JP2001249227A - Method for manufacturing polarizing film - Google Patents
Method for manufacturing polarizing filmInfo
- Publication number
- JP2001249227A JP2001249227A JP2000401779A JP2000401779A JP2001249227A JP 2001249227 A JP2001249227 A JP 2001249227A JP 2000401779 A JP2000401779 A JP 2000401779A JP 2000401779 A JP2000401779 A JP 2000401779A JP 2001249227 A JP2001249227 A JP 2001249227A
- Authority
- JP
- Japan
- Prior art keywords
- polarizing
- color
- polarizing film
- light
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、偏光眼鏡や液晶
表示その他の偏光性を要する光学機器に広く使用される
偏光膜の製造方法と、さらに偏光膜にレンズやシートを
積層した偏光性複合体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polarizing film widely used for polarized glasses, liquid crystal displays and other optical devices requiring a polarizing property, and a polarizing composite comprising a polarizing film and a lens or sheet laminated on the polarizing film. And a method for producing the same.
【0002】[0002]
【従来の技術】一般に、偏光眼鏡などに装着されている
偏光レンズは、反射光線の眩しさ(物体表面に斜めに反
射して偏光した光)を除くために使用され、偏光膜をガ
ラスまたはプラスチックシートに重ねて接着一体化した
ものである。2. Description of the Related Art In general, a polarizing lens mounted on polarizing glasses is used to remove glare of reflected light (light that is obliquely reflected and polarized on the surface of an object), and a polarizing film is made of glass or plastic. The sheet is laminated on the sheet and bonded and integrated.
【0003】上記したような偏光レンズ等に使用される
偏光膜は、ポリビニルアルコールなどの薄いフィルムを
3〜5倍程度に延伸し、ヨウ素、二色性染料などで染色
されており、通常は灰褐色や灰緑色を呈している。[0003] The polarizing film used for the above-mentioned polarizing lens or the like is obtained by stretching a thin film of polyvinyl alcohol or the like about 3 to 5 times and dyeing it with iodine or a dichroic dye. It is brown or gray-green.
【0004】このような偏光膜または偏光膜を使用した
レンズやシートの用途としては、偏光眼鏡の他に立体映
画用眼鏡、カメラ、歪み測定機、液晶表示部、商品展示
用窓(ショーウィンド)、テレビOA用モニター、照明
量調節用窓などがあるが、特に偏光眼鏡については、果
樹園、養魚場などでの屋外作業、印刷所などの様々な高
照度環境で使用されるものである。[0004] Such a polarizing film or a lens or a sheet using the polarizing film is used in addition to polarized glasses, stereoscopic movie glasses, a camera, a distortion measuring device, a liquid crystal display, and a product display window (show window). , A monitor for television OA, a window for adjusting the amount of light, and the like. In particular, polarized glasses are used in various high illuminance environments such as outdoor work in an orchard, a fish farm, a printing shop, and the like.
【0005】[0005]
【発明が解決しようとする課題】しかし、従来の偏光膜
や偏光性のレンズ・シートは、偏光膜がヨウ素等で着色
されており、その透過光は着色剤の青色〜褐色などの色
彩を多く含んでいて肉眼で直接に感じる色彩とは異なっ
ており、すなわち偏光膜や偏光性のレンズ・シートを透
過した光では、裸眼で見た場合と同様に物の色を判別す
ることが難しいという問題点がある。However, in the conventional polarizing film or polarizing lens sheet, the polarizing film is colored with iodine or the like, and the transmitted light has many colors such as blue to brown as a colorant. It is different from the color that is directly felt by the naked eye, that is, it is difficult to distinguish the color of an object with light transmitted through a polarizing film or polarizing lens sheet as if it were seen with the naked eye. There is a point.
【0006】また、偏光眼鏡の種々の用途において具体
的に生じる問題点としては、果樹園等で作業する者が使
用すると果物の成熟度が色見本に比較して見分けられな
いこと、錦鯉などの鑑賞魚の養魚場で選別が容易にでき
ないこと、屋外で写生を行なう際に色の識別ができない
こと、高照度の印刷所で使用すると印刷面の色合いが識
別できないこと等が挙げられる。[0006] In addition, specific problems that occur in various uses of polarized eyeglasses are that when used in an orchard or the like, the degree of maturity of fruits cannot be distinguished from color samples, This includes that it is not easy to select at the fish farm for appreciation fish, that the colors cannot be identified when performing sketching outdoors, and that the color of the printed surface cannot be identified when used in a high illuminance printing shop.
【0007】そこで、この発明における課題は、上記し
た問題点を解決して、偏光膜または偏光性複合体の防眩
性を維持すると共に、それらを透過した光で色彩を誤認
することなく、裸眼で見た場合と同様に物体の色を確実
に判別できるように製造することである。Accordingly, an object of the present invention is to solve the above-mentioned problems, maintain the anti-glare properties of the polarizing film or the polarizing composite, and recognize the color with the light transmitted therethrough without misidentifying colors. The object is to manufacture the object so that the color of the object can be reliably determined in the same manner as when the object is viewed.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
め、この発明においては、UCS色空間における色の座
標値L、a、b(Lは0〜100に区分された明度であ
り、CIE標準表色系における三刺激値X、Y、Zで示
せば、L=100Y1/2 、a=175(1.02X−
Y)Y-1/2、b=70(Y−0.847Z)Y-1/2であ
る。)が、22≦L≦70、−2.0≦a≦2.0、−
2.0≦b≦2.0であり、かつ波長410〜750n
mにおける分光透過率がその平均値の±30%以内であ
り、さらに二枚の偏光膜を重ねて偏光軸を直交した際の
前記波長410〜750nmの透過率が2%以下となる
ように着色調整した偏光膜の製造方法としたのである。In order to solve the above-mentioned problems, according to the present invention, coordinate values L, a, b of a color in a UCS color space (L is lightness divided into 0 to 100, and CIE In terms of tristimulus values X, Y, and Z in the standard color system, L = 100Y 1/2 , a = 175 (1.02X−
Y) Y- 1 / 2 , b = 70 (Y-0.847Z) Y- 1 / 2 . ) Is 22 ≦ L ≦ 70, −2.0 ≦ a ≦ 2.0, −
2.0 ≦ b ≦ 2.0 and wavelengths 410 to 750 n
m so that the spectral transmittance at m is within ± 30% of the average value, and the transmittance at the wavelength of 410 to 750 nm when two polarizing films are stacked and the polarization axes are orthogonal to each other is 2% or less. This is the method of manufacturing the adjusted polarizing film.
【0009】または、光透過性のシートまたはレンズに
偏光膜を重ねて一体化して偏光性複合体を製造する方法
において、UCS色空間における色の座標値L、a、b
(Lは0〜100に区分された明度であり、CIE標準
表色系における三刺激値X、Y、Zで示せば、L=10
0Y1/2 、a=175(1.02X−Y)Y-1/2、b=
70(Y−0.847Z)Y-1/2である。)が、22≦
L≦70、−2.0≦a≦2.0、−2.0≦b≦2.
0であり、かつ波長410〜750nmにおける分光透
過率がその平均値の±30%以内であり、さらに二枚の
偏光性複合体を重ねて偏光軸を直交した際の前記波長4
10〜750nmの透過率が2%以下となるように、前
記偏光性複合体の構成部材に着色剤を含ませて偏光性複
合体を製造したのである。Alternatively, in a method of manufacturing a polarizing composite by laminating and integrating a polarizing film on a light-transmitting sheet or lens, coordinate values L, a, b of colors in a UCS color space are provided.
