JP2001247540A - Method of producing photofunctional self-organized monomolecular film - Google Patents

Method of producing photofunctional self-organized monomolecular film

Info

Publication number
JP2001247540A
JP2001247540A JP2000061255A JP2000061255A JP2001247540A JP 2001247540 A JP2001247540 A JP 2001247540A JP 2000061255 A JP2000061255 A JP 2000061255A JP 2000061255 A JP2000061255 A JP 2000061255A JP 2001247540 A JP2001247540 A JP 2001247540A
Authority
JP
Japan
Prior art keywords
self
film
molecular film
ultraviolet
linking reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000061255A
Other languages
Japanese (ja)
Inventor
Hitoshi Fukushima
均 福島
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000061255A priority Critical patent/JP2001247540A/en
Publication of JP2001247540A publication Critical patent/JP2001247540A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To introduce an effective photopolymerization method capable of achieving a high intermolecular conjugated polymerization degree in an ultraviolet-irradiating polymerization process in a conjugate triple bond-based thiol SAM film, and capable of preventing ultraviolet oxidation on the surface of the SAM film by ultraviolet irradiation. SOLUTION: The ultraviolet irradiation is carried out in an air-evacuated closed system in a process for carrying out an intermolecular cross-linking reaction under the irradiation of the ultraviolet in the interior of a self-organized molecular film. Concretely, the production method is characterized in that the intermolecular cross-linking reaction is carried out in a sealed atmosphere substituted with an inert gas at the time of irradiation with the ultraviolet. The method for producing the self-organized molecular film is also characterized in that the intermolecular cross-linking reaction is carried out in a state of the self-organized molecular film and a substrate left in a high vacuum state by sealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は フッ素鎖が分子の
末端に設けられ、かつイオウ系分子官能基、たとえばチ
オールが分子の逆末端に存在する分子において、ジアセ
チレン構造が分子主鎖内部に導入され、この分子が固体
基板上で化学吸着された状態で、紫外線照射下、基板表
面上で分子間架橋反応を起こすことを特徴とする自己組
織化分子膜の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a molecule in which a fluorine chain is provided at the terminal of a molecule and a sulfur-based molecular functional group, for example, thiol, is present at the opposite terminal of the molecule. The present invention also relates to a method for producing a self-assembled molecular film, wherein an intermolecular cross-linking reaction is caused on a substrate surface under ultraviolet irradiation in a state where the molecules are chemically adsorbed on a solid substrate.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来か
ら、特定の金属表面上に分子がその溶液中にて自発的に
化学吸着し、秩序構造を形成して自己組織化単分子膜
( Self-Assembled Monolayer; 以下 「SAM」ともい
う)を作る現象は知られており、その性質を応用して、
機能性有機薄膜の開発研究が展開されている。一般的に
はチオール、ジスルフィドなど硫黄原子と金属との特異
的化学吸着を利用したアルカンチオールSAM膜や、シ
ラン系化合物と表面親水基との化学反応を利用したシラ
ンカップリングSAM膜などがある。特に金薄膜とチオ
ールとの特異的化学結合によって形成されるSAM膜
は、安定な基板との相互作用、高密度な分子膜配列を形
成できることからSAM膜研究の中心的な存在である。
最近、チオール金をベースにしたSAM膜で、基板上に
配列された分子間相互作用を制御する方法がいくつか注
目されている。特にチオール分子主鎖に共役3重結合を
導入し、金基板上にSAM膜形成させた後に、254ナ
ノメートルの波長光を照射すると、チオール分子の共役
3重結合同士が分子間光重合を起こして共有結合を形成
する。この分子間共有結合の形成によって、SAM膜の
機械的強度が大幅に向上し、膜の信頼性が増す。また光
重合度の度合いによって、SAM膜内部の共役系の長さ
が変化して、たとえば短い共役重合系では紫、又は赤色
を帯び、長ければ青色を帯びる性質があり、このポリマ
ー薄膜の性質を利用してセンサーデバイスへの応用研究
も進んでいる。たとえば、この共役3重結合系チオール
SAM膜については、Mowery, M et al, J. Phys. Che
m. B(1997) 101, 8513; , Batchelder et al, J. Am.
Chem. Soc. (1994)116, 1050; , Kim, T et al, J. Am.
Chem. Soc. (1997) 119, 189 ; , 及びMenzel, H et a
l, J. Phys. Chem. B(1998) の各文献にてその特徴的な
性質が報告されている。また、共役3重結合系チオール
SAM膜のテイルグループにフッ素原子で飽和された直
鎖炭化フッ素、パーフルオロカーボン鎖を導入したフッ
