JP2001248820A - Equipment and method for waste melting treatment - Google Patents

Equipment and method for waste melting treatment

Info

Publication number
JP2001248820A
JP2001248820A JP2000063841A JP2000063841A JP2001248820A JP 2001248820 A JP2001248820 A JP 2001248820A JP 2000063841 A JP2000063841 A JP 2000063841A JP 2000063841 A JP2000063841 A JP 2000063841A JP 2001248820 A JP2001248820 A JP 2001248820A
Authority
JP
Japan
Prior art keywords
slag
exhaust gas
waste
molten exhaust
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000063841A
Other languages
Japanese (ja)
Inventor
Toshiaki Matsuda
敏昭 松田
Kazuki Kobayashi
和樹 小林
Naoki Fujiwara
直機 藤原
Masaki Sato
政樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000063841A priority Critical patent/JP2001248820A/en
Publication of JP2001248820A publication Critical patent/JP2001248820A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To provide an equipment and method for waste melting treatment in which whether slag is solidified or not in the vicinity of a slag hole can be known. SOLUTION: A thermocouple 21, an oxygen concentration detector 22 and a differential pressure gauge 23 detect respectively temperature of a pipe line 11, oxygen concentration and flow differential pressure. In the detection, if it is found that the flow differential pressure is incinerated, the temperature in the pipe line 11 is at 85 deg.C or below, and the oxygen concentration is unchanged, the slag is judged to be solidified and deposited for some reason at the slag hole 62 by lowering of the temperature in a cyclone furnace 61. Accordingly ignition device of an oxygen burner 67 is actuated, and the burner 67 is burned to heat the slag hole 62, and the solidified and deposited slag is melted to flow down, and then it is removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は都市ごみ等の可燃性
廃棄物を部分燃焼させて得た分解固形物を燃焼させて流
動性のスラグと成して溶融炉の下部から滴下させ、回収
するようにした廃棄物溶融処理装置および廃棄物溶融処
理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the combustion of decomposed solids obtained by partially burning combustible waste such as municipal solid waste to form fluidized slag which is dropped from the lower part of a melting furnace and recovered. The present invention relates to a waste melting treatment apparatus and a waste melting treatment method as described above.

【0002】[0002]

【従来の技術】近年は環境問題が世間の関心を集めるよ
うになり、都市ごみ等のごみ焼却炉においても同問題意
識に基づいて、排ガス、焼却飛灰等の各種排出物に対す
る規制が厳しくなっている。特に、猛毒のダイオキシン
の低減や焼却灰の溶融処理による無害化、減量化が要求
されるようになった。一方、都市ごみはその焼却発熱量
が大きな材料が増えてきており、資源の有効利用の観点
から、ごみ焼却による発熱で発電して、その電力を使用
することが求められている。かかるごみ焼却処理に関す
る技術の流れの中で、ごみを部分燃焼させて熱分解さ
せ、可燃性ガスと可燃物を含む分解固形物を生成し、そ
の分解固形物を高温で焼却、溶融させて溶融スラグを形
成すると共に、焼却熱で発電するごみ処理システムが注
目されている。
2. Description of the Related Art In recent years, environmental problems have attracted public attention, and regulations on various types of emissions such as exhaust gas, incineration fly ash and the like have become strict in municipal solid waste incinerators based on the same awareness. ing. In particular, reduction of highly toxic dioxins and detoxification and weight reduction by melting incineration ash have been required. On the other hand, as for the municipal waste, materials whose incineration heat value is large are increasing, and from the viewpoint of effective use of resources, it is required to generate electric power by the heat generated by the incineration and use the electric power. In the flow of such waste incineration technology, garbage is partially burned and thermally decomposed to generate decomposed solids containing flammable gas and combustibles, and the decomposed solids are incinerated at high temperatures, melted and melted. A refuse treatment system that forms slag and generates power using incineration heat has attracted attention.