(L is a lightness classified into 0 to 100, and if represented by tristimulus values X, Y, and Z in the CIE standard color system, L = 10
0Y 1/2 , a = 175 (1.02X−Y) Y −1/2 , b =
70 (Y-0.847Z) Y- 1 / 2 . ) Is 22 ≦
L ≦ 70, −2.0 ≦ a ≦ 2.0, −2.0 ≦ b ≦ 2.
0, the spectral transmittance at a wavelength of 410 to 750 nm is within ± 30% of the average value, and the wavelength 4 when the two polarizing composites are superposed and the polarization axes are orthogonal to each other.
The polarizing composite was manufactured by incorporating a coloring agent into the constituent members of the polarizing composite so that the transmittance at 10 to 750 nm was 2% or less.
【0010】または、光透過性のシートまたはレンズに
偏光膜を重ねて一体化する偏光性複合体の製造方法にお
いて、UCS色空間における色の座標値L、a、b(L
は0〜100に区分された明度であり、CIE標準表色
系における三刺激値X、Y、Zで示せば、L=100Y
1/2 、a=175(1.02X−Y)Y-1/2、b=70
(Y−0.847Z)Y-1/2である。)が、22≦L≦
70、−2.0≦a≦2.0、−2.0≦b≦2.0で
あり、かつ波長430〜750nmにおける分光透過率
がその平均値の±30%以内であり、さらに二枚の偏光
性複合体を重ねて偏光軸を直交した際の前記波長430
〜750nmの透過率が2%以下となるように、前記偏
光性複合体の構成部材に着色剤および紫外線吸収剤を含
ませて偏光性複合体の製造方法としたのである。Alternatively, in a method of manufacturing a polarizing composite in which a polarizing film is superposed and integrated on a light-transmitting sheet or lens, color coordinate values L, a, b (L
Is the lightness classified into 0 to 100, and if represented by tristimulus values X, Y, and Z in the CIE standard color system, L = 100Y
1/2 , a = 175 (1.02X-Y) Y- 1 / 2 , b = 70
(Y-0.847Z) Y- 1 / 2 . ) Is 22 ≦ L ≦
70, −2.0 ≦ a ≦ 2.0, −2.0 ≦ b ≦ 2.0, and the spectral transmittance at a wavelength of 430 to 750 nm is within ± 30% of the average value. The wavelength 430 when the polarizing composites of
A method for producing a polarizing composite was prepared by incorporating a coloring agent and an ultraviolet absorber into the constituent members of the polarizing composite so that the transmittance at 750 nm was 2% or less.
【0011】または、上記したいずれかの構成の偏光性
複合体を装着した偏光眼鏡の製造方法としたのである。Alternatively, the present invention provides a method for manufacturing polarized glasses to which the polarizing composite having any one of the above structures is mounted.
【0012】上述の着色調整された偏光膜等は、人間が
肉眼で見ることのできる380〜780nmの範囲の波
長にほぼ一致する410〜750nmの波長の光を偏光
させるものであり、その際の透過光の色はUCS色空間
(Uniform color space)における色の座標値L、a、b
のそれぞれ前記所定範囲の値に着色調整されたものであ
る。The above-mentioned color-adjusted polarizing film or the like polarizes light having a wavelength of 410 to 750 nm, which is substantially equal to a wavelength in the range of 380 to 780 nm that can be seen by the human eye. The color of the transmitted light is a coordinate value L, a, b of a color in a UCS color space (Uniform color space).
Are color-adjusted to values within the above-mentioned predetermined ranges.
【0013】因みに、UCS色度図(Uniform chromati
city scale diagram) の平面内で色度が表示されるが、
色を表示するには更に色の明るさが必要である。そこ
で、UCS色度図の原点を通って色度図に垂直な明度軸
をとれば、1つの色空間をつくることができる。これが
UCS色空間と呼ばれているものである。Incidentally, a UCS chromaticity diagram (Uniform chromati
The chromaticity is displayed in the plane of (city scale diagram),
In order to display a color, the brightness of the color is further required. Therefore, by taking a lightness axis perpendicular to the chromaticity diagram through the origin of the UCS chromaticity diagram, one color space can be created. This is called the UCS color space.
【0014】ところで、前記した着色調整とは、偏光膜
に含まれている偏光性を付与するためのヨウ素等の着色
剤に加えて直接染料、反応染料、酸性染料などの着色剤
を所定量添加して、前記所定範囲のL、a、b値になる
ように偏光膜等を着色することである。By the way, the above-mentioned coloring adjustment means adding a predetermined amount of a coloring agent such as a direct dye, a reactive dye or an acid dye in addition to a coloring agent such as iodine for imparting the polarizing property contained in the polarizing film. Then, the polarizing film or the like is colored so as to have the L, a, and b values in the predetermined range.
【0015】そして、このような着色調整によって、偏
光膜を透過した光が、410〜750nmの波長範囲で
分光透過率がその範囲の平均値の±30%以内になり、
すなわち偏光膜は特定の波長の光のみを透過させず、種
々の波長の光の透過量は平均値の±30%以内で安定す
る。[0015] By such coloring adjustment, the light transmitted through the polarizing film has a spectral transmittance within ± 30% of an average value in the wavelength range of 410 to 750 nm,
That is, the polarizing film does not transmit only light of a specific wavelength, and the transmission amount of light of various wavelengths is stable within ± 30% of the average value.
【0016】さらに、前記した着色調整では、二枚の偏
光膜を重ねて偏光軸を直交した際にこれらを透過する波
長410〜750nmの透過率が2%以下となる条件を
満足させることも必要である。なぜなら、自然光が物体
に当たり反射した光が1枚の偏光膜を透過すると、上記
した所定範囲のL、a、b値を満足し、所定範囲の分光
透過率が平均値の±30%以内で安定している場合でも
特定の波長の光を比較的多く含むことがあるので、その
ような特定波長の透過光量を抑えて透過光を自然色に充
分に近づける必要があるからである。Further, in the above-mentioned coloring adjustment, it is necessary to satisfy the condition that the transmittance at a wavelength of 410 to 750 nm, which transmits these two polarizing films when the polarizing axes are orthogonal to each other, is 2% or less when the polarizing films are superposed. It is. This is because when natural light hits an object and the reflected light passes through one polarizing film, it satisfies the L, a, and b values in the above-mentioned predetermined range, and the spectral transmittance in the predetermined range is stable within ± 30% of the average value. This is because, even when light is transmitted, light of a specific wavelength may be included in a relatively large amount, and it is necessary to suppress the amount of transmitted light of such a specific wavelength to sufficiently make the transmitted light close to a natural color.
【0017】このような条件で着色調整された偏光膜の
透過光は、明るさは若干低下するが、肉眼で識別可能な
全ての波長の光を平均的に含むので、裸眼で見た場合と
同様に物体の色を確実に判別できる光になる。Although the brightness of the transmitted light of the polarizing film colored and adjusted under such conditions slightly decreases, light of all wavelengths identifiable to the naked eye is included on average. Similarly, the light becomes light that can reliably determine the color of the object.
【0018】また、光透過性のシートまたはレンズに偏
光膜を重ねて一体化した偏光性複合体においても、前記
偏光性複合体の構成部材である偏光膜、シートおよびレ
ンズから選ばれる1つ以上の部品に前記着色調整に係る
着色剤を含ませることにより、前記した偏光膜と同様に
透過光に肉眼で識別可能な全ての波長の光を平均的に含
ませる作用がある。Also, in a polarizing composite obtained by integrating a polarizing film on a light-transmitting sheet or lens, at least one member selected from the polarizing film, sheet and lens constituting the polarizing composite. By including the colorant for the color adjustment in the component (1), there is an effect that, as in the case of the above-mentioned polarizing film, the transmitted light contains light of all wavelengths that can be visually identified.