素系共役3重結合系チオールSAM膜が報告されてお
り、その低い表面エネルギー、撥水性、撥油性及び、分
子間共役重合による耐久性向上を兼ね備えたSAM膜と
いうことで非常に注目される。ところが これら共役3
重結合系チオールSAM膜を光重合させる過程にて、2
54ナノメートルという紫外線を照射しなければならな
いが、その照射時に高い分子間共役重合度のSAM膜を
得るために、比較的長時間、照射しなければならない。
その間、SAM膜の紫外線暴露時間が長ければ長いほ
ど、SAM膜が光酸化されて、表面劣化引き起こすこと
が分かっており、高い分子間共役重合度の達成と紫外線
酸化を抑止する条件とがお互い矛盾し合い、よって最適
な条件で紫外線重合させることができなかった。
2. Description of the Related Art Conventionally, molecules are spontaneously chemically adsorbed on a specific metal surface in a solution thereof to form an ordered structure and form a self-assembled monolayer (Self-assembled monolayer). -Assembled Monolayer; hereinafter also referred to as “SAM”) is known, and by applying its properties,
Research and development of functional organic thin films has been developed. In general, there are an alkanethiol SAM film utilizing specific chemical adsorption of a metal such as thiol or disulfide with a sulfur atom, and a silane coupling SAM film utilizing a chemical reaction between a silane compound and a surface hydrophilic group. In particular, a SAM film formed by a specific chemical bond between a gold thin film and a thiol is a central player in SAM film research because it can interact with a stable substrate and form a high-density molecular film arrangement.
Recently, attention has been focused on several methods for controlling intermolecular interactions arranged on a substrate in a thiol gold-based SAM film. In particular, when a conjugated triple bond is introduced into the main chain of a thiol molecule and a SAM film is formed on a gold substrate and then irradiated with light having a wavelength of 254 nm, conjugated triple bonds of the thiol molecule cause intermolecular photopolymerization. To form a covalent bond. The formation of this intermolecular covalent bond greatly improves the mechanical strength of the SAM film and increases the reliability of the film. In addition, the length of the conjugated system inside the SAM film changes depending on the degree of photopolymerization. For example, a short conjugated polymer has a property of tinged with purple or red, and a long conjugated polymer has a property of tinged with blue. Utilization is being studied for application to sensor devices. For example, this conjugated triple bond thiol SAM film is described in Mowery, M et al, J. Phys.
m. B (1997) 101, 8513;, Batchelder et al, J. Am.
Chem. Soc. (1994) 116, 1050;, Kim, T et al, J. Am.
Chem. Soc. (1997) 119, 189;, and Menzel, H et a
l, J. Phys. Chem. B (1998) each report its characteristic properties. Further, a fluorinated conjugated triple bond type thiol SAM film in which a linear fluorocarbon and a perfluorocarbon chain saturated with a fluorine atom are introduced into a tail group of a conjugated triple bond type thiol SAM film has been reported. A SAM film that has both energy, water repellency, oil repellency, and improved durability due to intermolecular conjugate polymerization has attracted much attention. However, these conjugates 3
In the process of photopolymerizing a double bond type thiol SAM film, 2
Ultraviolet light of 54 nanometers must be irradiated, but in order to obtain a SAM film having a high degree of intermolecular conjugate polymerization, irradiation must be performed for a relatively long time.
In the meantime, it has been known that the longer the UV exposure time of the SAM film is, the more the SAM film is photo-oxidized and causes surface deterioration, and the achievement of a high degree of intermolecular conjugate polymerization and the condition for suppressing UV oxidation are mutually contradictory. Therefore, it was not possible to carry out ultraviolet polymerization under the optimum conditions.

