JP2001246256A - Catalyst for hydrogenation reaction of carbon monoxide and method for preparing hydrogenated product - Google Patents

Catalyst for hydrogenation reaction of carbon monoxide and method for preparing hydrogenated product

Info

Publication number
JP2001246256A
JP2001246256A JP2000064874A JP2000064874A JP2001246256A JP 2001246256 A JP2001246256 A JP 2001246256A JP 2000064874 A JP2000064874 A JP 2000064874A JP 2000064874 A JP2000064874 A JP 2000064874A JP 2001246256 A JP2001246256 A JP 2001246256A
Authority
JP
Japan
Prior art keywords
catalyst
transition metal
carbon monoxide
porous body
fuel oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000064874A
Other languages
Japanese (ja)
Other versions
JP3407031B2 (en
Inventor
Yasuo Otsuka
康夫 大塚
Muneyoshi Yamada
宗慶 山田
No O
野 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2000064874A priority Critical patent/JP3407031B2/en
Priority to US09/657,905 priority patent/US6410477B1/en
Publication of JP2001246256A publication Critical patent/JP2001246256A/en
Application granted granted Critical
Publication of JP3407031B2 publication Critical patent/JP3407031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a catalyst for hydrogenation reaction of carbon monoxide, which is suitable for preparing a hydrogenated product containing an objective component from a mixture gas of hydrogen and carbon monoxide (for example, a gasoline fuel oil component or a diesel fuel oil component) with high selectivity. SOLUTION: This catalyst is characterized in that a transition metal is carried on a porous body in which 90% or more of all the pores are 1-50 mm in diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一酸化炭素の水素
化反応触媒および主にガソリン燃料油およびディーゼル
燃料油を含む水素化生成物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for hydrogenating carbon monoxide and a method for producing a hydrogenation product mainly containing gasoline fuel oil and diesel fuel oil.

【0002】[0002]

【従来の技術】一酸化炭素と水素の混合ガス(合成ガ
ス)から製造される燃料油は、石油から精製される燃料
油のような硫黄酸化物の原因になる硫黄や、すすの発生
源で発ガン性を示す芳香族炭化水素(アロマ)を全く含
まないため、石油系燃料に代わる環境低負荷型高品位燃
料として注目されている。
2. Description of the Related Art Fuel oil produced from a mixed gas of carbon monoxide and hydrogen (synthesis gas) is a source of sulfur or soot that causes sulfur oxides such as fuel oil refined from petroleum. Because it does not contain any aromatic hydrocarbons (aromatics) that exhibit carcinogenicity, it has attracted attention as an environmentally-friendly, high-grade fuel that replaces petroleum fuels.

【0003】従来よりシリカ、アルミナの単体にコバル
トやルテニウムを担持させた触媒の存在下で前記合成ガ
スを所定の温度、圧力の下で反応させて前記燃料油成分
を含む水素化生成物を製造することが行われている。し
かしながら、これらの方法では目的とする成分(例えば
ガソリン燃料油成分またはディーゼル燃料油成分)を他
の成分(メタン等)に比べて高い選択率で製造するとい
う点で必ずしも十分満足するものではなかった。
Conventionally, the synthesis gas is reacted at a predetermined temperature and pressure in the presence of a catalyst in which cobalt or ruthenium is supported on a simple substance of silica or alumina to produce a hydrogenated product containing the fuel oil component. That is being done. However, these methods are not always satisfactory in that a target component (for example, a gasoline fuel oil component or a diesel fuel oil component) is produced with a higher selectivity than other components (such as methane). .

【0004】[0004]

【発明が解決しようとする課題】本発明は、水素と一酸
化炭素の混合ガスから目的とする成分(例えばガソリン
燃料油成分またはディーゼル燃料油成分)を高い選択率
で含む水素化生成物を製造するのに適した一酸化炭素の
水素化反応触媒を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a method for producing a hydrogenation product containing a target component (for example, a gasoline fuel oil component or a diesel fuel oil component) at a high selectivity from a mixed gas of hydrogen and carbon monoxide. It is intended to provide a catalyst for hydrogenating carbon monoxide suitable for the reaction.

【0005】本発明は、水素と一酸化炭素の混合ガスか
ら目的とする成分(例えばガソリン燃料油成分またはデ
ィーゼル燃料油成分)が高い選択率で含む水素化生成物
を製造することが可能な方法を提供するものである。
The present invention provides a method for producing a hydrogenation product containing a target component (eg, a gasoline fuel oil component or a diesel fuel oil component) at a high selectivity from a mixed gas of hydrogen and carbon monoxide. Is provided.

【0006】[0006]

【課題を解決するための手段】本発明に係る一酸化炭素
の水素化反応触媒は、全細孔の90%以上が直径1〜5
0nmの微細孔を有する多孔体に遷移金属を担持したこ
とを特徴とするものである。
According to the catalyst for hydrogenating carbon monoxide according to the present invention, 90% or more of all the pores have a diameter of 1-5.
The transition metal is supported on a porous body having fine pores of 0 nm.

【0007】本発明に係る水素化生成物の製造方法は、
全細孔の90%以上が直径1〜50nmの微細孔を有す
る多孔体に遷移金属を担持した触媒の存在下、水素と一
酸化炭素を含む混合ガスを200〜400℃の温度、
0.1〜10MPaの圧力の下にて反応させることを特
徴とするものである。
[0007] The method for producing a hydrogenation product according to the present invention comprises:
In the presence of a catalyst in which 90% or more of all the pores have a transition metal supported on a porous body having fine pores having a diameter of 1 to 50 nm, a mixed gas containing hydrogen and carbon monoxide is heated at a temperature of 200 to 400 ° C.
The reaction is performed under a pressure of 0.1 to 10 MPa.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0009】本発明に係る一酸化炭素の水素化反応触媒
は、全細孔の90%以上が直径1〜50nmの微細孔を
有する多孔体に遷移金属または貴金属を担持した構成を
有する。
The catalyst for hydrogenating carbon monoxide according to the present invention has a structure in which a transition metal or a noble metal is supported on a porous body having 90% or more of all the pores having fine pores having a diameter of 1 to 50 nm.