【0019】ところで、偏光性複合体の構成部材に対し
て、着色剤と共に紫外線吸収剤を含ませて偏光性複合体
を構成すると、紫外線透過防止性のある偏光性複合体に
なることは当然であるが、近可視域の波長410〜43
0nmの光を吸収する紫外線吸収剤を使用すると、波長
410〜750nmの範囲で透過光量を安定させること
は困難になる。しかしながら、その場合は波長430〜
750nmにおける分光透過率がその範囲の平均値の±
30%以内に平均していれば、使用に耐える偏光性複合
体が得られる。By the way, if a polarizing composite is formed by adding an ultraviolet absorber together with a coloring agent to the constituent members of the polarizing composite, it is natural that the polarizing composite has an anti-ultraviolet property. Although there are wavelengths 410 to 43 in the near visible range
When an ultraviolet absorber that absorbs light of 0 nm is used, it becomes difficult to stabilize the amount of transmitted light in the wavelength range of 410 to 750 nm. However, in that case, the wavelength 430 to 430
The spectral transmittance at 750 nm is ± of the average value in the range.
When the average is within 30%, a polarizing composite which can be used is obtained.
【0020】なお、この場合も二枚の偏光性複合体を重
ねて偏光軸を直交した際の前記波長範囲の透過率が2%
以下となるように、着色調整することは必要である。以
上の条件を満足すれば、裸眼で見た場合と同様に物体の
色を確実に判別でき、しかも紫外線をカットできる偏光
膜、または偏光性複合体になる。In this case as well, the transmittance in the above-mentioned wavelength range when two polarizing composites are overlapped and the polarization axes are orthogonal to each other is 2%.
It is necessary to adjust the coloring so that: When the above conditions are satisfied, a polarizing film or a polarizing composite which can reliably discriminate the color of the object and can cut off ultraviolet rays as in the case of the naked eye.
【0021】[0021]
【発明の実施の形態】この発明におけるUCS色空間に
おける色の座標値L、a、bは、図1に示されるような
三次元の色立体として把握される座標上の値であり、色
差を求めるための周知の光電色度計(受光器に光電池を
用いた光電管)によって求められる。色差計としては、
Richard S. Hunter による「Color and Color-Differen
ce Meter」と呼ばれるものの他、後述する国産品のもの
であってもよい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Color coordinate values L, a, and b in a UCS color space according to the present invention are values on coordinates grasped as a three-dimensional color solid as shown in FIG. It is determined by a well-known photoelectric chromaticity meter (phototube using a photocell as a light receiver). As a color difference meter,
Color and Color-Differen by Richard S. Hunter
In addition to what is called "ce Meter", it may be a domestic product described later.
【0022】前記した座標値のうち、Lは0〜100に
区分された明度であり、L、a、bをCIE標準表色系
における三刺激値X、Y、Zで示せば、L=100Y
1/2 、a=175(1.02X−Y)Y-1/2、b=70
(Y−0.847Z)Y-1/2である。なお、一般に光の
三刺激値は、分光測色方法により求められ、国際照明委
員会によって三刺激値に記号X、Y、Zを用いることが
定められている。In the coordinate values described above, L is lightness divided into 0 to 100. If L, a, and b are represented by tristimulus values X, Y, and Z in the CIE standard color system, L = 100Y
1/2 , a = 175 (1.02X-Y) Y- 1 / 2 , b = 70
(Y-0.847Z) Y- 1 / 2 . In general, tristimulus values of light are determined by a spectral colorimetric method, and the International Commission on Illumination specifies that the symbols X, Y, and Z are used for tristimulus values.
【0023】この発明に用いる着色剤は、偏光用の着色
剤としてのヨウ素(沃度)の他、周知の直接染料、反応
染料、酸性染料などを使用可能である。As the colorant used in the present invention, in addition to iodine (iodine) as a colorant for polarized light, well-known direct dyes, reactive dyes, acid dyes and the like can be used.
【0024】直接染料の具体例としては、ダイヤルミナ
スブルーGF、カヤラススプラグリーンGG、シリアス
スプラブラウンG、スミライトブラックG、ダイレクト
ファストブラックD、カヤラススプラグレイCGL、ス
ミライトレッド4B、シリアススカーレットB、ダイレ
クトファストイエローR、ダイレクトファストオレン
ジ、ニッポンオレンジGG、ダイレクトオレンジGKな
どである。Specific examples of the direct dye include Dial Minas Blue GF, Kayara Supra Green GG, Serious Supra Brown G, Sumilite Black G, Direct Fast Black D, Kayasu Spragray CGL, Sumilite Red 4B, Serious Scarlet B, Direct Fast Yellow R, Direct Fast Orange, Nippon Orange GG, Direct Orange GK, and the like.
【0025】また、反応性染料としては、ミカロンイエ
ローRS、ミカロンイエローGRS、ダイアミラーイエ
ローRTN、ダイアミラーブリリアントオレンジGD、
ミカロンスカーレットGS、ダイアミラーレッドB、ダ
イアミラーブリリアントバイオレット5R、ミカロンブ
リリアントブルーRS、ミカロンオリーブグリーン3G
Sなどである。The reactive dyes include Micalon Yellow RS, Micalon Yellow GRS, Diamirror Yellow RTN, Diamirror Brilliant Orange GD,
Micarons Scarlet GS, Diamirror Red B, Diamirror Brilliant Violet 5R, Micaron Brilliant Blue RS, Micaron Olive Green 3G
S and the like.
【0026】また、酸性染料としては、カヤカランイエ
ローGL、カヤノールMイエローRW、ダイワアシッド
オレンジI、カヤカランオレンジRL、スミトモファス
トスカーレットA、ブリリアントスカーレット3R、カ
ヤノールMレッドBW、ブリリアントアシッドブルー
R、ダイアシッドファストブルーNP、カヤノールMブ
ルーBW、スミラングリーンBL、カヤカランオリーブ
BGLなどである。Examples of the acidic dye include Kayakaran Yellow GL, Kayaanol M Yellow RW, Daiwa Acid Orange I, Kayakaran Orange RL, Sumitomo Fast Scarlet A, Brilliant Scarlet 3R, Kayanol M Red BW, Brilliant Acid Blue R, Acid Fast Blue NP, Kayanol M Blue BW, Sumilan Green BL, Kayakaran Olive BGL and the like.
【0027】以上述べたような染料は、組み合わせて調
合して染色することもできる。The dyes described above can also be combined and dyed.
【0028】偏光膜の素材となる延伸性のあるフィルム
素材としては、ポリビニルアルコールフィルム(通称ビ
ニロンフィルム)、ポリ塩化ビニルフィルム、ポリエチ
レンテレフタレートフィルムなどが挙げられる。Examples of the stretchable film material used as the material of the polarizing film include a polyvinyl alcohol film (commonly called vinylon film), a polyvinyl chloride film, a polyethylene terephthalate film and the like.
【0029】延伸前のフィルムの厚さ及び延伸の程度
は、特に限定される条件ではないが、厚さ75μmのフ
ィルムを3〜5倍に一軸延伸したものは良好な偏光性が
ある。The thickness and the degree of stretching of the film before stretching are not particularly limited, but those obtained by uniaxially stretching a 75 μm thick film 3 to 5 times have good polarizing properties.
