に再シミュレーションを
行うように指示する適正仕掛再設定判定手段を有するこ
とを特徴とする。
Further, in the above invention, a preferable mode is that the long-term best solution simulation executing means re-simulates when the ratio between the effective work in progress and the current work in each process or each processing equipment is out of a predetermined range. And a proper work-in-process reset determination means for instructing to perform the process.

【0017】本発明によれば、各処理設備の仕掛の推移
に応じて再シミュレーションを行い、仕掛低減に有効な
新たな適正仕掛を設定するので、各処理設備の仕掛を速
やかに適正仕掛に近づけ生産効率を向上させることがで
きる。
According to the present invention, a re-simulation is performed in accordance with the transition of the work in each processing facility, and a new proper work effective for reducing the work is set, so that the work in each processing facility is quickly brought close to the proper work. Production efficiency can be improved.

【0018】[0018]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態例を説明する。しかしながら、かかる実施の形
態例が、本発明の技術的範囲を限定するものではない。
Embodiments of the present invention will be described below with reference to the drawings. However, such embodiments do not limit the technical scope of the present invention.

【0019】図1は、本発明の実施の形態の作業指示装
置10のブロック図である。本実施の形態の作業指示装置
10は、生産量や工程の処理時間等をもとに、生産開始か
ら所定期間後に安定した生産状況に達するまでのシミュ
レーションを行う長期最良解シミュレーション実行装置
100と、シミュレーション結果から生産状況が変動して
いるかあるいは安定しているかを判別する仕掛変動微分
解析装置200と、生産状況の変動域における適正仕掛を
計算する変動域仕掛生成装置300と、生産状況の安定域
における適正仕掛を計算する安定域仕掛生成装置400と
を有する。
FIG. 1 is a block diagram of a work instruction device 10 according to an embodiment of the present invention. Work instruction device of the present embodiment
10 is a long-term best solution simulation execution device that performs a simulation until a stable production state is reached after a predetermined period from the start of production, based on a production amount, a processing time of a process, and the like.
100, an in-process variation differential analysis device 200 that determines whether the production status is fluctuating or stable from the simulation result, a fluctuation range in-process generation device 300 that calculates an appropriate in-process in the fluctuation range of the production status, and a production status And a stable area in-process generation device 400 that calculates an appropriate in-process in the stable area.

【0020】作業指示装置10は、更に、適正仕掛と現状
仕掛に基づいて実際の作業対象となる有効仕掛を求める
有効仕掛設定装置500と、各処理設備に有効仕掛の作業
順を指示する作業指示生成装置600と、有効仕掛と現状
仕掛との比が所定の範囲外となった場合に適正仕掛を見
直す適正仕掛再設定判定装置700とを有する。
The work instructing device 10 further includes an effective in-work setting device 500 for obtaining an effective in-work which is an actual work target based on the appropriate in-process and the current in-progress, and a work instruction for instructing each processing facility in the working order of the effective in-work. It has a generation device 600 and an appropriate in-process resetting determination device 700 that reviews the appropriate in-process when the ratio of the effective in-process to the current in-process is out of a predetermined range.

【0021】本実施の形態の作業指示装置10は、シミュ
レーションに基づいて各処理設備の仕掛を急速に低減さ
せることができる適正仕掛を設定し、適正仕掛と現状仕
掛とから各処理設備の実際の作業対象となる有効仕掛を
求め、各処理設備の作業対象を仕掛低減に有効な有効仕
掛に限定するので、現状仕掛を速やかに適正仕掛に近づ
けて生産効率を向上させることができる。
The work instructing device 10 of the present embodiment sets an appropriate work that can rapidly reduce the work of each processing equipment based on a simulation, and sets the actual work of each processing equipment based on the appropriate work and the current work. Since the effective work in process is obtained and the work in each processing facility is limited to the effective work effective in reducing the work in progress, the current work in process can be quickly brought closer to the appropriate work in order to improve the production efficiency.

【0022】次に、本実施の形態の作業指示装置10の動
作を図2に示すフローチャートに従って説明する。ま
ず、長期最良解シミュレーション実行装置100におい
て、現状仕掛が適正仕掛よりも多い過剰仕掛状態に陥っ
ているプロセス系生産工場のシミュレーションを行う。
そして、各処理設備における仕掛量や処理順等のパラメ
ータを変化させて複数回のシミュレーションを行い、各
処理設備の仕掛が所定期間内に適正仕掛に収束し、か
つ、各処理設備の作業期間である手番や生産量等が目標
を達成するシミュレーション参考解を長期最良解として
選択する(ステップS1)。後述する図4は長期最良解
の一例である。
Next, the operation of the work instruction apparatus 10 according to the present embodiment will be described with reference to the flowchart shown in FIG. First, in the long-term best solution simulation execution device 100, a simulation is performed for a process-related production plant in which the current work is in an excessive work-in-progress state, which is larger than the proper work-in-progress.
Then, simulations are performed a plurality of times while changing parameters such as the amount of work in process and the order of processing in each processing facility, and the work in progress of each processing facility converges on the proper work within a predetermined period, and during the working period of each processing facility. A simulation reference solution in which a certain turn or production amount achieves a target is selected as a long-term best solution (step S1). FIG. 4 described below is an example of a long-term best solution.

【0023】次に、仕掛変動微分解析装置200において
長期最良解の仕掛推移を微分して仕掛低減速度を求め、
仕掛低減速度の推移により仕掛の変動域又は安定域を検
出する(ステップS2)。後述する図6に仕掛低減速度
及び仕掛の変動域を示す。
Next, the in-process variation differential analyzer 200 differentiates the in-process change of the long-term best solution to obtain the in-process reduction speed,
A fluctuation range or a stable range of the in-process is detected from the transition of the in-process reduction speed (step S2). FIG. 6 described later shows the in-process reduction speed and the in-process variation range.

【0024】ステップS2において変動域を検出した場
合(Yes)は、変動域仕掛生成装置300において変動
域の仕掛変動速度をさらに微分して仕掛変動加速度を求
め、これに仕掛量を掛けて仕掛変動エネルギーを求め
る。そして、この仕掛変動エネルギーが極大になる期日
を解析ポイントとし、解析ポイントにおける長期最良解
の仕掛分布を抽出し、この仕掛分布を工程別に集計して
工程別の適正仕掛とする(ステップS3)。後述する図
8に仕掛変動加速度及び仕掛変動エネルギーの推移を示
す。
When the fluctuation range is detected in step S2 (Yes), the fluctuation range in-process generation device 300 further differentiates the fluctuation speed of the progress in the fluctuation range to obtain the fluctuation in progress, and multiplies this by the amount of progress to calculate the fluctuation in the progress. Seeking energy. Then, the date when the in-process variation energy is maximized is set as an analysis point, and the in-process distribution of the long-term best solution at the analysis point is extracted, and the in-process distribution is tabulated for each process to obtain a proper in-process for each process (step S3). FIG. 8 to be described later shows changes in the in-process variation acceleration and the in-process variation energy.

