JP2001244333A - Method for manufacturing semiconductor integrated circuit device - Google Patents

Method for manufacturing semiconductor integrated circuit device

Info

Publication number
JP2001244333A
JP2001244333A JP2000053742A JP2000053742A JP2001244333A JP 2001244333 A JP2001244333 A JP 2001244333A JP 2000053742 A JP2000053742 A JP 2000053742A JP 2000053742 A JP2000053742 A JP 2000053742A JP 2001244333 A JP2001244333 A JP 2001244333A
Authority
JP
Japan
Prior art keywords
semiconductor chip
wafer
groove
manufacturing
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000053742A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakakibara
寛 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000053742A priority Critical patent/JP2001244333A/en
Publication of JP2001244333A publication Critical patent/JP2001244333A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/24147Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the HDI interconnect not connecting to the same level of the lower semiconductor or solid-state body at which the upper semiconductor or solid-state body is mounted, e.g. the upper semiconductor or solid-state body being mounted in a cavity or on a protrusion of the lower semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10157Shape being other than a cuboid at the active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor integrated circuit device which improves a manufacturing margin in an wiring process and eliminates a large area pad exclusively used for connecting wires between a substrate and a semiconductor chip, by easily realizing a complete flatness of the surface of a substrate and semiconductor chip when arranging the semiconductor chip in a groove provided in a substrate such as a wafer. SOLUTION: A thick dielectric film is accumulated on a wafer surface after forming a groove in the wafer and arranging a semiconductor chip in the groove. Then, the dielectric film on the wafer surface is polished with the known CMP technique to realize complete flatness easily. As ruggedness of the wafer surface can be made smaller than a focal depth of an optical system in photolithography, a margin for focusing can be made large, and respective optional points of the first semiconductor chip and the second semiconductor chip can be connected accurately with a photolithographic technique. This method makes it possible to connect wires without using a large area pad exclusively used for connecting wiring.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路装
置の製造方法に関し、特に異なる機能を有する複数の半
導体集積回路を混載した半導体集積回路装置や、異なる
機能を有する複数の半導体チップを混載したマルチチッ
プモジュール等の半導体集積回路装置の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor integrated circuit device, and more particularly, to a semiconductor integrated circuit device having a plurality of semiconductor integrated circuits having different functions and a plurality of semiconductor chips having different functions being mixed. The present invention relates to a method for manufacturing a semiconductor integrated circuit device such as a multichip module.

【0002】[0002]

【従来の技術】従来、この種の半導体集積回路装置は、
CPU,RAM、ROM、ゲートアレイなどの異なる機
能を有する複数の半導体チップを1つのウェハあるいは
基板上に混載して、所望のシステムを1つのモジュール
として実現することを目的として用いられている。
2. Description of the Related Art Conventionally, this kind of semiconductor integrated circuit device has
A plurality of semiconductor chips having different functions, such as a CPU, a RAM, a ROM, and a gate array, are mixedly mounted on a single wafer or substrate to realize a desired system as a single module.

【0003】例えば、「1989年6月、アイ・イー・
イー・イー・トランザクションズ・オン・コンポーネン
ツ・ハイブリッズ・アンド・マニュファクチュアリング
・テクノロジ、第12巻、第2号、1989年6月(I
EEE TRANSACTIONS ON COMPO
NENTS,HYBRIDS,AND MANUFAC
TURING TECHNOLOGY,VOL.12,
NO.2,JUNE1989)」P185〜P194に
は、シリコンウェハからなる基板に半導体チップを混載
したマルチチップモジュールの一例が示されている。こ
の文献では、まず基板の主面に半導体チップとほぼ同寸
法の溝を公知のエッチング技術により形成する。次に、
この溝に半導体チップを埋め込む際、半導体チップ主面
と基板主面それぞれをガラス板等の平坦性調整用基板に
対して下向きに配置し、主面高さを調整する。その状態
で、基板と半導体チップ間の溝に固定材を注入して、半
導体チップを固定する。次に、基板上に絶縁膜を堆積さ
せ、公知の配線形成工程を使用して、半導体チップの主
面及び基板の主面に、それぞれ配置されている配線接続
用パッド間を配線接続して、マルチチップモジュールを
製造する方法が提案されている。
[0003] For example, "June 1989, IEE
EE Transactions on Components Hybrids and Manufacturing Technology, Vol. 12, No. 2, June 1989 (I
EEE TRANSACTIONS ON COMPO
NENTS, HYBRIDS, AND MANUFAC
TURING TECHNOLOGY, VOL. 12,
NO. 2, JUNE 1989) "on pages 185 to 194 show an example of a multi-chip module in which semiconductor chips are mixedly mounted on a substrate made of a silicon wafer. In this document, first, a groove having substantially the same size as a semiconductor chip is formed on a main surface of a substrate by a known etching technique. next,
When embedding a semiconductor chip in this groove, each of the semiconductor chip main surface and the substrate main surface is arranged downward with respect to a flatness adjusting substrate such as a glass plate, and the main surface height is adjusted. In this state, a fixing material is injected into a groove between the substrate and the semiconductor chip to fix the semiconductor chip. Next, an insulating film is deposited on the substrate, and wiring connection is performed between wiring connection pads arranged on the main surface of the semiconductor chip and the main surface of the substrate using a known wiring forming process, A method for manufacturing a multi-chip module has been proposed.