【0030】このような偏光膜を前記した染料で着色す
るには、フィルムを延伸した後、染料液に浸漬し、適宜
にホウ酸や硼砂等を加えて加熱処理する。In order to color such a polarizing film with the above-described dye, the film is stretched, immersed in a dye solution, and then appropriately treated by adding boric acid, borax or the like.
【0031】偏光性複合体を製造する場合には、偏光膜
以外の構成部材である光透過性のシート、レンズおよび
接着剤から選ばれる1以上の部品を着色することも可能
である。この場合、前記したシートまたはレンズは、真
空蒸着やイオンプレーティング、色料転写などによる表
面コート層が設けられる場合があり、すなわちコーティ
ング剤を着色して用いることも可能である。なお、接着
剤を着色する場合にはオイル染料を用いることが耐熱性
や溶解性が良好である点で好ましい。市販のオイル染料
としては、ダイアレジンイエローA、ダイアレジンオレ
ンジK、ダイアレジンレットJなどが挙げられる。In the case of producing a polarizing composite, it is possible to color one or more components selected from a light-transmitting sheet, a lens and an adhesive which are constituent members other than the polarizing film. In this case, the above-mentioned sheet or lens may be provided with a surface coat layer by vacuum deposition, ion plating, colorant transfer, or the like, that is, the coating agent may be colored. When coloring the adhesive, it is preferable to use an oil dye in terms of good heat resistance and solubility. Commercially available oil dyes include Diaresin Yellow A, Dialesin Orange K, Dialesinlet J and the like.
【0032】この発明においてシートやレンズの材料
は、特に限定されるものではなく、例えば熱可塑性樹脂
である二酢酸セルローズ、三酢酸セルローズ、酢酪酸セ
ルローズ(CAB)、セルローズプロピオネート(C
P)、ポリカーボネート、メチルメタクリレート(MM
A)、ポリエステル、ポリオレフィンなどが挙げられ
る。また熱硬化性樹脂としては、ジエチレングリコール
ビスアリルカーボネート、エチレングリコールジアクリ
レート、メタクリル酸エステル、アクリルスチロールウ
レタン共重合体などが挙げられる。In the present invention, the material of the sheet or lens is not particularly limited. For example, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate (CAB), cellulose propionate (C)
P), polycarbonate, methyl methacrylate (MM
A), polyester, polyolefin and the like. Examples of the thermosetting resin include diethylene glycol bisallyl carbonate, ethylene glycol diacrylate, methacrylate, and acrylstyrene urethane copolymer.
【0033】図2に示すように、シートやレンズに対し
て偏光膜を一体化して偏光性複合体を製造するには、通
常は接着剤2を介して偏光膜(フィルム)1を2枚のレ
ンズ3、4(またはシート)で挟持して接着する。ま
た、接着剤を使用することなく、偏光板を射出成形金型
内に装入し、熱可塑性樹脂を射出成形して偏光性複合体
を製造することもできる。As shown in FIG. 2, in order to integrate a polarizing film with a sheet or a lens to produce a polarizing composite, usually, a polarizing film (film) 1 is bonded via an adhesive 2 to two sheets. It is sandwiched and adhered by the lenses 3 and 4 (or a sheet). Alternatively, a polarizing composite can be manufactured by inserting a polarizing plate into an injection mold and injecting a thermoplastic resin without using an adhesive.
【0034】また、着色調整による前記所定の条件を満
足するならば、偏光性複合体の表面に周知のコーティン
グを施してもよく、たとえばハードコート、マルチコー
ト、防曇コート、防滴コート、UVコート、IRコー
ト、中抜コート、ハーフ染色などを設けることは好まし
い。If the above-mentioned predetermined condition by color adjustment is satisfied, a known coating may be applied to the surface of the polarizing composite, for example, a hard coat, a multi-coat, an anti-fog coat, a drip-proof coat, UV It is preferable to provide a coat, an IR coat, a hollow coat, a half dyeing, and the like.
【0035】このように、L、a、bその他の前記所定
の条件を満足する着色調整は、主として偏光膜に対して
行なうことが好ましいが、前記したように接着剤(粘着
剤を含む)シートまたはレンズ(もしくはそれらの表面
コート層)などを着色調整することもできる。As described above, it is preferable that the color adjustment satisfying the predetermined conditions such as L, a, b and the like is mainly performed on the polarizing film. However, as described above, the adhesive (including the adhesive) sheet is used. Alternatively, the coloring of the lenses (or their surface coating layers) can be adjusted.
【0036】[0036]
【実施例】〔実施例1〕厚さ75μmのポリビニルアル
コールフィルム(通称ビニロンフィルム)を4倍に一軸
延伸した後、ヨウ素0.1重量%、直接染料のダイレク
トファストオレンジ0.04重量%とシリアススカーレ
ットB0.02重量%、反応性染料のミカロンイエロー
RS0.01重量%とダイアミラレッドB0.012重
量%を含有する水溶液(染料液)に浸漬し、その後にホ
ウ酸3重量%を含有する水溶液に浸漬し、液切りした
後、70℃で5分間加熱処理して複数枚の偏光膜(厚さ
30μm)を製造した。EXAMPLES Example 1 A 75 μm-thick polyvinyl alcohol film (commonly called vinylon film) was uniaxially stretched 4 times, and then 0.1% by weight of iodine, 0.04% by weight of direct dye, direct fast orange, and seriously Immersion in an aqueous solution (dye solution) containing 0.02% by weight of Scarlet B, 0.01% by weight of Micaron Yellow RS as a reactive dye and 0.012% by weight of Diamira Red B, and then an aqueous solution containing 3% by weight of boric acid After immersion in water, a heat treatment was performed at 70 ° C. for 5 minutes to produce a plurality of polarizing films (thickness: 30 μm).
【0037】得られた偏光膜(1枚)のUCS色空間に
おける色の座標値L、a、bを日本電色工業社製のΣ9
0カラーメジャリングシステムとZ−IIオプティカルセ
ンサーを組み合わせた装置で計測すると共に、波長41
0〜750nmを含む範囲の分光透過率を日立製作所社
製:U−2000スペクトロフォトメーターで測定し、
さらに偏光膜の偏光軸を直交状態に配置して2枚重ねた
際の分光透過率を測定し、これらの結果を図3中に示し
た。The color coordinate values L, a, and b of the obtained polarizing film (one sheet) in the UCS color space are converted to # 9 manufactured by Nippon Denshoku Industries Co., Ltd.
In addition to measuring with a device that combines a color measurement system and a Z-II optical sensor, the wavelength 41
The spectral transmittance in the range including 0 to 750 nm was measured with a U-2000 spectrophotometer manufactured by Hitachi, Ltd.
Further, the spectral transmittance was measured when two polarizing films were stacked with the polarizing axes of the polarizing films arranged in an orthogonal state, and the results are shown in FIG.
