JP2001242069A - Vapor concentration measurement device for vacuum vapor deposition device - Google Patents

Vapor concentration measurement device for vacuum vapor deposition device

Info

Publication number
JP2001242069A
JP2001242069A JP2000053945A JP2000053945A JP2001242069A JP 2001242069 A JP2001242069 A JP 2001242069A JP 2000053945 A JP2000053945 A JP 2000053945A JP 2000053945 A JP2000053945 A JP 2000053945A JP 2001242069 A JP2001242069 A JP 2001242069A
Authority
JP
Japan
Prior art keywords
vacuum
differential pressure
pressure gas
vapor
gas chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000053945A
Other languages
Japanese (ja)
Inventor
Yukihiko Ono
幸彦 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000053945A priority Critical patent/JP2001242069A/en
Publication of JP2001242069A publication Critical patent/JP2001242069A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration in accuracy due to adhesion of vapor when vapor concentration is measured by means of a laser beam in a vacuum vapor deposition device. SOLUTION: A vapor concentration measurement device 50 for the vacuum vapor deposition device 40 performing vapor deposition to a deposited plate A set inside a vacuum container 41 is provided with a laser device 51 and a laser detector 53 arranged opposedly to each other on both sides of the vacuum container 41, an incident side differential pressure gas chamber 55 and an emission side differential pressure gas chamber 57 formed in laser beam incident and emission parts of the vacuum container 41 individually, and a gas introducing system 63 connected to the differential pressure gas chambers 55, 57 respectively, and in shielding plates 67, 73 in the differential pressure gas chambers 55, 57, small holes 69, 75 are perforated for passing inert gas and a laser beam, while the diameters of the small holes 69, 75 are set to predetermined values so as not to allow penetration of vapor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空蒸着装置に関
し、特にその中でガス流体の蒸気濃度をレーザ光を用い
て計測する蒸気濃度計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum evaporation apparatus, and more particularly to a vapor concentration measurement apparatus for measuring the vapor concentration of a gas fluid using laser light.

【0002】[0002]

【従来の技術】真空蒸着装置における従来の蒸気濃度計
測方法としては、蒸気の進行方向前方に設置する蒸着板
への蒸着膜厚の変化速度から求める方法と、蒸気濃度の
違いによって得られる信号強度が異なることを利用して
蒸気濃度を直接求める方法とに大別される。前者の代表
的な計測方法として、水晶発振式モニタがあるが、これ
は水晶振動子への蒸着量によってその周波数が変化する
効果を利用して蒸着膜厚を求めるものである。後者の代
表的な計測方法として吸光式モニタがあるが、これは蒸
気中に蒸気と反応する波長を含むレーザ光又は通常の光
を通過させ、蒸気による透過レーザ光強度の減衰量から
蒸気濃度を求めるものである。
2. Description of the Related Art A conventional vapor concentration measuring method in a vacuum vapor deposition apparatus includes a method of calculating from a changing speed of a vapor deposition film thickness on a vapor deposition plate installed in the forward direction of vapor, and a signal intensity obtained by a difference in vapor concentration. The method is broadly divided into a method of directly obtaining the vapor concentration by utilizing the difference between the two. As the former representative measurement method, there is a crystal oscillation type monitor. In this method, the vapor deposition film thickness is obtained by utilizing the effect that the frequency changes depending on the vapor deposition amount on the crystal resonator. A typical example of the latter measurement method is an absorption type monitor. In this method, a laser beam containing a wavelength that reacts with the vapor or normal light is passed through the vapor, and the vapor concentration is determined from the attenuation of the transmitted laser light intensity due to the vapor. Is what you want.

【0003】而して、真空蒸着装置において、レーザ光
を用いてガス流体の蒸気濃度を求める従来の蒸気濃度計
測装置の一例を概説する。先ず図4を参照して、真空蒸
着装置10の構造を説明すると、その密封真空容器1の
中にるつぼ3が設けられていて、蒸発物質5がるつぼ3
の中に入れられる。このるつぼ3を囲うようにして遮蔽
体7が設けられてガス流体9を封じ込めるが、その封じ
込め空間に面して被蒸着板Aがセットされる。又、真空
容器1に連絡した真空排気装置11が、内部の真空状態
を調整し、図示しない加熱源(電子銃、高周波コイル
等)が設けられて、るつぼ3内の蒸発物質5を加熱蒸発
せしめるようになっている。このような真空蒸着装置1
0において、蒸発物質5は熱源により高温に加熱されて
ガス流体9として蒸気化される。このガス流体9は被蒸
着板Aに接触して、その外面に蒸着される。
[0003] An example of a conventional vapor concentration measuring apparatus for determining the vapor concentration of a gaseous fluid using a laser beam in a vacuum evaporation apparatus will be outlined. First, referring to FIG. 4, the structure of the vacuum evaporation apparatus 10 will be described. The crucible 3 is provided in the sealed vacuum vessel 1 and the evaporating substance 5 is placed in the crucible 3.
Inside. A shielding body 7 is provided so as to surround the crucible 3 and seals the gas fluid 9, and the deposition target plate A is set facing the sealing space. Further, a vacuum exhaust device 11 connected to the vacuum vessel 1 adjusts the internal vacuum state, and a heating source (not shown) (an electron gun, a high-frequency coil, etc.) is provided to heat and evaporate the evaporant 5 in the crucible 3. It has become. Such a vacuum deposition apparatus 1
At zero, the evaporant 5 is heated to a high temperature by a heat source and vaporized as a gaseous fluid 9. The gas fluid 9 comes into contact with the deposition target plate A and is deposited on the outer surface thereof.