【0025】一方、ステップS2において安定域を検出
した場合(No)は、安定域仕掛生成装置400において
安定域の平均的は期日を解析ポイントとし、この解析ポ
イントにおける長期最良解の仕掛分布を抽出し、この仕
掛分布を工程別に集計して工程別の適正仕掛とする(ス
テップS4)。後述する図11に安定域及び解析ポイン
トの一例を示す。
On the other hand, if a stable region is detected in step S2 (No), the stable region in-process generator 400 extracts the average of the stable region as the analysis date and extracts the in-process distribution of the long-term best solution at this analysis point. Then, this work-in-progress distribution is tabulated for each process to obtain a proper work-in-process for each process (step S4). FIG. 11 to be described later shows an example of a stable region and an analysis point.

【0026】このように本実施の形態は、各処理設備の
仕掛が多く速やかに仕掛を低減させる必要がある場合
は、長期最良解において仕掛を急速に低減させることが
可能な変動域の仕掛分布を適正仕掛とし、各処理設備に
おいて仕掛の安定した処理が可能な場合は、長期最良解
の安定域の仕掛分布を適正仕掛とする。従って、適正仕
掛は各処理設備の仕掛状態に応じて仕掛低減に最も有効
な仕掛量となり、各処理設備の生産効率を向上させるこ
とができる。
As described above, according to the present embodiment, when there is a large number of processes in each processing facility and it is necessary to reduce the processes quickly, the process distribution in a fluctuation range in which the processes in the long-term best solution can be rapidly reduced. Is appropriate, and if the processing can be performed stably in each processing facility, the in-process distribution in the stable region of the long-term best solution is determined as appropriate. Therefore, the proper work-in-progress is the most effective work-in-progress in reducing the work-in-progress in accordance with the work-in-process state of each processing facility, and the production efficiency of each processing facility can be improved.

【0027】次に、有効仕掛設定装置500は、適正仕掛
と現状仕掛に基づいて各処理設備の作業対象となる有効
仕掛を設定する(ステップS5)。本実施の形態では、
現状仕掛をそのまま各処理設備の作業対象にするのでは
なく、仕掛の効率的処理に有効な有効仕掛を作業対象に
する。このため、現状仕掛が適正仕掛より多い仕掛過剰
状態においても作業対象を絞り込むことが可能となり、
現状仕掛を短期間で適正仕掛へ誘導することができる。
Next, the effective work setting device 500 sets an effective work to be processed by each processing facility based on the proper work and the current work (step S5). In the present embodiment,
Instead of using the current work in process as the work target of each processing facility, the effective work that is effective for efficient processing of the work is set as the work target. For this reason, it is possible to narrow down the work targets even in the state of excess work in which the current work is larger than the appropriate work,
Current work in progress can be guided to appropriate work in a short period of time.

【0028】次に、作業指示生成装置600は、工程別の
有効仕掛を処理設備別に分類し、各処理設備に対し各仕
掛の納期の余裕率が小さい順に処理するように指示する
(ステップS6)。このように本実施の形態では、各処
理設備に対して仕掛低減に有効な有効仕掛を納期順に処
理するように指示するので、現状仕掛を速やかに適正仕
掛に近づけることができる。
Next, the work instruction generation device 600 classifies the effective work in process for each processing facility and instructs each processing facility to perform processing in ascending order of the margin of the delivery date of each work (step S6). . As described above, in the present embodiment, since each processing facility is instructed to process the effective works effective in reducing the work in order of the due date, the current work can be quickly brought closer to the proper work.

【0029】このような作業指示を与えることにより各
処理設備の仕掛は漸次低減するが、仕掛の推移に応じて
目標となる有効仕掛及び適正仕掛の見直しを行う。この
ため、適正仕掛再設定判定装置700により有効仕掛と現
状仕掛の比である有効仕掛比を求め(ステップS7)、
有効仕掛比が所定の範囲内の場合(Yes)は適正仕掛
の変更は行わず、ステップS5、S6によりその時点の
現状仕掛に基づいて新たな有効仕掛を求め、新たな有効
仕掛に基づいて作業指示を行う。
By giving such a work instruction, the work in each processing facility is gradually reduced. However, the target effective work and appropriate work are reviewed according to the progress of the work. For this reason, the effective work-in-process resetting determination device 700 obtains the effective work-in-process ratio, which is the ratio of the effective work-in-progress to the current work-in-progress (step S7).
If the effective work-in-progress ratio is within the predetermined range (Yes), the appropriate work-in-progress is not changed, and a new effective work-in-process is obtained in steps S5 and S6 based on the current work-in-progress at that time, and the work is performed based on the new effective work-in-progress. Make instructions.

【0030】一方、ステップS7において、有効仕掛比
が所定の範囲から外れた場合(No)は、ステップS1
に移行し、長期最良解シミュレーションを再実行して新
たな適正仕掛を設定し、新たな適正仕掛に基づいた作業
指示を行う。
On the other hand, if the effective work-in-progress ratio is out of the predetermined range in step S7 (No), the process proceeds to step S1.
Then, the long-term best solution simulation is re-executed to set a new proper work, and to issue a work instruction based on the new proper work.

【0031】このように本実施の形態によれば、各処理
設備の仕掛の推移に応じて、仕掛低減に有効な新たな有
効仕掛又は適正仕掛を設定し、その設定値に基づいて作
業指示を行うので、各処理設備の仕掛を速やかに適正仕
掛に近づけ、生産効率を向上させることができる。
As described above, according to the present embodiment, a new effective work or an effective work that is effective in reducing the work is set in accordance with the change in the work in each processing facility, and a work instruction is issued based on the set value. As a result, the work in each processing facility can be quickly brought close to the proper work, and the production efficiency can be improved.

【0032】次に、本実施の形態の各部の構成について
説明する。図3は、本実施の形態の長期最良解シミュレ
ーション実行装置100の説明図である。長期最良解シミ
ュレーション実行装置100は、シミュレーションの条件
となる複数のパラメータを記憶したパラメータ記憶装置
101と、シミュレーションの複数回実施装置102とを有
し、パラメータを変化させて複数回のシミュレーション
を実行する。
Next, the configuration of each section of the present embodiment will be described. FIG. 3 is an explanatory diagram of the long-term best solution simulation execution device 100 of the present embodiment. The long-term best solution simulation execution device 100 is a parameter storage device that stores a plurality of parameters serving as simulation conditions.
It has a simulation 101 and a simulation execution device 102, and executes a simulation several times by changing parameters.

【0033】各回のシミュレーションにおいて、シミュ
レーション実行部103は、パラメータ生成装置104により
各回のシミュレーション条件に対応したパラメータを生
成し、投入情報記憶装置105と仕掛情報記憶装置106とか
ら必要なロット情報を受け取り、シミュレータ装置107
により長期シミュレーションを実行する。
In each simulation, the simulation executing unit 103 generates parameters corresponding to the simulation conditions of each simulation by the parameter generation device 104, and receives necessary lot information from the input information storage device 105 and the in-process information storage device 106. , Simulator device 107
To execute a long-term simulation.

【0034】この場合、シミュレーション結果はシミュ
レーション結果記憶装置108に蓄えられる。シミュレー
ションは複数回実行されるため、シミュレーション結果
記憶装置108には複数回のシミュレーション結果が記憶
される。
In this case, the simulation result is stored in the simulation result storage device 108. Since the simulation is performed a plurality of times, the simulation result storage device 108 stores the results of the simulation a plurality of times.