【0038】図3の結果からも明らかなように、実施例
1ではL=54.81、a=−0.56、b=−0.2
3の所定範囲内であり、前記波長範囲の光透過率(T
%)の変動をみると、平均値が31.95%であり、そ
の変動幅は−7.7%から+10.8%の範囲で分光透
過率は30%以内であって肉眼で識別可能な全ての波長
の光を平均的に含み、しかも2枚の偏光膜を直交した場
合の波長410〜750nmの透過率が0.0〜0.8
%(2%以下)であって、裸眼で見た場合と同様に物体
の色を確実に判別でき、偏光眼鏡に使用可能であった。As is apparent from the results shown in FIG. 3, in the first embodiment, L = 54.81, a = -0.56, b = -0.2
3 within the predetermined range, and the light transmittance (T
%), The average value is 31.95%, the fluctuation range is from -7.7% to + 10.8%, and the spectral transmittance is within 30%, and can be visually recognized. Includes light of all wavelengths on average, and has a transmittance of 0.0 to 0.8 at a wavelength of 410 to 750 nm when two polarizing films are orthogonal to each other.
% (2% or less), and the color of the object could be reliably discriminated as in the case of seeing with the naked eye, and the lens could be used for polarized glasses.
【0039】〔実施例2〕実施例1の偏光膜を球面ガラ
スに当てて球面に成形し、その両面にウレタン系接着剤
(東洋ポリマー社製:ポリネート1000)を塗布し乾
燥した。次いでこれをガスケットの中央にセットして両
サイドにガラスモールドを配置し、偏光膜とガラスモー
ルドの間に熱硬化性樹脂であるADC樹脂(ジエチレン
グリコールビスアリルカーボネート)の液体モノマーお
よびその触媒IPP(ジイソプロピルパーオキシジカー
ボネート)を3重量%混合攪拌したものを注入し、これ
らを20℃から80℃まで一定の昇温速度で12時間か
けて加熱し、偏光性複合体(偏光レンズ)を製造した。Example 2 The polarizing film of Example 1 was applied to spherical glass to form a spherical surface, and a urethane-based adhesive (Polynate 1000, manufactured by Toyo Polymer Co., Ltd.) was applied to both surfaces and dried. Next, this is set at the center of the gasket, and glass molds are arranged on both sides. A liquid monomer of ADC resin (diethylene glycol bisallyl carbonate), which is a thermosetting resin, and its catalyst IPP (diisopropyl) are provided between the polarizing film and the glass mold. A mixture of 3% by weight of peroxydicarbonate) was injected, and the mixture was heated from 20 ° C. to 80 ° C. at a constant heating rate for 12 hours to produce a polarizing composite (polarizing lens).
【0040】得られた偏光レンズ(1枚)の色の座標値
L、a、bと波長410〜750nmを含む範囲の分光
透過率を測定すると共に、偏光レンズを2枚重ねてそれ
ぞれの偏光軸を直交状態に配置してその際の分光透過率
を測定し、これらの結果を図4中に示した。The spectral transmittance in the range including the color coordinate values L, a, b of the obtained polarizing lens (one piece) and the wavelength of 410 to 750 nm is measured, and two polarizing lenses are superposed on each other to obtain the respective polarizing axes. Were arranged in an orthogonal state, and the spectral transmittance at that time was measured. The results are shown in FIG.
【0041】図4の結果からも明らかなように、実施例
2ではL=53.42、a=−0.40、b=0.76
の所定範囲内であり、所定波長範囲の光透過率(T%)
の平均値が31.41であってその変動幅は−21.4
%から+15.9%であって±30%以内にあり、しか
も2枚の偏光膜を直交した場合の410〜750nmの
透過率が0.0〜0.2%(2%以下)であり、肉眼で
識別可能な全ての波長の光を平均的に含み、裸眼で見た
場合と同様に物体の色を確実に判別でき、偏光眼鏡にも
使用可能であった。As is clear from the results shown in FIG. 4, in the second embodiment, L = 53.42, a = −0.40, b = 0.76.
And the light transmittance (T%) within a predetermined wavelength range.
Is 31.41, and the fluctuation range is -21.4.
% To + 15.9% and within ± 30%, and the transmittance at 410 to 750 nm when two polarizing films are orthogonal to each other is 0.0 to 0.2% (2% or less); It contained light of all wavelengths identifiable to the naked eye on average, and could reliably discriminate the color of an object as in the case of the naked eye, and could be used for polarized glasses.
【0042】〔比較例1〕ヨウ素のみを用いたこと以外
は実施例1と全く同様にして、ポリビニルアルコールフ
ィルム製の偏光膜(厚さ30μm)を製造した。Comparative Example 1 A polarizing film (thickness: 30 μm) made of a polyvinyl alcohol film was produced in exactly the same manner as in Example 1 except that only iodine was used.
【0043】得られた偏光膜(1枚)のUCS色空間に
おける色の座標値L、a、bと波長410〜750nm
を含む範囲の分光透過率、および偏光膜を2枚重ねてそ
れぞれの偏光軸を直交状態に配置した場合の分光透過率
を測定し、これらの結果を図5中に示した。The coordinate values L, a, b of the obtained polarizing film (one sheet) in the UCS color space and wavelengths of 410 to 750 nm
And the spectral transmittance in the case where two polarizing films were stacked and the respective polarization axes were arranged in an orthogonal state were measured. The results are shown in FIG.
【0044】図5の結果からも明らかなように、比較例
1ではL=60.38、a=−0.55、b=−3.9
9であってb値が所定範囲外にあり、所定波長範囲の光
透過率(T%)の平均値が38.38%であってその変
動幅は−6.5%から+6.8%で±30%以内に安定
しているが、2枚の偏光膜を直交した場合の波長450
nm付近の透過率が5.4%であって所定限度の2%を
越えていた。また、比較例1の偏光膜を通して自然光が
物体に当たって反射した光(偏光)を実際に見ると、防
眩性の目安となるいわゆる”ぎらつき”はなかったが、
色感として青色系が強く感じられた。As is clear from the results shown in FIG. 5, in Comparative Example 1, L = 60.38, a = -0.55, b = -3.9.
9, the b value is out of the predetermined range, the average value of the light transmittance (T%) in the predetermined wavelength range is 38.38%, and the fluctuation range is from -6.5% to + 6.8%. It is stable within ± 30%, but has a wavelength of 450 when two polarizing films are orthogonal.
The transmittance near nm was 5.4%, exceeding the predetermined limit of 2%. In addition, when the light (polarized light) reflected by natural light hitting the object through the polarizing film of Comparative Example 1 was actually observed, there was no so-called “glare” which is a measure of antiglare property.
Blue color was strongly felt as a color impression.
【0045】〔比較例2〕偏光剤としてヨウ素(沃度)
を使用せずに直接染料のみを使用した偏光膜をポリカー
ボネート樹脂製のレンズ2枚で挟み接着一体化された偏
光性複合体(偏光レンズ)を使用した。Comparative Example 2 Iodine (Iodine) as Polarizing Agent
A polarizing composite (polarizing lens) was used in which a polarizing film directly using only a dye was sandwiched between two lenses made of polycarbonate resin without being used, and bonded and integrated.
【0046】この偏光レンズ(1枚)の色の座標値L、
a、bと波長410〜750nmを含む範囲の分光透過
率を測定すると共に、偏光レンズを2枚重ねてそれぞれ
の偏光軸を直交状態に配置してその際の分光透過率を測
定し、これらの結果を図6中に示した。The coordinate values L of the color of this polarizing lens (one piece)
In addition to measuring the spectral transmittance in the range including a and b and the wavelength of 410 to 750 nm, two polarizing lenses are superimposed and their polarization axes are arranged in an orthogonal state, and the spectral transmittance at that time is measured. The results are shown in FIG.