【0004】以上のような構成で運転される真空蒸着装
置10の蒸気濃度計測装置20を概説すると、レーザ光
を発生するレーザ装置21と、レーザ光を受けるレーザ
検出器23が真空容器1を挟んで対置され、これらに対
応して真空容器1には連結部1a、1bが形成されてい
る。そして、レーザ装置21から出射されたレーザ光2
9が、連結部1aの入射窓25の石英ガラス板27を通
って真空容器1内に入り、連結部1bの出射窓31の石
英ガラス板33を通って真空容器1から出て、レーザ検
出器23に入る。途中、レーザ光29は、遮蔽体7に囲
まれたガス流空間を通り、そこに存在するガス流9によ
って減衰などの影響を受ける。即ち、レーザ装置21か
らのレーザ光29の出射量と、レーザ検出器23へのレ
ーザ光29の入射量を検出し、これらの差からガス流体
9の量即ち蒸気濃度を検出乃至計測する。
[0004] The vapor concentration measuring device 20 of the vacuum vapor deposition device 10 operated in the above-described configuration is briefly described. A laser device 21 for generating a laser beam and a laser detector 23 for receiving the laser beam sandwich the vacuum vessel 1. The vacuum vessel 1 is provided with connecting portions 1a and 1b corresponding thereto. Then, the laser light 2 emitted from the laser device 21
9 enters the vacuum container 1 through the quartz glass plate 27 of the entrance window 25 of the connecting portion 1a, and exits from the vacuum container 1 through the quartz glass plate 33 of the exit window 31 of the connecting portion 1b. Enter 23. On the way, the laser light 29 passes through a gas flow space surrounded by the shield 7 and is affected by the gas flow 9 existing there, such as attenuation. That is, the output amount of the laser light 29 from the laser device 21 and the incident amount of the laser light 29 to the laser detector 23 are detected, and the amount of the gas fluid 9, that is, the vapor concentration is detected or measured from the difference therebetween.

【0005】[0005]

【発明が解決しようとする課題】然るに、前述のような
蒸気濃度計測装置には、次のような問題点があった。即
ち、真空蒸着装置の運転において、遮蔽体7から漏れた
ガス流体9の一部が石英ガラス板に付着し、透過するレ
ーザ光の強度を変化させる。この付着蒸気の量は、その
時点での蒸気濃度とは直接の関係はないから、蒸気濃度
の正確な測定ができなくなる。このため、長時間連続運
転するプラントにあっては、計測精度の劣化やレーザ装
置系のメンテナンスに要する時間が多くなる。従って、
本発明の課題は、長時間に亘る真空蒸着運転中において
も、常に正確な蒸気濃度計測が可能な真空蒸着装置にお
ける蒸気濃度計測装置を提供することである。
However, the above-mentioned vapor concentration measuring apparatus has the following problems. That is, in the operation of the vacuum evaporation apparatus, a part of the gas fluid 9 leaking from the shield 7 adheres to the quartz glass plate and changes the intensity of the transmitted laser beam. Since the amount of the attached vapor has no direct relation to the vapor concentration at that time, an accurate measurement of the vapor concentration cannot be performed. Therefore, in a plant that operates continuously for a long time, the measurement accuracy deteriorates and the time required for maintenance of the laser device system increases. Therefore,
An object of the present invention is to provide a vapor concentration measuring apparatus in a vacuum vapor deposition apparatus that can always accurately measure a vapor concentration even during a long-time vacuum vapor deposition operation.

【0006】[0006]

【課題を解決するための手段】上述の課題を解決するた
め、本発明によれば、真空容器内にセットされた被蒸着
板に真空蒸着を行う真空蒸着装置の蒸気濃度計測装置
は、前記真空容器を挟んで配置されたレーザ装置とレー
ザ検出器、前記真空容器のレーザ光入射部及び出射部に
それぞれ形成された入射側差圧ガス室と出射側差圧ガス
室、及び前記差圧ガス室の双方に個別に連絡されたガス
導入系を有して構成され、前記真空容器内の蒸気空間に
対向した前記差圧ガス室の遮蔽板に不活性ガス及びレー
ザ光を通す小孔が穿設され、該小孔の径が所定値に設定
されて蒸気の差圧ガス室内への侵入を防止して、正確な
蒸気濃度計測を可能とする。前述の差圧ガス室は、真空
容器内に設けても良く、この場合は入射側差圧ガス室と
レーザ装置、及び出射側差圧ガス室とレーザ検出器とは
それぞれ光ファイバケーブルで接続される。更には、レ
ーザ装置及びレーザ検出器は、それぞれ電源及び信号処
理器から分離されて、真空容器内に設けた差圧ガス室に
それぞれ設けても良い。差圧ガス室を真空容器内に設け
た場合には、何れの場合も不活性ガスを供給するガス導
入系が真空容器の殻を気密に貫いて配設される。
According to the present invention, there is provided, in accordance with the present invention, a vapor concentration measuring apparatus of a vacuum vapor deposition apparatus for performing vacuum vapor deposition on a deposition target plate set in a vacuum vessel. A laser device and a laser detector disposed on both sides of the container, an incident-side differential pressure gas chamber and an emission-side differential pressure gas chamber formed at a laser light incident portion and an emission portion of the vacuum container, respectively, and the differential pressure gas chamber Small holes for passing an inert gas and a laser beam are formed in a shielding plate of the differential pressure gas chamber facing a vapor space in the vacuum vessel. Then, the diameter of the small hole is set to a predetermined value to prevent the vapor from entering the differential pressure gas chamber, thereby enabling accurate measurement of the vapor concentration. The above-described differential pressure gas chamber may be provided in a vacuum vessel. In this case, the incident side differential pressure gas chamber and the laser device, and the output side differential pressure gas chamber and the laser detector are respectively connected by optical fiber cables. You. Further, the laser device and the laser detector may be separately provided from a power source and a signal processor, respectively, and provided in a differential pressure gas chamber provided in a vacuum vessel. When the differential pressure gas chamber is provided in the vacuum vessel, the gas introduction system for supplying the inert gas in any case is provided through the shell of the vacuum vessel in an airtight manner.