【0003】そこで、本発明は上記不都合に鑑み、共役
3重結合系チオールSAM膜において紫外線照射重合過
程にて、高い分子間共役重合度を達成し、かつ、紫外線
照射によるSAM膜表面の紫外線酸化を防止する効果的
な光重合方法を導入するものである。特にテイルグルー
プがパーフルオロカーボン鎖である共役3重結合系チオ
ールSAM膜にて、効果的に、信頼耐久性ある撥水、撥
油SAM膜を製造する方法を提供することにある。
In view of the above disadvantages, the present invention achieves a high degree of intermolecular conjugate polymerization in a conjugated triple bond type thiol SAM film in the course of ultraviolet irradiation polymerization, and oxidizes the surface of the SAM film by ultraviolet irradiation. The present invention introduces an effective photopolymerization method for preventing the above. In particular, it is an object of the present invention to provide a method for effectively producing a reliable and durable water- and oil-repellent SAM film using a conjugated triple bond type thiol SAM film whose tail group is a perfluorocarbon chain.

【0004】[0004]

【課題を解決するための手段】請求項1に記載の発明に
よれば、フッ素鎖を主鎖または側鎖に含み、かつジアセ
チレン構造を分子主鎖に含んだイオウ化合物またはシラ
ン系化合物から構成され、固体基板表面に化学吸着され
て自発的に単分子膜を形成することを特徴とする自己組
織化分子膜である。
According to the first aspect of the present invention, a sulfur compound or a silane compound containing a fluorine chain in a main chain or a side chain and a diacetylene structure in a molecular main chain is provided. And a self-assembled molecular film characterized by being spontaneously forming a monomolecular film by being chemically adsorbed on the surface of a solid substrate.

【0005】請求項2に記載の発明によれば、フッ素鎖
が分子の末端に設けられ、かつイオウ系分子官能基、た
とえばチオールが分子の逆末端に存在する分子におい
て、ジアセチレン構造が分子主鎖内部に導入され、この
分子が紫外線照射下、基板表面上で分子間架橋反応を起
こすことを特徴とする請求項1記載の自己組織化分子膜
である。
According to the second aspect of the present invention, in a molecule in which a fluorine chain is provided at a terminal of a molecule and a sulfur-based molecular functional group, for example, thiol is present at the opposite terminal of the molecule, the diacetylene structure has a molecular principal. 2. The self-assembled molecular film according to claim 1, wherein the self-assembled molecular film is introduced into a chain, and the molecule causes an intermolecular cross-linking reaction on a substrate surface under irradiation of ultraviolet rays.

【0006】請求項3に記載の発明によれば、自己組織
化分子膜内部で、紫外線照射下、分子間架橋反応を起こ
す過程にて 紫外線照射を空気排除した密閉系にて進行
させることを特徴とする請求項2記載の自己組織化分子
膜である。
According to the third aspect of the invention, in the process of causing an intermolecular cross-linking reaction under ultraviolet irradiation inside the self-assembled molecular film, the ultraviolet irradiation is made to proceed in a closed system in which air is excluded. The self-assembled molecular film according to claim 2, wherein

【0007】請求項4に記載の発明によれば、紫外線照
射時に不活性ガスで置換された密閉雰囲気下にて分子間
架橋反応を起こすことを特徴とする請求項3記載の自己
組織化分子膜である。
According to a fourth aspect of the present invention, there is provided a self-assembled molecular film according to the third aspect, wherein an intermolecular cross-linking reaction is caused in a closed atmosphere replaced with an inert gas during ultraviolet irradiation. It is.

【0008】請求項5に記載の発明によれば、紫外線照
射時に自己組織化分子膜及びその基板を高真空状態にて
密閉放置した状態で、分子間架橋反応を起こすことを特
徴とする請求項3記載の自己組織化分子膜である。
According to the fifth aspect of the present invention, an intermolecular cross-linking reaction occurs when the self-assembled molecular film and its substrate are hermetically sealed and left in a high vacuum state at the time of ultraviolet irradiation. 4. A self-assembled molecular film according to item 3.

【0009】請求項6に記載の発明によれば、下記 [
化1]の一般式(1)で現される請求項2記載のフッ素
系化合物から構成される請求項1記載の自己組織化分子
膜である。
According to the invention described in claim 6, the following [
The self-assembled molecular film according to claim 1, comprising the fluorine-based compound according to claim 2 represented by the general formula (1).

【0010】請求項7に記載の発明によれば、上記一般
式(1)において、1<m < 15 であり、かつ 6 < n < 18
であり、かつ 8< k < 15 である請求項2記載のフッ素
系化合物から構成される請求項1記載の自己組織化分子
膜である。
According to the invention of claim 7, in the general formula (1), 1 <m <15 and 6 <n <18.
2. The self-assembled molecular film according to claim 1, comprising the fluorine-based compound according to claim 2, wherein 8 <k <15.

【0011】[0011]

【発明の実施の形態】本発明の構成について詳細を述べ
る。分子膜の基本的な作成方法はまず、平滑な基板上に
密着層及び金薄膜を蒸着で形成させる。基板は例えば壁
壊されたマイカ基板、平滑性の高い石英基板などを用意
する。具体的には厚さ約0.8mmの石英基板を容易して、
蒸留水にて洗浄、窒素気流下にて乾燥させた後、蒸着装
置に設置して、まず密着層を蒸着にて基板表面に作成し
たのち、引き続き金を蒸着させて、厚さ約1000オングス
トロームの金薄膜を形成させる。その際の蒸着条件は以
下の通りである。真空チャンバー内に基板が設置された
後、基板温度を3時間かけて550度まで上昇させ、真
空度を約10−7Torrまで上げる。ニッケルーチタンを
基板表面に厚さ10nmほど蒸着させた後、金蒸着を
0.1nm/ 秒 の割合で進め、基板温度は約350度
に維持する。金蒸着終了後、基板温度を再び550度に
上昇させ、約1時間そのままで放置させる。その後、室
温まで冷却後、常圧に戻して真空チャンバーから金蒸着
された基板を取り出す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described in detail. The basic method of forming a molecular film is to first form an adhesion layer and a gold thin film on a smooth substrate by vapor deposition. As the substrate, for example, a mica substrate having a broken wall, a quartz substrate having high smoothness, or the like is prepared. Specifically, it facilitates a quartz substrate with a thickness of about 0.8 mm,
After washing with distilled water and drying under a stream of nitrogen, it is installed in a vapor deposition device, first, an adhesion layer is formed on the surface of the substrate by vapor deposition, and then gold is vapor-deposited to a thickness of about 1000 angstroms. A gold thin film is formed. The deposition conditions at that time are as follows. After the substrate is placed in the vacuum chamber, the temperature of the substrate is raised to 550 degrees over 3 hours, and the degree of vacuum is raised to about 10-7 Torr. After depositing nickel-titanium on the substrate surface to a thickness of about 10 nm, gold deposition
The process proceeds at a rate of 0.1 nm / sec, and the substrate temperature is maintained at about 350 degrees. After the completion of the gold deposition, the substrate temperature is raised again to 550 ° C., and the substrate is allowed to stand for about one hour. Then, after cooling to room temperature, the pressure is returned to normal pressure, and the substrate on which gold is deposited is removed from the vacuum chamber.