【0010】前記多孔体は、例えば純粋なシリカ、また
はこの純粋なシリカをベースとし、アルミニウムやガリ
ウムのような金属を導入したものからなる。
The porous body is made of, for example, pure silica or a material based on the pure silica, into which a metal such as aluminum or gallium is introduced.

【0011】ここで、『細孔直径』とは細孔直径の分布
を測定し、そのピークトップを細孔直径とした。
Here, the term "pore diameter" refers to the measurement of the distribution of the pore diameter, and the peak top is defined as the pore diameter.

【0012】前記多孔体の微細孔の寸法および微細孔分
布を前記範囲に規定することにより遷移金属を微細な状
態で、かつ均一に分散した状態で担持することが可能に
なる。前記多孔体は、直径1〜10nmの微細孔が全細
孔の90%以上を占めることがより好ましい。このよう
なシリカ多孔体は、例えばモービル社が開発したMCM
−41,東京大学および豊田中央研究所が開発したFS
M−16またはスタンホード大学が開発したSBA−1
5が知られている。MCM−41は、シリカ源および界
面活性剤(テンプレート;鋳型)としてそれぞれケイ酸
ナトリウムおよびヘキサデシルトリメチルアンモニウム
を用い、これらを加圧反応器(オートクレーブ)中、1
20℃にて水熱合成することにより製造される。
By defining the size and distribution of the fine pores of the porous body within the above ranges, the transition metal can be supported in a fine state and in a uniformly dispersed state. More preferably, in the porous body, micropores having a diameter of 1 to 10 nm occupy 90% or more of all the pores. Such a porous silica material is, for example, an MCM developed by Mobile.
-41, FS developed by the University of Tokyo and Toyota Central Research Institute
M-16 or SBA-1 developed by Stanford University
5 are known. MCM-41 uses sodium silicate and hexadecyltrimethylammonium as a silica source and a surfactant (template; template), respectively, and these are placed in a pressure reactor (autoclave) for 1 hour.
It is produced by hydrothermal synthesis at 20 ° C.

【0013】前記遷移金属としては、例えばコバルト、
ニッケル、鉄、銅、クロム、マンガン、ジルコニア、モ
リブデン、タングステン、レニウム、オスミウム、イリ
ジウム、パラジウム、銀、ルテニウム、ロジウム、金、
白金等を用いることができる。特に、コバルト、鉄、ル
テニウム、ロジウム、白金が好ましい。
As the transition metal, for example, cobalt,
Nickel, iron, copper, chromium, manganese, zirconia, molybdenum, tungsten, rhenium, osmium, iridium, palladium, silver, ruthenium, rhodium, gold,
Platinum or the like can be used. Particularly, cobalt, iron, ruthenium, rhodium and platinum are preferred.

【0014】前記遷移金属は、コバルトまたは鉄である
場合、前記多孔体に5〜40重量%の範囲で担持され、
ルテニウム、ロジウムまたは白金から選ばれる貴金属で
ある場合、前記多孔体に1〜15重量%の範囲で担持さ
れることが好ましい。前記遷移金属の担持量が前記範囲
の下限値未満にすると、後述する水素と一酸化炭素の混
合ガスの反応時における一酸化炭素の転化率が低下する
虞がある。一方、前記遷移金属の担持量が前記範囲の上
限値を超えてもそれに見合った一酸化炭素の転化率の向
上が期待できない。
When the transition metal is cobalt or iron, the transition metal is supported on the porous body in a range of 5 to 40% by weight,
In the case of a noble metal selected from ruthenium, rhodium or platinum, it is preferably supported on the porous body in a range of 1 to 15% by weight. If the amount of the supported transition metal is less than the lower limit of the range, the conversion rate of carbon monoxide during the reaction of a mixed gas of hydrogen and carbon monoxide, which will be described later, may decrease. On the other hand, even if the amount of the supported transition metal exceeds the upper limit of the above range, a corresponding increase in the conversion of carbon monoxide cannot be expected.

【0015】前述した一酸化炭素の水素化反応触媒は、
例えば次のようなIMP法またはTIE法により製造さ
れる。
The above-mentioned catalyst for hydrogenating carbon monoxide comprises:
For example, it is manufactured by the following IMP method or TIE method.

【0016】(IMP法)まず、例えばモービル社が開
発したMCM−41のような多孔体を空気焼成して残留
する界面活性剤(テンプレート)を500〜600℃の
温度で燃焼、除去する。つづいて、焼成した多孔体を遷
移金属化合物の水溶液に浸漬してその水溶液を前記多孔
体に含浸する。その後乾燥し、再度、500〜600℃
の温度で焼成して目的とする触媒を製造する。
(IMP method) First, a porous material such as MCM-41 developed by Mobile Co., Ltd. is fired in air, and the remaining surfactant (template) is burned and removed at a temperature of 500 to 600 ° C. Subsequently, the fired porous body is immersed in an aqueous solution of a transition metal compound to impregnate the porous body with the aqueous solution. Thereafter, it is dried and again at 500 to 600 ° C.
To produce the desired catalyst.

【0017】(TIE法)まず、例えばモービル社が開
発したMCM−41のような多孔体を遷移金属化合物の
水溶液に添加、混合する。この時、多孔体には界面活性
剤(テンプレート)が残留するため、遷移金属イオンと
テンプレートイオンとが交換される。つづいて、この混
合物を乾燥した後、500〜600℃の温度で焼成して
前記テンプレートを燃焼、除去することにより目的とす
る触媒を製造する。
(TIE method) First, a porous material such as MCM-41 developed by Mobil is added to and mixed with an aqueous solution of a transition metal compound. At this time, since the surfactant (template) remains in the porous body, transition metal ions and template ions are exchanged. Subsequently, after drying this mixture, it is calcined at a temperature of 500 to 600 ° C. to burn and remove the template to produce a target catalyst.