【0035】一方、工場目標値記憶装置109には、目標
手番、目標出来高等のデータが記憶されており、収束デ
ータ生成装置110は、これらのデータから収束すべき安
定状態の手番、出来高、仕掛量等のデータを生成する。
On the other hand, the factory target value storage device 109 stores data such as a target turn, a target work volume, and the like. And data such as the amount of work in process.

【0036】これらの収束データとシミュレーション結
果記憶装置108に蓄えられている各シミュレーション結
果は収束評価装置111に転送され、収束評価装置111にお
いて各シミュレーション結果を収束データと比較し評価
する。
The convergence data and each simulation result stored in the simulation result storage device 108 are transferred to the convergence evaluation device 111, and the convergence evaluation device 111 compares each simulation result with the convergence data and evaluates it.

【0037】収束評価装置111において収束データを満
足するシミュレーション結果がない場合は、パラメータ
や目標値等の変更指示が出され、修正装置112によりパ
ラメータの修正や目標値の緩和等が行われ、再度、複数
回のシミュレーションが試みられる。
If there is no simulation result that satisfies the convergence data in the convergence evaluation device 111, an instruction to change parameters, target values, and the like is issued, the correction device 112 corrects the parameters, relaxes the target values, and the like. , A plurality of simulations are attempted.

【0038】一方、シミュレーション結果が収束データ
に収束した場合は、収束評価装置111の評価結果を最良
解抽出装置113へ転送し、最良解抽出装置113にて、複数
回のシミュレーションにおいて最も評価が高いシミュレ
ーション結果を最良解として抽出し、その最良解を仕掛
変動微分解析装置200に転送する。
On the other hand, when the simulation result converges to the convergence data, the evaluation result of the convergence evaluation device 111 is transferred to the best solution extraction device 113, and the best solution extraction device 113 has the highest evaluation in a plurality of simulations. The simulation result is extracted as the best solution, and the best solution is transferred to the in-process variation differential analysis device 200.

【0039】図4は、現状仕掛が適正仕掛よりも多い過
剰仕掛状態に陥っているプロセス系生産工場のシミュレ
ーションにおける長期最良解の一例である。これはシミ
ュレーションのパラメータを様々に変化させて複数回の
長期シミュレーションを実施した中の一つの解である。
なお、横軸は時間であり縦軸は仕掛量である。
FIG. 4 shows an example of a long-term best solution in a simulation of a process-based production plant in which a current work is in an excessive work in excess of an appropriate work. This is one solution obtained by performing the long-term simulation a plurality of times by changing the parameters of the simulation variously.
Note that the horizontal axis is time and the vertical axis is the amount of work in progress.

【0040】長期最良解は、各処理設備においてシミュ
レーション結果に基づいた処理を行った場合の仕掛分布
の推移を示すもので、この例では、現在時点taにおけ
る過剰仕掛状態からしばらくの期間は仕掛が低減するこ
となく推移し、時間tb付近で仕掛が最も減少してお
り、時間tc付近で目標とする安定仕掛量に達してい
る。
The long-term best solution shows the transition of the work-in-progress distribution when the processing based on the simulation result is performed in each processing facility. In this example, the work-in-progress state at the present time point ta is not sufficient for a while. It changes without decreasing, and the work in progress decreases most around time tb, and reaches the target stable work in progress near time tc.

【0041】本実施の形態は、現在時点taにおける適
正仕掛として、シミュレーションにおいて仕掛が最も急
速に低減する時間tbにおける仕掛分布を採用し、安定
した仕掛になるまでの時間を短縮するものである。従っ
て、仕掛が最も急速に低減する時間tbを検出しなけれ
ばならない。
In the present embodiment, as a proper in-process at the present time point ta, the in-process distribution at the time tb when the in-process is most rapidly reduced in the simulation is adopted, and the time until a stable in-process is obtained is shortened. Therefore, it is necessary to detect the time tb at which the in-process is reduced most rapidly.

【0042】図5は、長期最良解から仕掛が最も急速に
低減する時間tbを検出する仕掛変動微分解析装置200
の説明図である。仕掛変動微分解析装置200は、長期最
良解が転送されると、まず、仕掛推移微分装置201にお
いて仕掛推移を微分して仕掛低減速度を求める。
FIG. 5 shows an in-process variation differential analysis apparatus 200 for detecting the time tb at which the in-process is reduced most rapidly from the long-term best solution.
FIG. When the long-term best solution is transferred, first, the in-process change differentiation analyzer 200 differentiates the in-process change in the in-process change differentiator 201 to obtain the in-process reduction speed.

【0043】仕掛推移微分装置201において求められた
仕掛低減速度は、低減速度結果記憶装置202へ転送され
る。そして、低減速度結果記憶装置202のデータは、安
定閾値記憶装置203に記憶されている安定範囲と安定期
間の設定データと共に、変動域検出装置204へ転送され
る。変動域検出装置204は、仕掛低減速度が安定範囲を
越えて安定期間以上継続した場合に、その期間を変動域
として検出し、その検出結果を安定判別装置206へ転送
する。
The in-process reduction speed obtained by the in-process shift differentiating device 201 is transferred to the reduced speed result storage device 202. Then, the data in the reduced speed result storage device 202 is transferred to the fluctuation range detection device 204 together with the set data of the stable range and the stable period stored in the stability threshold storage device 203. When the in-process reduction speed exceeds the stable range and continues for a stable period or more, the fluctuation range detection device 204 detects the period as a fluctuation range and transfers the detection result to the stability determination device 206.

【0044】一方、変動域検出装置204において変動域
が検出されなかった場合は、安定域検出装置205におい
て安定域の検出が試みられる。安定域検出装置205は、
仕掛低減速度が、安定閾値記憶装置203に記憶されてい
る安定範囲内に安定期間以上継続した場合に、その期間
を安定域として検出し、その検出結果を安定判別装置20
6へ転送する。
On the other hand, if the fluctuation region is not detected by the fluctuation region detecting device 204, the stable region detecting device 205 attempts to detect a stable region. The stable range detection device 205
If the in-process reduction speed continues within the stable range stored in the stability threshold storage device 203 for a stable period or more, the period is detected as a stable region, and the detection result is used as the stability determination device 20.
Transfer to 6.

【0045】安定判別装置206は、変動域が検出された
場合は、次に説明する変動域仕掛生成装置300へ起動指
示を出し、安定域が検出された場合は安定域仕掛生成装
置400へ起動指示を出す。
The stability discrimination device 206 issues a start instruction to the fluctuating region in-process generation device 300 described below when the fluctuation region is detected, and starts the stabilization region in-process generation device 400 when the stable region is detected. Give instructions.

【0046】図6は、仕掛推移及び仕掛推移を微分して
求めた仕掛低減速度のグラフであり、変動域が検出され
た場合の微分解析結果である。仕掛低減速度のグラフに
おける点線は、安定閾値記憶装置203に記憶されている
安定範囲である。図6において、仕掛低減速度が、安定
範囲を越えて安定期間以上継続している時間tdから時
間teまでの期間が変動域である。
FIG. 6 is a graph of the in-process change and the in-process reduction speed obtained by differentiating the in-process change, and is a differential analysis result when a fluctuation range is detected. The dotted line in the graph of the in-process reduction speed is the stable range stored in the stability threshold storage device 203. In FIG. 6, a period from time td to time te in which the in-process reduction speed exceeds the stable range and continues for the stable period or more is the fluctuation range.