【0012】さらに、作成された金薄膜基板を、チオー
ル分子が溶解された溶液に浸せきさせて、SAM膜を形
成させる。具体的には、まず、チオールを溶かす溶液と
して飽和炭化水素系溶媒、例えば ヘキサン、ヘプタ
ン、イソオクタン、または DMF、DMSOなどの溶
媒に溶解させて、チオール溶液濃度を約0.5mMに調
整する。フッ素系ジアセチレンチオール化合物について
は、イソオクタン溶媒中に溶かして溶液をそれぞれ調整
した。今回、用意された具体的化合物は表1に示した一
連の化合物 を用いて光重合実験を行った。
Further, the SAM film is formed by immersing the prepared gold thin film substrate in a solution in which thiol molecules are dissolved. Specifically, first, a thiol solution is dissolved in a saturated hydrocarbon solvent such as hexane, heptane, isooctane, or a solvent such as DMF or DMSO to adjust the thiol solution concentration to about 0.5 mM. With respect to the fluorine-based diacetylenol compound, it was dissolved in an isooctane solvent to prepare respective solutions. The photopolymerization experiment was conducted using a series of compounds shown in Table 1 for the specific compounds prepared this time.

【0013】[0013]

【表1】 [Table 1]

【0014】表1は、今発明に使用された、ジアセチレ
ンを主鎖に含むチオール化合物の一覧表である。
Table 1 is a list of the thiol compounds containing diacetylene in the main chain, which are used in the present invention.

【0015】ODTはアルドリッチ社より、Dia1は
イギリス、リーズ大学より、またC12は同仁化学に委
託合成して、それぞれの化合物を入手した。また、F
3,F4,F10,F13についてはアメリカ合衆国、
ヒューストン大学から入手した。なお、ODTはジアセ
チレン系チオールではないが、ジアセチレン系SAM膜と
の物性比較を行うため、ODTによるSAM膜を作成し
た。各金基板は24時間、各溶液中に放置された後、イ
ソオクタン、アセトンで洗浄、窒素気流下、乾燥させて
光重合反応ユニット中に設置させる。光重合反応前にそ
れぞれ作成されたSAM膜の構造及び表面物性を、各種測
定機器を使用して、解析同定した。例えば、表2には作
成したSAM膜表面の液体に対する接触角を測定したデー
タである。
ODT was obtained from Aldrich, Dia1 was obtained from Leeds University, United Kingdom, and C12 was obtained from Dojin Chemical Co., Ltd., and the respective compounds were obtained. Also, F
United States for 3, F4, F10, F13,
Obtained from the University of Houston. Although ODT is not a diacetylene-based thiol, a SAM film was prepared by ODT in order to compare physical properties with a diacetylene-based SAM film. Each gold substrate is left in each solution for 24 hours, washed with isooctane and acetone, dried under a stream of nitrogen, and placed in a photopolymerization reaction unit. The structures and surface properties of the SAM films prepared before the photopolymerization reaction were analyzed and identified using various measuring instruments. For example, Table 2 shows data obtained by measuring the contact angle of the created SAM film surface with the liquid.

【0016】[0016]

【表2】 [Table 2]

【0017】表2は、SAM膜表面の液体に対する接触
角を測定したデータである。
Table 2 shows data obtained by measuring the contact angle of the SAM film surface with the liquid.