【0018】前記各製造方法において、TIE法で作ら
れた触媒は遷移金属を担持する工程で多孔体の細孔が潰
れず、一定の範囲の細孔が規則正しく配列されている、
つまり遷移金属を担持する前の多孔体の細孔構造を保っ
たまま多量の遷移金属を担持することができるため好ま
しい。
In each of the above-mentioned production methods, the catalyst produced by the TIE method does not collapse the pores of the porous body in the step of supporting the transition metal, and the pores in a certain range are regularly arranged.
That is, a large amount of transition metal can be supported while maintaining the pore structure of the porous body before supporting the transition metal, which is preferable.

【0019】次に、本発明に係る水素化生成物の製造方
法を説明する。
Next, a method for producing a hydrogenation product according to the present invention will be described.

【0020】前述した全細孔の90%以上が直径1〜5
0nmの微細孔を有する多孔体に遷移金属を担持した触
媒の存在下、水素と一酸化炭素を含む混合ガスを200
〜400℃の温度、0.1〜10MPaの圧力の下にて
反応させることによりガソリン燃料油成分、ディーゼル
燃料成分を含む水素化生成物を製造する。
At least 90% of all the pores mentioned above have a diameter of 1 to 5
In the presence of a catalyst in which a transition metal is supported on a porous body having fine pores of 0 nm, a mixed gas containing hydrogen and carbon monoxide was added to a mixture of 200 μm
A hydrogenated product containing a gasoline fuel oil component and a diesel fuel component is produced by reacting at a temperature of 400400 ° C. under a pressure of 0.1 to 10 MPa.

【0021】具体的には、円筒状のステンレス製高圧反
応管内に例えば粉末状の前記触媒を充填し、この反応管
を例えば外部に配置したヒータでその内部温度が200
〜400℃になるように加熱した状態で、水素と一酸化
炭素を含む高圧混合ガス(0.1〜10MPa)を流通
させることにより水素化生成物を製造する。
More specifically, a cylindrical stainless steel high-pressure reaction tube is filled with, for example, the above-mentioned powdered catalyst, and the reaction tube is arranged, for example, with a heater arranged outside to have an internal temperature of 200 mm.
A hydrogenated product is produced by flowing a high-pressure mixed gas (0.1 to 10 MPa) containing hydrogen and carbon monoxide in a state where the mixture is heated to about 400 ° C.

【0022】この他に、出入口を有する高圧タンク内に
高沸点有機溶媒に粉末状の前記触媒を分散させたスラリ
ーを入れ、この高圧タンクを例えば外部に配置したヒー
タでその内部温度が200〜400℃になるように加熱
した状態で、水素と一酸化炭素を含む高圧混合ガス
(0.1〜10MPa)を前記入口から前記スラリー内
に流通させることにより水素化生成物を製造することも
可能である。
In addition, a slurry in which the powdered catalyst is dispersed in a high-boiling organic solvent is placed in a high-pressure tank having an inlet / outlet. It is also possible to produce a hydrogenated product by flowing a high-pressure mixed gas (0.1 to 10 MPa) containing hydrogen and carbon monoxide from the inlet into the slurry in a state where the mixture is heated to a temperature of 0 ° C. is there.

【0023】前記触媒は、粉末状(例えば平均粒径50
〜150μm)の他に、この粉末を成型してペレットと
したものを粉砕した顆粒状の形態でも使用することがで
きる。
The catalyst is in the form of a powder (for example, having an average particle size of 50
In addition to this, the powder can be used in the form of granules obtained by molding the powder into pellets and then pulverizing the pellets.

【0024】前記混合ガスの各成分比率は、水素化生成
物中に選択される目的とする成分の種類等に依存するた
め、一概に規定できないが、通常、水素(H2):一酸
化炭素(CO)=1:1〜4:1にすることが好まし
い。例えば、選択する成分がディーゼル燃料油成分であ
る場合には前記混合ガスとして水素(H2):一酸化炭
素(CO)=2:1の混合比率のものを用いることが好
ましい。
The ratio of each component of the mixed gas depends on the kind of the target component selected in the hydrogenated product and cannot be unconditionally specified, but is usually hydrogen (H 2 ): carbon monoxide. It is preferable that (CO) = 1: 1 to 4: 1. For example, when the component to be selected is a diesel fuel oil component, it is preferable to use a mixed gas of hydrogen (H 2 ): carbon monoxide (CO) = 2: 1 as the mixed gas.

【0025】前記触媒の存在下で前記混合ガスを反応さ
せる反応系において、温度および圧力を前記範囲に設定
することにより、目的とする成分としてC1のメタンか
らC4のブタンと、C5〜C9のガソリン燃料油成分およ
びC10〜C20のディーゼル燃料油成分と、ワックスのよ
うな高沸点パラフィンとを任意に選択することが可能に
なる。
In a reaction system in which the mixed gas is reacted in the presence of the catalyst, by setting the temperature and the pressure within the above ranges, C 1 methane to C 4 butane and C 5 to It is possible to arbitrarily select a gasoline fuel oil component of C 9 and a diesel fuel oil component of C 10 to C 20 and a high-boiling paraffin such as wax.

【0026】前記混合ガスを前記高圧反応管に供給する
時の流速は、一酸化炭素の転化率に影響を及ぼす。一般
に、前記混合ガスの流速を遅くすると、一酸化炭素の転
化率が高くなるものの、製造された水素化生成物の各成
分の分布も変化して目的とする成分の収量も変化する。
このため、前記混合ガスの流速は目的とする成分の収量
を高める、つまり選択性を高める観点から、0.1MP
a、20℃換算で、50〜100cm3/分にすること
が好ましい。
The flow rate when the mixed gas is supplied to the high-pressure reaction tube affects the conversion of carbon monoxide. In general, when the flow rate of the mixed gas is reduced, the conversion of carbon monoxide increases, but the distribution of each component of the produced hydrogenation product also changes, and the yield of the target component also changes.
For this reason, from the viewpoint of increasing the yield of the target component, that is, increasing the selectivity, the flow rate of the mixed gas is 0.1 MPa.
a, It is preferably 50 to 100 cm 3 / min in terms of 20 ° C.