【0003】図2は従来例に係るごみ焼却処理システム
の概要を示す模式図である。同図を参照して、ごみ焼却
処理の概要を説明すると、ごみは先ずスクリュー供給機
1に投入され、スクリュー供給機1はごみを流動床式ガ
ス化炉3に供給する。流動床式ガス化炉3は予め起動バ
ーナ2で昇温され、低酸素雰囲気状態に保持されてい
る。そして、その大きさは熱分解によるチャーの生成速
度と可燃性ガスの生成速度が同じになるように設計され
ている。ガス化炉3から排出されたチャーと可燃性ガス
は煙道4を経てサイクロン(遠心分離機)5に導かれて
固気分離される。
FIG. 2 is a schematic diagram showing an outline of a conventional refuse incineration system. The outline of the waste incineration process will be described with reference to the figure. First, the waste is put into the screw feeder 1, and the screw feeder 1 supplies the waste to the fluidized bed gasifier 3. The temperature of the fluidized-bed gasification furnace 3 is raised in advance by the start-up burner 2 and maintained in a low oxygen atmosphere state. The size is designed so that the generation rate of char by pyrolysis and the generation rate of combustible gas are the same. The char and combustible gas discharged from the gasification furnace 3 are guided to a cyclone (centrifuge) 5 through a flue 4 to be separated into solid and gas.

【0004】サイクロン5から排出されたチャーは溶融
炉6に搬入される。搬入されたチャーの発熱量は150
0〜2000cal/kg位と多いので、溶融炉6の起動用に
少量の燃料を使用するだけで1300°〜1400°C
の高温で燃焼させることができる。こうして溶融した灰
分はスラグとして排出され、溶融排ガスは廃熱ボイラ7
に導かれて熱交換され、水蒸気を発生させる。なお、ス
ラグ下口の下部から抜き出した溶融排ガスによりスラグ
下口を熱した後、排ガスを管路11を経て空気予熱器9
に送って空気を予熱する。
The char discharged from the cyclone 5 is carried into a melting furnace 6. The calorific value of the loaded char is 150
Since it is as large as about 0 to 2000 cal / kg, only a small amount of fuel is used for starting the melting furnace 6 and it is 1300 to 1400 ° C.
It can be burned at high temperatures. The ash thus melted is discharged as slag, and the molten exhaust gas is discharged into the waste heat boiler 7.
And is subjected to heat exchange to generate steam. After the slag lower port was heated by the molten exhaust gas extracted from the lower part of the slag lower port, the exhaust gas was passed through a pipe 11 to an air preheater 9.
To preheat air.

【0005】一方、サイクロン5から分離・排出された
可燃性ガスは空気予熱器9から送られた高温空気と共に
燃焼炉8に導かれ、そこで燃焼する。燃焼炉8上部には
過熱器12が配設されていて、廃熱ボイラ7で発生した
水蒸気を過熱することにより溶融排ガスを熱交換させ
る。過熱器12から排出された過熱水蒸気は蒸気タービ
ン13に送られ、これを回転させることにより発電機1
4を回して発電させる。廃熱ボイラ7から排出された溶
融排ガスは、さらに空気予熱器9に送られて空気を予熱
することにより熱回収する。空気予熱器9で予熱された
空気は管路10等を経てガス化炉3と溶融炉6にも供給
され、流動化空気やバーナ用燃焼空気として用いられ
る。
On the other hand, the combustible gas separated and discharged from the cyclone 5 is guided to the combustion furnace 8 together with the high-temperature air sent from the air preheater 9 and burns there. A superheater 12 is disposed above the combustion furnace 8 and heat-exchanges the molten exhaust gas by superheating steam generated in the waste heat boiler 7. The superheated steam discharged from the superheater 12 is sent to a steam turbine 13, which rotates the steam turbine 13 to generate a power generator 1.
Turn 4 to generate electricity. The molten exhaust gas discharged from the waste heat boiler 7 is further sent to an air preheater 9 to recover heat by preheating the air. The air preheated by the air preheater 9 is also supplied to the gasification furnace 3 and the melting furnace 6 via a pipe 10 and the like, and is used as fluidized air and combustion air for a burner.