【0007】[0007]

【発明の実施の形態】以下添付の図面を参照して本発明
の実施形態を説明する。尚、前述の従来技術に関する図
面を含め、全図に亘り同一部分又は対応部分には同一の
符号を付している。先ず図1を参照するに、真空蒸着装
置40は、断面がほぼ円形の真空容器41、内部に設け
られたるつぼ3、るつぼ3に入れられた蒸発物質5のガ
ス流体9の流れる空間を取り囲む遮蔽体7及び真空容器
41に連絡した真空排気装置43を有し、被蒸着板Aが
取り付けられるようになっている。この真空蒸着装置4
0は、前述の従来の真空蒸着装置10と基本的に機能が
同じであり、後述の蒸気濃度計測装置50との隣接境界
部の構造が異なるのみである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. It is to be noted that the same portions or corresponding portions are denoted by the same reference numerals throughout the drawings, including the drawings related to the above-described conventional technology. First, referring to FIG. 1, a vacuum deposition apparatus 40 includes a vacuum vessel 41 having a substantially circular cross section, a crucible 3 provided therein, and a shield surrounding a space in which the gas fluid 9 of the evaporant 5 contained in the crucible 3 flows. It has a vacuum evacuation device 43 connected to the body 7 and the vacuum vessel 41, and the deposition target plate A is attached thereto. This vacuum deposition device 4
Numeral 0 basically has the same function as that of the above-described conventional vacuum vapor deposition apparatus 10, and differs only in the structure of an adjacent boundary with a vapor concentration measuring apparatus 50 described later.

【0008】次に、蒸気濃度計測装置50の構成を説明
する。蒸気濃度計測装置50はレーザ装置51とレーザ
検出器53とを有し、これらは真空容器41を挟んで対
向している。換言すれば、レーザ装置51から出たレー
ザ光29が真空容器41を通った後にレーザ検出器53
に入るようになっている。そして、レーザ光29が真空
容器41に入る部分に入射側差圧ガス室55、レーザ光
29が真空容器41から出る部分に出射側差圧ガス室5
7がそれぞれ真空容器41と協働して形成されている。
この差圧ガス室55、57にはそれぞれ、流量調整弁5
9及び不活性ガスボンベ61を有するガス導入系63が
連絡している。更に、差圧ガス室55の構成を説明する
と、レーザ装置51側に入射窓65,真空容器41の内
部側に遮蔽板67が設けられ、この遮蔽板67には小孔
69が設けられている。同様に差圧ガス室57のレーザ
検出器53側には出射窓71、真空容器41の内部側に
遮蔽板73が設けられ、この遮蔽板73には小孔75が
設けられている。そして、後述する理由から差圧ガス室
55、57の圧力は5.73Pa以上、小孔69、75
の大きさは、2.4×10-3mとなっている。尚、図示
はされていないが、入射窓65と出射窓71には、石英
ガラス板が設けられ、内外圧力の境界となっている。
Next, the configuration of the vapor concentration measuring device 50 will be described. The vapor concentration measuring device 50 has a laser device 51 and a laser detector 53, which are opposed to each other with the vacuum vessel 41 interposed therebetween. In other words, after the laser light 29 emitted from the laser device 51 passes through the vacuum vessel 41, the laser detector 53
Is to enter. The incident side differential pressure gas chamber 55 is located at a portion where the laser beam 29 enters the vacuum vessel 41, and the emission side differential pressure gas chamber 5 is located at a portion where the laser beam 29 exits the vacuum vessel 41.
7 are respectively formed in cooperation with the vacuum container 41.
Each of the differential pressure gas chambers 55 and 57 has a flow control valve 5
9 and a gas introduction system 63 having an inert gas cylinder 61 are in communication. Further, the configuration of the differential pressure gas chamber 55 will be described. The incident window 65 is provided on the laser device 51 side, and a shielding plate 67 is provided inside the vacuum vessel 41, and the shielding plate 67 is provided with a small hole 69. . Similarly, an emission window 71 is provided on the laser detector 53 side of the differential pressure gas chamber 57, and a shield 73 is provided inside the vacuum vessel 41, and a small hole 75 is provided in the shield 73. The pressure in the differential pressure gas chambers 55 and 57 is 5.73 Pa or more and the small holes 69 and 75
Is 2.4 × 10 −3 m. Although not shown, a quartz glass plate is provided in the entrance window 65 and the exit window 71, and serves as a boundary between the inside and outside pressures.