【0047】このように本実施の形態では、仕掛推移を
微分して求めた仕掛低減速度により仕掛推移の変動域と
安定域を判別し、変動域又は安定域における仕掛低減に
有効な適正仕掛を、次に説明する変動域仕掛生成装置30
0又は安定域仕掛生成装置400により算出する。
As described above, in the present embodiment, the fluctuation range and the stable region of the progress of the in-process are discriminated based on the speed of the progress of the progress of the process which is obtained by differentiating the progress of the in-process. , A fluctuation range in-process generation device 30 described below
0 or calculated by the stable area in-process generation device 400.

【0048】図7は、変動域仕掛生成装置300の説明図
であり、図8は、変動域仕掛生成装置300で求められる
仕掛低減加速度及び仕掛低減エネルギーの説明図であ
る。
FIG. 7 is an explanatory view of the fluctuation area in-process generation device 300, and FIG. 8 is an explanatory diagram of the in-process reduction acceleration and the in-process reduction energy required by the fluctuation area in-progress generation apparatus 300.

【0049】仕掛推移の変動域が検出された場合は、変
動域仕掛生成装置300の変動域二階微分装置301により、
仕掛推移を二階微分して仕掛低減加速度を求める。仕掛
低減加速度は、図8の点線で示すように、仕掛推移が急
激に減少している変動域において大きな変化を示す。
When the fluctuation range of the in-process change is detected, the second-order differentiating device 301 of the fluctuation range in-progress generator 300 generates the fluctuation range.
The in-process transition is second-order differentiated to obtain the in-process reduction acceleration. As shown by the dotted line in FIG. 8, the in-process reduction acceleration shows a large change in a fluctuation range in which the in-process change rapidly decreases.

【0050】次に、変動エネルギー生成装置302は、仕
掛低減加速度に各時点における仕掛量を掛けて仕掛変動
エネルギーを算出する。仕掛変動エネルギーは仕掛量を
考慮した仕掛推移に相当し、大きな仕掛量が急激に変化
する場合に大きな値を示す。算出された仕掛変動エネル
ギーは、解析ポイント抽出装置303へ転送される。
Next, the variable energy generation device 302 calculates the in-process fluctuation energy by multiplying the in-process reduction acceleration by the in-process amount at each time point. The in-process variation energy corresponds to the in-process change in consideration of the in-process amount, and shows a large value when a large in-process amount rapidly changes. The calculated in-process fluctuation energy is transferred to the analysis point extraction device 303.

【0051】解析ポイント抽出装置303は、仕掛低減エ
ネルギーが極大となる期日を解析ポイントとして抽出す
る。解析ポイントは仕掛データ抽出装置304に転送さ
れ、仕掛データ抽出装置304において、解析ポイントに
おける長期最良解の仕掛分布が抽出される。解析ポイン
トは、図8に示すように、仕掛低減エネルギーが極大に
なる期日、即ち、仕掛低減エネルギーのグラフが仕掛推
移のグラフと交わる時間tbの期日である。
The analysis point extracting device 303 extracts, as analysis points, the date on which the in-process reduction energy is maximized. The analysis point is transferred to the in-process data extraction device 304, and the in-process data extraction device 304 extracts the in-process distribution of the long-term best solution at the analysis point. The analysis point is, as shown in FIG. 8, the date when the in-process reduction energy reaches a maximum, that is, the date of the time tb at which the graph of the in-process reduction energy intersects with the graph of the in-process transition.

【0052】仕掛データ抽出装置304により抽出された
仕掛分布は、適正仕掛生成装置305により工程別に分類
集計されて工程別の適正仕掛となり、有効仕掛設定装置
500に転送される。図9は、適正仕掛生成装置305により
生成された変動域における工程別の適正仕掛である。適
正仕掛は、各工程において仕掛を効率的に処理するため
の最適な仕掛量であり、実際の仕掛を適正仕掛に近づけ
るように作業指示を行うことにより、生産効率を向上さ
せることができる。
The work-in-progress distribution extracted by the work-in-process data extracting device 304 is classified and tabulated by process by the proper work-in-progress generating device 305, and becomes a proper work-in-process for each process.
Transferred to 500. FIG. 9 shows the appropriate work in process in the fluctuation range generated by the appropriate work in progress generating device 305. The proper work-in-progress is an optimal work-in-progress amount for efficiently processing a work-in-process in each process, and by giving a work instruction to bring an actual work-in-progress to a proper work-in-progress, production efficiency can be improved.

【0053】一方、仕掛変動微分解析装置200により仕
掛推移の安定域が検出された場合は、安定域仕掛生成装
置400が起動される。図10は、安定域仕掛生成装置400
の説明図である。また、図11は、安定域仕掛生成装置
400で求められる解析ポイントの説明図である。
On the other hand, when the in-process fluctuation differential analysis device 200 detects a stable region of the progress of the in-process, the stable region in-process generation device 400 is started. FIG. 10 shows a stable area in-process generation device 400.
FIG. FIG. 11 shows a stable area in-process generation device.
FIG. 4 is an explanatory diagram of analysis points obtained by 400.

【0054】安定域仕掛生成装置400の安定域平均日抽
出装置401は、仕掛変動微分解析装置200からの起動指令
により、安定域における解析ポイントを抽出する。即
ち、安定域が、図11に示す時間tfから時間thまで
の期間の場合は、安定域の平均的な期日、例えば中間日
を解析ポイントとして抽出する。そして、仕掛データ抽
出装置402は、解析ポイントにおける長期最良解の仕掛
分布を長期最良解シミュレーション実行装置100から抽
出する。
The stable area average date extraction device 401 of the stable area in-process generation apparatus 400 extracts an analysis point in the stable area in response to a start command from the in-process variation differential analysis apparatus 200. That is, when the stable region is a period from time tf to time th shown in FIG. 11, an average date of the stable region, for example, an intermediate date is extracted as an analysis point. Then, the in-process data extraction device 402 extracts the in-process distribution of the long-term best solution at the analysis point from the long-term best solution simulation execution device 100.

【0055】仕掛データ抽出装置402により抽出された
長期最良解の仕掛分布は、適正仕掛生成装置403により
工程別に分類集計されて工程別の適正仕掛となり、有効
仕掛設定装置500に転送される。図12に安定域におけ
る工程別の適正仕掛の一例を示す。
The work-in-progress distribution of the long-term best solution extracted by the work-in-process data extracting device 402 is classified and tabulated for each process by the proper work-in-progress generating device 403, becomes a proper work-in-process for each process, and is transferred to the effective work setting device 500. FIG. 12 shows an example of an appropriate work in process in the stable region for each process.