【0047】図6の結果からも明らかなように、比較例
2ではL=39.06、a=−3.57、b=1.86
であってa値が所定範囲外であり、偏光レンズは波長7
00〜750nmの付近の光透過率(T%)の変動が−
73.9〜+232であって平均値(26.08)の±
30%を越えており、しかも2枚の偏光膜を直交した場
合の波長700〜750nm付近の透過率が750nm
で74.6%であって所定限度の2%を越えていた。こ
の偏光レンズで自然光が物体に当たって反射した光(偏
光)を実際に見ると、防眩性の目安となるいわゆる”ぎ
らつき”はなかったが、色感として赤色系が強く感じら
れて裸眼で見た場合と同様の物体の色を確実に判別でき
なかった。As is clear from the results of FIG. 6, in Comparative Example 2, L = 39.06, a = -3.57, and b = 1.86.
And the value a is out of the predetermined range, and the polarizing lens has a wavelength of 7
The fluctuation of the light transmittance (T%) around 00 to 750 nm is −
73.9 to +232, and ± of the average value (26.08)
It exceeds 30%, and the transmittance near a wavelength of 700 to 750 nm when two polarizing films are orthogonal to each other is 750 nm.
Was 74.6%, exceeding the predetermined limit of 2%. When actually seeing the light (polarized light) reflected by natural light hitting an object with this polarizing lens, there was no so-called "glare" which is a measure of anti-glare properties. In this case, the color of the object as in the case where it was not able to be determined.
【0048】〔比較例3〕偏光剤としてヨウ素と色料を
使用した偏光膜をセルロース樹脂製のレンズ2枚の間に
挟んだ状態で接着一体化された偏光性複合体(偏光レン
ズ)を使用した。Comparative Example 3 A polarizing composite (polarizing lens) was used in which a polarizing film using iodine and a colorant as a polarizing agent was bonded and integrated while sandwiching a polarizing film between two lenses made of cellulose resin. did.
【0049】上記の偏光レンズ(1枚)の色の座標値
L、a、bと波長410〜750nmを含む範囲の分光
透過率を測定すると共に、偏光レンズを2枚重ねてそれ
ぞれの偏光軸を直交状態に配置してその際の分光透過率
を測定し、これらの結果を図7中に示した。The spectral transmittance in the range including the color coordinate values L, a, b of the polarizing lens (one piece) and the wavelength of 410 to 750 nm is measured, and two polarizing lenses are overlapped to set the respective polarizing axes. The lenses were arranged in an orthogonal state, and the spectral transmittance at that time was measured. The results are shown in FIG.
【0050】図7の結果からも明らかなように、比較例
3ではL=50.22、a=−2.10、b=0.64
であってa値が所定範囲外であった。そして、この偏光
レンズは波長650〜750nmの付近の光透過率(T
%)の変動が−79.3%〜+66.4%であって平均
値(28%)の±30%を越えており、しかも2枚の偏
光膜を直交した場合の波長700〜750nm付近の透
過率が750nmで5.4%であって所定限度の2%を
越えていた。この偏光レンズで自然光が物体に当たって
反射した光(偏光)を実際に見ると、防眩性の目安とな
るいわゆる”ぎらつき”はなかったが、比較例2の場合
と同様に、色感として赤色系が強く感じられて裸眼で見
た場合と同様の物体の色を確実に判別できなかった。As is clear from the results shown in FIG. 7, in Comparative Example 3, L = 50.22, a = -2.10, b = 0.64.
And the value a was out of the predetermined range. This polarizing lens has a light transmittance (T) near a wavelength of 650 to 750 nm.
%) Is -79.3% to + 66.4%, which exceeds ± 30% of the average value (28%), and the wavelength around 700 to 750 nm when two polarizing films are orthogonal to each other. The transmittance was 5.4% at 750 nm, exceeding the predetermined limit of 2%. When actually seeing the light (polarized light) reflected by natural light on an object with this polarizing lens, there was no so-called "glare" which is a measure of the antiglare property, but as in Comparative Example 2, the color was red. The system was strongly felt, and the color of the object as in the case of the naked eye could not be reliably determined.
【0051】〔実施例3〕実施例2のADC樹脂の液体
モノマーおよびその触媒IPPの混合物に代えて、紫外
線吸収剤(ゼネラルアニリンアンドフィルム社製:ユピ
ナールD−49)を0.3重量%配合したADC樹脂
(ジエチレングリコールビスアリルカーボネート)の液
体モノマーおよびその触媒IPP(ジイソプロピルパー
オキシジカーボネート)を3重量%混合攪拌したものを
使用すること以外は、実施例2と全く同様にして偏光性
複合体(偏光レンズ)を製造した。Example 3 In place of the mixture of the liquid monomer of the ADC resin and the catalyst IPP thereof in Example 2, 0.3% by weight of an ultraviolet absorber (UPINAL D-49, manufactured by General Aniline and Film Co., Ltd.) was blended. A polarizing composite was prepared in exactly the same manner as in Example 2, except that a mixture obtained by mixing and stirring 3% by weight of a liquid monomer of ADC resin (diethylene glycol bisallyl carbonate) and its catalyst IPP (diisopropyl peroxydicarbonate) was used. (Polarized lens) was manufactured.
【0052】得られた偏光レンズ(1枚)の色の座標値
L、a、bと波長430〜750nmを含む範囲の分光
透過率を測定すると共に、偏光レンズを2枚重ねてそれ
ぞれの偏光軸を直交状態に配置してその際の分光透過率
を測定し、これらの結果を図8中に示した。The spectral transmittance in the range including the coordinate values L, a, b of the color of the obtained polarizing lens (one piece) and the wavelength of 430 to 750 nm was measured, and two polarizing lenses were superimposed on each other to obtain the respective polarizing axes. Were arranged in an orthogonal state, and the spectral transmittance at that time was measured. The results are shown in FIG.
【0053】図8の結果からも明らかなように、実施例
3ではL=53.60、a=−1.40、b=1.64
の所定範囲内であり、前記所定波長範囲の光透過率(T
%)の変動が、−6.2%から+15.2%で30%以
内であり、しかも2枚の偏光膜を直交した場合の430
〜750nmの透過率が0.2〜0.4%であり2%以
下であるから、肉眼で識別可能な全ての波長の光を平均
的に含み、裸眼で見た場合と同様に物体の色を確実に判
別でき、しかも紫外線防止性も兼ね備えて、偏光眼鏡
(紫外線防止および防眩性サングラス)に使用可能なも
のであった。As is clear from the results shown in FIG. 8, in the third embodiment, L = 53.60, a = −1.40, b = 1.64.
, And the light transmittance (T
%) Is within 30% from -6.2% to + 15.2%, and 430 when two polarizing films are orthogonal to each other.
Since the transmittance at 〜750 nm is 0.2 to 0.4% and 2% or less, the light of all wavelengths identifiable to the naked eye is included on average, and the color of the object is the same as when viewed with the naked eye. Was able to be reliably discriminated and also provided with ultraviolet protection, and could be used for polarized glasses (ultraviolet protection and anti-glare sunglasses).
【0054】[0054]
【発明の効果】この発明の偏光膜の製造方法は、以上説
明したように、1枚の偏光膜を透過した自然光が所定範
囲のL、a、b値を満足すると共に所定波長範囲の分光
透過率の変動が平均値の所定範囲以内であり、かつ二枚
の偏光膜を重ねて偏光軸を直交した際の所定波長範囲の
透過率が2%以下となるように着色調整する製造方法で
あるので、偏光膜を透過した光で色彩を誤認することな
く、裸眼で見た場合と同様に色を確実に判別できる偏光
膜を製造できるという利点がある。As described above, according to the method for manufacturing a polarizing film of the present invention, natural light transmitted through one polarizing film satisfies L, a, and b values within a predetermined range, and spectrally transmits light within a predetermined wavelength range. This is a production method in which the variation of the rate is within a predetermined range of the average value, and the coloring is adjusted so that the transmittance in a predetermined wavelength range when two polarizing films are overlapped and their polarization axes are orthogonal to each other is 2% or less. Therefore, there is an advantage that a polarizing film capable of reliably discriminating a color can be manufactured in the same manner as when viewed with the naked eye without misidentifying colors with light transmitted through the polarizing film.