【0009】蒸気が差圧ガス室55、57に入るのを完
全に防止するには、小孔69,75で噴出流を連続体流
れとする必要がある。このため、不活性ガスのこの部分
での平均自由行程λG(m)がその環境での代表長さ
(ここでは小孔67、75の大きさdが適切)と同等以
下であり、且つ小孔67、75で流れがチョークする
(音速流となる)が必要であり、このため次式を満足す
る必要がある。 λG = 6.92 ×10-3 /0.49P≦ d (1) 又、噴出ガスによる真空容器41の内部圧力Po(P
a)の上昇は、小孔67、75のコンダクタンスと差圧
ガス室55、57の圧力から、次の式を満足する必要が
ある。 Q = 7.83 × 10 × d2 × (P−Po ) (2) ここで、Q(不活性ガスの封入量:Pa・m2/s)
は、真空排気容量と許容される圧力上昇分との積で与え
られる。排気容量を40(m3/s)とし、又真空容器
41の内部圧力を1.33×10-4(Pa)として、そ
の50%までの圧力上昇が許容されるとして、封入量Q
は、2.67× 10-4(Pa・m3/s)となる。この
ような関係の上記(1)(2)式を同時に満足させる
と、前記した圧力と小孔の大きさが得られる。
In order to completely prevent the steam from entering the differential pressure gas chambers 55 and 57, it is necessary to make the jet flow in the small holes 69 and 75 a continuous flow. Therefore, the mean free path λ G (m) in this portion of the inert gas is equal to or less than the representative length in the environment (the size d of the small holes 67 and 75 is appropriate here), and is small. It is necessary for the flow to choke (become a sonic flow) at the holes 67 and 75, and therefore it is necessary to satisfy the following expression. λ G = 6.92 × 10 −3 /0.49P≦d (1) Also, the internal pressure P o (P
The rise of a) needs to satisfy the following expression based on the conductance of the small holes 67 and 75 and the pressure of the differential pressure gas chambers 55 and 57. Q = 7.83 × 10 × d 2 × (P- Po ) (2) Here, Q (the amount of inert gas charged: Pa · m 2 / s)
Is given by the product of the evacuation capacity and the allowable pressure rise. Assuming that the exhaust capacity is 40 (m 3 / s), the internal pressure of the vacuum vessel 41 is 1.33 × 10 −4 (Pa), and the pressure rise up to 50% thereof is allowed, the filling amount Q
Is 2.67 × 10 −4 (Pa · m 3 / s). By satisfying the above expressions (1) and (2) at the same time, the pressure and the size of the small hole can be obtained.

【0010】次に上述のような構成の蒸気濃度計測装置
50の作用を説明する。真空蒸着装置40は蒸着運転に
供されるため、真空排気装置43により真空容器41の
内部は規定の真空度になるように排気される。そして、
るつぼ3の中の蒸発物質5を加熱、蒸発させ、ガス流体
9が発生して取り付けられた被蒸着板Aに真空蒸着を行
う。真空排気装置43の運転により差圧ガス室55、5
7の内部も真空にされるが、ガス導入系63の作動によ
り不活性ガスボンベ61内の不活性ガスが調整供給され
ると、その中に充満し,小孔69、75から音速の連続
体流として流出し、真空容器41内に入る。従って、遮
蔽体7の外に出たガス流体9の一部も差圧ガス室55、
57には進入せず、入射窓65及び出射窓71は汚染さ
れずに清浄に保持される。尚、真空容器41内の圧力上
昇は、差圧ガス室55、57の圧力と小孔69、75の
大きさの適正比により、許容範囲内に抑えられる。
Next, the operation of the vapor concentration measuring device 50 having the above configuration will be described. Since the vacuum evaporation apparatus 40 is subjected to an evaporation operation, the inside of the vacuum vessel 41 is evacuated by the vacuum evacuation apparatus 43 so as to have a specified degree of vacuum. And
The evaporating substance 5 in the crucible 3 is heated and evaporated, and a gaseous fluid 9 is generated to perform vacuum evaporation on the attached plate A to be evaporated. The differential pressure gas chambers 55, 5
7 is also evacuated, but when the inert gas in the inert gas cylinder 61 is adjusted and supplied by the operation of the gas introduction system 63, the gas is filled in the inert gas and the sonic continuous flow from the small holes 69 and 75. And enters the vacuum vessel 41. Therefore, a part of the gas fluid 9 that has come out of the shield 7 is also a differential pressure gas chamber 55,
The entrance window 65 and the exit window 71 are kept clean without contamination. The pressure increase in the vacuum vessel 41 can be suppressed within an allowable range by an appropriate ratio between the pressures of the differential pressure gas chambers 55 and 57 and the sizes of the small holes 69 and 75.

【0011】このような状態で、レーザ装置51からレ
ーザ光29を発射すると、入射窓65から差圧ガス室5
5を通って、真空容器41内のガス流体9の流れ空間に
入る。そして、ここで蒸気濃度に応じた減衰がレーザ光
29に生じ、そのレーザ光29が差圧ガス室57、出射
窓71を通り、レーザ検出器53に入り、検出される。
前述したように、検出されたレーザ光29は、蒸気濃度
に応じた減衰をしているので、その減衰度等を計測する
ことにより、蒸気濃度の正確に計測される。
In this state, when the laser beam 29 is emitted from the laser device 51, the differential pressure gas chamber 5
5 and enters the flow space of the gas fluid 9 in the vacuum vessel 41. Then, an attenuation corresponding to the vapor concentration occurs in the laser light 29, and the laser light 29 passes through the differential pressure gas chamber 57 and the emission window 71, enters the laser detector 53, and is detected.
As described above, since the detected laser beam 29 is attenuated in accordance with the vapor concentration, the vapor concentration can be accurately measured by measuring the degree of attenuation or the like.