【0056】このように本実施の形態では、仕掛が多く
速やかに仕掛を低減させることが必要である場合は、仕
掛を急速に低減させることが可能な変動域の仕掛分布を
もって適正仕掛とし、仕掛の安定した生産が可能である
場合は、安定域の仕掛分布をもって適正仕掛とする。こ
れにより、仕掛分布に応じた処理が可能になり、各処理
設備の生産効率を向上させることができる。
As described above, in the present embodiment, when there are a large number of processes and it is necessary to reduce the processes quickly, the process is determined as an appropriate process with a process distribution in a fluctuation range capable of rapidly reducing the processes. If stable production is possible, the in-process distribution in the stable region is determined as the appropriate in-process. Thereby, processing according to the in-process distribution becomes possible, and the production efficiency of each processing equipment can be improved.

【0057】図13は、本実施の形態による有効仕掛設
定装置500の説明図である。変動域仕掛生成装置300又は
安定域仕掛生成装置400において生成された適正仕掛
は、有効仕掛設定装置500の適正仕掛記憶装置501に転送
され記憶される。一方、完了実績記憶装置502には処理
が完了した実績値が記憶される。これらのデータは完了
要求量抽出装置503に転送され、完了要求量抽出装置503
において所定の期日における各工程の仕掛の要求量が求
められる。
FIG. 13 is an explanatory diagram of the effective work in process setting device 500 according to the present embodiment. The appropriate in-process generated in the variable area in-process generating device 300 or the stable area in-process generating device 400 is transferred to and stored in the appropriate in-process storage device 501 of the effective in-process setting device 500. On the other hand, the completion result storage device 502 stores the result value of the completed processing. These data are transferred to the completion request amount extraction device 503, and the completion request amount extraction device 503
In step (1), the required amount of work in process of each process on a predetermined date is obtained.

【0058】一方、現状仕掛記憶装置504には現時点に
おける仕掛データが記憶されており、工程分解装置505
により現状仕掛が工程別に分類集計される。工程要求量
抽出装置506は、適正仕掛と後工程からの要求量に基づ
いて当該工程の必要量を抽出し、有効仕掛設定装置507
は、現状仕掛と当該工程の必要量に基づいて当該工程の
有効仕掛を設定する。
On the other hand, the current in-process storage device 504 stores the current in-process data, and the process disassembly device 505.
As a result, the current work in progress is classified and tabulated for each process. The required process amount extraction device 506 extracts the required amount of the process based on the proper work in progress and the required amount from the subsequent process, and sets the effective process setting device 507.
Sets the effective process of the process based on the current process and the required amount of the process.

【0059】有効仕掛設定装置500において、当該工程
における仕掛の必要量、当該工程における有効仕掛、及
び前工程への要求量は、以下の手順で最終工程から順に
求められる。
In the effective work setting apparatus 500, the required amount of work in the process, the effective work in the process, and the required amount of the previous process are obtained in order from the last process in the following procedure.

【0060】最終工程における仕掛の必要量は、最終工
程における適正仕掛と後工程からの要求量の和である
が、最終工程では後工程からの要求量は0であるので、
適正仕掛を最終工程の仕掛の必要量とする。
The required amount of work in the final process is the sum of the proper work in the final process and the required amount from the post-process. However, in the final process, the required amount from the post-process is 0.
Appropriate work in process is defined as the required amount of work in the final process.

【0061】次に、最終工程における有効仕掛は、最終
工程における現状仕掛と仕掛の必要量のうちのどちらか
少ない方である。更に、一つ前の工程への要求量は、最
終工程における仕掛の必要量から最終工程の現状仕掛を
引いたものである。
Next, the effective work in the final process is the smaller of the current work and the required amount of work in the final process. Further, the required amount of the immediately preceding process is obtained by subtracting the current in-process of the final process from the required amount of the in-process in the final process.

【0062】即ち、当該工程の仕掛の必要量、当該工程
の有効仕掛、及び前工程への要求量は、次式により求め
ることができる。
That is, the required amount of the work in progress of the process, the effective work in progress of the process, and the required amount of the previous process can be obtained by the following equations.

【0063】 当該工程の仕掛の必要量=当該工程の適正仕掛+後工程からの要求量…(1) 当該工程の有効仕掛=MIN(当該工程の現状仕掛、当該工程の必要量)…(2) 前工程への要求量=当該工程の必要量−当該工程の現状仕掛 …(3) なお、(2)式におけるMINは当該工程の現状仕掛と当該工
程の必要量のうちのどちらか少ない方を選択することを
意味する。
Required amount of work in process of the relevant process = appropriate work in process of the relevant process + required amount from the subsequent process ... (1) Effective work of the relevant process = MIN (current work of the relevant process, required amount of the relevant process) ... (2 ) Required amount for the previous process = Required amount for the process-Current work in progress for the process… (3) MIN in equation (2) is the smaller of the current work in progress for the process or the required amount for the process Means to select.

【0064】図14は、各工程の現状仕掛及び適正仕掛
から、当該工程の仕掛の必要量、当該工程の有効仕掛、
及び前工程への要求量を求める具体例である。
FIG. 14 shows the required amount of the work in the process, the effective work in the process, the current work in progress and the proper work in each process.
And a specific example of obtaining a required amount for the preceding process.

【0065】最終工程である工程21では、現状仕掛が(2
0)、適正仕掛が(35)、後工程からの要求量が(0)である
ので、上記の(1)式から工程21の仕掛の必要量は(35)に
なる。また、有効仕掛は(2)式から(20)となり、前工程
への要求量は(3)式から(15)になる。
In step 21, which is the final step, the current in-process is (2
(0), the appropriate work in progress is (35), and the required amount from the post-process is (0), so the required amount of the work in process 21 is (35) from the above equation (1). In addition, the effective work in progress becomes (20) from equation (2), and the required amount for the previous process becomes (15) from equation (3).

【0066】次に、工程20では現状仕掛が(10)、適正仕
掛が(52)、工程21からの要求量が(15)であるので、上記
の(1)式から工程20における仕掛の必要量は(67)にな
る。また、有効仕掛は(2)式から(10)になり、前工程へ
の要求量は(3)式から(57)になる。このようにして、前
工程へ順に遡って有効仕掛が求められる。
Next, in step 20, the current work is (10), the proper work is (52), and the required amount from step 21 is (15). The quantity becomes (67). In addition, the effective work in progress is changed from equation (2) to equation (10), and the required amount for the previous process is changed from equation (3) to equation (57). In this way, an effective work in process is determined by going back to the previous process.

【0067】なお、ある工程の現状仕掛がその工程の仕
掛の必要量より大きい場合は、前工程に仕掛を要求する
必要はないので、その工程における前工程への要求量は
0になる。例えば、工程13では、現状仕掛(120)が仕掛
の必要量(65)より多いので、前工程への要求量は0にな
る。
If the current work in process of a certain process is larger than the required amount of work in that process, there is no need to request a work in the previous process, and the required amount of the previous process in that process is zero. For example, in step 13, since the current work in progress (120) is larger than the required work in progress (65), the demand for the previous process is zero.

【0068】図15は、このようにして有効仕掛設定装
置500で求められた工程別の有効仕掛のグラフである。
なお、図15において、太い折れ線グラフが有効仕掛を
示し、棒グラフが現状仕掛、細い折れ線グラフが適正仕
掛を示す。
FIG. 15 is a graph of the effective work in process obtained by the effective work setting device 500 for each process.
In FIG. 15, a thick line graph indicates an effective device, a bar graph indicates a current device, and a thin line graph indicates an appropriate device.