【0018】接触液体は水を用いて、各表面の前進角及
び後退角を接触角計にて測定した。いずれも高い前進角
及び後退角を示していることから、金表面上に高い分子
密度で吸着していることが分かった。次にSAM膜のミク
ロ構造を解析するために 反射型フーリエ変換赤外吸収
測定装置(以下 FTIR-RASと呼ぶ)を使って、各SAM膜分
子構造由来の、振動スペクトルを同定した。図1及び図
2はそれぞれC-H伸縮振動及びC-F伸縮振動領域の赤外ス
ペクトルを現している。 ここではテイルグループに、
フッ素鎖のついたSAM膜のデータを主に示す。図1か
ら、2920cm−1及び2850cm−1付近のC-H
伸縮振動吸収の強度及び、それぞれの波数より、メチレ
ン鎖はトランスに伸びて、高い結晶性をもつ分子パッキ
ングを形成していることが分かる。また、図2より、飽
和炭化フッ素鎖が金基板表面に確かに化学吸着している
ことが、1370cm−1及び、1250cm−1付近
のC-F伸縮振動、変角振動の吸収より確認され、また、
それらの強度比が各SAM膜によって異なることより、分
子鎖の基板表面に対する傾き角が異なることを示してい
る。このように、ジアセチレンを主鎖に含むアルカンチ
オール及びフッ素系チオール
The contact liquid was water, and the advancing angle and the receding angle of each surface were measured with a contact angle meter. Since all of them show a high advancing angle and a receding angle, it was found that they were adsorbed on the gold surface with a high molecular density. Next, in order to analyze the microstructure of the SAM film, the vibrational spectrum derived from the molecular structure of each SAM film was identified using a reflection type Fourier transform infrared absorption measurement device (hereinafter referred to as FTIR-RAS). 1 and 2 show infrared spectra of the CH stretching vibration region and the CF stretching vibration region, respectively. Here in the tail group,
The data for SAM films with fluorine chains are mainly shown. From FIG. 1, the CH around 2920 cm-1 and 2850 cm-1
From the strength of stretching vibration absorption and the respective wave numbers, it can be seen that the methylene chain extends into the trans and forms a molecular packing having high crystallinity. From FIG. 2, it is confirmed from the absorption of CF stretching vibration and bending vibration near 1370 cm −1 and 1250 cm −1 that the saturated fluorocarbon chain is certainly chemically adsorbed on the surface of the gold substrate.
The difference in the intensity ratio between the SAM films indicates that the tilt angle of the molecular chain with respect to the substrate surface is different. Thus, the alkane thiol and the fluorinated thiol containing diacetylene in the main chain

【0019】[0019]

【化1】 が高密度の分子被覆率をもつSAM膜を形成することがわ
かった。次に、それぞれのSAM膜を紫外線照射装置ユニ
ットに装着する。図3にその装置の概略を示す。紫外線
照射の条件は、波長254nmで、基板表面より2cm
ほど離れたポイントに固定化して、照射する、照射エネ
ルギーはその距離で約4750μW/cm2となる。ユニ
ット内部は、空気を窒素に置換させ、内部の酸素濃度
が、できるだけ小さくなるように設定する。または、紫
外線照射装置を真空チャンバーに設置して、真空下紫外
線照射して、SAM膜に光重合を行ってもよい。真空度は
10−5Torrより低いことが好ましい。紫外線照射時間
は300秒に設定し、各SAM膜の紫外線重合を行った。
紫外線照射後、各SAM膜の光重合の度合いを調べるた
め、SAM膜の共鳴ラマンスペクトルを計測した。 この装
置はSAM膜表面に、ある特定の可視領域光、例えば、5
14nmまたは633nm、を導入してやり、その光に
よって、光重合によって生成した、ジアセチレン共役3
重結合―2重結合系を励起させてやる。そうするとSAM
膜内にある特有の結合形成、特に不飽和共役結合の振動
スペクトルが増幅され、ラマンスペクトルとして観察で
きる。これはSAM膜のような単分子膜内部のわずかな共
役結合の振動変化を捉えることができるため、今回のSA
M膜内部の光重合測定に適した方法である。図4、図5
及び表3にはそれぞれ、各SAM膜の共鳴ラマンスペクト
ル観察の結果及び、光重合に関して、雰囲気下制御され
ていないSAM膜紫外線重合との比較を示したものであ
る。
Embedded image Formed SAM films with high molecular coverage. Next, each SAM film is mounted on an ultraviolet irradiation unit. FIG. 3 schematically shows the apparatus. The condition of ultraviolet irradiation is a wavelength of 254 nm and 2 cm from the substrate surface.
The irradiation energy is fixed at a point that is far away, and the irradiation energy is about 4750 μW / cm 2 at that distance. The inside of the unit is set so that the air is replaced with nitrogen, and the oxygen concentration inside the unit is made as small as possible. Alternatively, the SAM film may be subjected to photopolymerization by installing an ultraviolet irradiation device in a vacuum chamber and irradiating ultraviolet light under vacuum. The degree of vacuum is
Preferably, it is lower than 10-5 Torr. The UV irradiation time was set to 300 seconds, and UV polymerization of each SAM film was performed.
After the ultraviolet irradiation, the resonance Raman spectrum of each SAM film was measured to examine the degree of photopolymerization of each SAM film. This device applies a specific visible light, for example, 5
14 nm or 633 nm was introduced, and the light caused the diacetylene conjugate 3 produced by photopolymerization.
I will excite the heavy bond-double bond system. Then SAM
A specific bond formation in the film, particularly the vibration spectrum of the unsaturated conjugate bond is amplified and can be observed as a Raman spectrum. This is because it is possible to capture the slight change in vibration of the conjugate bond inside the monolayer such as the SAM film.
This method is suitable for measuring the photopolymerization inside the M film. 4 and 5
Table 3 shows the results of resonance Raman spectroscopy of each SAM film, and comparison of photopolymerization with SAM film ultraviolet polymerization, which is not controlled under an atmosphere, respectively.