【0055】また、光透過性のシートまたはレンズに偏
光膜を重ねて一体化した偏光性複合体の製造方法に係る
発明においても、前記偏光膜の製造方法と同様の利点が
ある。Further, the invention relating to the method for manufacturing a polarizing composite in which a polarizing film is laminated on a light-transmitting sheet or lens and integrated therewith has the same advantages as the method for manufacturing a polarizing film.
【0056】また、偏光性複合体の構成部材に着色剤お
よび紫外線吸収剤を含ませて偏光性複合体を製造する方
法の発明においても、紫外線透過防止性を有すると共に
肉眼で見た場合と同様に色を確実に判別できる透過光が
得られる偏光性複合体が製造できるという利点がある。Also, in the invention of a method for producing a polarizing composite by including a coloring agent and an ultraviolet absorbing agent in the constituent members of the polarizing composite, the polarizing composite has anti-ultraviolet properties and is the same as when visually observed. Another advantage is that a polarizing composite that can provide transmitted light from which colors can be reliably determined can be manufactured.
【図1】UCS色空間の色立体の説明図FIG. 1 is an explanatory diagram of a color solid in a UCS color space.
【図2】偏光性複合体の拡大断面図FIG. 2 is an enlarged sectional view of a polarizing composite.
【図3】実施例1の透過光の波長と透過率の関係を示す
図表FIG. 3 is a table showing the relationship between the wavelength of transmitted light and the transmittance in Example 1.
【図4】実施例2の透過光の波長と透過率の関係を示す
図表FIG. 4 is a table showing the relationship between the wavelength of transmitted light and the transmittance in Example 2.
【図5】比較例1の透過光の波長と透過率の関係を示す
図表FIG. 5 is a table showing the relationship between the wavelength of transmitted light and the transmittance in Comparative Example 1.
【図6】比較例2の透過光の波長と透過率の関係を示す
図表FIG. 6 is a table showing the relationship between the wavelength of transmitted light and the transmittance in Comparative Example 2.
【図7】比較例3の透過光の波長と透過率の関係を示す
図表FIG. 7 is a chart showing the relationship between the wavelength of transmitted light and the transmittance in Comparative Example 3.
【図8】実施例3の透過光の波長と透過率の関係を示す
図表FIG. 8 is a table showing the relationship between the wavelength of transmitted light and the transmittance in Example 3.
1 偏光膜 2 接着剤 3、4 レンズ Reference Signs List 1 polarizing film 2 adhesive 3, 4 lens
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 9:00 B29L 9:00 11:00 11:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) B29L 9:00 B29L 9:00 11:00 11:00
Claims (4)
a、b(Lは0〜100に区分された明度であり、CI
E標準表色系における三刺激値X、Y、Zで示せば、L
=100Y1/2 、a=175(1.02X−Y)
Y-1/2、b=70(Y−0.847Z)Y-1/2であ
る。)が、22≦L≦70、−2.0≦a≦2.0、−
2.0≦b≦2.0であり、かつ波長410〜750n
mにおける分光透過率がその平均値の±30%以内であ
り、さらに二枚の偏光膜を重ねて偏光軸を直交した際の
前記波長410〜750nmの透過率が2%以下となる
ように着色調整することからなる偏光膜の製造方法。1. A coordinate value L of a color in a UCS color space.
a, b (L is the brightness divided into 0 to 100, CI
In terms of tristimulus values X, Y, and Z in the E standard color system, L
= 100Y 1/2 , a = 175 (1.02X-Y)
Y- 1 / 2 , b = 70 (Y-0.847Z) Y- 1 / 2 . ) Is 22 ≦ L ≦ 70, −2.0 ≦ a ≦ 2.0, −
2.0 ≦ b ≦ 2.0 and wavelengths 410 to 750 n
m so that the spectral transmittance at m is within ± 30% of the average value, and the transmittance at the wavelength of 410 to 750 nm when two polarizing films are stacked and the polarization axes are orthogonal to each other is 2% or less. And a method for producing a polarizing film.
を重ねて一体化する偏光性複合体の製造方法において、
UCS色空間における色の座標値L、a、b(Lは0〜
100に区分された明度であり、CIE標準表色系にお
ける三刺激値X、Y、Zで示せば、L=100Y1/2 、
a=175(1.02X−Y)Y-1/2、b=70(Y−
0.847Z)Y-1/2である。)が、22≦L≦70、
−2.0≦a≦2.0、−2.0≦b≦2.0であり、
かつ波長410〜750nmにおける分光透過率がその
平均値の±30%以内であり、さらに二枚の偏光性複合
体を重ねて偏光軸を直交した際の前記波長410〜75
0nmの透過率が2%以下となるように、前記偏光性複
合体の構成部材に着色剤を含ませる偏光性複合体の製造
方法。2. A method for producing a polarizing composite, in which a polarizing film is laminated on a light-transmitting sheet or lens and integrated,
Color coordinate values L, a, b in the UCS color space (L is 0 to
The lightness is divided into 100, and when represented by tristimulus values X, Y, and Z in the CIE standard color system, L = 100Y 1/2 ,
a = 175 (1.02X−Y) Y −1/2 , b = 70 (Y−
0.847Z) Y- 1 / 2 . ) Is 22 ≦ L ≦ 70,
-2.0 ≦ a ≦ 2.0, −2.0 ≦ b ≦ 2.0,
Further, the spectral transmittance at wavelengths 410 to 750 nm is within ± 30% of the average value, and the wavelengths 410 to 75 when two polarizing composites are further superposed and the polarization axes are orthogonal to each other.
A method for producing a polarizing composite, wherein a component of the polarizing composite contains a coloring agent such that the transmittance at 0 nm is 2% or less.
を重ねて一体化する偏光性複合体の製造方法において、
UCS色空間における色の座標値L、a、b(Lは0〜
100に区分された明度であり、CIE標準表色系にお
ける三刺激値X、Y、Zで示せば、L=100Y1/2 、
a=175(1.02X−Y)Y-1/2、b=70(Y−
0.847Z)Y-1/2である。)が、22≦L≦70、
−2.0≦a≦2.0、−2.0≦b≦2.0であり、
かつ波長430〜750nmにおける分光透過率がその
平均値の±30%以内であり、さらに二枚の偏光性複合
体を重ねて偏光軸を直交した際の前記波長430〜75
0nmの透過率が2%以下となるように、前記偏光性複
合体の構成部材に着色剤および紫外線吸収剤を含ませる
偏光性複合体の製造方法。3. A method for producing a polarizing composite, in which a polarizing film is laminated on a light-transmitting sheet or lens and integrated,
Color coordinate values L, a, b in the UCS color space (L is 0 to
The lightness is divided into 100, and when represented by tristimulus values X, Y, and Z in the CIE standard color system, L = 100Y 1/2 ,
a = 175 (1.02X−Y) Y −1/2 , b = 70 (Y−
0.847Z) Y- 1 / 2 . ) Is 22 ≦ L ≦ 70,
-2.0 ≦ a ≦ 2.0, −2.0 ≦ b ≦ 2.0,
In addition, the spectral transmittance at a wavelength of 430 to 750 nm is within ± 30% of the average value, and the wavelength 430 to 75 when two polarizing composites are further superposed and the polarization axes are orthogonal to each other.