【0069】本実施の形態によれば、例えば工程13等に
おいて、現状仕掛よりも少ない有効仕掛だけを作業対象
にすることができるので、現状仕掛を短期間で適正仕掛
へ誘導し生産効率を向上させることができる。
According to the present embodiment, for example, in the step 13 or the like, only the effective processes smaller than the current processes can be set as the work targets, so that the current processes can be guided to the appropriate processes in a short period of time to improve the production efficiency. Can be done.

【0070】有効仕掛設定装置500により求められた工
程別の有効仕掛は、作業指示生成装置600に転送され、
各処理設備別の作業指示が行われる。図16は、本実施
の形態による作業指示生成装置600の説明図である。有
効仕掛設定装置500により求められた工程別の有効仕掛
は、作業指示生成装置600の有効仕掛情報記憶装置601に
転送される。
The effective work in process obtained by the effective work setting device 500 is transferred to the work instruction generating device 600,
Work instructions are given for each processing facility. FIG. 16 is an explanatory diagram of the work instruction generating device 600 according to the present embodiment. The effective work in process determined by the effective work setting device 500 is transferred to the effective work information storage device 601 of the work instruction generating device 600.

【0071】一方、ロット情報記憶装置602には現状の
仕掛の情報が記憶されており、余裕率算出装置603は、
ロット情報記憶装置602に記憶されている仕掛情報の残
り作業手番と完了予定日とから余裕率を算出し、工程別
のロット情報を余裕率の順に並び替える。余裕率は次式
により算出される。
On the other hand, the lot information storage device 602 stores information on the current work in progress.
The margin rate is calculated from the remaining work turn and the scheduled completion date of the in-process information stored in the lot information storage device 602, and the lot information for each process is sorted in the order of the margin rate. The margin is calculated by the following equation.

【0072】 余裕率=納期までの期間/残り作業手番 …(4) 例えば、納期までの期間が30日で、残り作業手番が20日
の場合は余裕率は1.5となる。余裕率が小さいほどその
仕掛の緊急性が高いことになる。
Surplus rate = period until delivery date / remaining operation number (4) For example, when the period until the delivery date is 30 days and the remaining operation number is 20 days, the margin rate is 1.5. The smaller the margin is, the higher the urgency of the device is.

【0073】次に、装置別分類装置604は、工程別の有
効仕掛に従って各工程のロット情報を抽出し、有効仕掛
を処理設備別に分類集計する。処理設備別の有効仕掛
は、余裕率分類装置605へ転送されて余裕率に従った並
び替えが行われ、実際の処理設備別の作業指示が生成さ
れ、各処理設備に作業指示が行われる。
Next, the apparatus classifying apparatus 604 extracts lot information of each process according to the effective work in process, and classifies and totals the effective work in each processing facility. The effective work in progress for each processing facility is transferred to the margin rate classifying device 605 and rearranged in accordance with the margin rate, an actual work instruction for each processing facility is generated, and a work instruction is issued to each processing facility.

【0074】図17は、作業指示生成装置600により生
成された作業指示の一例である。図17に示すように、
例えば、処理設備の1つであるB-Hカーブトレーサには
有効仕掛が2ロット割り当てられ、その順に処理するよ
うに作業指示が行われる。また、Wfプローバには6つの
有効仕掛が割り当てられ、その順に処理するように作業
指示が行われる。
FIG. 17 is an example of a work instruction generated by the work instruction generation device 600. As shown in FIG.
For example, two lots of effective work are assigned to the BH curve tracer, which is one of the processing equipment, and a work instruction is issued to process the lot in that order. Also, six effective processes are assigned to the Wf prober, and a work instruction is issued so as to process in the order.

【0075】このように本実施の形態によれば、各処理
設備は、仕掛低減に有効な有効仕掛だけを作業対象とす
るように指示されるので、その作業指示に従って処理を
行えば、仕掛を効率的に処理し生産効率を向上させるこ
とができる。
As described above, according to the present embodiment, each processing equipment is instructed to work only on the effective work in process that is effective in reducing the work in progress. It can process efficiently and improve production efficiency.

【0076】一方、各処理設備における処理時間は処理
設備毎に異なっており、各処理設備における仕掛分布は
時間の経過と共に変化する。また、各処理設備に予期し
ない故障が発生する場合もある。従って、各処理設備に
おける仕掛分布の推移に応じて適正仕掛又は有効仕掛を
見直し、生産効率を更に向上させる必要がある。
On the other hand, the processing time in each processing facility is different for each processing facility, and the distribution of the work in each processing facility changes over time. In addition, unexpected failure may occur in each processing facility. Therefore, it is necessary to review the appropriate in-process or effective in-process in accordance with the transition of the in-process distribution in each processing facility to further improve the production efficiency.

【0077】図18は、本実施の形態による適正仕掛再
設定判定装置700の説明図である。適正仕掛再設定判定
装置700内の有効仕掛情報記憶装置701には現在の有効仕
掛が記憶されており、現状仕掛記憶装置702には現状仕
掛が記憶されている。有効仕掛と現状仕掛は有効仕掛比
設定装置703に転送され、有効仕掛が現状仕掛に占める
割合である有効仕掛比が次式により求められる。
FIG. 18 is an explanatory view of an appropriate in-process resetting determination device 700 according to this embodiment. The effective work-in-progress information storage device 701 in the appropriate work-in-process resetting determination device 700 stores the current effective work-in-progress, and the current work-in-progress storage device 702 stores the current work-in-progress. The effective work in progress and the current work in progress are transferred to the effective work in progress ratio setting device 703, and the effective work in progress ratio, which is the ratio of the effective work to the current work in progress, is obtained by the following equation.

【0078】有効仕掛比=有効仕掛/現状仕掛 …(5) 有効仕掛比は再設定判定装置705に転送される。再設定
判定装置705は、有効仕掛比が判定範囲記憶装置704に設
定されている目標範囲内の場合は、目標とする仕掛低減
をほぼ達成したと判断する。そして、目標達成による次
目標設定指示装置706から長期最良解シミュレーション
実行装置100へ指示を送ることにより、次の目標となる
適正仕掛の設定処理が行われる。
Effective work-in-process ratio = Effective work-in-process / Current work-in-process (5) The effective work-in-process ratio is transferred to the reset determination device 705. If the effective work-in-progress ratio is within the target range set in the determination range storage device 704, the reset determination device 705 determines that the target work-in-progress reduction has been substantially achieved. Then, by sending an instruction from the next target setting instructing device 706 based on the achievement of the target to the long-term best solution simulation executing device 100, a process of setting a proper in-process as a next target is performed.

【0079】一方、有効仕掛比が判定範囲記憶装置704
に設定されている判定範囲外の場合は、目標とする仕掛
分布とかけ離れた状態にあり、再設定判定装置705は、
適正仕掛の設定を見直す必要が生じていると判断する。
そして、目標ズレによる目標再設定指示装置707から長
期最良解シミュレーション実行装置100へ指示を送るこ
とにより、適正仕掛の再設定処理が行われる。
On the other hand, the effective work-in-progress ratio is determined by the judgment range storage device 704.
If the determination is out of the determination range set in, it is in a state far from the target in-process distribution, the reset determination device 705,
It is determined that it is necessary to review the setting of the appropriate in-process.
Then, by sending an instruction from the target resetting instruction device 707 due to the target deviation to the long-term best solution simulation executing device 100, the process of resetting the proper work in progress is performed.