【0004】しかし、上記した従来の方法は、以下のよ
うな欠点があった。
[0004] However, the above-mentioned conventional method has the following disadvantages.

【0005】第1の問題点は、基板に設けられている溝
に半導体チップを配置する際、基板主面と半導体チップ
主面の平坦性を確保することが困難なことである。
A first problem is that when arranging a semiconductor chip in a groove provided in a substrate, it is difficult to secure flatness between the main surface of the substrate and the main surface of the semiconductor chip.

【0006】その理由は、基板と半導体チップの主面の
高さを調整するために、平坦性調整用基板を使用し、そ
の平坦性調整用基板に対して基板と半導体チップそれぞ
れの主面を下向きに配置して平坦性を調整しているため
である。このため、基板あるいは半導体チップの主面に
凹凸がある場合、両者の平坦性が実現できず、傾いて配
置される場合がある。
The reason is that a flatness adjusting substrate is used to adjust the height of the main surface of the substrate and the semiconductor chip, and the main surfaces of the substrate and the semiconductor chip are respectively adjusted with respect to the flatness adjusting substrate. This is because the flatness is adjusted by arranging it downward. Therefore, when the main surface of the substrate or the semiconductor chip has irregularities, the flatness of both may not be realized, and the semiconductor chip may be arranged at an angle.

【0007】第2の問題点は、配線接続用パッドを介し
てチップ間を配線接続するため、配線接続用パッド部分
の寄生容量が大きくなり、信号伝搬時における消費電力
が大きくなるとともに、高速動作が困難なことである。
The second problem is that wiring is connected between the chips via the wiring connection pads, so that the parasitic capacitance at the wiring connection pad portion is increased, the power consumption during signal propagation is increased, and high-speed operation is performed. Is difficult.

【0008】その理由は、基板と半導体チップ間の配線
接続を精度良く行うことができないため、配線接続を行
うための面積が大きな専用パッドを使用することによ
り、製造マージンを確保する必要があるためである。
[0008] The reason is that the wiring connection between the substrate and the semiconductor chip cannot be performed with high precision, and it is necessary to secure a manufacturing margin by using a dedicated pad having a large area for performing the wiring connection. It is.

【0009】第3の問題点は、配線接続用パッド配置の
ための専用領域が必要となり、マルチチップモジュール
のサイズが大きくなることである。
A third problem is that a dedicated area for arranging wiring connection pads is required, and the size of the multichip module is increased.

【0010】その理由は、基板と半導体チップ間の配線
接続を精度良く行うことができないため、配線接続を行
うための面積が大きな専用パッドを使用することによ
り、製造マージンを確保する必要があるためである。
[0010] The reason is that the wiring connection between the substrate and the semiconductor chip cannot be performed with high accuracy, and it is necessary to secure a manufacturing margin by using a dedicated pad having a large area for performing the wiring connection. It is.

【0011】第4の問題点として、配線接続用パッドを
配置したウェハは、配線接続の用途のみに使用してお
り、マルチチップモジュールサイズを小さくできないこ
とである。
A fourth problem is that the wafer on which the wiring connection pads are arranged is used only for wiring connection, and the size of the multi-chip module cannot be reduced.

【0012】その理由は、配線接続を精度良く行うこと
ができないため、マルチチップモジュールを形成するた
めに、配線接続を行うための専用ウェハを使用する必要
があるためである。
[0012] The reason is that the wiring connection cannot be performed with high precision, so that it is necessary to use a dedicated wafer for performing the wiring connection in order to form a multi-chip module.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、上記
した従来技術の欠点を改良し、特に、配線工程での製造
マージンを大きくし、異なる機能を有する半導体チップ
を混載する半導体集積回路装置の生産性向上を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned disadvantages of the prior art, and in particular, to increase the manufacturing margin in the wiring step and to mix semiconductor chips having different functions. It is to provide productivity improvement.

【0014】本発明の他の目的は、平坦性調整用基板及
び、配線接続用パッド及び、配線接続用ウェハを不要と
し、異なる機能を有する半導体チップを混載する半導体
集積回路装置の低消費電力化及び、高速化及び、小型化
を提供することにある。
Another object of the present invention is to reduce the power consumption of a semiconductor integrated circuit device which does not require a flatness adjustment substrate, wiring connection pads, and a wiring connection wafer, and incorporates semiconductor chips having different functions. Another object of the present invention is to provide high speed and small size.

【0015】本発明の他の目的は、能動素子または受動
素子を最適な方法で製造した半導体チップを搭載し、異
なる機能を有する半導体チップを混載する半導体集積回
路装置の高性能化を提供することにある。
Another object of the present invention is to provide a high-performance semiconductor integrated circuit device in which a semiconductor chip having an active element or a passive element manufactured by an optimum method is mounted and semiconductor chips having different functions are mounted. It is in.

【0016】[0016]

【課題を解決するための手段】本発明は上記した目的を
達成するため、基本的には、以下に記載されたような技
術構成を採用するものである。
SUMMARY OF THE INVENTION The present invention basically employs the following technical configuration to achieve the above object.