A method for producing a polarizing composite, wherein a component of the polarizing composite contains a coloring agent and an ultraviolet absorber so that the transmittance at 0 nm is 2% or less.
装着する偏光眼鏡の製造方法。4. A method for manufacturing polarized glasses to which the polarizing composite according to claim 2 is mounted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000401779A JP2001249227A (en) | 2000-12-28 | 2000-12-28 | Method for manufacturing polarizing film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000401779A JP2001249227A (en) | 2000-12-28 | 2000-12-28 | Method for manufacturing polarizing film |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28820796A Division JP3357803B2 (en) | 1996-10-30 | 1996-10-30 | Polarizing film for glasses and polarizing glasses |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001249227A true JP2001249227A (en) | 2001-09-14 |
Family
ID=18866167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000401779A Pending JP2001249227A (en) | 2000-12-28 | 2000-12-28 | Method for manufacturing polarizing film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001249227A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007052210A (en) * | 2005-08-17 | 2007-03-01 | Nikon-Essilor Co Ltd | Polarizing lens and manufacturing method thereof |
WO2012020570A1 (en) * | 2010-08-12 | 2012-02-16 | 三井化学株式会社 | Plastic polarizing lens, method for producing same, and polarizing film |
JP2013174786A (en) * | 2012-02-27 | 2013-09-05 | Polatechno Co Ltd | Dye-iodine hybrid polarizing raw film, polarizing plate and liquid crystal display device |
JP2014142440A (en) * | 2013-01-23 | 2014-08-07 | Hoya Lense Manufacturing Philippine Inc | Method of manufacturing polarizing lens |
US9880402B2 (en) | 2003-05-12 | 2018-01-30 | Hopnic Laboratory Co., Ltd | Method for producing polarizing lens with high refractive index |
WO2018088558A1 (en) * | 2016-11-14 | 2018-05-17 | 日本化薬株式会社 | Dye-based polarizing plate for infrared wavelength range |
-
2000
- 2000-12-28 JP JP2000401779A patent/JP2001249227A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9880402B2 (en) | 2003-05-12 | 2018-01-30 | Hopnic Laboratory Co., Ltd | Method for producing polarizing lens with high refractive index |
JP2007052210A (en) * | 2005-08-17 | 2007-03-01 | Nikon-Essilor Co Ltd | Polarizing lens and manufacturing method thereof |
CN103052904B (en) * | 2010-08-12 | 2016-01-06 | 三井化学株式会社 | Plastic polarizing lens, its manufacture method and light polarizing film |
WO2012020570A1 (en) * | 2010-08-12 | 2012-02-16 | 三井化学株式会社 | Plastic polarizing lens, method for producing same, and polarizing film |
JPWO2012020570A1 (en) * | 2010-08-12 | 2013-10-28 | 三井化学株式会社 | Plastic polarizing lens, manufacturing method thereof, and polarizing film |
CN103052904A (en) * | 2010-08-12 | 2013-04-17 | 三井化学株式会社 | Plastic polarizing lens, method for producing same, and polarizing film |
US9086531B2 (en) | 2010-08-12 | 2015-07-21 | Mitsui Chemicals, Inc. | Plastic polarized lens, method for producing the same, and polarized film |
JP2015180942A (en) * | 2010-08-12 | 2015-10-15 | 三井化学株式会社 | Plastic polarized lens, method for producing the same, and polarized film |
JP2013174786A (en) * | 2012-02-27 | 2013-09-05 | Polatechno Co Ltd | Dye-iodine hybrid polarizing raw film, polarizing plate and liquid crystal display device |
JP2014142440A (en) * | 2013-01-23 | 2014-08-07 | Hoya Lense Manufacturing Philippine Inc | Method of manufacturing polarizing lens |
WO2018088558A1 (en) * | 2016-11-14 | 2018-05-17 | 日本化薬株式会社 | Dye-based polarizing plate for infrared wavelength range |
CN109863432A (en) * | 2016-11-14 | 2019-06-07 | 日本化药株式会社 | Dyestuff system polarizer for infrared wavelength regions |
KR20190082224A (en) * | 2016-11-14 | 2019-07-09 | 닛뽄 가야쿠 가부시키가이샤 | Dye-based polarizer for infrared wavelengths |
JPWO2018088558A1 (en) * | 2016-11-14 | 2019-10-10 | 日本化薬株式会社 | Dye-type polarizing plate for infrared wavelengths |
JP7048508B2 (en) | 2016-11-14 | 2022-04-05 | 日本化薬株式会社 | Dye-based polarizing plate for infrared wavelength range |
US11391873B2 (en) | 2016-11-14 | 2022-07-19 | Nippon Kayaku Kabushiki Kaisha | Dye-based polarizing plate for infrared wavelength range using azo, anthraquinone, or cyanine compound |
KR102450607B1 (en) | 2016-11-14 | 2022-10-04 | 닛뽄 가야쿠 가부시키가이샤 | Dye-based polarizing plate for infrared wavelength range |
TWI822664B (en) * | 2016-11-14 | 2023-11-21 | 日商日本化藥股份有限公司 | Dye polarizing plate for infrared wavelength region |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3357803B2 (en) | Polarizing film for glasses and polarizing glasses | |
JP6889178B2 (en) | Polarizing element, and polarizing plate and liquid crystal display device using this | |
AU2016387726B2 (en) | Polarizing lens for spectacles | |
JP6662739B2 (en) | Achromatic polarizing element, achromatic polarizing plate and liquid crystal display using the same | |
KR101918543B1 (en) | Polarization element and polarization plate | |
CN105900002B (en) | It is provided with the display device of the substrate with polarization function | |
JP6363185B2 (en) | Achromatic polarizing plate with high transmission and high degree of polarization | |
TW201632926A (en) | Composite polarizer and liquid crystal display device | |
JP5151296B2 (en) | Liquid crystal display device provided with adhesive layer and set of composite polarizing plate used therefor | |
CN103765262A (en) | Circularly polarizing plate having high transmittance and color-adjusting function and reflective liquid crystal display device comprising same | |
TWI611222B (en) | Composite polarizer and liquid crystal display device | |
JP6853010B2 (en) | Achromatic polarizing element, and achromatic polarizing plate and liquid crystal display device using this | |
KR102070629B1 (en) | Polarizing plate | |
JP7247105B2 (en) | Achromatic polarizing element, and achromatic polarizing plate and display device using the same | |
JP2001249227A (en) | Method for manufacturing polarizing film | |
JP7197471B2 (en) | Polarizing element, and polarizing plate and liquid crystal display device using the same | |
WO2016035864A1 (en) | Polarizing element, polarizing plate having said polarizing element, and liquid crystal display device having said polarizing element or said polarizing plate | |
JPH11281817A (en) | Polarizing film | |
JP2010224378A (en) | Composite polarizing plate with adhesive layer, and liquid crystal display device | |
WO2024204224A1 (en) | Optical laminate, polarizing lens, and eyewear | |
JP2024031583A (en) | Polarizing film, polarizing plate using the same, and display device | |
KR20210006970A (en) | Polarizing plate and display device using same | |
US20150268482A1 (en) | Method of designing colored lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071203 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080408 |