JP2001242101A - Method and apparatus for nondestructive measurement of density of number of atoms in - Google Patents

Method and apparatus for nondestructive measurement of density of number of atoms in

Info

Publication number
JP2001242101A
JP2001242101A JP2000051040A JP2000051040A JP2001242101A JP 2001242101 A JP2001242101 A JP 2001242101A JP 2000051040 A JP2000051040 A JP 2000051040A JP 2000051040 A JP2000051040 A JP 2000051040A JP 2001242101 A JP2001242101 A JP 2001242101A
Authority
JP
Japan
Prior art keywords
neutron
neutrons
number density
measured
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000051040A
Other languages
Japanese (ja)
Other versions
JP3652952B2 (en
Inventor
Takao Kondo
貴夫 近藤
Hiroshi Kitaguchi
博司 北口
Akira Koizumi
章 小泉
Tetsushi Hino
哲士 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000051040A priority Critical patent/JP3652952B2/en
Publication of JP2001242101A publication Critical patent/JP2001242101A/en
Application granted granted Critical
Publication of JP3652952B2 publication Critical patent/JP3652952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a method, capable of nondestructively measuring the num ber density of thermal neutron absorbing atoms, even when thermal neutron absorbing atoms are distributed in thickness and number density so as to be in capable of transmission of thermal neutrons. SOLUTION: In the method for measuring the number density of atoms large in the cross-sectional area absorbing thermal neutrons, contained in the object to be measured by irradiating an object 25 to be measured with neutrons 8 and measuring neutron-capturing gamma rays 26 by a gammer-ray detector 5, the neutrons 8 applied to the object 25 to be measured are set to epithermal neutrons and energy of such a degree that the neutrons become thermal neutrons, when they pass through the surface 25 on the neutron-emitting side of the object to be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中性子を照射し中
性子捕獲ガンマ線を測定することにより、熱中性子吸収
原子の個数密度の非破壊測定を行う方法及び装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for nondestructively measuring the number density of thermal neutron-absorbed atoms by irradiating neutrons and measuring neutron capture gamma rays.

【0002】[0002]

【従来の技術】放射線を非測定物に照射し、透過後の特
定元素の吸収による減衰量を測定、また特定元素との核
反応による放射線を測定するなどして、非破壊的に前記
元素の量を評価する方法には様々なものがある。従来例
である特開平5−288887には、図2のように、ホ
ウ素10Bを含む被測定物1(例えば核燃料ペレット)に
中性子源2からの熱中性子3を照射し中性子捕獲ガンマ
線4をガンマ線検出器5で測定することにより、ホウ素
10Bの個数密度の非破壊測定を行う方法が示されてい
る。ただしここで中性子捕獲ガンマ線とは(n,γ)反応に
よるガンマ線だけでなく、中性子吸収に起因する全ての
放出ガンマ線を意味する。また中性子はその速さ、すな
わち運動エネルギーにより分類され、その大きいほうか
ら、高速中性子、エピサーマル中性子、熱中性子と呼ば
れる。それぞれのエネルギー領域はおおよそ、〜6ke
V、6keV〜0.6eV、0.6eV〜である。この
従来例ではスパッタ被覆法により核燃料ペレット1に施
された被対象物となる二ホウ化ジルコニウム被覆6内の
ホウ素10Bの量を非破壊的に測定する。この方法におい
ては、ホウ素10Bが非常に高い熱中性子吸収断面積を有
しているという事実が利用される。ここで中性子吸収断
面積とは該原子の中性子を吸収する確率を表す値であ
る。ホウ素10Bの原子核が中性子を吸収すると、該ホウ
10Bはアルファ粒子を放出すると同時に特性エネルギ
ーのガンマ線を放出する。従って該被測定物を熱中性子
で照射し特性ガンマ線を計数することによりホウ素10
の量を測定できる。
2. Description of the Related Art Irradiation of a non-measurement object with radiation, measurement of attenuation due to absorption of a specific element after transmission, and measurement of radiation due to a nuclear reaction with the specific element, etc., make the non-destructive measurement of the element. There are a variety of ways to evaluate the quantity. Japanese Patent Application Laid-Open No. 5-28887, which is a conventional example, discloses that an object to be measured 1 (for example, a nuclear fuel pellet) containing boron 10 B is irradiated with a thermal neutron 3 from a neutron source 2 and a neutron capture gamma ray 4 is gamma ray as shown in FIG. By measuring with the detector 5, boron
A method for performing a nondestructive measurement of the number density of 10 B is shown. Here, the neutron capture gamma ray means not only the gamma ray due to the (n, γ) reaction but also all the emitted gamma rays due to the neutron absorption. Neutrons are classified according to their speed, that is, kinetic energy. Larger neutrons are called fast neutrons, epithermal neutrons, and thermal neutrons. Each energy range is roughly ~ 6ke
V, 6 keV-0.6 eV, 0.6 eV-. In the prior art non-destructively measuring the amount of boron 10 B zirconium diboride coating 6 to be the subject matter that has been subjected to nuclear fuel pellet 1 by a sputtering coating process. This method takes advantage of the fact that boron 10 B has a very high thermal neutron absorption cross section. Here, the neutron absorption cross section is a value representing the probability of absorbing neutrons of the atom. When the nucleus of boron 10 B absorbs neutrons, the boron 10 B emits alpha particles and simultaneously emits gamma rays of characteristic energy. Therefore, by irradiating the object to be measured with thermal neutrons and counting characteristic gamma rays, boron 10 B
Can be measured.

【0003】[0003]

【発明が解決しようとする課題】しかし上記従来例には
以下のような問題が存在する。上記従来例は、スパッタ
により薄くホウ素10Bを塗布したような被測定物に対し
てのみ有効である。図3のように熱中性子吸収原子7が
ある程度の薄さ及び個数密度で分布している場合、照射
された熱中性子3は部分的にのみ吸収され、その吸収割
合及び捕獲ガンマ線量4は熱中性子吸収原子7の密度に
相関する。しかるに図4のように熱中性子吸収原子7が
ある程度以上の厚みと個数密度を持ち分布する場合、照
射された熱中性子3は表面から多少深くまで入り込んだ
としても結局熱中性子吸収原子7により全て吸収されて
しまい、その吸収割合及び捕獲ガンマ線量3は熱中性子
吸収原子11の密度に相関せず、前記原子の密度を測定
できない。なお中性子の透過性(図3の3Aで示した)
を左右する前記原子の分布する厚さ及び個数密度は前記
原子によって異なる。
However, the above conventional example has the following problems. The above prior art is valid only for the object to be measured such as by applying a thin boron 10 B by sputtering. As shown in FIG. 3, when the thermal neutron absorbing atoms 7 are distributed with a certain degree of thinness and number density, the irradiated thermal neutrons 3 are only partially absorbed, and the absorption ratio and the captured gamma dose 4 are determined by the thermal neutrons. Correlates with the density of the absorbed atoms 7. However, when the thermal neutron-absorbing atoms 7 have a certain thickness and number density and are distributed as shown in FIG. 4, even if the irradiated thermal neutrons 3 penetrate a little deeper from the surface, they are eventually absorbed by the thermal neutron-absorbing atoms 7. Therefore, the absorption ratio and the captured gamma dose 3 do not correlate with the density of the thermal neutron absorption atom 11, and the density of the atom cannot be measured. The neutron permeability (shown by 3A in FIG. 3)
The distribution thickness and the number density of the atoms which affect the above are different depending on the atoms.

【0004】本発明の目的は、熱中性子吸収原子が、熱
中性子が透過できないほどの厚みと個数密度で分布する
場合でも、該熱中性子吸収原子の個数密度の非破壊測定
を可能にする方法及び装置を提供することである。
An object of the present invention is to provide a method and a method for non-destructively measuring the number density of thermal neutron-absorbing atoms even when the thermal neutron-absorbing atoms are distributed with a thickness and a number density such that thermal neutrons cannot pass therethrough. It is to provide a device.

【0005】[0005]

【課題を解決するための手段】本発明は、被測定物の中
性子射出側の表面を通過する時に熱中性子となる程度の
エネルギーを持つエピサーマル中性子を、被測定物に照
射し、中性子吸収原子の個数密度を非破壊的に測定する
原子個数密度の非破壊測定方法を開示する。
According to the present invention, an object to be measured is irradiated with epithermal neutrons having energy enough to become thermal neutrons when passing through the surface on the neutron emission side of the object to be measured. A non-destructive method for measuring the atomic number density, which non-destructively measures the number density, is disclosed.

【0006】更に本発明は、被測定物の中性子射出側の
表面を通過する時に熱中性子となる程度のエネルギーを
持つエピサーマル中性子を、被測定物に照射し、エピサ
ーマル中性子による中性子捕獲ガンマ線の計数値と上記
熱中性子吸収原子の個数密度の相関関係を利用し、前記
原子の個数密度を非破壊的に測定する原子個数密度の非
破壊測定方法を開示する。
Further, the present invention irradiates the object with epithermal neutrons having energy enough to become thermal neutrons when passing through the surface on the neutron emission side of the object to be measured. A non-destructive atomic number density measurement method for non-destructively measuring the atomic number density by utilizing the correlation between the count value and the number density of the thermal neutron-absorbed atoms is disclosed.

【0007】更に本発明は、子がホウ素10Bであり、前
記被側物が原子炉の制御棒をなす、ホウ素10Bを封入し
内径3〜5mmのステンレス管であり、前記エピサーマ
ル中性子のエネルギー範囲が10eV〜100eVであ
ることを特徴とする原子個数密度の非破壊測定方法を開
示する。
[0007] The present invention further child is boron 10 B, the object side thereof forms the control rods of the nuclear reactor, a stainless steel tube having an inner diameter of 3~5mm encapsulating boron 10 B, of the epithermal neutron A non-destructive method for measuring atomic number density, wherein the energy range is from 10 eV to 100 eV, is disclosed.

【0008】更に本発明は、中性子の中性子源をカリフ
ォルニウム252とし、中性子源と被測定物との間に減
速材を置くことを特徴とする原子個数密度の非破壊測定
方法を開示する。
Further, the present invention discloses a non-destructive method for measuring atomic number density, characterized in that a neutron source of neutrons is Californium 252 and a moderator is placed between the neutron source and an object to be measured.

【0009】更に本発明は、被測定物の中性子射出側の
表面を通過する時に熱中性子となる程度のエネルギーを
持つエピサーマル中性子発生手段と、このエピサーマル
中性子による中性子捕獲ガンマ線の数を計数するγ線検
出器と、このγ線検出器の計数値と熱中性子吸収原子の
個数密度の相関関係を利用して、前記原子の個数密度を
検出する手段と、より成る原子個数密度の非破壊測定装
置を開示する。
Further, according to the present invention, there is provided an epithermal neutron generating means having such an energy as to become a thermal neutron when passing through a neutron emission side surface of an object to be measured, and counting the number of neutron capture gamma rays by the epithermal neutron. γ-ray detector, means for detecting the number density of the atoms by utilizing the correlation between the count value of the γ-ray detector and the number density of thermal neutron-absorbing atoms, non-destructive measurement of the atomic number density An apparatus is disclosed.

【0010】[0010]

【発明の実施の形態】以下、本発明の考え方を図1を用
いて説明する。本発明では、線源としてエピサーマル領
域(0.6eV〜6keV程度のエネルギーを持つも
の、好ましくは10eV〜100eV)の中性子を使用
する。更に、被測定対象物7Aはある程度以上の厚さを
持つものとする。被測定対象物7A内の熱中性子吸収原
子7は、エピサーマル領域の中性子に対しては小さな吸
収断面積を持つため、入射したエピサーマル中性子8
は、射出側の表面近くまでの領域E1では吸収されずに
進み、同時に減速され、射出側表面の領域E2に進むこ
ろには熱中性子にまで減速される(上記厚みとはこのよ
うなE1とE2とを持つ如き厚みを指す)。そしてその領
域では被測定物10の射出側表面までの距離が短いた
め、図3のように熱中性子が薄い中性子吸収原子領域を
通過(通過中性子3A、12として表示)するのと同様
な透過性を持ち、中性子は部分的にのみ吸収され捕獲ガ
ンマ線11を放射する。このとき吸収割合及び捕獲ガン
マ線量は熱中性子吸収原子7の密度に相関する。従って
放射されるガンマ線を計数すれば被測定物10内の熱中
性子吸収原子7の個数密度が測定できる。ただし照射す
る中性子のエネルギーをどの程度に設定するかは個々の
元素及び数密度、分布する厚さにより変化するため、中
性子射出表面近辺で熱中性子となるように最適化する必
要がある。以上により、熱中性子吸収原子が、熱中性子
が透過できないほどの厚みと個数密度を持ち分布する場
合でも、該熱中性子吸収原子の個数密度の非破壊測定が
可能になる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The concept of the present invention will be described below with reference to FIG. In the present invention, a neutron is used as a radiation source in an epithermal region (having an energy of about 0.6 eV to 6 keV, preferably 10 eV to 100 eV). Further, it is assumed that the measured object 7A has a certain thickness or more. Since the thermal neutron absorption atoms 7 in the measured object 7A have a small absorption cross section for neutrons in the epithermal region, the incident epithermal neutrons 8
Proceeds without being absorbed in the region E 1 to the surface close to the exit side, is reduced at the same time, the time to proceed to the area E 2 of the exit-side surface as this is a (the thickness to be reduced to a thermal neutron It refers to thickness such as with the E 1 and E 2). In this region, since the distance to the emission side surface of the device under test 10 is short, the same permeability as that in which thermal neutrons pass through a thin neutron absorbing atomic region as shown in FIG. 3 (indicated as passing neutrons 3A and 12). And the neutrons are only partially absorbed and emit captured gamma rays 11. At this time, the absorption ratio and the captured gamma dose correlate with the density of the thermal neutron absorbing atoms 7. Therefore, if the emitted gamma rays are counted, the number density of the thermal neutron absorbing atoms 7 in the measured object 10 can be measured. However, how much the energy of the neutrons to be irradiated is set depends on each element, the number density, and the thickness of the neutrons. Therefore, it is necessary to optimize the neutrons to become thermal neutrons near the neutron emission surface. As described above, even when the thermal neutron-absorbing atoms are distributed with a thickness and a number density such that thermal neutrons cannot pass therethrough, non-destructive measurement of the number density of the thermal neutron-absorbing atoms becomes possible.

【0011】本発明を、実施の形態に基づいて詳細に説
明する。ここで取り上げるのは、原子炉の制御に用いら
れる制御棒をなす、ホウ素10Bを封入した管に含まれる
ホウ素10Bの個数密度を測定する方法である。沸騰水型
原子炉で用いられる制御棒の概略は図6に示すとおりで
あり、ステンレスのシース20の中にB4Cを封入した
ステンレス管21が配置されている。ホウ素の同位体の
うちホウ素10Bは充分大きな熱中性子吸収断面積を持
ち、熱中性子炉の制御材に用いられる。ただしエピサー
マル及び高速領域の中性子に対しては断面積が小さく、
透過性が高い。
The present invention will be described in detail based on embodiments. Here the pick is a method of measuring the number density of boron 10 B included in the form a control rod used to control the reactor was filled with boron 10 B tube. The control rod used in the boiling water reactor is schematically shown in FIG. 6, and a stainless steel tube 21 in which B 4 C is sealed is placed in a stainless steel sheath 20. Boron 10 B of the isotopes of boron sufficient to have a large thermal neutron absorption cross section, is used to control material thermal reactor. However, the cross-sectional area is small for neutrons in the epithermal and high-speed regions,
High permeability.

【0012】図6にホウ素10Bの吸収断面積を示す。本
発明が測定の対象とするのは大きな熱中性子吸収断面積
を持つ原子であるが、図6のように熱エネルギー領域に
対する吸収断面積が、その他のエピサーマル、高速エネル
ギー領域により大きければよい。また、吸収断面積がエ
ピサーマル領域で大きくなっている場合にも、その断面
積のピークのエネルギーよりややエネルギーの高い中性
子を照射し、被測定物の中性子射出側の表面を通過する
時に前記ピークのエネルギーを持つようにすることによ
り、本発明の効果は得られる。またホウ素10Bの天然同
位体組成比は約20%であり、これによる天然B4Cを
そのまま用いる場合もあればホウ素10Bの組成比を高め
て用いる場合もあり、非破壊でホウ素10Bの数密度を測
定することにより前記組成比を確認する方法が必要とな
る。
[0012] shows the absorption cross-section of boron 10 B in FIG. The present invention measures atoms having a large thermal neutron absorption cross section, but it is sufficient that the absorption cross section for the thermal energy region is larger in the other epithermal and fast energy regions as shown in FIG. In addition, even when the absorption cross section is large in the epithermal region, irradiating neutrons having energy slightly higher than the energy of the peak of the cross section, and passing through the neutron emission side surface of the object to be measured, The effect of the present invention can be obtained by having the above energy. The natural isotope composition ratio of boron 10 B is about 20%. In some cases, natural B 4 C is used as it is, and in other cases, the composition ratio of boron 10 B is increased, and non-destructive boron 10 B is used. It is necessary to provide a method for confirming the composition ratio by measuring the number density.

【0013】本実施の形態では、B4Cを封入したステ
ンレス管21にエピサーマル中性子を照射して、ホウ素
10Bの中性子吸収の結果放出されるガンマ線を計数する
ことによりホウ素10Bの個数密度を測定する。ホウ素10
Bが中性子を吸収する際、下記の反応に対応する中性子
誘起ガンマ線が観察されることが知られている。
In this embodiment, a stainless steel tube 21 in which B 4 C is sealed is irradiated with epithermal neutrons, and boron is removed.
The number density of boron 10 B is determined by counting the gamma rays emitted as a result of 10 B neutron absorption. Boron 10
It is known that when B absorbs neutrons, neutron-induced gamma rays corresponding to the following reactions are observed.

【化1】 Embedded image

【化2】 上式中7*Liはリチウムの励起状態を表し、4Heはヘ
リウムを表し7Liはリチウムの安定状態を表す。ガン
マ線は、リチウムの励起状態から安定状態への減衰の結
果として放出される。上記反応式1は、B4C内のホウ
10Bが中性子(n)を吸収すると、該ホウ素10Bは励
起リチウム及びヘルウムに変換されることを示してい
る。上記反応式2は、励起状態にあるリチウムが、その
励起状態から安定状態に減衰するに伴い、該リチウム
は、約478keVのエネルギレベルを有するガンマ線
を放出することを示している。従って、約478keV
のエネルギレベルを有するガンマ線の存在は、B4C内
にホウ素10Bが存在することを表す。478keVのエ
ネルギレベルで放出されるガンマ線の数を測定すること
により、B4C内のホウ素10Bの量の指示情報が得られ
る。中性子を照射することによって、ステンレス管が破
壊されることはなく、また、この照射は本質的に、ホウ
10Bに対しても非破壊的でもある。その理由は、この
非破壊ホウ素10Bの定量法においては、1010個のホウ
素原子中1個以下のホウ素原子しか用いられないからで
ある。
Embedded image 7 * Li in the above formula represents the excited state of the lithium, 4 the He is 7 Li represents helium represents a stable state of the lithium. Gamma rays are emitted as a result of the decay of lithium from an excited state to a stable state. Reaction Scheme 1 above shows that when boron 10 B in B 4 C absorbs neutrons (n), the boron 10 B is converted to excited lithium and helium. Equation 2 above shows that as the lithium in the excited state decays from its excited state to a stable state, it emits gamma rays having an energy level of about 478 keV. Therefore, about 478 keV
The presence of a gamma ray having an energy level of 10 B indicates the presence of boron 10 B in B 4 C. Measuring the number of gamma rays emitted at an energy level of 478 keV provides an indication of the amount of boron 10 B in B4C. By neutron irradiation, never stainless steel is destroyed, also this radiation is essentially there nondestructive also against boron 10 B. The reason for this is that in this method of quantifying non-destructive boron 10 B, only one or less of the 10 10 boron atoms is used.

【0014】次に測定装置の理論的説明を図7により説
明する。エピサーマル中性子発生装置22から照射され
た中性子8はステンレス管21に封入されたB4C25
内を進み、初めはエピサーマル領域であるため、ホウ素
10Bの断面積が小さく、吸収されない。そして進むと同
時に減速し、射出側のB4C表面領域25Aで熱中性子
にまで減速する。ここでは射出側表面までの距離が短い
ため、中性子は部分的にのみホウ素10Bに吸収され、約
478keVの捕獲ガンマ線26を放出する。このとき
吸収される中性子の割合及びガンマ線量はホウ素10Bの
個数密度に比例するため、ガンマ線測定器28により計
数すれば個数密度の指示情報が得られる。
Next, the theoretical description of the measuring device will be described with reference to FIG. The neutrons 8 irradiated from the epithermal neutron generator 22 are B 4 C 25 sealed in a stainless steel tube 21.
Inside, and initially in the epithermal region,
Small cross-sectional area of 10 B, not absorbed. Then, it decelerates at the same time as it advances, and decelerates to thermal neutrons in the B 4 C surface region 25A on the emission side. Here, due to the short distance to the emission side surface, the neutrons are only partially absorbed by boron 10 B and emit a capture gamma ray 26 of about 478 keV. Rate and gamma dose of neutrons absorbed at this time is proportional to the number density of boron 10 B, the number density instruction information can be obtained by counting by a gamma ray measurement instrument 28.

【0015】次に、本発明で利用する、射出側のB4
表面領域で熱中性子にまで減速される程度のエピサーマ
ル中性子のエネルギーを求める方法を説明する。ここで
は、一例としてシミュレーションを用いる方法を説明す
る。図8にシミュレーションを行う体系を示す。被測定
物21は、内径が約4mmのステンレス管にB4Cを充填
させたものである。これに中性子8を照射した場合の透
過側の任意の点Pにおける透過中性子の計数値を求め
る。ここで、中性子のエネルギー0eV〜10MeVま
で変化させ、B4Cのホウ素10Bの同位体組成比を20%
と50%とした時の結果を図9に示す。照射中性子のエ
ネルギーが10keV〜と高い場合は中性子が殆ど吸収
されずに透過するため、透過中性子の計数値は大きく、ホ
ウ素10Bの密度の違いによる差は生じない。逆に照射中
性子のエネルギーが0〜1eVの場合は中性子がほとん
ど吸収されこれもまたホウ素10Bの密度の違いによる差
は生じない。一方、照射中性子のエネルギーが1〜10
0eVの場合は、ホウ素10Bの個数密度の大きい50%
組成比の方が、計数値が小さい。これは、図7で説明した
ように、射出側のB4C表面領域で熱中性子に減速され、
吸収される中性子の割合はホウ素10Bの個数密度に比例
するためである。更に、組成比20%と50%の結果の
差分割合を図10に示す。これにより最適な中性子のエ
ネルギー範囲は、10eV〜100eVであることがわ
かる。
Next, the injection side B 4 C used in the present invention is used.
A method for obtaining the energy of epithermal neutrons that is reduced to thermal neutrons in the surface region will be described. Here, a method using simulation will be described as an example. FIG. 8 shows a simulation system. The DUT 21 is a stainless steel tube having an inner diameter of about 4 mm filled with B 4 C. At this time, a count value of transmitted neutrons at an arbitrary point P on the transmission side when the neutron 8 is irradiated is obtained. Here, the neutron energy is changed from 0 eV to 10 MeV, and the isotope composition ratio of boron 10 B of B 4 C is set to 20%.
FIG. 9 shows the results when the values were set to 50%. Because neutrons when the energy of the irradiated neutrons 10keV~ and high is transmitted without being hardly absorbed, the count value of the transmission neutrons is large, no difference due to the difference in density of boron 10 B. If the energy of the irradiated neutrons conversely the 0~1eV are neutrons mostly absorbed Again no difference due to the difference in density of boron 10 B. On the other hand, the energy of the irradiation neutron is 1 to 10
In the case of 0 eV, the number density of boron 10 B is 50%
The count value is smaller for the composition ratio. This is reduced to thermal neutrons in the injection-side B 4 C surface region as described in FIG.
The proportion of absorbed neutrons is proportional to the number density of boron 10 B. FIG. 10 shows the difference ratio between the results of the composition ratios of 20% and 50%. This shows that the optimum neutron energy range is 10 eV to 100 eV.

【0016】次に、測定装置を図11に示す。中性子源
30はカルフォルニウム252(252Cf)より成るも
のとし、これから発生した高速中性子は減速材31によ
り、エピサーマル中性子にまで減速され、B4Cを封入し
たステンレス管21に照射される。この中性子をホウ素
10Bが吸収することにより放出されるガンマ線を、ガン
マ線検出器34により計数する。γ線検出器34の周囲
はバックグラウンドγ線の侵入を防止するために鉛の遮
蔽体33で遮蔽してある。また、32は、鉛コリメータで
ある。
Next, a measuring apparatus is shown in FIG. The neutron source 30 is made of carbonium 252 ( 252 Cf). High-speed neutrons generated from the neutron source are decelerated to epithermal neutrons by the moderator 31, and are irradiated on the stainless steel tube 21 containing B 4 C. This neutron
Gamma rays emitted by absorption of 10 B are counted by the gamma ray detector 34. The periphery of the γ-ray detector 34 is shielded by a lead shield 33 to prevent intrusion of background γ-rays. 32 is a lead collimator.

【0017】以上の測定装置による測定例を図12、図
13に示す。図12はホウ素10B組成比が20%の例、
図13が50%の例である。共に目盛りは省略したが、
比較のため同じスケールで作成した。それぞれ、ピーク
計数値N1、N2は、478keVの捕獲ガンマ線による
ものであった。組成比すなわち個数密度が大きいほど、
ガンマ線計数値が大きくなるという相関関係となること
がわかる。従って、以上の装置によりガンマ線計数値を
求めれば、図14のような計算によりホウ素10Bの個数
密度に変換することができる。図14のグラフはホウ素
10Bの個数密度を変化させた事例を何通りか測定したデ
ータを得ることにより作成する。
FIGS. 12 and 13 show examples of measurement by the above measuring apparatus. FIG. 12 shows an example in which the boron 10 B composition ratio is 20%,
FIG. 13 shows an example of 50%. The scale is omitted for both,
Made on the same scale for comparison. The peak counts N 1 and N 2 , respectively, were due to 478 keV captured gamma rays. The larger the composition ratio, that is, the number density,
It can be seen that there is a correlation that the gamma ray count value increases. Therefore, by obtaining the gamma ray count by more devices, it can be converted to the number density of boron 10 B by calculation as shown in FIG. 14. The graph of FIG.
The case of changing the number density of 10 B creates, by obtaining a number of ways or measured data.

【0018】なお本発明は中性子吸収断面積が熱領域で
大きくなるその他の元素に対して有効である。ただし照
射する中性子のエネルギーをどの程度に設定するかは個
々の元素及び数密度、分布する厚さにより変化するた
め、先に説明した方法などにより、中性子射出表面近辺
で熱中性子となるように最適化する必要がある。また捕
獲ガンマ線のエネルギーも元素により異なる。
The present invention is effective for other elements whose neutron absorption cross section increases in the thermal region. However, the energy level of the neutrons to be irradiated depends on the individual elements, the number density, and the thickness of the neutrons. Therefore, it is best to use the method described above to generate thermal neutrons near the neutron emission surface. Need to be The energy of the captured gamma rays also differs depending on the element.

【0019】[0019]

【発明の効果】以上詳述したように、本発明によれば、
熱中性子吸収原子が、照射された熱中性子が透過できな
いほどの厚みと個数密度を持つ場合でも、エピサーマル
中性子を照射することにより、中性子吸収割合及び捕獲
ガンマ線量を個数密度と相関のあるものとし、ガンマ線
の計数による該熱中性子吸収原子個数密度の非破壊測定
が可能になる。
As described in detail above, according to the present invention,
Even if the thermal neutron-absorbing atoms have a thickness and a number density such that the irradiated thermal neutrons cannot penetrate, the neutron absorption ratio and the captured gamma dose should be correlated with the number density by irradiating with epithermal neutrons. And the non-destructive measurement of the thermal neutron absorption atom number density by counting gamma rays.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】従来例の測定方法の説明図である。FIG. 2 is an explanatory diagram of a conventional measuring method.

【図3】熱中性子吸収原子に熱中性子を照射した場合の
中性子吸収を示す説明図である。
FIG. 3 is an explanatory diagram showing neutron absorption when a thermal neutron absorbing atom is irradiated with thermal neutrons.

【図4】熱中性子吸収原子に熱中性子を照射した場合の
中性子吸収を示す説明図である。
FIG. 4 is an explanatory diagram showing neutron absorption when a thermal neutron absorbing atom is irradiated with thermal neutrons.

【図5】制御棒の概略図である。FIG. 5 is a schematic view of a control rod.

【図6】ホウ素10Bの吸収断面積を示す図である。6 is a diagram showing the absorption cross-section of boron 10 B.

【図7】本発明の測定方法の説明図である。FIG. 7 is an explanatory diagram of the measuring method of the present invention.

【図8】本発明のシミュレーション体系を示す図であ
る。
FIG. 8 is a diagram showing a simulation system of the present invention.

【図9】組成比による透過中性子形数値を示す図であ
る。
FIG. 9 is a diagram showing transmission neutron form values depending on the composition ratio.

【図10】中性子のエネルギーを変化させたときの透過
中性子の差分割合を示す図である。
FIG. 10 is a diagram illustrating a difference ratio of transmitted neutrons when neutron energy is changed.

【図11】本発明の測定装置例を示す図である。FIG. 11 is a diagram showing an example of a measuring apparatus according to the present invention.

【図12】ホウ素10B組成比20%のときの実験結果を
示す図である。
12 is a diagram showing experimental results in the case of boron 10 B composition ratio of 20%.

【図13】ホウ素10B組成比50%のときの実験結果を
示す図である。
FIG. 13 is a view showing an experimental result when the boron 10 B composition ratio is 50%.

【図14】ホウ素10Bのγ計数値と個数密度との相関関
係図である。
FIG. 14 is a diagram showing the correlation between the γ count value of boron 10 B and the number density.

【符号の説明】 1 核燃料ペレット 2 中性子源 3 熱中性子 4 中性子捕獲ガンマ線 5 ガンマ線検出器 6 二ホウ化ジルコニウム被覆 7 熱中性子吸収原子 8 エピサーマル中性子 10 被測定物 11、26 中性子捕獲ガンマ線 12 透過中性子 20 制御棒 21 B4Cが封入されたステンレス管 22 エピサーマル中性子照射装置 25 B4C 25A 中性子が熱中性子になる領域 E1 中性子がエピサーマルである領域 E2 中性子が熱中性子になる領域 N1 2 特性ガンマ線によるピーク P 中性子量測定点[Description of Signs] 1 Nuclear fuel pellet 2 Neutron source 3 Thermal neutron 4 Neutron capture gamma ray 5 Gamma ray detector 6 Zirconium diboride coating 7 Thermal neutron absorption atom 8 Epithermal neutron 10 Measured object 11, 26 Neutron capture gamma ray 12 Transmitted neutron Reference Signs List 20 control rod 21 stainless steel tube in which B 4 C is sealed 22 epithermal neutron irradiation device 25 B 4 C 25 A region where neutrons become thermal neutrons E 1 region where neutrons are epithermal E 2 region where neutrons become thermal neutrons N 1 , N 2 characteristic gamma ray peak P Neutron content measurement point

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21C 17/10 G21C 17/10 A (72)発明者 小泉 章 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 (72)発明者 日野 哲士 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 2G001 AA04 AA09 CA02 DA02 DA03 FA01 GA01 JA15 KA01 LA20 MA06 NA15 SA03 2G075 AA03 BA20 CA39 DA07 DA18 EA03 FA06 FA18 FB05 FB08 FC04 FC19 GA19 GA21 2G088 EE21 EE25 EE29 FF04 FF15 GG21 JJ01 JJ11 JJ29 KK01 KK24 LL08 LL28 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G21C 17/10 G21C 17/10 A (72) Inventor Akira Koizumi 3-1-1 Kochicho, Hitachi City, Ibaraki Prefecture No. Within the Nuclear Power Division, Hitachi, Ltd. (72) Inventor Tetsushi Hino 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in the Electric Power and Electricity Research Laboratory, Hitachi, Ltd. 2G001 AA04 AA09 CA02 DA02 DA03 FA01 GA01 JA15 KA01 LA20 MA06 NA15 SA03 2G075 AA03 BA20 CA39 DA07 DA18 EA03 FA06 FA18 FB05 FB08 FC04 FC19 GA19 GA21 2G088 EE21 EE25 EE29 FF04 FF15 GG21 JJ01 JJ11 JJ29 KK01 KK24 LL08 LL28

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の中性子射出側の表面を通過す
る時に熱中性子となる程度のエネルギーを持つエピサー
マル中性子を、被測定物に照射し、中性子吸収原子の個
数密度を非破壊的に測定する原子個数密度の非破壊測定
方法。
An object to be measured is irradiated with epithermal neutrons having energy enough to become thermal neutrons when passing through the surface on the neutron emission side of the object to measure the number density of neutron-absorbing atoms in a non-destructive manner. A non-destructive method for measuring the atomic number density to be measured.
【請求項2】 被測定物の中性子射出側の表面を通過す
る時に熱中性子となる程度のエネルギーを持つエピサー
マル中性子を、被測定物に照射し、エピサーマル中性子
による中性子捕獲ガンマ線の計数値と上記熱中性子吸収
原子の個数密度の相関関係を利用し、前記原子の個数密
度を非破壊的に測定する原子個数密度の非破壊測定方
法。
2. A method for irradiating an object with epithermal neutrons having energy enough to become thermal neutrons when passing through a surface on a neutron emission side of the object to be measured, and calculating a count value of neutron capture gamma rays by the epithermal neutrons. A non-destructive measurement method of the atomic number density, wherein the number density of the thermal neutron-absorbing atoms is non-destructively measured by utilizing the correlation.
【請求項3】 前記原子がホウ素10Bであり、前記被測
定物が原子炉の制御棒をなす、ホウ素10Bを封入し内径
3〜5mmのステンレス管であり、前記エピサーマル中
性子のエネルギー範囲が10eV〜100eVであるこ
とを特徴とする請求項2記載の原子個数密度の非破壊測
定方法。
3. The method according to claim 1, wherein the atoms are boron 10 B, and the object to be measured is a stainless steel tube enclosing boron 10 B and having an inner diameter of 3 to 5 mm, which forms a control rod of a nuclear reactor. The non-destructive method for measuring the atomic number density according to claim 2, wherein the value is 10 eV to 100 eV.
【請求項4】 前記中性子の中性子源をカリフォルニウ
ム252とし、中性子源と被測定物との間に減速材を置
くことを特徴とする請求項3記載の原子個数密度の非破
壊測定方法。
4. The method according to claim 3, wherein a neutron source of the neutron is Californium 252, and a moderator is provided between the neutron source and the object to be measured.
【請求項5】 被測定物の中性子射出側の表面を通過す
る時に熱中性子となる程度のエネルギーを持つエピサー
マル中性子発生手段と、このエピサーマル中性子による
中性子捕獲ガンマ線の数を計数するγ線検出器と、この
γ線検出器の計数値と熱中性子吸収原子の個数密度の相
関関係を利用して、前記原子の個数密度を検出する手段
と、を備える原子個数密度の非破壊測定装置。
5. An epithermal neutron generating means having an energy sufficient to become a thermal neutron when passing through a surface on a neutron emission side of an object to be measured, and gamma ray detection for counting the number of neutron capture gamma rays by the epithermal neutron. A non-destructive atomic number density measuring apparatus comprising: a detector; and means for detecting the atomic number density by utilizing the correlation between the count value of the γ-ray detector and the thermal neutron absorption atom number density.
JP2000051040A 2000-02-28 2000-02-28 Method and apparatus for nondestructive measurement of atomic number density Expired - Lifetime JP3652952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000051040A JP3652952B2 (en) 2000-02-28 2000-02-28 Method and apparatus for nondestructive measurement of atomic number density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000051040A JP3652952B2 (en) 2000-02-28 2000-02-28 Method and apparatus for nondestructive measurement of atomic number density

Publications (2)

Publication Number Publication Date
JP2001242101A true JP2001242101A (en) 2001-09-07
JP3652952B2 JP3652952B2 (en) 2005-05-25

Family

ID=18572746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000051040A Expired - Lifetime JP3652952B2 (en) 2000-02-28 2000-02-28 Method and apparatus for nondestructive measurement of atomic number density

Country Status (1)

Country Link
JP (1) JP3652952B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315909A (en) * 2006-05-25 2007-12-06 Central Res Inst Of Electric Power Ind Method of measuring neutron emission rate of neutron emitter, and neutron characteristic validation method of nuclear fuel
JP2014149169A (en) * 2013-01-31 2014-08-21 Mitsubishi Heavy Ind Ltd Determination method of neutron absorption material content
US10441815B2 (en) 2017-03-29 2019-10-15 Sumitomo Heavy Industries, Ltd. Neutron capture therapy system and gamma ray detector for neutron capture therapy
JP2022529130A (en) * 2019-04-16 2022-06-17 ディテクション テクノロジー オイ Imaging methods and systems

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315909A (en) * 2006-05-25 2007-12-06 Central Res Inst Of Electric Power Ind Method of measuring neutron emission rate of neutron emitter, and neutron characteristic validation method of nuclear fuel
JP2014149169A (en) * 2013-01-31 2014-08-21 Mitsubishi Heavy Ind Ltd Determination method of neutron absorption material content
US10441815B2 (en) 2017-03-29 2019-10-15 Sumitomo Heavy Industries, Ltd. Neutron capture therapy system and gamma ray detector for neutron capture therapy
JP2022529130A (en) * 2019-04-16 2022-06-17 ディテクション テクノロジー オイ Imaging methods and systems
JP7441854B2 (en) 2019-04-16 2024-03-01 ディテクション テクノロジー オイ Imaging methods and systems

Also Published As

Publication number Publication date
JP3652952B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
Hurst et al. Techniques of measuring neutron spectra with threshold detectors—tissue dose determination
Filliatre et al. In vessel neutron instrumentation for sodium-cooled fast reactors: Type, lifetime and location
US10832826B2 (en) Inspection of nuclear waste
US4617169A (en) Measurement of radionuclides in waste packages
JP2006322727A (en) Measuring method of axial-direction void fraction distribution, and fuel assembly neutron multiplication factor evaluation method before storage in storing device
Lyoussi et al. Transuranic waste detection by photon interrogation and on-line delayed neutron counting
JPS63163187A (en) Device and method of measuring intensity of neutron flux
Chankow Neutron radiography
Gibson et al. Neutron monitoring for radiological protection
JP3652952B2 (en) Method and apparatus for nondestructive measurement of atomic number density
Wehe et al. Observation of/sup 238/U photofission products
JP2978106B2 (en) Active neutron measurement method and apparatus
Woźnicka Review of Neutron Diagnostics Based on Fission Reactions Induced by Fusion Neutrons
KR101687652B1 (en) Slowing down time spectrometer
RU2200988C2 (en) Method for metering neutron flux in power reactor
Klein et al. Neutron resonance transmission analysis (NRTA) for nuclear fuel characterization using a portable dt neutron generator
Maidana et al. Measurement of the thermal neutron capture cross section of Cs-137
JP2013120123A (en) Nuclide composition analyzer, and nuclide composition analysis method
JP2013130418A (en) Nuclear material detection device and nuclear material detection method
Nauchi et al. Study on identification of materials in fuel debris and waste by neutron induced gamma ray spectroscopy
Passard et al. PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods
Kimura et al. Neutron capture cross section measurements of 120Sn, 122Sn and 124Sn with the array of Ge spectrometer at the J-PARC/MLF/ANNRI
Tsuchiya et al. Performance of large volume LaBr3 scintillation detector equipped with specially-designed shield for neutron resonance capture analysis
Rahon Areg Danagoulian
Newton Nathaniel et al. Non-destructive assay technique for the determination of 238 U/232 Th ratio in the mixed oxides of uranium and thorium using prompt gamma-ray neutron activation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3652952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

EXPY Cancellation because of completion of term