【0017】即ち、本発明に係わる半導体集積回路装置
の製造方法の第1態様は、第1の半導体チップを形成し
たウェハに溝を掘る工程と、第2の半導体チップを前記
溝内に配置する工程と、前記第2の半導体チップを溝に
配置した後に、前記ウェハの表面を絶縁膜で覆う工程
と、前記絶縁膜で覆ったウェハ表面を平坦化する工程
と、前記第1の半導体チップと前記第2の半導体チップ
とを導電体で接続する工程と、を少なくとも含むことを
特徴とするものであり、叉、第2態様は、前記第1の半
導体チップを形成したウェハと、前記第2の半導体チッ
プとは,それぞれ異なる製造工程により製造されること
を特徴とするものであり、叉、第3態様は、第1の半導
体チップを形成したウェハに複数の溝を掘る工程と、複
数の前記第2の半導体チップを前記複数の溝内にそれぞ
れ配置する工程と、を含むことを特徴とするものであ
り、叉、第4態様は、前記溝の側壁および底部に絶縁膜
を堆積させる工程と、前記絶縁膜を堆積させた溝内に前
記第2の半導体チップを配置する工程と、を含むことを
特徴とするものであり、叉、第5態様は、前記第1の半
導体チップ内部を導電体で配線接続する工程を含むこと
を特徴とするものであり、叉、第6態様は、前記第2の
半導体チップ内部を導電体で配線接続する工程を含むこ
とを特徴とするものであり、叉、第7態様は、前記ウェ
ハ表面を平坦化する工程では、CMP(Chemica
l Mechanical Polishing)技術
により平坦化することを特徴とするものである。
That is, in a first aspect of the method of manufacturing a semiconductor integrated circuit device according to the present invention, a step of digging a groove in a wafer on which a first semiconductor chip is formed, and disposing a second semiconductor chip in the groove are provided. A step of, after arranging the second semiconductor chip in the groove, a step of covering the surface of the wafer with an insulating film, a step of planarizing the surface of the wafer covered with the insulating film, and a step of: And a step of connecting the second semiconductor chip with a conductor. The second aspect is a step of connecting the second semiconductor chip to the wafer on which the first semiconductor chip is formed, The semiconductor chip is characterized in that it is manufactured by different manufacturing steps, and the third aspect is a step of digging a plurality of grooves in a wafer on which the first semiconductor chip is formed, The second semiconductor And a step of depositing an insulating film on side walls and a bottom of the groove, and a step of disposing an insulating film on the side wall and the bottom of the groove. And disposing the second semiconductor chip in a groove in which a film is deposited. In a fifth aspect, the inside of the first semiconductor chip is wired with a conductor. A sixth aspect is characterized in that the sixth aspect includes a step of wiring and connecting the inside of the second semiconductor chip with a conductor. According to a seventh aspect, in the step of flattening the wafer surface, CMP (Chemica) is used.
This is characterized by flattening by a (Mechanical Polishing) technique.

【0018】[0018]

【発明の実施の形態】本発明に係わる半導体集積回路装
置の製造方法は、第1の半導体チップを形成したウェハ
に溝を掘る工程と、第2の半導体チップを前記溝内に配
置する工程と、前記第2の半導体チップを溝に配置した
後に、前記ウェハの表面を絶縁膜で覆う工程と、前記絶
縁膜で覆ったウェハ表面を平坦化する工程と、前記第1
の半導体チップと前記第2の半導体チップとを導電体で
接続する工程と、を少なくとも含むものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor integrated circuit device according to the present invention comprises the steps of: digging a groove in a wafer on which a first semiconductor chip is formed; and arranging a second semiconductor chip in the groove. After arranging the second semiconductor chip in the groove, covering the surface of the wafer with an insulating film, planarizing the wafer surface covered with the insulating film,
Connecting the semiconductor chip and the second semiconductor chip with a conductor.

【0019】上記のように構成することで、ウェハ表面
の凹凸は、フォトリソグラフィにおける光学系の焦点深
度より小さくできるため、焦点合わせのマージンも大き
く取れ、第1の半導体チップと第2の半導体チップそれ
ぞれの任意箇所間をフォトリソグラフィ技術を用いて精
度良く配線接続することができる。このため、面積が大
きな配線接続専用パッドを使用しなくても、配線接続す
ることができる。
With the above configuration, the unevenness of the wafer surface can be made smaller than the depth of focus of the optical system in photolithography, so that a large margin for focusing can be obtained, and the first semiconductor chip and the second semiconductor chip can be used. Wiring can be accurately connected between the arbitrary portions by using photolithography technology. Therefore, wiring connection can be performed without using a wiring connection pad having a large area.

【0020】また、チップ間接続と、チップ内部配線と
を同一配線工程で形成できるため、製造工程が短縮でき
る。
Further, since the connection between chips and the wiring inside the chip can be formed in the same wiring step, the manufacturing process can be shortened.

【0021】また、第1の半導体チップと第2の半導体
チップとを異なる製造工程で途中まで形成できるため、
例えば、高い温度を用いる工程によって特性変動を示す
ような敏感な能動素子あるいは受動素子と、高い温度を
用いて製造する必要のある能動素子あるいは受動素子と
を別々の製造工程で形成することが可能となり、これら
の2種類の能動素子あるいは受動素子を混載した場合に
おいて、敏感な能動素子あるいは受動素子の劣化を防ぐ
ことができ、高性能な半導体集積回路装置が実現でき
る。
Further, since the first semiconductor chip and the second semiconductor chip can be formed halfway in different manufacturing steps,
For example, it is possible to form sensitive active or passive devices that exhibit characteristic fluctuations due to processes using high temperatures and active or passive devices that need to be manufactured using high temperatures in separate manufacturing processes. In the case where these two types of active elements or passive elements are mixed, deterioration of sensitive active elements or passive elements can be prevented, and a high-performance semiconductor integrated circuit device can be realized.