【0020】[0020]

【表3】 [Table 3]

【0021】表3は、各SAM膜紫外線重合条件の比較
表である。
Table 3 is a comparison table of the ultraviolet ray polymerization conditions of each SAM film.

【0022】まず図4及び図5で示されるとおり、SAM
膜内部で、紫外線照射の結果、形成された共役3重結合
及び2重結合のラマン吸収は、2100cm−1及び1
500cm−1付近に現れており、SAM膜内部での紫外
線重合が起こっていることが確認された。また、各チオ
ール分子の手居るグループの違いによって、紫外線重合
の度合いが異なることが観測され、フッ素鎖の場合、鎖
長が長くなると、重合度が低下することが今回の計測で
明らかになった。さらに、ラマンスペクトルの励起波長
を短くすると、より高感度にSAM膜内部の重合変化が観
測されることが、今回の観察で判明した。表3にはこれ
ら各紫外線重合されたSAM膜と、空気に暴露した状態で
紫外線照射したSAM膜との比較を示している。 各サンプ
ルの紫外線照射時間を変化させて、時間の影響も調べ
た。ここで重合度合いを優、良、不可の3つに分けて評
価した。この表から明らかなように、反応場雰囲気条件
を不活性ガスで置換した、SAM膜の紫外線重合度合い
は、空気中に暴露された状態のSAM膜に比較して、明ら
かに異なり紫外線重合はかなりの効率で進む。それに対
して、空気中に暴露された状態では、紫外線重合はうま
くSAM膜内部で進行せず、空気、特に酸素の影響が重合
を妨げていることが分かる。以上、ジアセチレン系を含
むSAM膜の光重合条件にてSAM膜表面雰囲気下を制御する
ことでSAM膜の紫外線重合レベルを向上できることが判
明した。
First, as shown in FIG. 4 and FIG.
Inside the film, the Raman absorption of the conjugated triple bond and double bond formed as a result of ultraviolet irradiation is 2100 cm −1 and 1
Appearing at around 500 cm −1, it was confirmed that ultraviolet polymerization was occurring inside the SAM film. In addition, it was observed that the degree of UV polymerization was different depending on the difference between the groups in which each thiol molecule was available, and this measurement revealed that the degree of polymerization decreased as the chain length increased in the case of fluorine chains. . In addition, the observations show that when the excitation wavelength of the Raman spectrum is shortened, a change in polymerization inside the SAM film is observed with higher sensitivity. Table 3 shows each of these UV-polymerized SAM films and the SAM film exposed to air.
7 shows a comparison with a SAM film irradiated with ultraviolet light. The effect of the time was also investigated by changing the ultraviolet irradiation time of each sample. Here, the degree of polymerization was evaluated by classifying the degree of polymerization into excellent, good, and unacceptable. As is clear from this table, the degree of ultraviolet polymerization of the SAM film in which the reaction field atmosphere was replaced with an inert gas was clearly different from that of the SAM film exposed to air, and the ultraviolet polymerization was considerably Proceed with efficiency. On the other hand, when exposed to air, UV polymerization did not proceed well inside the SAM film, indicating that the influence of air, especially oxygen, prevented the polymerization. As described above, it was found that the UV polymerization level of the SAM film can be improved by controlling the SAM film surface atmosphere under the photopolymerization conditions of the SAM film containing diacetylene.

【0023】[0023]

【発明の効果】本発明によれば、共役3重結合系チオー
ルSAM膜 において紫外線照射重合過程にて、高い分
子間共役重合度を達成し、かつ、紫外線照射によるSA
M膜表面の光酸化を防止する効果的な光重合方法を提供
することができる。特にテイルグループがパーフルオロ
カーボン鎖である共役3重結合系チオールSAM膜に
て、効果的に、信頼耐久性ある撥水、撥油SAM膜を製
造する方法を提供することができる。
According to the present invention, in a conjugated triple bond type thiol SAM film, a high degree of intermolecular conjugate polymerization is achieved in the ultraviolet irradiation polymerization process, and the SA by ultraviolet irradiation is obtained.
An effective photopolymerization method for preventing photo-oxidation on the surface of the M film can be provided. In particular, it is possible to provide a method for effectively producing a reliable and durable water- and oil-repellent SAM film using a conjugated triple bond type thiol SAM film whose tail group is a perfluorocarbon chain.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 各SAM膜のC-H伸縮振動赤外スペクトル。FIG. 1 is a C-H stretching vibration infrared spectrum of each SAM film.