【0012】前記した実施形態においては、真空容器と
一体的に差圧ガス室を形成したが、図2に示す実施形態
のように、差圧ガス室を真空容器の中に設けても良い。
この実施形態を図面に基づいて説明するが、前記した実
施形態と同じ部分については、冗長を避けるため説明を
割愛する。図2を参照するに、真空蒸着装置70の真空
容器71は、後述するように大きな貫通部は無く、光フ
ァイバケーブルやガス導入管の端子取り付け孔があるだ
けである。その他の真空蒸着装置70の構成部材は、真
空蒸着装置40(図1)と同じである。その真空容器7
1の中には、遮蔽体7を挟んで差圧ガス室81,83が
それぞれ設けられている。レーザ装置51から延びた光
ファイバケーブル85が導入端子87を介して真空容器
71内に入り、差圧ガス室81の端板に終端して入射部
89を形成している。同様に、レーザ検出器53から延
びた光ファイバケーブル91が導入端子93を介して真
空容器71内に入り、差圧ガス室83の端板に終端して
出射部95を形成している。入射部89に対向する差圧
ガス室81の端板には小孔97が、又出射部95に対向
する差圧ガス室83の端板には小孔99がそれぞれ形成
され、小孔97,99は入射部89と出射部95を結ぶ
直線上に位置して入射部89から出たレーザ光101が
出射部95に入るようになっている。更に、前述の蒸気
濃度計測装置80において、2つのガス導入系110は
流量制御弁51と不活性ガスボンベ61を有するが、そ
のガス導入管が導入端子111を介して真空容器71内
に気密に延び、それぞれ差圧ガス室81、83に連絡し
ている。
In the above-described embodiment, the differential pressure gas chamber is formed integrally with the vacuum container. However, as in the embodiment shown in FIG. 2, the differential pressure gas chamber may be provided in the vacuum container.
This embodiment will be described with reference to the drawings, but the description of the same parts as the above-described embodiment will be omitted to avoid redundancy. Referring to FIG. 2, the vacuum vessel 71 of the vacuum deposition apparatus 70 does not have a large through-hole as described later, and has only a terminal mounting hole for an optical fiber cable or a gas inlet tube. The other components of the vacuum evaporation apparatus 70 are the same as those of the vacuum evaporation apparatus 40 (FIG. 1). The vacuum container 7
In 1, differential pressure gas chambers 81 and 83 are respectively provided with the shield 7 interposed therebetween. An optical fiber cable 85 extending from the laser device 51 enters the vacuum vessel 71 via the introduction terminal 87 and terminates at an end plate of the differential pressure gas chamber 81 to form an incident portion 89. Similarly, an optical fiber cable 91 extending from the laser detector 53 enters the vacuum vessel 71 via the introduction terminal 93 and terminates at an end plate of the differential pressure gas chamber 83 to form an emission section 95. A small hole 97 is formed in an end plate of the differential pressure gas chamber 81 facing the entrance section 89, and a small hole 99 is formed in an end plate of the differential pressure gas chamber 83 facing the emission section 95. Numeral 99 is located on a straight line connecting the incident portion 89 and the emission portion 95 so that the laser beam 101 emitted from the incidence portion 89 enters the emission portion 95. Further, in the above-described vapor concentration measuring device 80, the two gas introduction systems 110 have the flow control valve 51 and the inert gas cylinder 61, and the gas introduction pipes extend air-tightly into the vacuum vessel 71 via the introduction terminal 111. , And communicate with the differential pressure gas chambers 81 and 83, respectively.

【0013】前述した図2の実施形態においては、真空
蒸着装置70及び蒸気濃度計測装置80の基本的な作用
は、図1のものと同じである。しかしながら、差圧ガス
室81、83は、真空容器71の内部に設けられ、これ
らはそれぞれ光ファイバケーブル85、91を介してレ
ーザ装置51及びレーザ検出器53に連絡し、真空容器
71を光ファイバケーブルが貫通するので、導入端子8
793の部分の真空隔離が容易になり、信頼性が向上す
るという効果が得られる。又、レーザ装置51及びレー
ザ検出器53の設置場所の自由度が大きくなる。
In the embodiment of FIG. 2 described above, the basic operations of the vacuum vapor deposition device 70 and the vapor concentration measuring device 80 are the same as those in FIG. However, the differential pressure gas chambers 81 and 83 are provided inside the vacuum vessel 71, and these are connected to the laser device 51 and the laser detector 53 via the optical fiber cables 85 and 91, respectively. Since the cable penetrates, the introduction terminal 8
Vacuum isolation of the portion 793 is facilitated, and the effect of improving reliability is obtained. Further, the degree of freedom of the installation location of the laser device 51 and the laser detector 53 is increased.

【0014】更に別の実施形態について説明する。前述
の2つの実施形態においては、蒸気濃度の計測に用いる
レーザ装置及びレーザ検出器を真空容器の外側に配置し
たが、図3に示す実施形態のように真空蒸着装置の真空
容器の内部に設けても良い。即ち、図3を参照するに、
真空蒸着装置120の真空容器121は、基本的構造が
前述の真空容器41、71と同じであり、付属機器用導
入端子の取り付け孔が異なるのみである。真空蒸着装置
120のその他の構成も、真空蒸着装置40、70と同
じである。
Another embodiment will be described. In the above two embodiments, the laser device and the laser detector used for measuring the vapor concentration are arranged outside the vacuum vessel. However, as in the embodiment shown in FIG. 3, they are provided inside the vacuum vessel of the vacuum evaporation apparatus. May be. That is, referring to FIG.
The vacuum vessel 121 of the vacuum deposition apparatus 120 has the same basic structure as the above-described vacuum vessels 41 and 71, and differs only in the mounting holes for the accessory equipment introduction terminals. Other configurations of the vacuum evaporation apparatus 120 are the same as those of the vacuum evaporation apparatuses 40 and 70.