【0080】なお、有効仕掛比が判定範囲記憶装置704
に設定されている判定範囲内の場合は、現状仕掛は適正
仕掛に近づきつつあると判断され、その時点における適
正仕掛が維持される。即ち、現状継続装置708から有効
仕掛設定装置500に指示を送ることにより、その時点に
おける適正仕掛と現状仕掛に基づいた新たな有効仕掛を
設定し、それに基づいて作業指示を行う。
Note that the effective work-in-progress ratio is determined by the determination range storage device 704.
Is determined to be within the judgment range, the current work in process is determined to be approaching the proper work, and the proper work at that time is maintained. That is, by sending an instruction from the current state continuation device 708 to the effective work setting device 500, a new effective work is set based on the appropriate work in progress at that time and the current work in progress, and a work instruction is performed based on the new effective work.

【0081】このように本実施の形態では、各処理設備
の仕掛の推移に応じて適正仕掛又は有効仕掛を見直し、
仕掛低減に有効な新たな適正仕掛又は有効仕掛を設定す
るので、各処理設備の現状仕掛を速やかに適正仕掛に近
づけ生産効率を向上させることができる。
As described above, in the present embodiment, the appropriate work-in-process or the effective work-in-process is reviewed according to the change of the work-in-progress of each processing facility.
Since a new appropriate in-process or effective in-process effective for reducing the in-process is set, it is possible to quickly bring the current in-process of each processing facility closer to the appropriate in-process to improve the production efficiency.

【0082】本発明の保護範囲は、上記の実施の形態に
限定されず、特許請求の範囲に記載された発明とその均
等物に及ぶものである。
The scope of protection of the present invention is not limited to the above embodiments, but extends to the inventions described in the claims and their equivalents.

【0083】[0083]

【発明の効果】本発明によれば、各処理設備の仕掛が多
く速やかに仕掛を低減させる必要がある場合は、長期最
良解において仕掛を急速に低減させることが可能な変動
域の仕掛分布を適正仕掛とし、各処理設備において仕掛
の安定した処理が可能である場合は、長期最良解の安定
域の仕掛分布を適正仕掛とする。従って、適正仕掛は各
処理設備の仕掛状態に応じて仕掛低減に最も有効な仕掛
量となるので、各処理設備の生産効率を向上させること
ができる。
According to the present invention, when the number of processes in each processing facility is large and it is necessary to reduce the processes quickly, the process distribution in the fluctuation range where the processes can be rapidly reduced in the long-term best solution is determined. If the processing is appropriate and the processing of the processing is stable in each processing equipment, the processing in the stable region of the long-term best solution is determined as the appropriate processing. Therefore, the appropriate work in process is the most effective work amount for reducing the work in progress according to the work state of each processing facility, so that the production efficiency of each processing facility can be improved.

【0084】また、本発明によれば、現状仕掛をそのま
ま各処理設備の作業対象にするのではなく、仕掛の効率
的処理に有効な有効仕掛を作業対象にするため、現状仕
掛が適正仕掛より多い仕掛過剰状態においても作業対象
を絞り込むことが可能となり、現状仕掛を短期間で適正
仕掛へ誘導することができる。
Further, according to the present invention, the current work in process is not the work target of each processing equipment as it is, but the effective work effective for efficient processing of the work is made the work target. It is possible to narrow down the work targets even in a state of excessive work in progress, and to guide the current work to an appropriate work in a short period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1 】本発明の実施の形態の作業指示装置のブロック
図である。
FIG. 1 is a block diagram of a work instruction device according to an embodiment of the present invention.

【図2 】本発明の実施の形態の作業指示装置のフロー
チャートである。
FIG. 2 is a flowchart of the work instruction apparatus according to the embodiment of the present invention.

【図3】本発明の実施の形態の長期最良解シミュレーシ
ョン実行装置の説明図である。
FIG. 3 is an explanatory diagram of a long-term best solution simulation execution device according to an embodiment of the present invention.

【図4】シミュレーションによる長期最良解の例であ
る。
FIG. 4 is an example of a long-term best solution by simulation.

【図5】本発明の実施の形態の仕掛変動微分解析装置の
説明図である。
FIG. 5 is an explanatory diagram of an in-process variation differential analysis device according to an embodiment of the present invention.

【図6】仕掛変動の微分解析結果である。FIG. 6 shows the result of differential analysis of in-process variation.

【図7】本発明の実施の形態の変動域仕掛生成装置の説
明図である。
FIG. 7 is an explanatory diagram of a variable area in-process generation device according to the embodiment of the present invention.

【図8】仕掛低減加速度および仕掛低減エネルギーの説
明図である。
FIG. 8 is an explanatory diagram of an in-process reduction acceleration and an in-process reduction energy.

【図9】変動域の適正仕掛の説明図である。FIG. 9 is an explanatory diagram of a proper work in a fluctuation range.

【図10】本発明の実施の形態の安定域仕掛生成装置の
説明図である。
FIG. 10 is an explanatory diagram of a stable region in-process creation device according to an embodiment of the present invention.

【図11】安定域および解析ポイントの説明図である。FIG. 11 is an explanatory diagram of a stable region and analysis points.

【図12】安定域の適正仕掛の説明図である。FIG. 12 is an explanatory diagram of a proper work in a stable region.

【図13】本発明の実施の形態の有効仕掛設定装置の説
明図である。
FIG. 13 is an explanatory diagram of an effective in-process setting device according to the embodiment of the present invention.

【図14】有効仕掛を計算する具体例である。FIG. 14 is a specific example of calculating effective work in progress.

【図15】有効仕掛の設定結果である。FIG. 15 shows a setting result of an effective work in progress.

【図16】本発明の実施の形態の作業指示生成装置の説
明図である。
FIG. 16 is an explanatory diagram of a work instruction generating device according to an embodiment of the present invention.

【図17】作業指示結果の説明図である。FIG. 17 is an explanatory diagram of a work instruction result.

【図18】本発明の実施の形態の適正仕掛再設定判定装
置の説明図である。
FIG. 18 is an explanatory diagram of a proper in-process resetting determination device according to an embodiment of the present invention.

【図19】半導体製造工場の模式図である。FIG. 19 is a schematic view of a semiconductor manufacturing plant.

【図20】半導体製造プロセスの一例である。FIG. 20 is an example of a semiconductor manufacturing process.