【図2】 各SAM膜のC-F伸縮振動赤外スペクトル。FIG. 2 is a C-F stretching vibration infrared spectrum of each SAM film.

【図3】 SAM膜紫外線重合用照射装置ユニット。FIG. 3 is an irradiation unit for UV polymerization of a SAM film.

【図4】各SAM膜の紫外線重合後の共鳴ラマンスペクト
ル観察(励起光 514nm)。
FIG. 4: Observation of resonance Raman spectrum (excitation light: 514 nm) of each SAM film after UV polymerization.

【図5】各SAM膜の紫外線重合後の共鳴ラマンスペクト
ル観察(励起光 633nm)。
FIG. 5 is a resonance Raman spectrum observation (excitation light: 633 nm) of each SAM film after UV polymerization.

【符号の説明】[Explanation of symbols]

31 不活性ガス導入路 32 紫外線重合ユニット密閉室 33 SAM膜基板 34 紫外線ランプとSAM膜表面との距離 (2cm) 35 紫外線ランプ (254nm) 36 紫外線ランプ電源部 31 Inert gas introduction path 32 UV polymerization unit sealed chamber 33 SAM film substrate 34 Distance between UV lamp and SAM film surface (2 cm) 35 UV lamp (254 nm) 36 UV lamp power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 49:00 C08L 49:00 Fターム(参考) 2H025 AC01 AD01 BC29 BC77 BC83 4F071 AA06 AA39 AF14 AF29 BB10 BC01 4H006 AA01 AA03 AB99 TA04 4J011 QA32 QA40 QA48 TA07 UA01 VA01 4J100 AT13P BA52P BB18P CA01 JA43 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C08L 49:00 C08L 49:00 F term (Reference) 2H025 AC01 AD01 BC29 BC77 BC83 4F071 AA06 AA39 AF14 AF29 BB10 BC01 4H006 AA01 AA03 AB99 TA04 4J011 QA32 QA40 QA48 TA07 UA01 VA01 4J100 AT13P BA52P BB18P CA01 JA43

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 フッ素鎖を主鎖または側鎖に含み、かつ
ジアセチレン構造を分子主鎖に含んだイオウ化合物また
はシラン系化合物から構成され、固体基板表面に化学吸
着されて自発的に単分子膜を形成することを特徴とする
自己組織化分子膜。
1. A monomolecular compound comprising a sulfur compound or a silane compound containing a fluorine chain in a main chain or a side chain and a diacetylene structure in a molecular main chain. A self-assembled molecular film, which forms a film.
【請求項2】 フッ素鎖が分子の末端に設けられ、かつ
イオウ系分子官能基、たとえばチオールが分子の逆末端
に存在する分子において、ジアセチレン構造が分子主鎖
内部に導入され、この分子が紫外線照射下、基板表面上
で分子間架橋反応を起こすことを特徴とする請求項1記
載の自己組織化分子膜。
2. In a molecule in which a fluorine chain is provided at the terminal of the molecule and a sulfur-based molecular functional group, for example, thiol is present at the opposite terminal of the molecule, a diacetylene structure is introduced into the main chain of the molecule. 2. The self-assembled molecular film according to claim 1, wherein an intermolecular cross-linking reaction is caused on the substrate surface under ultraviolet irradiation.
【請求項3】 自己組織化分子膜内部で、紫外線照射
下、分子間架橋反応を起こす過程にて 紫外線照射を空
気排除した密閉系にて進行させることを特徴とする請求
項2記載の自己組織化分子膜。
3. The self-organizing system according to claim 2, wherein the ultraviolet irradiation is caused to proceed in a closed system excluding air in the process of causing an intermolecular cross-linking reaction under ultraviolet irradiation inside the self-assembled molecular film. Molecular membrane.
【請求項4】 紫外線照射時に不活性ガスで置換された
密閉雰囲気下にて分子間架橋反応を起こすことを特徴と
する請求項3記載の自己組織化分子膜。
4. The self-assembled molecular film according to claim 3, wherein an intermolecular cross-linking reaction is caused in a sealed atmosphere replaced with an inert gas during ultraviolet irradiation.
【請求項5】 紫外線照射時に自己組織化分子膜及びそ
の基板を高真空状態にて密閉放置した状態で、分子間架
橋反応を起こすことを特徴とする請求項3記載の自己組
織化分子膜。
5. The self-assembled molecular film according to claim 3, wherein an intermolecular cross-linking reaction occurs when the self-assembled molecular film and its substrate are hermetically sealed in a high vacuum state when irradiated with ultraviolet rays.
【請求項6】 下記 [化1]の一般式(1)で現される
請求項2記載のフッ素系化合物から構成される請求項1
記載の自己組織化分子膜。[化1]
6. The composition according to claim 2, which is represented by the following general formula (1):
The self-assembled molecular film according to the above. [Formula 1]
【請求項7】 上記一般式(1)において、0<m < 15
であり、かつ 6 < n<18であり、かつ 8< k < 15 である
請求項2記載のフッ素系化合物から構成される請求項1
記載の自己組織化分子膜。
7. In the general formula (1), 0 <m <15
3. The fluorine-containing compound according to claim 2, wherein 6 <n <18 and 8 <k <15.
The self-assembled molecular film according to the above.
JP2000061255A 2000-03-06 2000-03-06 Method of producing photofunctional self-organized monomolecular film Withdrawn JP2001247540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000061255A JP2001247540A (en) 2000-03-06 2000-03-06 Method of producing photofunctional self-organized monomolecular film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000061255A JP2001247540A (en) 2000-03-06 2000-03-06 Method of producing photofunctional self-organized monomolecular film