【0015】次に蒸気濃度計測装置130の構造を説明
すると、真空容器121の中に遮蔽体7を挟んで差圧ガ
ス室131、133が配設されている。差圧ガス室13
1、133の中にはレーザ装置135とレーザ検出器1
37がそれぞれ配置されている。電源139は真空容器
121の外側にあってそこから延びた電源ケーブル14
1がケーブル用の導入端子143を介して真空容器12
1の殻を貫き、レーザ装置135に電気的に接続してい
る。又、信号処理器145も真空容器121の外側にあ
り、そこから延びた信号ケーブル147がケーブル用の
導入端子149を介して真空容器121の内部に延び、
レーザ検出器137に接続している。更に、レーザ装置
135の出射部151に対向する差圧ガス室131の端
板には小孔153が設けられ、同様にレーザ検出器13
7の入射部155に対向する差圧ガス室133の端板に
も小孔157が設けられている。このような小孔15
3、157はレーザ光159が通るように直線上に配置
されている。小孔153、157の大きさも、前述と同
様に設定されている。
Next, the structure of the vapor concentration measuring apparatus 130 will be described. Differential pressure gas chambers 131 and 133 are provided in a vacuum vessel 121 with a shield 7 interposed therebetween. Differential pressure gas chamber 13
1 and 133, a laser device 135 and a laser detector 1 are provided.
37 are arranged respectively. The power supply 139 is located outside the vacuum vessel 121 and extends therefrom.
1 is a vacuum vessel 12 via a lead-in terminal 143 for a cable.
1 and is electrically connected to the laser device 135. The signal processor 145 is also outside the vacuum vessel 121, and a signal cable 147 extending therefrom extends into the vacuum vessel 121 via a cable introduction terminal 149,
It is connected to a laser detector 137. Further, a small hole 153 is provided in an end plate of the differential pressure gas chamber 131 facing the emission section 151 of the laser device 135, and a laser detector 13 is similarly provided.
The small hole 157 is also provided in the end plate of the differential pressure gas chamber 133 facing the incidence part 155 of No. 7. Such a small hole 15
3, 157 are arranged on a straight line so that the laser beam 159 passes. The sizes of the small holes 153 and 157 are set in the same manner as described above.

【0016】又、蒸気濃度計測装置130には、ガス導
入系160と冷却水系170がそれぞれ差圧ガス室13
1、133に対応して設けられている。ガス導入系16
0は、不活性ガスボンベ161、流量制御弁163及び
ガス導入管165を有し、ガス導入管165は導入端子
167を介して真空容器121の殻を気密に貫通してい
る。冷却水系170は、図示しない冷却水供給装置に連
絡した給排水管171と導入端子173とを有し、導入
端子173は給排水管171と真空容器121の殻との
間の気密を保持し、真空容器121の内部の真空達成及
び保持を確実にする。
In the vapor concentration measuring device 130, a gas introduction system 160 and a cooling water system 170 are respectively provided with a differential pressure gas chamber 13
1, 133 are provided. Gas introduction system 16
Numeral 0 has an inert gas cylinder 161, a flow control valve 163, and a gas introduction pipe 165, and the gas introduction pipe 165 air-tightly penetrates the shell of the vacuum vessel 121 via an introduction terminal 167. The cooling water system 170 has a water supply / drainage pipe 171 and an introduction terminal 173 connected to a cooling water supply device (not shown). The introduction terminal 173 maintains airtightness between the water supply / drainage pipe 171 and the shell of the vacuum vessel 121, Ensure vacuum attainment and retention inside 121.

【0017】この実施形態における真空蒸着装置120
及び蒸気濃度計測装置130の基本的作用も前述の実施
形態と同じである。異なる部分について説明すると、レ
ーザ装置135は電源139から分離され、電源ケーブ
ル141を介して給電され,発振作用を行ってレーザ光
159を直接差圧ガス室131内及び真空容器121内
に出射する。そして、冷却系170からの冷却水の給排
を受けて冷却され、適切な温度に保持される。又、レー
ザ光159を受けるレーザ検出器137は、信号処理器
145から分離されているから、検出したレーザ光15
9の光信号を信号ケーブル147を経由して信号処理器
145に送り、蒸気による減衰を基に蒸気濃度を検出す
る。レーザ検出器137も冷却系170によって給排さ
れる冷却水により、真空容器121内の高温に対し冷却
される。
The vacuum deposition apparatus 120 according to this embodiment
The basic operation of the vapor concentration measuring device 130 is the same as that of the above-described embodiment. Explaining the different parts, the laser device 135 is separated from the power supply 139, is supplied with power via the power supply cable 141, performs an oscillating operation, and emits the laser light 159 directly into the differential pressure gas chamber 131 and into the vacuum vessel 121. Then, the cooling water is supplied and discharged from the cooling system 170 to be cooled and maintained at an appropriate temperature. The laser detector 137 that receives the laser beam 159 is separated from the signal processor 145, so that the detected laser beam
The optical signal No. 9 is sent to the signal processor 145 via the signal cable 147, and the vapor concentration is detected based on the attenuation by the vapor. The laser detector 137 is also cooled by the cooling water supplied and discharged by the cooling system 170 to the high temperature inside the vacuum vessel 121.

【0018】以上説明した図3の実施形態によれば、レ
ーザ装置135がレーザ光159を直接出射し、且つレ
ーザ検出器137がこれを直接受けるので、光の伝送ロ
スが最小化され、正確な蒸気濃度の計測ができる。又、
レーザ装置135とレーザ検出器137は、それぞれ電
源と信号処理器とから分離され、真空容器121の中に
配置され、全体としてコンパクトになると共に配置の自
由度が大きくなっている。又、真空容器121の殻を貫
く真空隔離部は、ケーブル用の導入端子を使用している
ので、真空隔離効果が大きく、信頼性が良好である。以
上、例示的な実施形態について説明したが、本発明はこ
れらに限定されず、例えばレーザ光を発生させるレーザ
装置とレーザ光を受けるレーザ検出器とを相互に組み合
わせるなどの各種改変、変更が可能である。
According to the embodiment of FIG. 3 described above, since the laser device 135 directly emits the laser light 159 and the laser detector 137 directly receives the laser light 159, the transmission loss of light is minimized and accurate. Can measure vapor concentration. or,
The laser device 135 and the laser detector 137 are separated from the power supply and the signal processor, respectively, and are disposed in the vacuum vessel 121. The laser device 135 and the laser detector 137 are compact as a whole and have a high degree of freedom in arrangement. Further, since the vacuum isolation portion penetrating through the shell of the vacuum vessel 121 uses the introduction terminal for the cable, the vacuum isolation effect is large and the reliability is good. Although the exemplary embodiments have been described above, the present invention is not limited thereto, and various modifications and changes are possible, for example, combining a laser device that generates laser light with a laser detector that receives laser light. It is.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
真空蒸着装置の被計測部にレーザ光を入射し、或いはレ
ーザ光を出射させる部分に差圧ガス室を設け、不活性ガ
スが供給される差圧ガス室の遮蔽板に設けた小孔を適切
な大きさにしたので、蒸気が差圧ガス室内に侵入しない
から、レーザ光の伝送に支障を生ぜず、常に正確な蒸気
濃度計測を行うことができる。
As described above, according to the present invention,
Provide a differential pressure gas chamber at the part where the laser beam is incident on the part to be measured of the vacuum evaporation apparatus or emit the laser light, and the small holes provided on the shield plate of the differential pressure gas chamber to which the inert gas is supplied are appropriate. Since the size is small, the vapor does not enter the differential pressure gas chamber, so that the transmission of the laser beam is not hindered and the vapor concentration can always be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の全体構造を示す図式図であ
る。
FIG. 1 is a schematic diagram showing an overall structure of an embodiment of the present invention.

【図2】前記実施形態の一部を改変した改変実施形態の
全体構造を示す図式図である。
FIG. 2 is a schematic diagram showing an entire structure of a modified embodiment in which a part of the embodiment is modified.

【図3】本発明の別の実施形態の全体構造を示す図式図
である。
FIG. 3 is a schematic diagram showing the overall structure of another embodiment of the present invention.

【図4】従来装置の全体構造を示す図式図である。FIG. 4 is a schematic diagram showing the entire structure of a conventional device.

【符号の説明】[Explanation of symbols]

3 るつぼ 5 蒸発物質 7 遮蔽体 9 ガス流体 29 レーザ光 40 真空蒸着装置 41 真空容器 50 蒸気濃度計測装置 51 レーザ装置 53 レーザ検出器 55、57 差圧ガス室 59 流量調整弁 61 不活性ガスボンベ 63 ガス導入系 65 入射窓 67 遮蔽板 69 小孔 71 出射窓 73 遮蔽板 75 小孔 3 Crucible 5 Evaporated substance 7 Shield 9 Gas fluid 29 Laser light 40 Vacuum vapor deposition device 41 Vacuum container 50 Vapor concentration measuring device 51 Laser device 53 Laser detector 55, 57 Differential pressure gas chamber 59 Flow control valve 61 Inert gas cylinder 63 Gas Introducing system 65 Incident window 67 Shield plate 69 Small hole 71 Exit window 73 Shield plate 75 Small hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内にセットされた被蒸着板に真
空蒸着を行う真空蒸着装置の蒸気濃度を計測する装置に
おいて、 前記真空容器を挟んで配置されたレーザ装置とレーザ検
出器、 前記真空容器のレーザ光入射部及び出射部にそれぞれ形
成された入射側差圧ガス室と出射側差圧ガス室、及び前
記差圧ガス室の双方に個別に連絡されたガス導入系を有
し、 前記真空容器内の蒸気空間に対向した前記差圧ガス室の
遮蔽板に不活性ガス及びレーザ光を通す小孔が穿設さ
れ、該小孔の径が所定値に設定されていることを特徴と
する真空蒸着装置の蒸気濃度計測装置。
An apparatus for measuring the vapor concentration of a vacuum evaporation apparatus for performing vacuum evaporation on a deposition target plate set in a vacuum container, comprising: a laser device and a laser detector arranged with the vacuum container interposed therebetween; An inlet-side differential pressure gas chamber and an output-side differential pressure gas chamber formed respectively in a laser light incident portion and an output portion of the container, and a gas introduction system individually connected to both of the differential pressure gas chambers, A small hole through which the inert gas and the laser beam pass is formed in the shielding plate of the differential pressure gas chamber facing the vapor space in the vacuum vessel, and the diameter of the small hole is set to a predetermined value. Vapor concentration measuring device of vacuum evaporation equipment.
【請求項2】真空容器内にセットされた被蒸着板に真空
蒸着を行う真空蒸着装置の蒸気濃度を計測する装置にお
いて、 前記真空容器を挟んで配置されたレーザ装置とレーザ検
出器、 前記真空容器内にそれぞれ配設された入射側差圧ガス室
と出射側差圧ガス室、 前記入射側差圧ガス室と前記レーザ装置及び前記出射側
差圧ガス室と前記レーザ検出器とをそれぞれ連絡し、前
記真空容器の殻を真空隔離状態で貫通する光ファイバケ
ーブル、並びに前記差圧ガス室の双方に前記真空容器の
殻を真空隔離状態で貫通して個別に連絡されたガス導入
系を有し、 前記真空容器内の蒸気空間に対向した前記差圧ガス室の
遮蔽板に不活性ガス及びレーザ光を通す小孔が穿設さ
れ、該小孔の径が所定値に設定されていることを特徴と
する真空蒸着装置の蒸気濃度計測装置。
2. An apparatus for measuring the vapor concentration of a vacuum evaporation apparatus for performing vacuum evaporation on a deposition target plate set in a vacuum container, comprising: a laser device and a laser detector arranged with the vacuum container interposed therebetween; The incident-side differential pressure gas chamber and the emission-side differential pressure gas chamber respectively disposed in the container, the incident-side differential pressure gas chamber and the laser device, and the emission-side differential pressure gas chamber and the laser detector are connected to each other. An optical fiber cable penetrating the shell of the vacuum vessel in a vacuum isolated state, and a gas introduction system individually penetrating the shell of the vacuum vessel in a vacuum isolated state to both of the differential pressure gas chambers. A small hole through which the inert gas and the laser beam pass is formed in the shielding plate of the differential pressure gas chamber facing the vapor space in the vacuum vessel, and the diameter of the small hole is set to a predetermined value. Vapor concentration of vacuum deposition equipment characterized by Degree measuring device.
【請求項3】 真空容器内にセットされた被蒸着板に真
空蒸着を行う真空蒸着装置の蒸気濃度を計測する装置に
おいて、 前記真空容器内に蒸着用蒸気の流れ空間を挟んでそれぞ
れ配設された入射側差圧ガス室と出射側差圧ガス室、 前記入射側差圧ガス室内に配置されたレーザ装置、 前記出射側差圧ガス室内に配設されたレーザ検出器、 前記真空容器の外側に配置され前記真空容器の殻を真空
隔離状態で貫通する電源ケーブルを介して前記レーザ装
置に接続された電源、 前記真空容器の外側に配置され前記真空容器の殻を真空
隔離状態で貫通する信号ケーブルを介して前記レーザ検
出器に接続された信号処理器、並びに前記差圧ガス室の
双方に前記真空容器の殻を真空隔離状態で貫通して個別
に連絡されたガス導入系を有し、 前記真空容器内の蒸気空間に対向した前記差圧ガス室の
遮蔽板に不活性ガス及びレーザ光を通す小孔が穿設さ
れ、該小孔の径が所定値に設定されていることを特徴と
する真空蒸着装置の蒸気濃度計測装置。
3. An apparatus for measuring a vapor concentration of a vacuum vapor deposition apparatus for performing vacuum vapor deposition on a plate to be vapor-deposited set in a vacuum vessel, wherein the vapor concentration is arranged in the vacuum vessel with a vapor flow space for vapor deposition interposed therebetween. An incident-side differential pressure gas chamber and an output-side differential pressure gas chamber, a laser device disposed in the incident-side differential pressure gas chamber, a laser detector disposed in the output-side differential pressure gas chamber, and an outside of the vacuum vessel. A power supply connected to the laser device via a power cable that passes through the shell of the vacuum vessel in a vacuum-isolated state, and a signal that is disposed outside the vacuum vessel and penetrates the shell of the vacuum vessel in a vacuum-isolated state. A signal processor connected to the laser detector via a cable, and a gas introduction system individually connected to both of the differential pressure gas chambers by penetrating the shell of the vacuum vessel in a vacuum isolated state, Inside the vacuum vessel A small hole for passing an inert gas and a laser beam is formed in a shielding plate of the differential pressure gas chamber opposed to the vapor space, and a diameter of the small hole is set to a predetermined value. The vapor concentration measurement device of the device.
JP2000053945A 2000-02-29 2000-02-29 Vapor concentration measurement device for vacuum vapor deposition device Withdrawn JP2001242069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053945A JP2001242069A (en) 2000-02-29 2000-02-29 Vapor concentration measurement device for vacuum vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053945A JP2001242069A (en) 2000-02-29 2000-02-29 Vapor concentration measurement device for vacuum vapor deposition device

Publications (1)

Publication Number Publication Date
JP2001242069A true JP2001242069A (en) 2001-09-07

Family

ID=18575267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053945A Withdrawn JP2001242069A (en) 2000-02-29 2000-02-29 Vapor concentration measurement device for vacuum vapor deposition device

Country Status (1)

Country Link
JP (1) JP2001242069A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279205B1 (en) 2010-09-28 2013-07-05 (주)엘지하우시스 Apparatus for vacuum pressure check of vacuum insulation and measuring method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279205B1 (en) 2010-09-28 2013-07-05 (주)엘지하우시스 Apparatus for vacuum pressure check of vacuum insulation and measuring method using the same

Similar Documents

Publication Publication Date Title
US4160690A (en) Gas etching method and apparatus
KR100263405B1 (en) Treatment apparatus control method
US4339326A (en) Surface processing apparatus utilizing microwave plasma
JP2000306884A (en) Apparatus and method for plasma treatment
US20080078504A1 (en) Self-Calibrating Optical Emission Spectroscopy for Plasma Monitoring
KR20000011806A (en) Method for Controlling Plasma-Generating High Frequency Power and Plasma-Generating Apparatus
JPH07209264A (en) Device and method for analyzing sound of mixed gas
US20090301655A1 (en) Plasma Processing Apparatus
JP4974858B2 (en) Film forming apparatus and thin film forming method
JP2001242069A (en) Vapor concentration measurement device for vacuum vapor deposition device
US6052429A (en) X-ray analyzing apparatus
JPH0622217B2 (en) Surface treatment apparatus and surface treatment method
JP3267771B2 (en) Plasma processing equipment
KR20110048092A (en) Outgassing measurement apparatus and measuring method of the same
JPS6139730B2 (en)
EP3826120B1 (en) Optical system and optical correction method
US20160273097A1 (en) Method for monitoring se vapor in vacuum reactor apparatus
JPH0831598A (en) Electron linear accelerator
KR101324545B1 (en) Laser beam through the stabilization and calibration for EUV generation device to improve energy efficiency
TWI719833B (en) Method and device for monitoring gas composition and processing device using it
JPH02141576A (en) Plasma process device
JP2008277673A (en) Cvd device
JPH05243283A (en) Epitaxial growth device and growth method
JPS62113488A (en) Metallic-vapor laser device
JP6628728B2 (en) Electron beam irradiation device and irradiation system having irradiation detection

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060404

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070607