【0022】[0022]

【実施例】(第1の具体例)次に、本発明の第1の具体
例について、図1乃至図5を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) Next, a first embodiment of the present invention will be described in detail with reference to FIGS.

【0023】図1は、本発明の第1の具体例としての半
導体集積回路装置の製造方法を説明するための平面図で
ある。
FIG. 1 is a plan view for explaining a method of manufacturing a semiconductor integrated circuit device as a first specific example of the present invention.

【0024】ウェハ1表面に複数個形成している第1の
半導体チップ2において、この第1の半導体チップ2の
所望の領域に第2の半導体チップ3を埋め込み、公知の
配線技術で第1の半導体チップ2と第2の半導体チップ
3間及び、第1の半導体チップ2内部及び、第2の半導
体チップ3内部の配線接続を行うことにより、第1の半
導体チップ2に第2の半導体チップ3を混載した半導体
集積回路装置を構成している。
In a plurality of first semiconductor chips 2 formed on the surface of the wafer 1, a second semiconductor chip 3 is embedded in a desired region of the first semiconductor chip 2, and the first semiconductor chip 3 is formed by a known wiring technique. By performing wiring connections between the semiconductor chip 2 and the second semiconductor chip 3, inside the first semiconductor chip 2, and inside the second semiconductor chip 3, the second semiconductor chip 3 is connected to the first semiconductor chip 2. In a semiconductor integrated circuit device.

【0025】図2(a)〜(d)は、本発明の第1の具
体例の半導体集積回路装置の製造方法の要部を示す断面
図である。図2(a)に示すように、第1の半導体チッ
プ2を構成しているウェハ1上に、例えばゲート電極
4、拡散層領域5、素子分離領域6からなる第1の能動
素子(Metal Oxide Semiconduc
tor Transistor、以下、MOSトランジ
スタという)を形成した後、ウェハ1上に絶縁膜7を堆
積する。次に、図2(b)に示すように、公知のフォト
リソグラフィ技術を用いて、第2の半導体チップ3を配
置する領域8のフォトレジスト9を除去する。次に、図
2(c)に示すように、フォトレジスト9をマスクとし
て公知のエッチング技術により、絶縁膜7とウェハ1と
のエッチングを行い、溝10を形成する。溝10の深さ
については、エッチング時間を調整することにより、所
望の深さを形成できる。また、溝10の開口幅について
も、所望の大きさに形成可能であり、例えば、第2の半
導体チップ3よりやや大きめに開口する。次に、図2
(d)に示すように、第2の半導体チップの基板11上
に第2の半導体チップのゲート電極12、第2の半導体
チップの拡散層領域13、第2の半導体チップ素子分離
領域14から構成される第2の能動素子(MOSトラン
ジスタ)を第1の能動素子(MOSトランジスタ)と異
なる製造方法で形成した後、絶縁膜15を堆積させ、所
望の大きさに切り出して第2の半導体チップ3を形成す
る。次に、この第2の半導体チップ3の裏面に、チップ
を固定するための固定材16を付着させる。固定材とし
ては、例えば、公知の配線技術で使用される温度に耐え
うるエポキシ樹脂のような耐熱性合成樹脂等を使用す
る。
FIGS. 2A to 2D are cross-sectional views showing a main part of a method for manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention. As shown in FIG. 2A, a first active element (Metal Oxide) including, for example, a gate electrode 4, a diffusion layer region 5, and an element isolation region 6 is formed on a wafer 1 constituting a first semiconductor chip 2. Semiconduc
After forming a tor transistor (hereinafter, referred to as a MOS transistor), an insulating film 7 is deposited on the wafer 1. Next, as shown in FIG. 2B, the photoresist 9 in the region 8 where the second semiconductor chip 3 is arranged is removed by using a known photolithography technique. Next, as shown in FIG. 2C, the insulating film 7 and the wafer 1 are etched by a known etching technique using the photoresist 9 as a mask to form a groove 10. The desired depth of the groove 10 can be formed by adjusting the etching time. Also, the opening width of the groove 10 can be formed to a desired size, for example, the opening is slightly larger than the second semiconductor chip 3. Next, FIG.
As shown in FIG. 1D, a gate electrode 12 of the second semiconductor chip, a diffusion layer region 13 of the second semiconductor chip, and a second semiconductor chip element isolation region 14 are formed on a substrate 11 of the second semiconductor chip. After the second active element (MOS transistor) to be formed is formed by a manufacturing method different from that of the first active element (MOS transistor), an insulating film 15 is deposited, cut into a desired size, and cut into a desired size. To form Next, a fixing member 16 for fixing the chip is attached to the back surface of the second semiconductor chip 3. As the fixing material, for example, a heat-resistant synthetic resin such as an epoxy resin that can withstand the temperature used in a known wiring technique is used.

【0026】図3は、第2の半導体チップ3を第1の半
導体チップ2の溝10に配置する際のアライメント方法
を説明するための平面図である。図3に示すように、ア
ライメントの精度を上げるため、第1の半導体チップ2
上の溝10周辺の4辺にアライメントパターン17を配
置し、第2の半導体チップ3上の4辺にアライメントパ
ターン18を配置している。アライメントパターンとし
ては、例えば、ゲート電極4で形成したラインパターン
等を使用する。このようにアライメントパターンを用い
て配置することにより、溝10への第2の半導体チップ
3の配置ずれ量を、約1μm以下にすることが可能とな
る。
FIG. 3 is a plan view for explaining an alignment method when arranging the second semiconductor chip 3 in the groove 10 of the first semiconductor chip 2. As shown in FIG. 3, the first semiconductor chip 2
Alignment patterns 17 are arranged on four sides around the upper groove 10, and alignment patterns 18 are arranged on four sides on the second semiconductor chip 3. As the alignment pattern, for example, a line pattern or the like formed by the gate electrode 4 is used. By arranging the second semiconductor chip 3 in the groove 10 by using the alignment pattern as described above, it is possible to reduce the amount of misalignment of the second semiconductor chip 3 to about 1 μm or less.

【0027】図4〜図6は、第2の半導体チップ3を溝
10に埋め込んだ後の製造方法の要部を示す断面図であ
る。図4(a)に示すように、第2の半導体チップ2を
溝10内に固定した後、埋め込み性の良い絶縁膜19を
ウェハ1表面に堆積させる。絶縁膜19の堆積膜厚は、
第2の半導体チップ3の厚さにより調整を行う。次に、
図4(b)に示すように、公知のCMP(Chemic
al Mechanical Polishing)技
術により、ウェハ1表面の絶縁膜19を研磨しながら平
坦性の高いウェハ1表面を形成するとともに、所望膜厚
まで絶縁膜19を研磨する。平坦性については、ウェハ
1表面の絶縁膜19の凹凸を約0.10μm以下にする
ことができる。このようにウェハ1表面の凹凸を、公知
のフォトリソグラフィ技術で使用する装置の光学系の焦
点深度以下にでき、フォトリソグラフィ技術を使ったパ
ターン形成時の焦点合わせのマージンを大きくすること
ができる。次に、図4(c)に示すように、所望の領域
に配線接続のためのコンタクトを形成するため、フォト
リソグラフィ技術によりコンタクト形成領域20のフォ
トレジストを除去し、このフォトレジスト6をマスクと
して絶縁膜19のエッチングを行い、絶縁膜19にコン
タクトホール21を形成する。次に、図5(e)に示す
ように、コンタクトホール21に導電体材料を埋め込ん
でコンタクト22を形成する。次に、図5(f)に示す
ように、導電体材料23をウェハ1表面に堆積させた
後、図6(g)に示すように、フォトリソグラフィ技術
により第1の半導体チップ2内部第1配線及び、第2の
半導体チップ3内部第1配線及び、第1の半導体チップ
2と第2の半導体チップ3間第1配線を形成する領域の
フォトレジストを除去する。このフォトレジストをマス
クとして導電体材料のエッチングを行い、導電体材料か
らなる第1の半導体チップ2内部第1配線25及び、第
2の半導体チップ2内第1配線26び、第1の半導体チ
ップ2と第2の半導体チップ3間第1配線27を形成す
る。次に、図6(i)に示すように、絶縁膜28を堆積
する。ここでは、第1配線までの形成を示したが、第2
配線以降も同様の製造工程により、形成可能である。 (第2の具体例)次に、本発明の第2の具体例について
図7を参照して詳細に説明する。
FIGS. 4 to 6 are cross-sectional views showing the main parts of the manufacturing method after the second semiconductor chip 3 is buried in the groove 10. As shown in FIG. 4A, after the second semiconductor chip 2 is fixed in the groove 10, an insulating film 19 having good embedding property is deposited on the surface of the wafer 1. The deposited film thickness of the insulating film 19 is
The adjustment is performed according to the thickness of the second semiconductor chip 3. next,
As shown in FIG. 4B, a known CMP (Chemic) is used.
The surface of the wafer 1 having high flatness is formed while polishing the insulating film 19 on the surface of the wafer 1 by using an al mechanical polishing technique, and the insulating film 19 is polished to a desired thickness. Regarding the flatness, the unevenness of the insulating film 19 on the surface of the wafer 1 can be reduced to about 0.10 μm or less. As described above, the unevenness on the surface of the wafer 1 can be made equal to or less than the depth of focus of the optical system of the apparatus used in the known photolithography technology, and the margin for focusing at the time of pattern formation using the photolithography technology can be increased. Next, as shown in FIG. 4C, in order to form a contact for wiring connection in a desired region, the photoresist in the contact formation region 20 is removed by a photolithography technique, and the photoresist 6 is used as a mask. The insulating film 19 is etched to form a contact hole 21 in the insulating film 19. Next, as shown in FIG. 5E, a contact 22 is formed by embedding a conductive material in the contact hole 21. Next, as shown in FIG. 5 (f), after a conductive material 23 is deposited on the surface of the wafer 1, as shown in FIG. 6 (g), the first inside of the first semiconductor chip 2 is formed by photolithography. The photoresist in the region where the wiring and the first wiring inside the second semiconductor chip 3 and the first wiring between the first semiconductor chip 2 and the second semiconductor chip 3 are formed is removed. Using the photoresist as a mask, the conductive material is etched to form a first wiring 25 inside the first semiconductor chip 2 and a first wiring 26 inside the second semiconductor chip 2 made of the conductive material, and a first semiconductor chip. The first wiring 27 between the second semiconductor chip 3 and the second semiconductor chip 3 is formed. Next, as shown in FIG. 6I, an insulating film 28 is deposited. Here, the formation up to the first wiring is shown, but the second wiring is formed.
Subsequent wiring can be formed by the same manufacturing process. (Second Specific Example) Next, a second specific example of the present invention will be described in detail with reference to FIG.

【0028】図7(a)〜(c)は、本発明の第2の具
体例の半導体集積回路装置の製造方法の要部を示す断面
図である。溝10形成までは、前記第1の具体例と同様
の製造方法を用いる。図7(a)に示すように、溝10
形成後、ウェハ1表面に絶縁膜29を堆積させ、溝10
の側壁および底部に絶縁膜29を形成する。次に、この
溝にあらかじめダイシングしてチップ状態にある第2の
半導体チップ3を配置する。以後の工程は、前記発明の
第1の具体例と同様に配線まで形成する。このように第
1の半導体チップ2の溝10の側壁および底部に絶縁膜
29を形成し、その溝10に第2の半導体チップ3を埋
め込むことにより、絶縁膜29で第2の半導体チップ3
を電気的に分離することができ、第1の半導体チップ2
と第2の半導体チップ3間の基板を介した雑音伝搬を防
ぐことができる。
FIGS. 7A to 7C are cross-sectional views showing a main part of a method of manufacturing a semiconductor integrated circuit device according to a second embodiment of the present invention. Until the groove 10 is formed, the same manufacturing method as in the first specific example is used. As shown in FIG.
After the formation, an insulating film 29 is deposited on the surface of the wafer 1 and the grooves 10 are formed.
An insulating film 29 is formed on the side wall and the bottom of the substrate. Next, the second semiconductor chip 3 in a chip state is diced in advance in this groove. In the subsequent steps, wirings are formed as in the first embodiment of the present invention. As described above, the insulating film 29 is formed on the side walls and the bottom of the groove 10 of the first semiconductor chip 2, and the second semiconductor chip 3 is buried in the groove 10.
Can be electrically separated from each other, and the first semiconductor chip 2
Between the first semiconductor chip 3 and the second semiconductor chip 3 via the substrate.

【0029】[0029]

【発明の効果】第1の効果は、容易に精度の高い平坦性
を実現できるとともに、搭載する半導体チップや基板の
表面に凹凸があった場合でも、その影響を受けないこと
である。
The first effect is that it is possible to easily realize high-precision flatness, and that even if the surface of a semiconductor chip or a substrate to be mounted has irregularities, it is not affected by such irregularities.

【0030】その理由は、CMP技術を使って、絶縁膜
を研磨しながら平坦性を実現しており、平坦性の精度を
比較的容易に上げることができるためである。
The reason is that the flatness is realized while polishing the insulating film using the CMP technique, and the accuracy of the flatness can be relatively easily increased.

【0031】第2の効果は、製造マージンを確保するた
めに必要な面積の大きな配線接続用パッドが不要となる
ため、パッド部の容量を小さくでき、低電力かつ高速動
作が可能となるとともに、配線接続用パッド配置エリア
分チップサイズを小さくできることである。
The second effect is that, since a wiring connection pad having a large area required for securing a manufacturing margin is not required, the capacitance of the pad portion can be reduced, and low power and high speed operation can be achieved. The point is that the chip size can be reduced by the wiring connection pad arrangement area.

【0032】その理由は、CMP技術を用いてチップ埋
め込み後の絶縁膜表面を平坦化することにより、フォト
リソグラフィ技術でパターン形成する際、絶縁膜表面の
凹凸段差を焦点深度以下にすることができ、精度良くパ
ターン形成できるため、パターン形成時のマージンを確
保するための面積が大きな配線接続用パッドは不要とな
るためである。
The reason is that the surface of the insulating film after chip embedding is flattened by using the CMP technology, so that when forming a pattern by the photolithography technology, the unevenness of the insulating film surface can be reduced to a depth of focus or less. This is because, since the pattern can be formed with high accuracy, a wiring connection pad having a large area for securing a margin during pattern formation is not required.

【0033】第3の効果は、第1の半導体チップ2と第
2の半導体チップ3の間の基板を介した雑音伝搬を防ぐ
ことができることである。
The third effect is that noise propagation through the substrate between the first semiconductor chip 2 and the second semiconductor chip 3 can be prevented.

【0034】その理由は、第1の半導体チップ2の溝の
側壁および底部に絶縁膜を形成し、その溝内に第2の半
導体チップ3を埋め込むことにより、絶縁膜で第2の半
導体チップ3を分離することができるためである。
The reason is that an insulating film is formed on the side walls and the bottom of the groove of the first semiconductor chip 2 and the second semiconductor chip 3 is buried in the groove, so that the second semiconductor chip 3 is formed of the insulating film. Can be separated.

【0035】第4の効果は、第1の半導体チップ2と第
2の半導体チップ3の能動素子あるいは受動素子をそれ
ぞれ最適な製造工程で形成できることである。
A fourth effect is that active elements or passive elements of the first semiconductor chip 2 and the second semiconductor chip 3 can be formed by optimal manufacturing steps.

【0036】その理由は、第1の半導体チップ2と第2
の半導体チップ3を異なる製造工程で途中まで形成でき
るため、例えば高い温度を用いる工程によって特性変動
を示すような敏感な能動素子あるいは受動素子と、高い
温度を用いて製造する必要のある能動素子あるいは受動
素子とを別々の製造工程で形成することが可能となり、
これらの2種類の能動素子あるいは受動素子を混載した
場合において、敏感な能動素子あるいは受動素子の劣化
を防ぐことができるためである。
The reason is that the first semiconductor chip 2 and the second semiconductor chip 2
Semiconductor chip 3 can be formed halfway in different manufacturing steps, so that, for example, a sensitive active element or a passive element that exhibits characteristic fluctuation by a step using a high temperature, and an active element or a passive element that needs to be manufactured using a high temperature. Passive elements can be formed in separate manufacturing processes,
This is because when these two types of active elements or passive elements are mixed, deterioration of sensitive active elements or passive elements can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の具体例の半導体集積回路装置の
製造方法を説明するための平面図である。
FIG. 1 is a plan view for explaining a method of manufacturing a semiconductor integrated circuit device according to a first specific example of the present invention.

【図2】本発明の第1の具体例の半導体集積回路装置の
製造方法の要部を示す断面図である。
FIG. 2 is a sectional view showing a main part of a method for manufacturing a semiconductor integrated circuit device according to a first specific example of the present invention.

【図3】本発明の第1の具体例の半導体集積回路装置の
製造方法に関し、第2の半導体チップ3を第1の半導体
チップの溝に配置する際のアライメント方法を説明する
ための平面図である。
FIG. 3 is a plan view for explaining a method of manufacturing a semiconductor integrated circuit device according to a first specific example of the present invention, which illustrates an alignment method when arranging a second semiconductor chip 3 in a groove of the first semiconductor chip; It is.

【図4】本発明の第1の具体例の半導体集積回路装置の
製造方法に関し、第2の半導体チップ3を溝に埋め込ん
だ後の製造方法の要部を示す断面図である。
FIG. 4 is a cross-sectional view showing a main part of the manufacturing method after the second semiconductor chip 3 is buried in the groove in the method of manufacturing the semiconductor integrated circuit device according to the first specific example of the present invention.

【図5】図4の続きの工程である。FIG. 5 is a continuation process of FIG. 4;

【図6】図5の続きの工程である。FIG. 6 is a continuation process of FIG. 5;

【図7】本発明の第2の具体例の半導体集積回路装置の
製造方法の要部を示す断面図である。
FIG. 7 is a sectional view showing a main part of a method for manufacturing a semiconductor integrated circuit device according to a second specific example of the present invention.

【符号の説明】[Explanation of symbols]

1 ウェハ 2 第1の半導体チップ 3 第2の半導体チップ 4 ゲート電極 5 拡散層領域 6 素子分離領域 7 絶縁膜 8 第2の半導体チップ配置領域 9 フォトレジスト 10 溝 11 第2の半導体チップの基板 12 第2の半導体チップのゲート電極 13 第2の半導体チップの拡散層領域 14 第2の半導体チップの素子分離領域 15 第2の半導体チップの絶縁膜 16 固定材 17 第1の半導体チップ2上のアライメントパターン 18 第2の半導体チップ3上のアライメントパターン 19 絶縁膜 20 CMP後の絶縁膜 21 コンタクトホール形成領域 22 コンタクトホール 23 コンタクト 24 導電体材料 25 第1の半導体チップ内第1配線領域 26 第2の半導体チップ内第1配線領域 27 第1の半導体チップと第2の半導体チップ間第1
配線領域 28 第1の半導体チップ内第1配線 29 第2の半導体チップ内第1配線 30 第1の半導体チップと第2の半導体チップ間第1
配線 31 絶縁膜
DESCRIPTION OF SYMBOLS 1 Wafer 2 1st semiconductor chip 3 2nd semiconductor chip 4 Gate electrode 5 Diffusion layer area 6 Element isolation area 7 Insulating film 8 2nd semiconductor chip arrangement area 9 Photoresist 10 Groove 11 Second semiconductor chip substrate 12 Gate electrode of second semiconductor chip 13 Diffusion layer region of second semiconductor chip 14 Element isolation region of second semiconductor chip 15 Insulating film of second semiconductor chip 16 Fixing material 17 Alignment on first semiconductor chip 2 Pattern 18 Alignment pattern on second semiconductor chip 3 19 Insulating film 20 Insulating film after CMP 21 Contact hole forming region 22 Contact hole 23 Contact 24 Conductor material 25 First wiring region in first semiconductor chip 26 Second First wiring region in semiconductor chip 27 First semiconductor chip and second semiconductor chip During the first
Wiring area 28 First wiring in first semiconductor chip 29 First wiring in second semiconductor chip 30 First between first semiconductor chip and second semiconductor chip
Wiring 31 Insulating film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 第1の半導体チップを形成したウェハに
溝を掘る工程と、 第2の半導体チップを前記溝内に配置する工程と、 前記第2の半導体チップを溝に配置した後に、前記ウェ
ハの表面を絶縁膜で覆う工程と、 前記絶縁膜で覆ったウェハ表面を平坦化する工程と、 前記第1の半導体チップと前記第2の半導体チップとを
導電体で接続する工程と、 を少なくとも含むことを特徴とする半導体集積回路装置
の製造方法。
A step of digging a groove in a wafer on which a first semiconductor chip is formed; a step of arranging a second semiconductor chip in the groove; and a step of arranging the second semiconductor chip in the groove. A step of covering the surface of the wafer with an insulating film, a step of flattening the wafer surface covered with the insulating film, and a step of connecting the first semiconductor chip and the second semiconductor chip with a conductor. A method for manufacturing a semiconductor integrated circuit device, comprising at least:
【請求項2】 前記第1の半導体チップを形成したウェ
ハと、前記第2の半導体チップとは,それぞれ異なる製
造工程により製造されることを特徴とする請求項1に記
載の半導体集積回路装置の製造方法。
2. The semiconductor integrated circuit device according to claim 1, wherein the wafer on which the first semiconductor chip is formed and the second semiconductor chip are manufactured by different manufacturing steps. Production method.
【請求項3】 第1の半導体チップを形成したウェハに
複数の溝を掘る工程と、 複数の前記第2の半導体チップを前記複数の溝内にそれ
ぞれ配置する工程と、 を含むことを特徴とする請求項1又は2に記載の半導体
集積回路装置の製造方法。
3. A step of digging a plurality of grooves in a wafer on which a first semiconductor chip is formed, and a step of arranging a plurality of second semiconductor chips in the plurality of grooves, respectively. The method for manufacturing a semiconductor integrated circuit device according to claim 1.
【請求項4】 前記溝の側壁および底部に絶縁膜を堆積
させる工程と、 前記絶縁膜を堆積させた溝内に前記第2の半導体チップ
を配置する工程と、 を含むことを特徴とする請求項1乃至3のいずれかに記
載の半導体集積回路装置の製造方法。
4. The method according to claim 1, further comprising: depositing an insulating film on a side wall and a bottom of the groove; and arranging the second semiconductor chip in the groove on which the insulating film is deposited. Item 4. The method for manufacturing a semiconductor integrated circuit device according to any one of Items 1 to 3.
【請求項5】 前記第1の半導体チップ内部を導電体で
配線接続する工程を含むことを特徴とする請求項1乃至
4のいずれかに記載の半導体集積回路装置の製造方法。
5. The method of manufacturing a semiconductor integrated circuit device according to claim 1, further comprising a step of wiring and connecting the inside of said first semiconductor chip with a conductor.
【請求項6】 前記第2の半導体チップ内部を導電体で
配線接続する工程を含むことを特徴とする請求項1乃至
5のいずれかに記載の半導体集積回路装置の製造方法。
6. The method of manufacturing a semiconductor integrated circuit device according to claim 1, further comprising a step of wiring and connecting the inside of said second semiconductor chip with a conductor.
【請求項7】 前記ウェハ表面を平坦化する工程では、
CMP(Chemical Mechanical P
olishing)技術により平坦化することを特徴と
する請求項1乃至6のいずれかに記載の半導体集積回路
装置の製造方法。
7. The step of flattening the wafer surface,
CMP (Chemical Mechanical P
7. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the surface is flattened by an applying technique.
JP2000053742A 2000-02-29 2000-02-29 Method for manufacturing semiconductor integrated circuit device Pending JP2001244333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053742A JP2001244333A (en) 2000-02-29 2000-02-29 Method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053742A JP2001244333A (en) 2000-02-29 2000-02-29 Method for manufacturing semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JP2001244333A true JP2001244333A (en) 2001-09-07

Family

ID=18575082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053742A Pending JP2001244333A (en) 2000-02-29 2000-02-29 Method for manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2001244333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054309A (en) * 2004-08-11 2006-02-23 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054309A (en) * 2004-08-11 2006-02-23 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3904228B2 (en) Manufacturing method of three-dimensional circuit device
US8222121B2 (en) Fiducial scheme adapted for stacked integrated circuits
KR100656218B1 (en) System on a package fabricated on a semiconductor or dielectric wafer
KR100294747B1 (en) Method for forming vertically connected semiconductor parts
EP1030369B1 (en) Multichip module structure and method for manufacturing the same
JP3229206B2 (en) Endcap chip with conductive monolithic L-connection for multichip stacks and method of making same
TWI514442B (en) Single mask via method and device
US5753529A (en) Surface mount and flip chip technology for total integrated circuit isolation
US5872393A (en) RF semiconductor device and a method for manufacturing the same
EP0168815B1 (en) Process for fabricating three-dimensional semiconductor device
US5481133A (en) Three-dimensional multichip package
US6399897B1 (en) Multi-layer wiring substrate
US20110057321A1 (en) 3-d multi-wafer stacked semiconductor structure and method for manufacturing the same
US9355934B2 (en) Method and apparatus providing integrated circuit having redistribution layer with recessed connectors
JPH08213548A (en) Manufacture of three-dimensional integrated circuit
JPH09106968A (en) Method for defining edge of integrated circuit chip with accuracy
KR20020097203A (en) Three dimensional device integration method and integrated device
KR20070112646A (en) Wafer level package and method of fabricating the same
JP2012501077A (en) A semiconductor device including a stress relaxation gap to enhance chip-package interaction stability.
JPH07312374A (en) Integrated circuit system and its preparation
CN115472494A (en) Semiconductor structure for wafer level bonding and bonded semiconductor structure
CN113097201B (en) Semiconductor packaging structure, method, device and electronic product
JP2001320015A (en) Semiconductor device and its manufacturing method
JP2001244333A (en) Method for manufacturing semiconductor integrated circuit device
EP1906441A1 (en) Wafer with semiconductor devices and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040727