Publications (1)

Publication Number Publication Date
JP2001247540A true JP2001247540A (en) 2001-09-11

Family

ID=18581420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000061255A Withdrawn JP2001247540A (en) 2000-03-06 2000-03-06 Method of producing photofunctional self-organized monomolecular film

Country Status (1)

Country Link
JP (1) JP2001247540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502630A (en) * 2006-08-31 2010-01-28 スリーエム イノベイティブ プロパティズ カンパニー Side chain fluorochemicals with crystallizable spacer groups
JP2012502147A (en) * 2008-09-11 2012-01-26 ユニヴェルシテート ビーレフェルト Highly cross-linked, chemically structured monolayer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502630A (en) * 2006-08-31 2010-01-28 スリーエム イノベイティブ プロパティズ カンパニー Side chain fluorochemicals with crystallizable spacer groups
US8889230B2 (en) 2006-08-31 2014-11-18 3M Innovative Properties Company Side chain fluorochemicals with crystallizable spacer groups
JP2012502147A (en) * 2008-09-11 2012-01-26 ユニヴェルシテート ビーレフェルト Highly cross-linked, chemically structured monolayer

Similar Documents

Publication Publication Date Title
Wang et al. Surface chemical reactions on self-assembled silane based monolayers
US9279759B2 (en) Nanoparticle array with tunable nanoparticle size and separation
Ma et al. Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization
Kedem et al. Sensitivity and optimization of localized surface plasmon resonance transducers
Zhang et al. Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at low irradiance
US5885753A (en) Polymeric self-assembled mono- and multilayers and their use in photolithography
Brewer et al. Photooxidation of self-assembled monolayers by exposure to light of wavelength 254 nm: a static SIMS study
WO1997038802A9 (en) Polymeric self-assembled mono- and multilayers and their use in photolithography
US20150085335A1 (en) Chiroptical switches
Yan et al. Formation of alkanethiolate self-assembled monolayers on oxidized gold surfaces
Beyerlein et al. Preparation and properties of thin films of hyperbranched polyesters with different end groups
Mowery et al. Fabrication of monolayers containing internal molecular scaffolding: effect of substrate preparation
Wang et al. Solvent effect on the film formation and the stability of the surface properties of poly (methyl methacrylate) end-capped with fluorinated units
Xu et al. Solid-state polymer adsorption for surface modification: The role of molecular weight
Vaish et al. Dithiol-based modification of poly (dopamine): enabling protein resistance via short-chain ethylene oxide oligomers
JP2881058B2 (en) Lubricant, method of applying lubricant, and magnetic recording medium having lubricating film formed thereon
JP2506973B2 (en) Method of manufacturing optical recording medium
US8911852B2 (en) Fully crosslinked chemically structured monolayers
JP2001247540A (en) Method of producing photofunctional self-organized monomolecular film
Faull et al. Selective guest− host association on self-assembled monolayers of calix [4] resorcinarene
Höfler et al. Photoreactive molecular layers containing aryl ester units: Preparation, UV patterning and post-exposure modification
Tuo et al. Fabricating water-insoluble polyelectrolyte into multilayers with layer-by-layer self-assembly
Bercegol et al. Enhanced Raman Spectroscopy at a Nonmetallic Surface 1. Spacer Layers of Alkyl Mercaptans on Silver Island Films
Schofield et al. A substrate-independent approach for cyclodextrin functionalized surfaces
Woodward et al. Micropatterning of plasma fluorinated super-hydrophobic surfaces

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605