【0027】以上説明したように本発明に係る一酸化炭
素の水素化反応触媒は、全細孔の90%以上が直径1〜
50nmの微細孔を有する多孔体に遷移金属を担持した
構成を有する。
As described above, in the carbon monoxide hydrogenation reaction catalyst according to the present invention, 90% or more of all the pores have a diameter of 1 to 1.
It has a configuration in which a transition metal is supported on a porous body having fine pores of 50 nm.

【0028】このような構成の触媒は、遷移金属が担持
される多孔体の細孔が極めて微細で、かつその細孔分布
が極めて狭いために、水素と一酸化炭素の混合ガスから
目的とする成分(例えばガソリン燃料油成分またはディ
ーゼル燃料油成分)を高い選択率で含む水素化生成物を
製造するのに適する。
In the catalyst having such a structure, the pores of the porous body supporting the transition metal are extremely fine and the pore distribution is extremely narrow. Suitable for producing a hydrogenation product containing a component (eg, a gasoline fuel oil component or a diesel fuel oil component) with high selectivity.

【0029】特に、前述したTIE法により作られた触
媒は遷移金属を担持する前の多孔体の細孔構造を保った
まま多量の遷移金属を担持することができるため、目的
とする成分(例えばガソリン燃料油成分またはディーゼ
ル燃料油成分)をより一層高い選択率で含む水素化生成
物の製造に適する。
In particular, since the catalyst prepared by the above-described TIE method can support a large amount of transition metal while maintaining the porous structure of the porous body before supporting the transition metal, the target component (for example, It is suitable for the production of hydrogenated products containing a higher selectivity (gasoline fuel component or diesel fuel component).

【0030】また、遷移金属の担持量を規定(コバルト
の場合、5〜40重量%、ルテニウムの場合1〜15重
量%)することによって、水素と一酸化炭素の混合ガス
の反応時における一酸化炭素の転化率を向上できるとと
もに、目的とする成分(例えばガソリン燃料油成分また
はディーゼル燃料油成分)をより一層高い選択率で含む
水素化生成物の製造が可能になる。
By regulating the amount of the supported transition metal (5 to 40% by weight in the case of cobalt and 1 to 15% by weight in the case of ruthenium), the amount of monoxide during the reaction of the mixed gas of hydrogen and carbon monoxide is increased. The conversion of carbon can be improved, and the production of a hydrogenated product containing a target component (for example, a gasoline fuel oil component or a diesel fuel oil component) at a higher selectivity becomes possible.

【0031】さらに、本発明に係る水素化生成物の製造
方法は、前述した触媒の存在下、水素と一酸化炭素を含
む混合ガスを200〜400℃の温度、0.1〜10M
Paの圧力の下にて反応させるものである。
Further, in the method for producing a hydrogenated product according to the present invention, a mixed gas containing hydrogen and carbon monoxide is heated to a temperature of 200 to 400 ° C. and 0.1 to 10 M in the presence of the above-mentioned catalyst.
The reaction is performed under a pressure of Pa.

【0032】このような方法によれば、細孔が極めて微
細で、かつその細孔分布が極めて狭い多孔体に遷移金属
を担持した触媒を用いるために、この触媒の多数かつ微
細な細孔に存在する遷移金属の活性作用により水素と一
酸化炭素を含む混合ガスから目的とする成分、特にC5
〜C9のガソリン燃料油成分およびC10〜C20のディー
ゼル燃料油成分までの反応が容易に進行してそれら成分
を多く含む水素化生成物を製造することができる。
According to such a method, since a catalyst in which a transition metal is supported on a porous body having extremely fine pores and an extremely narrow pore distribution is used, a large number of fine pores of the catalyst are used. The target component, especially C 5 , is produced from the mixed gas containing hydrogen and carbon monoxide by the action of the existing transition metal.
The reaction to the diesel fuel oil component of the gasoline fuel oil component and C 10 -C 20 of -C 9 easily proceeds can be produced hydrogenation product containing a large amount of components thereof.

【0033】とりわけ、TIE法により作られた、遷移
金属を担持する前の多孔体の細孔構造を保ったまま多量
の遷移金属を担持した触媒を用いて前記混合ガスを所定
の温度、圧力の下で反応させることによって、目的とす
る成分(例えばガソリン燃料油成分またはディーゼル燃
料油成分)をより一層高い選択率で含む水素化生成物を
製造することができる。これは、例えば次のような挙動
によるものである。
In particular, the mixed gas is heated to a predetermined temperature and pressure using a catalyst prepared by the TIE method and supporting a large amount of transition metal while maintaining the pore structure of the porous body before supporting the transition metal. By reacting below, it is possible to produce a hydrogenation product containing a target component (for example, a gasoline fuel oil component or a diesel fuel oil component) with higher selectivity. This is due to, for example, the following behavior.

【0034】水素と一酸化炭素の反応時における水素化
生成物の選択性は、炭素連鎖成長確率に依存する。前記
TIE法により作られた触媒は、担持される遷移金属の
活性点が細孔の内部に存在するため、前記混合ガスの反
応は主にこの細孔内で進行する。このため、前記混合ガ
スの反応により生成された中間生成物の活性点への再付
着が高くなるため、前記炭素連鎖成長確率が効率よく進
行する。その結果、炭素数が多いC5〜C9のガソリン燃
料油成分およびC10〜C20のディーゼル燃料油成分をよ
り一層高い選択率で含む水素化生成物を製造することが
可能になる。
The selectivity of the hydrogenated product during the reaction between hydrogen and carbon monoxide depends on the carbon chain growth probability. In the catalyst produced by the TIE method, the active site of the transition metal to be supported exists inside the pores, so that the reaction of the mixed gas mainly proceeds in the pores. For this reason, since the re-attachment of the intermediate product generated by the reaction of the mixed gas to the active site increases, the carbon chain growth probability proceeds efficiently. As a result, it is possible to produce a hydrogenated product comprising a diesel fuel oil component of the gasoline fuel oil component and C 10 -C 20 in C 5 -C 9 a large number of carbon atoms in even higher selectivity.

【0035】[0035]

【実施例】以下、好ましい実施例を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments will be described below in detail.

【0036】(実施例1)まず、全細孔の91%が直径
1〜9nmの微細孔を有するシリカ多孔体を550℃の
温度で焼成して前記シリカ多孔体中の残留界面活性剤
(テンプレート)を燃焼、除去した。つづいて、この多
孔体を5重量%濃度の硝酸コバルト水溶液に浸漬してそ
の水溶液を前記多孔体に含浸した後、再度、550℃の
温度で焼成する、IMP法によりコバルトが10重量%
担持された平均粒径75μmの粉末状触媒を製造した。
Example 1 First, a porous silica having 91% of all pores having fine pores having a diameter of 1 to 9 nm was fired at a temperature of 550 ° C. to obtain a residual surfactant (template) in the porous silica. ) Was burned and removed. Subsequently, the porous body is immersed in a 5% by weight aqueous solution of cobalt nitrate to impregnate the porous body with the aqueous solution, and then calcined again at a temperature of 550 ° C.
A supported powdery catalyst having an average particle size of 75 μm was produced.

【0037】次いで、得られた粉末状触媒を円筒状のス
テンレス製高圧反応管内に充填し、この反応管を例えば
外部に配置したヒータでその内部温度が250℃になる
ように加熱した状態で、水素と一酸化炭素の高圧混合ガ
ス(圧力;2.0MPa、H 2:CO=2:1)を50
cm3/分の流速で流通させることにより水素化生成物
を製造した。
Next, the obtained powdery catalyst is placed in a cylindrical
Filled into a Tenres high-pressure reaction tube, this reaction tube
The temperature inside becomes 250 ° C with the heater arranged outside
High-pressure gas mixture of hydrogen and carbon monoxide
(Pressure: 2.0 MPa, H Two: CO = 2: 1) to 50
cmThreeHydrogenation products by flowing at a flow rate of
Was manufactured.

【0038】(実施例2)まず、全細孔の91%が直径
1〜9nmの微細孔を有するシリカ多孔体を5重量%濃
度の硝酸コバルト水溶液に添加、混合して、前記シリカ
多孔体中の残留界面活性剤(テンプレート)をCoイオ
ンと交換した。つづいて、この混合物を乾燥した後、5
50℃の温度で焼成して前記テンプレートを燃焼、除去
する、TIE法により平均粒径75μmの粉末状触媒を
製造した。この触媒は、コバルト担持量が10重量%
で、かつシリカ多孔体がコバルトを担持する前の微細構
造を保持していた。
Example 2 First, a porous silica having 91% of all the pores having fine pores having a diameter of 1 to 9 nm was added to a 5% by weight aqueous solution of cobalt nitrate and mixed. Was replaced with Co ions. Subsequently, after drying this mixture, 5
A powdery catalyst having an average particle diameter of 75 μm was produced by a TIE method in which the template was burned at a temperature of 50 ° C. to burn and remove the template. This catalyst has a cobalt loading of 10% by weight.
And the microstructure before the porous silica supported cobalt.

【0039】次いで、得られた粉末状触媒を用いて実施
例1と同様な方法により水素化生成物を製造した。
Next, a hydrogenated product was produced in the same manner as in Example 1 using the obtained powdery catalyst.

【0040】(実施例3)TIE法により全細孔の91
%が直径1〜9nmの微細孔を有するシリカ多孔体にC
oを20重量%担持した構成を有する触媒を用いた以
外、実施例1と同様な方法により水素化生成物を製造し
た。
Example 3 The total pore size of 91 was measured by the TIE method.
% To the porous silica having fine pores having a diameter of 1 to 9 nm.
A hydrogenated product was produced in the same manner as in Example 1, except that a catalyst having a structure supporting 20% by weight of o was used.

【0041】実施例1〜3で得られた水素化生成物の混
合ガス中の一酸化炭素(CO)に対する転化率、水素化
生成物の成分を調べた。その結果を下記表1に示す。な
お、成分分析はC1のメタンからC4のブタンについては
高速ガスクロマトグラフ(ヒューレット・パッカド社製
商品名;M200)を用い、C5以上の液状成分につい
てはガスクロマトグラフ質量分析装置(パーキンエルマ
ー社製商品名;TurboMass)を用いて行った。
The conversion ratio of the hydrogenated products obtained in Examples 1 to 3 to carbon monoxide (CO) in the mixed gas and the components of the hydrogenated products were examined. The results are shown in Table 1 below. Incidentally, component analysis fast gas chromatograph (Hewlett-Pakkado trade name; M200) for butane C 4 from methane C 1 using a gas chromatograph mass spectrometer for C 5 or more liquid components (Perkin Elmer (Trade name: TurboMass).

【0042】[0042]

【表1】 [Table 1]

【0043】前記表1から明らかなように実施例1〜3
によればC5〜C9のガソリン燃料油成分およびC10〜C
20のディーゼル燃料油成分を比較的高い選択率で含有す
る水素化生成物を製造できることがわかる。
As is apparent from Table 1, Examples 1 to 3 were used.
Gasoline fuel oil component and C 10 of the C 5 -C 9 According -C
It can be seen that a hydrogenation product containing 20 diesel fuel components with relatively high selectivity can be produced.

【0044】特に、TIE法によりコバルトを担持した
触媒を用いた実施例2,3ではC5〜C9のガソリン燃料
油成分およびC10〜C20のディーゼル燃料油成分をより
一層高い選択率で含有する水素化生成物を製造できるこ
とがわかる。また、TIE法によりコバルトの担持量が
20重量%の触媒を用いた実施例3ではCO転化率が高
く、かつC5〜C9のガソリン燃料油成分およびC10〜C
20のディーゼル燃料油成分をさらに一層高い選択率で含
有する水素化生成物を製造できることがわかる。
[0044] Particularly, in even higher selectivity to diesel fuel oil component of the gasoline fuel oil component of C 5 -C 9 In Examples 2 and 3 using a catalyst carrying cobalt and C 10 -C 20 by TIE method It can be seen that a hydrogenation product containing can be produced. The supported amount of cobalt higher Example 3 In CO conversion with 20 wt% of the catalyst by TIE method, and C 5 gasoline fuel oil component of -C 9 and C 10 -C
It can be seen that a hydrogenated product containing 20 diesel fuel oil components with even higher selectivity can be produced.

【0045】(実施例4)まず、全細孔の94%が直径
1〜8nmの微細孔を有するシリカ多孔体を10重量%
濃度の硝酸ルテニウム水溶液に添加、混合して、前記シ
リカ多孔体中の残留界面活性剤(テンプレート)をRu
イオンと交換した。つづいて、この混合物を乾燥した
後、550℃の温度で焼成して前記テンプレートを燃
焼、除去する、TIE法により平均粒径50μmの粉末
状触媒を製造した。この触媒は、ルテニウム担持量が1
0重量%で、かつシリカ多孔体がコバルトを担持する前
の微細構造を保持していた。
Example 4 First, 10% by weight of a silica porous material having 94% of all the pores having fine pores having a diameter of 1 to 8 nm was prepared.
And mixed with a ruthenium nitrate aqueous solution having a concentration of Ru to remove residual surfactant (template) in the porous silica.
Exchanged for ions. Subsequently, the mixture was dried and then calcined at a temperature of 550 ° C. to burn and remove the template, thereby producing a powdery catalyst having an average particle diameter of 50 μm by the TIE method. This catalyst has a ruthenium loading of 1
At 0 wt%, the microstructure before the porous silica supported cobalt was retained.

【0046】次いで、得られた粉末状触媒を用いて実施
例1と同様に円筒状のステンレス製高圧反応管内に充填
し、この反応管を例えば外部に配置したヒータでその内
部温度が250℃になるように加熱した状態で、水素と
一酸化炭素の高圧混合ガス(圧力;2.0MPa、
2:CO=2:1)を50cm3/分の流速で流通させ
ることにより前記反応管の出口から水素化生成物を製造
した。
Next, the obtained powdery catalyst was filled in a cylindrical high-pressure stainless steel reaction tube in the same manner as in Example 1, and the reaction tube was heated to 250 ° C. by a heater arranged outside, for example. In a heated state, a high-pressure mixed gas of hydrogen and carbon monoxide (pressure: 2.0 MPa,
(H 2 : CO = 2: 1) was passed at a flow rate of 50 cm 3 / min to produce a hydrogenated product from the outlet of the reaction tube.

【0047】実施例4で得られた水素化生成物の混合ガ
ス中の一酸化炭素(CO)に対する転化率、水素化生成
物の成分分析を実施例1と同様な方法により行なった。
The conversion of the hydrogenated product obtained in Example 4 to carbon monoxide (CO) in the mixed gas and the component analysis of the hydrogenated product were analyzed in the same manner as in Example 1.

【0048】その結果、CO転化率は15%、C5〜C9
のガソリン燃料油成分およびC10〜C20のディーゼル燃
料油成分の選択率はそれぞれ16%,37%であった。
As a result, the CO conversion was 15%, and C 5 -C 9
The selectivity of the gasoline fuel oil component and the selectivity of the C 10 -C 20 diesel fuel oil component were 16% and 37%, respectively.

【0049】なお、TIE法に代えてIMP法によりル
テニウムをシリカ多孔質体に担持した触媒を用いた場合
でも、実施例4と同程度のC5〜C9のガソリン燃料油成
分およびC10〜C20のディーゼル燃料油成分の選択率が
得られた。
Even when a catalyst in which ruthenium is supported on a porous silica material by the IMP method is used instead of the TIE method, a gasoline fuel oil component of C 5 to C 9 and C 10 to C selectivity of diesel fuel oil component to C 20 were obtained.

【0050】したがって、実施例1〜4により製造され
た水素化生成物は簡単な分離操作によりガソリンやディ
ーゼルエンジンの燃料として有効に利用することができ
る。
Therefore, the hydrogenated products produced in Examples 1 to 4 can be effectively used as gasoline or diesel engine fuel by a simple separation operation.

【0051】[0051]

【発明の効果】以上詳述したように本発明によれば、水
素と一酸化炭素の混合ガスから目的とする成分(例えば
ガソリン燃料油成分またはディーゼル燃料油成分)を高
い選択率で含む水素化生成物を製造するのに適した一酸
化炭素の水素化反応触媒を提供することができる。
As described above in detail, according to the present invention, hydrogenation containing a target component (for example, gasoline fuel oil component or diesel fuel oil component) at a high selectivity from a mixed gas of hydrogen and carbon monoxide. It is possible to provide a catalyst for hydrogenating carbon monoxide suitable for producing a product.

【0052】また、本発明によれば水素と一酸化炭素の
混合ガスから目的とする成分(例えばガソリン燃料油成
分またはディーゼル燃料油成分)が高い選択率で含み、
簡単な分離操作によりガソリンやディーゼルエンジンの
燃料として利用できる水素化生成物の製造方法を提供す
ることができる。
According to the present invention, a target component (for example, a gasoline fuel oil component or a diesel fuel oil component) is contained at a high selectivity from a mixed gas of hydrogen and carbon monoxide.
By a simple separation operation, it is possible to provide a method for producing a hydrogenated product that can be used as a fuel for gasoline and diesel engines.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10G 2/00 C10L 1/02 C10L 1/02 1/06 1/06 1/08 1/08 B01J 23/74 311M Fターム(参考) 4G069 AA03 AA08 BA02A BA02B BC66A BC67A BC67B BC70A BC70B BC71A BC75A CC22 CC31 DA05 EA01Y EB17X EB17Y EC13X EC13Y EC14X EC14Y EC15X FA02 FC08 4H013 BA03 4H029 CA00 DA00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10G 2/00 C10L 1/02 C10L 1/02 1/06 1/06 1/08 1/08 B01J 23 / 74 311M F term (reference) 4G069 AA03 AA08 BA02A BA02B BC66A BC67A BC67B BC70A BC70B BC71A BC75A CC22 CC31 DA05 EA01Y EB17X EB17Y EC13X EC13Y EC14X EC14Y EC15X FA02 FC08 4H013 BA03 4H029 CA0300

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 全細孔の90%以上が直径1〜50nm
の微細孔を有する多孔体に遷移金属を担持したことを特
徴とする一酸化炭素の水素化反応触媒。
(1) 90% or more of all pores have a diameter of 1 to 50 nm.
A hydrogenation catalyst for carbon monoxide, wherein a transition metal is supported on a porous body having fine pores.
【請求項2】 前記多孔体は、シリカをベースとするこ
とを特徴とする請求項1記載の一酸化炭素の水素化反応
触媒。
2. The catalyst according to claim 1, wherein the porous body is based on silica.
【請求項3】 前記多孔体は、直径1〜10nmの微細
孔が全細孔の90%以上を占めることを特徴とする請求
項1記載の一酸化炭素の水素化反応触媒。
3. The catalyst for hydrogenating carbon monoxide according to claim 1, wherein the porous body has micropores having a diameter of 1 to 10 nm occupying 90% or more of all the pores.
【請求項4】 前記遷移金属は、コバルトまたは鉄であ
る場合、前記多孔体に5〜40重量%の範囲で担持され
ることを特徴とする請求項1記載の一酸化炭素の水素化
反応触媒。
4. The catalyst for hydrogenating carbon monoxide according to claim 1, wherein when the transition metal is cobalt or iron, the transition metal is supported on the porous body in a range of 5 to 40% by weight. .
【請求項5】 前記遷移金属は、ルテニウム、ロジウム
または白金から選ばれる貴金属である場合、前記多孔体
に1〜15重量%の範囲で担持されることを特徴とする
請求項1記載の一酸化炭素の水素化反応触媒。
5. The monooxide according to claim 1, wherein when the transition metal is a noble metal selected from ruthenium, rhodium or platinum, the transition metal is supported on the porous body in a range of 1 to 15% by weight. Catalyst for hydrogenation of carbon.
【請求項6】 前記多孔体への前記遷移金属の担持は、
界面活性剤(テンプレート)が残留する多孔体を遷移金
属化合物の水溶液に添加、混合して遷移金属イオンとテ
ンプレートイオンとを交換し、乾燥した後、焼成して前
記テンプレートを燃焼、除去することによりなされるこ
とを特徴とする請求項1ないし5いずれか記載の一酸化
炭素の水素化反応触媒。
6. The supporting of the transition metal on the porous body,
By adding and mixing the porous body in which the surfactant (template) remains to an aqueous solution of the transition metal compound, exchanging the transition metal ion with the template ion, drying, firing and burning and removing the template. The catalyst for hydrogenating carbon monoxide according to any one of claims 1 to 5, wherein the catalyst is produced.
【請求項7】 全細孔の90%以上が直径1〜50nm
の微細孔を有する多孔体に遷移金属を担持した触媒の存
在下、一酸化炭素と水素を含む混合ガスを200〜40
0℃の温度、0.1〜10MPaの圧力の下にて反応さ
せることを特徴とする水素化生成物の製造方法。
7. 90% or more of all pores have a diameter of 1 to 50 nm.
A mixed gas containing carbon monoxide and hydrogen is supplied in the presence of a catalyst in which a transition metal is supported on a porous body having fine pores of 200 to 40%.
A method for producing a hydrogenated product, wherein the reaction is carried out at a temperature of 0 ° C. under a pressure of 0.1 to 10 MPa.
【請求項8】 水素化生成物は、主にガソリン燃料油お
よびディーゼル燃料油を含むことを特徴とする請求項7
記載の水素化生成物の製造方法。
8. The hydrogenation product mainly comprises gasoline fuel oil and diesel fuel oil.
A process for producing the hydrogenation product described.
JP2000064874A 2000-03-09 2000-03-09 Catalyst for hydrogenation reaction of carbon monoxide and method for producing hydrogenation product Expired - Lifetime JP3407031B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000064874A JP3407031B2 (en) 2000-03-09 2000-03-09 Catalyst for hydrogenation reaction of carbon monoxide and method for producing hydrogenation product
US09/657,905 US6410477B1 (en) 2000-03-09 2000-09-08 Hydrogenation catalyst of carbon monoxide and method of manufacturing hydrogenation product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000064874A JP3407031B2 (en) 2000-03-09 2000-03-09 Catalyst for hydrogenation reaction of carbon monoxide and method for producing hydrogenation product

Publications (2)

Publication Number Publication Date
JP2001246256A true JP2001246256A (en) 2001-09-11
JP3407031B2 JP3407031B2 (en) 2003-05-19

Family

ID=18584496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000064874A Expired - Lifetime JP3407031B2 (en) 2000-03-09 2000-03-09 Catalyst for hydrogenation reaction of carbon monoxide and method for producing hydrogenation product

Country Status (2)

Country Link
US (1) US6410477B1 (en)
JP (1) JP3407031B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352757A (en) * 2003-05-27 2004-12-16 Rikogaku Shinkokai Ion-conducting polymer composition and filler for ion-conducting polymer
JP2006515584A (en) * 2002-12-06 2006-06-01 エービービー ルマス グローバル インコーポレイテッド Mesoporous materials with active metals
JP2008101059A (en) * 2006-10-17 2008-05-01 Nippon Oil Corp Isomerization method of paraffin
JP2008526474A (en) * 2004-12-31 2008-07-24 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Reactor for solid / liquid / gas reaction
JP2014147868A (en) * 2013-01-31 2014-08-21 Kubota Corp Method for producing fuel synthesis catalyst, fuel synthesis catalyst, and method for producing hydrocarbons

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201963B2 (en) * 2002-01-15 2007-04-10 Gentex Corporation Pre-processed workpiece having a surface deposition of absorber dye rendering the workpiece weld-enabled
US7488462B2 (en) * 2005-04-26 2009-02-10 The Ohio State University Multi-stage catalyst systems and uses thereof
US8119558B2 (en) * 2008-03-14 2012-02-21 Süd-Chemie Inc. Ultra high temperature shift catalyst with low methanation
US9358526B2 (en) 2013-11-19 2016-06-07 Emerging Fuels Technology, Inc. Optimized fischer-tropsch catalyst
US9180436B1 (en) 2013-11-19 2015-11-10 Emerging Fuels Technology, Inc. Optimized fischer-tropsch catalyst

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2505205B1 (en) * 1981-05-05 1986-05-23 Inst Francais Du Petrole NOVEL CATALYSTS OF NOBLE METALS OF GROUP VIII SUPPORTED AT HIGH DISPERSION AND HIGH ACTIVITY THEIR MANUFACTURE AND THEIR USE IN PARTICULAR IN HYDROGENATION REACTIONS
US4752622A (en) * 1984-07-30 1988-06-21 The Dow Chemical Company Process for producing alcohols from synthesis gas
JPS61111140A (en) * 1984-11-06 1986-05-29 Toyota Central Res & Dev Lab Inc Catalyst for synthesizing hydrocarbon
DE3917890A1 (en) * 1989-06-01 1990-12-06 Steinbach Friedrich SUPPORTED CATALYSTS FOR THE REMOVAL OF NITROGEN OXIDE, CARBON MONOXIDE AND ORGANIC COMPOUNDS FROM EXHAUST GAS
US5506273A (en) * 1991-12-06 1996-04-09 Agency Of Industrial Science And Technology Catalyst for hydrogenation and method for hydrogenation therewith
DE4319909C2 (en) * 1993-06-16 1996-11-07 Solvay Deutschland Airgel supported catalyst comprising palladium, platinum, nickel, cobalt and / or copper, process for its production and use of a palladium airgel supported catalyst
US5648312A (en) * 1994-12-29 1997-07-15 Intevep, S.A. Hydrogenation catalyst with improved attrition resistance and heat dissipation
US5895770A (en) * 1995-02-28 1999-04-20 Pq Corporation Olefin polymerization catalysts with specific silica supports
DE19636768A1 (en) * 1996-09-10 1998-03-12 Basf Ag Catalysts suitable for the production of aliphatic alpha, omega-aminonitriles by partial hydrogenation of aliphatic dinitriles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515584A (en) * 2002-12-06 2006-06-01 エービービー ルマス グローバル インコーポレイテッド Mesoporous materials with active metals
JP2004352757A (en) * 2003-05-27 2004-12-16 Rikogaku Shinkokai Ion-conducting polymer composition and filler for ion-conducting polymer
JP2008526474A (en) * 2004-12-31 2008-07-24 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Reactor for solid / liquid / gas reaction
JP2008101059A (en) * 2006-10-17 2008-05-01 Nippon Oil Corp Isomerization method of paraffin
JP2014147868A (en) * 2013-01-31 2014-08-21 Kubota Corp Method for producing fuel synthesis catalyst, fuel synthesis catalyst, and method for producing hydrocarbons

Also Published As

Publication number Publication date
JP3407031B2 (en) 2003-05-19
US6410477B1 (en) 2002-06-25

Similar Documents

Publication Publication Date Title
JP3786007B2 (en) Catalyst for hydrotreating aromatic compounds in hydrocarbon oils
JP5947912B2 (en) Cobalt-based Fischer-Tropsch synthesized nanocatalyst for porous material confinement system and its preparation method
CN106215972B (en) A kind of catalyst and preparation method thereof of one step conversion for preparing arene of synthesis gas
JP3882044B2 (en) Method for preparing Fischer-Tropsch synthesis catalyst
JPH01301787A (en) Hydrocracking of fischer-tropsch wax by hydroisomerization in order to produce synthetic crude oil and high-grade hydrocarbon product
WO2007119455A1 (en) Process for hydrorefining fuel base material
JPH05505764A (en) Method for producing polymetallic catalysts
JP2001246256A (en) Catalyst for hydrogenation reaction of carbon monoxide and method for preparing hydrogenated product
JPWO2007037388A1 (en) Method for producing aromatic compound
JP3843345B2 (en) Catalyst based on noble metals and silica-alumina, and process for hydrofeeding heavy feeds
JP2008142711A (en) Catalyst prepared by impregnation with aqueous solution containing cationic oxy(hydroxide) particles that interact with the molecular species of group viii metals
Jaatinen et al. Liquid Phase Furfural Hydrotreatment to 2‐Methylfuran on Carbon Supported Nickel Catalyst‐Effect of Process Conditions
AU2011264789A1 (en) Process and system for reducing the olefin content of a Fischer-Tropsch product stream
AU2021103205A4 (en) A Supported Mesoporous Palladium Catalyst Used For Catalytic Removal Of Low Concentration Of Benzene At Normal Pressure And Its Preparation Method
CN106607055A (en) Shell-distributed catalyst, and preparation method and applications thereof
JP7458423B2 (en) Catalyst for hydrogenation reaction and method for producing the same
Si et al. Micropacked‐bed Reactor for Continuous Hydrogenation of Aromatic Dinitro Compounds
JP5242993B2 (en) Bimetallic catalyst comprising platinum as main component and second group VIII metal used for ring-opening reaction of cyclic compound
Kriz et al. Partial Oxidation of Methane to Synthesis Gas Using Supported Ga‐Containing Bimetallic Catalysts and a Ti‐Promoter
RU2535990C1 (en) METHOD OF OBTAINING CATALYST OF CARBONIC ACID METHANATION BASED ON BI-METAL NITRIDE Ni2Mo3N
JP4115705B2 (en) Catalyst for hydrocracking and method for producing diesel oil
Tang et al. Doping SiO2 in CuO‐ZnO‐ZrO2/SAPO‐34 Composite for the CO2 Hydrogenation to Light Olefins
KR101007972B1 (en) Mesoporous palladium-alumina catalyst for mild hydrocracking, preparation method thereof, and method for producing middle distillate through hybrid Fischer-Tropsch synthesis using said catalyst
JP3537979B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for hydrotreating light oil
Oh et al. Hydrogenation of Ethylbenzene Over Ru/γ-Al2O3 Catalyst in Trickle-Bed Reactor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3407031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
EXPY Cancellation because of completion of term