【0006】また、燃焼炉8から排出され、処理管路1
5を経て導かれた燃焼排ガスは空気予熱器9で熱回収さ
れた溶融排ガスと共にガス冷却器16に供給されて冷や
された後、バグフィルタ(粉塵ろ過装置)17で飛灰が
除去され、無塵ガスとして誘導送風機18により煙突1
9から強制排気される。
[0006] Further, the gas is discharged from the combustion furnace 8 and the processing pipe 1
The combustion exhaust gas led through 5 is supplied to a gas cooler 16 together with the molten exhaust gas heat recovered by the air preheater 9 and cooled, and then fly ash is removed by a bag filter (dust filter device) 17 to remove the fly ash. Chimney 1 by induction blower 18 as dust gas
It is forcibly exhausted from 9.

【0007】[0007]

【発明が解決しようとする課題】溶融炉6でのチャーの
溶融は上述のように、通常は1300°C以上の高温下
で行われるが、シール空気の入れ過ぎや稀に覗き窓の破
損が起きたりすると、スラグ下口の温度が急速に低下し
てスラグ下口がスラグで閉塞する場合がある。また、ガ
ス抜き出し管の入口に溶融灰が堆積して、そこを閉塞し
ても、その状況を知ることができず、ガス抜き出し管か
ら溶融排ガスが抜き出ているかどうかを判断できないと
いう問題点があった。本発明は従来技術におけるかかる
問題点を解消して、スラグ下口付近でスラグが固化した
か否かを知ることができる廃棄物溶融処理装置および廃
棄物溶融処理方法を提供することを目的とする。
As described above, the melting of the char in the melting furnace 6 is usually carried out at a high temperature of 1300 ° C. or more, but if the sealing air is excessively injected or the viewing window is rarely damaged. If it does, the temperature of the lower slag lowers rapidly and the lower slag may be blocked by the slag. Also, even if molten ash accumulates at the inlet of the gas extraction pipe and closes it, it is not possible to know the situation, and it is not possible to judge whether molten exhaust gas is being extracted from the gas extraction pipe. there were. An object of the present invention is to solve such a problem in the prior art and to provide a waste melting treatment apparatus and a waste melting treatment method capable of knowing whether or not slag has solidified in the vicinity of a slag lower opening. .

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するために、廃棄物溶融処理装置にあっては、スラグ下
口から分岐した溶融排ガスの排出用の管路の溶融排ガス
の流入口近傍に溶融排ガスの温度および酸素濃度をそれ
ぞれ検出する温度検出手段および酸素濃度検出手段と、
前記管路内を通過する溶融排ガスの流路差圧を検出する
差圧検出手段とを設けたものであり、例えば、スラグ下
口近傍に、該スラグ下口を加熱し、該スラグ下口部に固
化堆積したスラグを溶融流下させるための加熱手段を設
けたものでも良い。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a waste melting treatment apparatus, comprising: an inlet for molten exhaust gas in a pipe for discharging molten exhaust gas branched from a lower end of a slag; Temperature detection means and oxygen concentration detection means for detecting the temperature and oxygen concentration of the molten exhaust gas in the vicinity, respectively,
A differential pressure detecting means for detecting a flow path differential pressure of the molten exhaust gas passing through the pipeline, for example, near the slag lower port, heating the slag lower port, the slag lower port portion A heating means for melting and flowing down the slag solidified and deposited on the surface may be provided.

【0009】また、廃棄物溶融処理方法にあっては、前
記管路の溶融排ガスの流入口近傍の溶融排ガスの温度と
酸素濃度および前記管路内を通過する溶融排ガスの流路
差圧をそれぞれ検出して、溶融炉の下部のスラグが固化
したか否かを判別するようにしたものである。
Further, in the waste melting treatment method, the temperature and oxygen concentration of the molten exhaust gas in the vicinity of the inlet of the molten exhaust gas in the pipeline and the flow path differential pressure of the molten exhaust gas passing through the pipeline are respectively determined. The detection is performed to determine whether or not the slag in the lower part of the melting furnace has solidified.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を詳細に説明する。図1は本発明の実施形態に
係る溶融炉6の概略と測定系を示す構成図である。同図
において、20はガス抜き出し管の管路11入口の温度
や酸素濃度を測定する場所である測定座、21は測定座
20に設置された熱電対、22は測定座20に設置され
た濃度センサにより管路11内の測定座20近傍の酸素
濃度を検出する酸素濃度検出器、23は管路11内に設
置された図示しない複数の圧力センサからの出力に基づ
いて管路11内の流路差圧を検出する差圧計、24は後
述する酸素バーナの点火制御を行う酸素バーナ点火制御
器、25は熱電対21からの検出信号によって管路11
内の温度を記録する記録装置、26は酸素濃度検出器2
2からの酸素濃度データ、差圧計23からの流路差圧デ
ータ、酸素バーナ点火制御器24からの点火制御データ
および記録装置25からの温度データを処理するデータ
処理装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an outline of a melting furnace 6 and a measurement system according to an embodiment of the present invention. In the figure, reference numeral 20 denotes a measuring seat for measuring the temperature and oxygen concentration at the inlet of the conduit 11 of the gas extraction pipe, 21 denotes a thermocouple installed on the measuring seat 20, and 22 denotes a concentration installed on the measuring seat 20. An oxygen concentration detector 23 for detecting an oxygen concentration in the vicinity of the measurement seat 20 in the pipe 11 by a sensor, and a flow rate in the pipe 11 based on outputs from a plurality of pressure sensors (not shown) installed in the pipe 11 A differential pressure gauge for detecting a path differential pressure, 24 is an oxygen burner ignition controller for performing ignition control of an oxygen burner described later,
A recording device for recording the temperature in the chamber, 26 is an oxygen concentration detector 2
2 is a data processing device for processing oxygen concentration data from the pressure sensor 2, flow path differential pressure data from the differential pressure gauge 23, ignition control data from the oxygen burner ignition controller 24, and temperature data from the recording device 25.

【0011】また、溶融炉6の構成を示す符号61は投
入口から投入されたチャーと残渣灰を加熱溶融するため
のサイクロンファーネス(1次燃焼室)、62は溶融し
たスラグがサイクロンファーネス61から流出する際の
流出口となるスラグ下口、63はスラグが次に述べる2
次燃焼室に進入するのを防止するスラグ遮蔽網、64は
溶融排ガスを燃焼させるための2次燃焼室、65,66
はそれぞれサイクロンファーネス61およびスラグ下口
62の直下流の温度を点火温度まで昇温させるための補
助バーナ、67はスラグ下口62の直下流に酸素ガスを
噴出させるための酸素バーナである。なお、溶融炉6以
外の構成は図示していないが、全て従来例と同様の構成
を有している。
Reference numeral 61 indicating the configuration of the melting furnace 6 denotes a cyclone furnace (primary combustion chamber) for heating and melting the char and residual ash supplied from the charging port, and 62 denotes a molten slag from the cyclone furnace 61. The slag lower opening, which serves as an outlet when flowing out, is the slag 63 described below.
A slag shielding net 64 for preventing entry into the next combustion chamber is a secondary combustion chamber for burning the molten exhaust gas, 65, 66.
Is an auxiliary burner for raising the temperature immediately downstream of the cyclone furnace 61 and the slag lower port 62 to the ignition temperature, and 67 is an oxygen burner for ejecting oxygen gas immediately downstream of the slag lower port 62. Although the configuration other than the melting furnace 6 is not shown, it has the same configuration as the conventional example.

【0012】次に、本実施形態の動作を説明する。サイ
クロンファーネス61内は予め補助バーナ65の燃焼に
よりチャーと残渣灰の燃焼温度、即ち、1300°〜1
400°Cに昇温されており、サイクロン5から排出さ
れ、投入口からサイクロンファーネス61内に投入され
たチャーと残渣灰はそこで部分燃焼して自己加熱され、
溶融して流動性のスラグになる。スラグはサイクロンフ
ァーネス61のスラグ下口62から流下して水中に落下
し、冷収縮破砕を起こして水砕スラグSとなる。
Next, the operation of this embodiment will be described. In the cyclone furnace 61, the combustion temperature of the char and the residual ash, that is, 1300 ° -1
The char and residue ash that have been heated to 400 ° C., discharged from the cyclone 5 and injected into the cyclone furnace 61 from the inlet are partially burned there and self-heated,
Melts into a fluid slag. The slag flows down from the slag lower opening 62 of the cyclone furnace 61, falls into water, undergoes cold shrinkage crushing, and becomes granulated slag S.

【0013】一方、サイクロンファーネス61内で溶融
したチャーと残渣灰から発生した溶融排ガスはスラグ下
口62およびスラグ遮蔽網63を通過して2次燃焼室6
4に流入し、そこを通過して排熱ボイラ7へ向けて排出
される。また、スラグ下口62から流出した溶融排ガス
の一部は下方に流れて、管路11を通って空気予熱器9
に送られる。上述のように、管路11内の測定座20に
は熱電対21と濃度センサが設置されていて、管路11
を通過する溶融排ガスの温度と酸素濃度を検出する。こ
の溶融排ガスの温度と酸素濃度は通常は850°〜10
00°C、10%以下で5〜7%である。
On the other hand, the molten exhaust gas generated from the char and the residual ash melted in the cyclone furnace 61 passes through the slag lower opening 62 and the slag shielding net 63, and passes through the secondary combustion chamber 6
4, passes therethrough, and is discharged toward the waste heat boiler 7. Further, a part of the molten exhaust gas flowing out from the slag lower port 62 flows downward, passes through the pipe 11, and passes through the air preheater 9.
Sent to As described above, the thermocouple 21 and the concentration sensor are installed at the measurement seat 20 in the pipe 11 and
The temperature and oxygen concentration of the molten exhaust gas passing through are detected. The temperature and oxygen concentration of this molten exhaust gas are usually 850 ° to 10 °.
It is 5 to 7% at 00 ° C and 10% or less.

【0014】ところが、チャーの供給過剰等、何らかの
原因でサイクロンファーネス61内の温度が低下する
と、スラグ下口62部の温度も低下し、その結果、スラ
グ下口62部にスラグが固化堆積する。そうすると、サ
イクロンファーネス61から排出される溶融排ガスの流
量が低下し、管路11内の測定座20付近の温度が低下
すると共に管路11内の流量差圧も増加する。これらの
状態については、熱電対21および差圧計23でそれぞ
れ管路11内の温度および流量差圧が検出され、酸素濃
度検出器22で管路11内の酸素濃度が検出される。
However, if the temperature in the cyclone furnace 61 decreases for some reason, such as excessive supply of char, the temperature of the slag lower opening 62 also decreases, and as a result, slag solidifies and deposits on the slag lower opening 62. Then, the flow rate of the molten exhaust gas discharged from the cyclone furnace 61 decreases, the temperature near the measurement seat 20 in the pipeline 11 decreases, and the flow rate differential pressure in the pipeline 11 increases. In these states, the thermocouple 21 and the differential pressure gauge 23 detect the temperature and the flow rate differential pressure in the pipeline 11, respectively, and the oxygen concentration detector 22 detects the oxygen concentration in the pipeline 11.

【0015】この時、差圧計23で検出した流量差圧が
増加し、熱電対21で検出した管路11内の温度が85
°C以下ならば、酸素濃度検出器22で検出した管路1
1内の酸素濃度が通常より高くなっているかどうかを測
定する。そして、酸素濃度が変わりない場合はスラグ下
口62部にスラグが固化堆積したと判断できるから、酸
素バーナ67の図示しない点火装置を作動させ、酸素バ
ーナ67を燃焼させてスラグ下口62を加熱し、スラグ
下口62部に固化堆積したスラグを溶融流下させて除去
する。また、管路11内の温度が低下すると共に酸素濃
度が増加する場合は、管路11内の温度低下は溶融炉6
内への空気の漏れ込みが原因と考えられるので、その漏
れ箇所を修理した上で溶融炉6の運転を再開する。
At this time, the flow rate differential pressure detected by the differential pressure gauge 23 increases, and the temperature in the pipe 11 detected by the thermocouple 21 becomes 85%.
° C or lower, the pipeline 1 detected by the oxygen concentration detector 22
Measure whether the oxygen concentration in 1 is higher than usual. If the oxygen concentration does not change, it can be determined that the slag has solidified and deposited at the lower portion 62 of the slag. Therefore, an ignition device (not shown) of the oxygen burner 67 is operated to burn the oxygen burner 67 and heat the lower portion 62 of the slag. Then, the slag solidified and deposited at the slag lower opening 62 is melted down and removed. When the temperature in the pipe 11 decreases and the oxygen concentration increases, the temperature in the pipe 11 decreases due to the melting furnace 6.
Since it is considered that air leaks into the inside, the operation of the melting furnace 6 is restarted after repairing the leaked portion.

【0016】このように、管路11内の測定座20、つ
まり、スラグ下口62の直下流部の温度、流路差圧およ
び酸素濃度を熱電対21、差圧計23および酸素濃度検
出器22で検出することにより、サイクロンファーネス
61内のスラグの状態、つまり、スラグ下口62部にス
ラグが固化堆積しているかどうか、溶融炉6内への空気
の漏れ込みがあるかどうかを判定することができ、スラ
グ下口62部にスラグが固化堆積している場合には、酸
素バーナ67を燃焼させると共に酸素バーナ点火制御器
24で酸素バーナ67の点火制御を行うことにより、固
化堆積したスラグを安定的に溶融流下させてスラグ下口
62部から排出させることができる。
As described above, the temperature, flow path differential pressure and oxygen concentration of the measuring seat 20 in the pipe line 11, that is, immediately downstream of the slag lower port 62, are measured by the thermocouple 21, the differential pressure gauge 23 and the oxygen concentration detector 22. To determine the state of the slag in the cyclone furnace 61, that is, whether the slag is solidified and deposited in the lower opening 62 of the slag, and whether there is leakage of air into the melting furnace 6. When the slag is solidified and deposited at the lower portion 62 of the slag, the slag solidified and deposited is burned by the oxygen burner 67 and the ignition control of the oxygen burner 67 is performed by the oxygen burner ignition controller 24. It can be stably melted and discharged from the slag lower opening 62.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、溶
融排ガスの排出用の管路の流入口近傍に溶融排ガスの温
度と酸素濃度および前記管路内を通過する溶融排ガスの
流路差圧をそれぞれ検出ようにしたので、溶融炉の下部
のスラグが固化したか否かを容易に判別することがで
き、例えば、スラグ下口近傍に、該スラグ下口を加熱
し、固化堆積したスラグを溶融流下させるための加熱手
段を設ければ、スラグ下口部に固化堆積したスラグを早
期に取り除くことができるから、スラグの固化堆積によ
るスラグ下口の閉塞を未然に防止して廃棄物溶融処理の
運転休止を回避することができる。
As described above, according to the present invention, the temperature and oxygen concentration of the molten exhaust gas and the flow path difference of the molten exhaust gas passing through the pipeline near the inlet of the conduit for discharging the molten exhaust gas. Since each pressure is detected, it is possible to easily determine whether or not the slag at the lower part of the melting furnace has solidified.For example, in the vicinity of the slag lower port, the slag lower port is heated to solidify and deposit slag. If slag solidified and deposited at the lower opening of the slag can be quickly removed by providing a heating means for melting and flowing down the slag, clogging of the lower slag of the slag due to solidification and accumulation of slag is prevented and waste melting is prevented. The suspension of the operation of the process can be avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る溶融炉の概略と測定系
を示す構成図
FIG. 1 is a configuration diagram showing an outline of a melting furnace and a measurement system according to an embodiment of the present invention.

【図2】従来例に係るごみ焼却処理システムの概要を示
す模式図
FIG. 2 is a schematic view showing an outline of a waste incineration system according to a conventional example.

【符号の説明】[Explanation of symbols]

1 スクリュー供給機 3 ガス化炉 5 サイクロン(遠心分離機) 6 溶融炉 7 廃熱ボイラ 8 燃焼炉 9 空気予熱器 10,11 管路 16 ガス冷却器 17 バグフィルタ(粉塵ろ過装置) 21 熱電対 22 酸素濃度検出器 23 差圧計 24 酸素バーナ点火制御器 26 データ処理装置 61 サイクロンファーネス(1次燃焼室) 62 スラグ下口 63 スラグ遮蔽網 64 2次燃焼室 65,66 補助バーナ 67 酸素バーナ S 水砕スラグ DESCRIPTION OF SYMBOLS 1 Screw feeder 3 Gasifier 5 Cyclone (centrifuge) 6 Melting furnace 7 Waste heat boiler 8 Combustion furnace 9 Air preheater 10, 11 Pipeline 16 Gas cooler 17 Bag filter (dust filter) 21 Thermocouple 22 Oxygen concentration detector 23 Differential pressure gauge 24 Oxygen burner ignition controller 26 Data processing device 61 Cyclone furnace (primary combustion chamber) 62 Slag lower port 63 Slag shielding net 64 Secondary combustion chamber 65, 66 Auxiliary burner 67 Oxygen burner S Water granulation Slug

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 5/00 F23G 5/00 115Z F23G 5/00 ZAB 5/027 ZABZ 115 5/14 ZABD 5/027 ZAB F27D 19/00 D 5/14 ZAB B09B 3/00 ZAB F27D 19/00 303K (72)発明者 藤原 直機 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 佐藤 政樹 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 Fターム(参考) 3K061 AA11 AA23 AB02 AB03 AC01 AC03 BA05 BA06 CA01 CA07 DA14 DA19 DB11 DB20 FA05 FA10 FA21 FA27 3K062 AA23 AB02 AB03 AC01 AC19 BA02 CA02 CB08 DA01 DA12 DA22 DB12 4D004 AA46 BA03 CA24 CA29 CB34 DA01 DA02 DA03 DA06 DA07 DA10 4G012 JF03 4K056 AA19 BB01 CA20 DA02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 5/00 F23G 5/00 115Z F23G 5/00 ZAB 5/027 ZABZ 115 5/14 ZABD 5/027 ZAB F27D 19/00 D 5/14 ZAB B09B 3/00 ZAB F27D 19/00 303K (72) Inventor Naoki Fujiwara No. 3-36, Takara-cho, Kure-shi, Hiroshima Pref. 6-9, Takara-cho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Works F-term (reference) 3K061 AA11 AA23 AB02 AB03 AC01 AC03 BA05 BA06 CA01 CA07 DA14 DA19 DB11 DB20 FA05 FA10 FA21 FA27 3K062 AA23 AB02 AB03 AC01 AC19 BA02 CA02 CB08 DA01 DA12 DA22 DB12 4D004 AA46 BA03 CA24 CA29 CB34 DA01 DA02 DA03 DA06 DA07 DA10 4G012 JF03 4K056 AA19 BB01 CA20 DA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物が熱分解して生成されたチャーを
溶融炉内に導き、燃焼させて流動性のスラグと成し、該
スラグを前記溶融炉の下部のスラグ下口から滴下させて
回収すると共に、前記スラグ下口から排出された溶融排
ガスの一部を分岐させて前記スラグ下口から前記スラグ
が滴下する箇所を通って排出用の管路を経て炉外に排出
させるように構成された廃棄物溶融処理装置において、
前記管路の溶融排ガスの流入口近傍に溶融排ガスの温度
および酸素濃度をそれぞれ検出する温度検出手段および
酸素濃度検出手段と、前記管路内を通過する溶融排ガス
の流路差圧を検出する差圧検出手段とを設けたことを特
徴とする廃棄物溶融処理装置。
1. A char generated by pyrolysis of waste is introduced into a melting furnace and burned to form a fluid slag, and the slag is dropped from a lower slag opening at a lower portion of the melting furnace. While collecting, a part of the molten exhaust gas discharged from the lower port of the slag is branched and discharged from the lower port of the slag to the outside of the furnace through a pipe for discharging through a place where the slag is dropped. Waste melting equipment
A temperature detecting means and an oxygen concentration detecting means for detecting a temperature and an oxygen concentration of the molten exhaust gas near an inlet of the molten exhaust gas in the pipeline, respectively, and a differential detecting a flow path differential pressure of the molten exhaust gas passing through the pipeline. A waste melting treatment device comprising pressure detection means.
【請求項2】 スラグ下口近傍に、該スラグ下口を加熱
し、該スラグ下口部に固化堆積したスラグを溶融流下さ
せるための加熱手段を設けたことを特徴とする請求項1
記載の廃棄物溶融処理装置。
2. A heating means for heating the lower opening of the slag near the lower opening of the slag and melting and flowing down the slag solidified and deposited at the lower opening of the slag.
A waste melting treatment apparatus as described in the above.
【請求項3】 廃棄物が熱分解して生成されたチャーを
溶融炉内に導き、燃焼させて流動性のスラグと成し、該
スラグを前記溶融炉の下部のスラグ下口から滴下させて
回収すると共に、前記スラグ下口から排出された溶融排
ガスの一部を分岐させて前記スラグ下口から前記スラグ
が滴下する箇所を通って排出用の管路を経て炉外に排出
させるようにした廃棄物溶融処理方法において、前記管
路の溶融排ガスの流入口近傍の溶融排ガスの温度と酸素
濃度および前記管路内を通過する溶融排ガスの流路差圧
をそれぞれ検出して、前記溶融炉の下部のスラグが固化
したか否かを判別することを特徴とする廃棄物溶融処理
方法。
3. Chars generated by pyrolysis of waste are introduced into a melting furnace and burnt to form fluid slag, and the slag is dropped from a lower slag opening at a lower portion of the melting furnace. At the same time as collecting, a part of the molten exhaust gas discharged from the lower port of the slag is branched, and discharged from the lower port of the slag through a discharge pipe through a place where the slag drops, so as to be discharged outside the furnace. In the waste melting treatment method, the temperature and the oxygen concentration of the molten exhaust gas near the inlet of the molten exhaust gas in the pipeline and the flow path differential pressure of the molten exhaust gas passing through the pipeline are detected, respectively. A waste melting treatment method comprising determining whether or not a lower slag has solidified.
JP2000063841A 2000-03-08 2000-03-08 Equipment and method for waste melting treatment Pending JP2001248820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000063841A JP2001248820A (en) 2000-03-08 2000-03-08 Equipment and method for waste melting treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000063841A JP2001248820A (en) 2000-03-08 2000-03-08 Equipment and method for waste melting treatment

Publications (1)

Publication Number Publication Date
JP2001248820A true JP2001248820A (en) 2001-09-14

Family

ID=18583637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000063841A Pending JP2001248820A (en) 2000-03-08 2000-03-08 Equipment and method for waste melting treatment

Country Status (1)

Country Link
JP (1) JP2001248820A (en)

Similar Documents

Publication Publication Date Title
JP2002081624A (en) Waste gasification melting furnace and operation method of the melting furnace
WO2006057075A1 (en) Treatment method and treatment apparatus for combustible gas in waste melting furnace
JP5154094B2 (en) Combustion control method for gasification melting system and system
JPH0546397B2 (en)
JP4833270B2 (en) Operation control device for gasification melting furnace
JP5426119B2 (en) Combustion control method for gasification melting system and system
JP2001248820A (en) Equipment and method for waste melting treatment
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
JP2002106822A (en) Refuse incinerator and its operation method
JP2002181319A (en) Gasification melting system and process therefor
JP2003185118A (en) Combustion air amount control system in thermal decomposition gasification melting furnace
JP3004629B1 (en) Start control method and stop control method for partial combustion furnace, and start / stop control device
JP2001201023A (en) Method of controlling air for combustion in fusion system for gasification by thermal decomposition
JP3973071B2 (en) Gasification melting furnace
JP2000205530A (en) Waste gasifying fusing power-generating system
JP3819615B2 (en) Waste carbonization pyrolysis melting combustion equipment
JP4285760B2 (en) Operation control method of gasification and melting system and system
JP2000304235A (en) Method and apparatus for controlling gasification melting system for waste
JP2000171014A (en) Drying method of waste in gasifying and melting facility as well as gasifying and melting facility
JPH08121728A (en) Combustion method of gas produced from wastes melting furnace and secondary combustion furnace for wastes melting furnace
JP4966743B2 (en) Operation method and operation control apparatus for gasification melting furnace
JP2000304234A (en) Ash melting furnace and combustion control method therefor
JP4128114B2 (en) Mobile waste incinerator
JP3893200B2 (en) Method for preventing closure of slag outlet in combustion melting furnace of waste treatment equipment
JP3750379B2 (en) Waste gasification and melting treatment system