【符号の説明】[Explanation of symbols]

10 作業指示装置 100 長期最良解シミュレーション実行装置 200 仕掛変動微分解析装置 300 変動域仕掛生成装置 400 安定域仕掛生成装置 500 有効仕掛設定装置 600 作業指示生成装置 700 適正仕掛再設定判定装置 10 Work instruction device 100 Long-term best solution simulation execution device 200 Work-in-process variation differentiation analysis device 300 Variable-range work-in-progress generator 400 Stable-range work-in-progress generation device 500 Effective work-in-progress setting device 600 Work-instruction generation device 700 Appropriate work-in-process resetting determination device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5B049 AA02 BB07 CC24 EE03 EE31 EE41 5H215 AA01 AA06 BB09 BB20 CC07 CC09 CX01 CX05 GG11 5H223 AA01 AA05 CC08 DD03 DD09 EE06 FF05 9A001 BZ05 HH09 HH32 JJ46  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】異なる処理を行う複数の処理設備に、異な
る工程により製造される複数の仕掛の処理順を指示する
作業指示装置において、 前記複数の処理設備が前記複数の仕掛を処理するシミュ
レーションを行い、各処理設備の仕掛が所定期間内に所
定の値に収束する長期最良解を求める長期最良解シミュ
レーション実行手段と、 前記長期最良解の仕掛推移を微分して仕掛変動速度を求
め、前記仕掛推移の変動域又は安定域を検出する仕掛変
動微分手段と、 前記仕掛変動微分手段が変動域を検出した場合に、前記
長期最良解の仕掛推移を二回微分して仕掛変動加速度を
求め、更に前記仕掛変動加速度と前記仕掛との積により
仕掛変動エネルギーを求め、前記仕掛変動エネルギーが
最大となる時点における前記長期最良解の仕掛分布を変
動域における工程別の最適仕掛とする変動域仕掛生成手
段と、 前記仕掛変動微分手段が安定域を検出した場合に、前記
安定域における前記長期最良解の仕掛分布を安定域にお
ける工程別の最適仕掛とする安定域仕掛生成手段とを有
し、 前記変動域又は安定域の工程別の適正仕掛に基づいて、
各処理設備に作業指示を行うことを特徴とする作業指示
装置。
1. A work instructing apparatus for instructing a plurality of processing facilities performing different processes in a processing order of a plurality of processings manufactured by different processes, wherein a simulation in which the plurality of processing facilities process the plurality of processings is performed. A long-term best solution simulation executing means for obtaining a long-term best solution in which the work in process of each processing facility converges to a predetermined value within a predetermined period; and obtaining a work-in-process variation speed by differentiating the progress of the work in progress of the long-term best solution. In-process fluctuation differentiating means for detecting the fluctuation range or stable range of the transition, and when the in-process fluctuation differentiating means detects the fluctuation range, obtain the in-process fluctuation acceleration by differentiating the in-process transition of the long-term best solution twice, furthermore The in-process variation energy is obtained by the product of the in-process variation acceleration and the in-process, and the in-process distribution of the long-term best solution at the time when the in-process variation energy is maximized is in a variation range. A variation range in-process generation means to be an optimal process for each process, and when the in-process variation differentiating means detects a stable range, the in-process distribution of the long-term best solution in the stable range is the optimal process for each process in the stable range. Having a stable area in-process generation means, based on the appropriate in-process for each step of the fluctuation area or the stable area,
A work instruction device for giving a work instruction to each processing facility.
【請求項2】請求項1において、 更に、前記変動域又は安定域の工程別の適正仕掛及び各
工程の現状仕掛に基づいて、各工程において作業対象と
なる工程別の有効仕掛を算出する有効仕掛設定手段と、 前記工程別の有効仕掛を処理設備別に分類し、処理設備
別の有効仕掛を納期に基づいて処理するように各処理設
備に指示する作業指示生成手段とを有することを特徴と
する作業指示装置。
2. The method according to claim 1, further comprising the step of calculating an effective work-in-process for each process to be worked in each process based on the appropriate work-in-process for each process in the fluctuation range or the stable range and the current work-in-process for each process. Work in process setting means, and having a work instruction generating means for classifying the effective work in process for each process by processing equipment, and instructing each processing equipment to process the effective work in process for each processing equipment based on a delivery date, Work instruction device.
【請求項3】請求項2において、 更に、各工程又は各処理設備における前記有効仕掛と現
状仕掛の比が所定の範囲を外れた場合に、前記長期最良
解シミュレーション実行手段に再シミュレーションを行
うように指示する適正仕掛再設定判定手段を有すること
を特徴とする作業指示装置。
3. The long-term best solution simulation execution means according to claim 2, further comprising: when the ratio between the effective work in progress and the current work in each process or each processing facility is out of a predetermined range. A work in progress resetting means for instructing the work instructor.
JP2000059351A 2000-03-03 2000-03-03 Work instruction device Expired - Fee Related JP4368487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000059351A JP4368487B2 (en) 2000-03-03 2000-03-03 Work instruction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000059351A JP4368487B2 (en) 2000-03-03 2000-03-03 Work instruction device

Publications (2)

Publication Number Publication Date
JP2001249712A true JP2001249712A (en) 2001-09-14
JP4368487B2 JP4368487B2 (en) 2009-11-18

Family

ID=18579814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000059351A Expired - Fee Related JP4368487B2 (en) 2000-03-03 2000-03-03 Work instruction device

Country Status (1)

Country Link
JP (1) JP4368487B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135280A (en) * 2003-10-31 2005-05-26 Fujitsu Ltd Production scheme planning method and device
CN103744377A (en) * 2013-12-26 2014-04-23 柳州正菱集团有限公司 Reverse cycle technology of production workshop

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135280A (en) * 2003-10-31 2005-05-26 Fujitsu Ltd Production scheme planning method and device
CN103744377A (en) * 2013-12-26 2014-04-23 柳州正菱集团有限公司 Reverse cycle technology of production workshop

Also Published As

Publication number Publication date
JP4368487B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
KR100341145B1 (en) Method and apparatus for forming a production plan
CN110597218B (en) Scheduling optimization method based on flexible scheduling
US6622055B2 (en) Method of control management of production line
KR100333454B1 (en) Production estimate management system
US7623936B1 (en) Determining scheduling priority using queue time optimization
CN111356988B (en) Method and system for scheduling semiconductor processing
US20050010319A1 (en) System and method for validating and visualizing APC assisted semiconductor manufacturing processes
US7076321B2 (en) Method and system for dynamically adjusting metrology sampling based upon available metrology capacity
TWI326832B (en) Dynamically adjusting the distribution for dispatching lot between current and downstream tool by using expertise w ighting m chanism
Singh et al. Experimental investigation for performance assessment of scheduling policies in semiconductor wafer fabrication—a simulation approach
JP2011257803A (en) Production management system and production management method
JP2001249712A (en) Work instructing apparatus
Rulkens et al. Batch size optimization of a furnace and pre-clean area by using dynamic simulations
Miwa et al. Automated stepper load balance allocation system
TW200407687A (en) Method and apparatus for providing first-principles feed-forward manufacturing control
JPH1071543A (en) Managing method of production line
Hunter et al. Understanding a semiconductor process using a full-scale model
JP5333992B2 (en) Work completion date prediction system
Kopp et al. Hierarchical decision-making for qualification management in wafer fabs: a simulation study
Cuckler et al. Optimal parallel machine allocation problem in IC packaging using IC-PSO: An empirical study
JPH11282923A (en) Circulation type production process schedule planning method
Bonvin et al. Optimal operation of batch processes via the tracking of active constraints
US8219341B2 (en) System and method for implementing wafer acceptance test (“WAT”) advanced process control (“APC”) with routing model
Yoon et al. Real-time scheduling of wafer fabrication with multiple product types
JPH05290053A (en) Providing method for flowing information in production management system of small scale many kinds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees