JP2001241929A - Method and apparatus for measuring aspherical shape, projection optical system and exposing method - Google Patents

Method and apparatus for measuring aspherical shape, projection optical system and exposing method

Info

Publication number
JP2001241929A
JP2001241929A JP2000055690A JP2000055690A JP2001241929A JP 2001241929 A JP2001241929 A JP 2001241929A JP 2000055690 A JP2000055690 A JP 2000055690A JP 2000055690 A JP2000055690 A JP 2000055690A JP 2001241929 A JP2001241929 A JP 2001241929A
Authority
JP
Japan
Prior art keywords
aspherical
shape
fizeau
test
interference fringes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000055690A
Other languages
Japanese (ja)
Inventor
Shigeru Nakayama
繁 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000055690A priority Critical patent/JP2001241929A/en
Publication of JP2001241929A publication Critical patent/JP2001241929A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure an aspheric surface at a high accuracy. SOLUTION: In the aspheric shape measuring method detecting an interference fringe formed by a light reflected from a surface having an aspheric design shape (aspheric surface) under detection and a light reflected from a Fizeau surface by a detector, detecting an interference fringe formed by a light reflected from a known shaped reference surface disposed, instead of the surface under detection and the light reflected from the Fizeau surface, and obtaining the shape of the surface under detection, based on the detected both interference fringes and the shape of the reference surface, the Fizeau surface is an aspheric one in this measuring method, and the shape of at least the aspheric Fizeau surface or the reference surface is set so that the fringe spacings of the interference fringes obtained for the design shape of the surface under detection and obtained for the reference surface are greater than that of an interference fringe obtained for the surface under detection with use of a spherical Fizeau surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レンズ、ミラーな
どの光学素子等に使用される非球面の面形状を高精度に
測定するための非球面形状測定方法、非球面形状測定装
置に関する。また、非球面を有した光学素子が使用され
た投影光学系、露光方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical shape measuring method and an aspherical shape measuring device for measuring an aspherical surface shape used for an optical element such as a lens or a mirror with high accuracy. Further, the present invention relates to a projection optical system and an exposure method using an optical element having an aspherical surface.

【0002】[0002]

【従来の技術】レンズやミラー等の光学素子の加工に当
たっては、その表面の作製誤差を測定する面形状測定が
必須となる。これら光学素子のうち、設計形状が球面で
ある面(以下、「被検球面」という)の面形状計測につ
いては、一般に球面フィゾー干渉計が適用される。
2. Description of the Related Art In processing an optical element such as a lens or a mirror, it is essential to measure a surface shape for measuring a manufacturing error of the surface. Of these optical elements, a spherical Fizeau interferometer is generally used for measuring the surface shape of a surface whose design shape is a spherical surface (hereinafter, referred to as a “test spherical surface”).

【0003】ここで、球面フィゾー干渉計は、他の干渉
計と同様、被検面からの光をフィゾー面からの反射光で
ある参照光と干渉させ、これにより発生する干渉縞をC
CD撮像素子などの検出器により検出するものである。
球面フィゾー干渉計では、球面状のフィゾー面が使用さ
れており、被検面の形状が球面からずれている場合に
は、そのずれに応じたパターンの干渉縞が検出される。
したがって、上記被検球面の形状を、球面からのずれ
(以下、「非球面量」という)として測定することがで
きる。
[0003] Here, the spherical Fizeau interferometer, like other interferometers, causes light from the surface to be detected to interfere with reference light, which is light reflected from the Fizeau surface, and causes interference fringes generated by this to occur.
It is detected by a detector such as a CD image sensor.
In the spherical Fizeau interferometer, a spherical Fizeau surface is used, and when the shape of the surface to be measured is displaced from the spherical surface, interference fringes of a pattern corresponding to the displacement are detected.
Therefore, the shape of the test spherical surface can be measured as a deviation from the spherical surface (hereinafter, referred to as “aspherical amount”).

【0004】一方、光学素子のうち、設計形状が非球面
である面(以下、「被検非球面」という)の面形状測定
についても、多くの場合この球面フィゾー干渉計がその
まま適用される。この場合は、被検非球面の形状を、そ
の近似球面を基準とした非球面量として測定することが
できる。
On the other hand, in many cases, the spherical Fizeau interferometer is applied as it is to the measurement of the surface shape of a surface of an optical element having a designed aspherical surface (hereinafter, referred to as “test aspherical surface”). In this case, the shape of the test aspherical surface can be measured as an aspherical amount based on the approximate spherical surface.

【0005】ところで、球面フィゾー干渉計では、被検
面の非球面量が許容範囲を超えると測定精度が悪化す
る。これは、被検面の非球面量が大きくなるほど上記干
渉縞の縞密度は高くなり、仮にその縞間隔が上記検出器
の分解能よりも狭まると、正確な検出ができなくなるか
らである。但し、上記被検球面については、設計形状が
球面とされているので、その作製誤差が著しく大きくな
い限りはその非球面量が許容範囲内に収まり、十分な精
度で測定される。
[0005] In the spherical Fizeau interferometer, when the aspherical amount of the surface to be measured exceeds an allowable range, the measurement accuracy deteriorates. This is because the fringe density of the interference fringes increases as the amount of aspherical surface of the test surface increases, and if the fringe interval is narrower than the resolution of the detector, accurate detection cannot be performed. However, since the design shape of the above-mentioned spherical surface to be measured is a spherical surface, the amount of aspherical surface is within an allowable range and the measurement is performed with sufficient accuracy unless the fabrication error is extremely large.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記被検非球
面については、設計形状が非球面とされているために、
たとえその作製誤差が小さくとも、設計形状(較差なく
作製された形状)の非球面量(以下、「設計非球面量」
という)が許容範囲を超えている限りは、測定精度の悪
化が避けられず、事実上測定が不可能となる。
However, the design aspherical surface of the aspherical surface to be examined is
Even if the fabrication error is small, the aspherical amount of the design shape (the shape fabricated without any difference) (hereinafter “design aspherical amount”)
) Exceeds the allowable range, it is inevitable that the measurement accuracy deteriorates, and measurement becomes practically impossible.

【0007】因みに、実際の被検非球面は、径位置によ
り異なる曲率半径を有した曲面であって、その場合に発
生する干渉縞の縞密度は位置により異なるので、一般に
測定不可能となるのは、干渉縞のうち特に過密となった
位置に対応する面形状についてである。本発明は、非球
面の測定を高精度化させることによって、設計非球面量
が球面フィゾー干渉計の許容範囲を超えているような非
球面(大非球面)の測定を可能とする非球面形状測定方
法、非球面形状測定装置を提供することを目的とする。
また、非球面を有した光学素子が使用された投影光学
系、露光方法を、高精度化させることを目的とする。
[0007] Incidentally, the actual aspheric surface to be measured is a curved surface having a different radius of curvature depending on the radial position, and the fringe density of the interference fringes generated in that case differs depending on the position. Is a surface shape corresponding to a particularly dense position in the interference fringes. The present invention provides an aspherical shape that enables measurement of an aspherical surface (large aspherical surface) whose design aspherical amount exceeds the allowable range of a spherical Fizeau interferometer by increasing the accuracy of the measurement of the aspherical surface. An object of the present invention is to provide a measuring method and an aspherical shape measuring device.
It is another object of the present invention to improve the accuracy of a projection optical system and an exposure method using an optical element having an aspheric surface.

【0008】[0008]

【課題を解決するための手段】請求項1乃至請求項6の
何れか1項に記載の非球面形状測定方法は、検出器によ
り、設計形状が非球面である被検面(被検非球面)から
の反射光とフィゾー面からの反射光とが成す干渉縞を検
出器にて検出するとともに、その被検面に代えて配置さ
れた既知形状の基準面からの反射光と前記フィゾー面か
らの反射光とが成す干渉縞を検出し、検出した二つの干
渉縞と前記基準面の形状とに基づいて、前記被検面の形
状を求めるものである。
According to a first aspect of the present invention, there is provided a method for measuring an aspheric surface shape, comprising the steps of: detecting, by a detector, a surface to be inspected having an aspherical design (an aspheric surface to be inspected); ) And the reflected light from the Fizeau surface are detected by a detector, and the reflected light from a reference surface of a known shape arranged in place of the test surface and the reflected light from the Fizeau surface are detected. The interference fringes formed by the reflected light are detected, and the shape of the test surface is obtained based on the two detected interference fringes and the shape of the reference surface.

【0009】そして、この非球面形状測定方法では、前
記フィゾー面は非球面フィゾー面である。また、被検面
の設計形状に対して得られる干渉縞の縞間隔と前記基準
面に対して得られる干渉縞の縞間隔とが、何れも球面フ
ィゾー面を使用した場合に前記被検面に対して得られる
干渉縞の縞間隔よりも大きくなるように、少なくとも前
記非球面フィゾー面又は前記基準面の形状が設定され
る。
In the method for measuring an aspherical surface shape, the Fizeau surface is an aspherical Fizeau surface. Further, the fringe interval of interference fringes obtained with respect to the design shape of the test surface and the fringe interval of interference fringes obtained with respect to the reference surface are all different from each other when the spherical Fizeau surface is used. At least the shape of the aspherical Fizeau surface or the reference surface is set so as to be larger than the fringe interval of the interference fringes obtained.

【0010】また、請求項2乃至請求項6の何れか1項
に記載の非球面形状測定方法では、前記フィゾー面の非
球面量が、前記被検面の設計形状とその近似球面との間
の非球面量に設定されている。このとき、被検面につい
て得られる干渉縞は、被検面とフィゾー面との非球面量
差に応じた密度になる。この密度は、球面フィゾー干渉
計が同じ被検面について得る干渉縞の密度、すなわち被
検面と球面との非球面量差に応じた密度と比較して、粗
となる。したがって、被検面に対して得られる干渉縞の
縞間隔を、確実に大きくすることができる。
In the method of measuring an aspheric surface shape according to any one of claims 2 to 6, the amount of the aspheric surface of the Fizeau surface is set between the design shape of the surface to be measured and its approximate spherical surface. Is set to the amount of aspheric surface. At this time, the interference fringes obtained on the test surface have a density corresponding to the difference in the amount of aspherical surface between the test surface and the Fizeau surface. This density is coarser than the density of interference fringes obtained by the spherical Fizeau interferometer on the same test surface, that is, the density corresponding to the difference in the amount of aspherical surface between the test surface and the spherical surface. Therefore, the fringe interval of the interference fringes obtained with respect to the test surface can be reliably increased.

【0011】また、請求項3乃至請求項6の何れか1項
に記載の非球面形状測定方法では、基準面の非球面量
が、前記被検面の設計非球面量よりも小さく設定され
る。また、請求項4又は請求項6に記載の非球面形状測
定方法では、前記基準面の非球面量が、前記非球面フィ
ゾー面と前記被検面の設計形状の近似球面との間の非球
面量に設定される。また、請求項5又は請求項6に記載
の非球面形状測定方法では、前記基準面の形状が、球面
に設定される。
In the method of measuring an aspheric surface shape according to any one of claims 3 to 6, the aspheric amount of the reference surface is set to be smaller than the designed aspheric amount of the test surface. . In the aspherical surface shape measuring method according to claim 4 or 6, the aspherical amount of the reference surface is an aspherical surface between the aspherical Fizeau surface and the approximate spherical surface of the design shape of the test surface. Set to quantity. Further, in the aspherical surface shape measuring method according to claim 5 or 6, the shape of the reference surface is set to a spherical surface.

【0012】このように非球面量の小さい基準面を予め
作製し、かつ面形状測定することは、被検面の設計形状
と同じ非球面量を有した基準面を作製し、かつ面形状測
定する場合よりも、その非球面量が小さい分だけ容易で
ある。すなわち、これらの非球面形状測定方法では、基
準面として、高精度に測定された基準原器を用意するこ
とができる。特に、基準面の形状が球面である場合に
は、既存の干渉計、例えば球面フィゾー干渉計やPoint-
Diffraction-Interferometerのような球面測定用の干渉
計によって、基準面の形状を極めて高精度に測定するこ
とができる。したがって、最終的には被検面の面形状
も、高精度に得られる。
In this way, the preparation of the reference surface having a small amount of aspherical surface and the measurement of the surface shape are performed by preparing a reference surface having the same aspherical amount as the design shape of the test surface and measuring the surface shape. This is easier than the case where the amount of aspherical surface is small. That is, in these aspheric surface shape measuring methods, a reference prototype which is measured with high accuracy can be prepared as a reference surface. In particular, when the shape of the reference surface is a spherical surface, an existing interferometer, such as a spherical Fizeau interferometer or a Point-
The shape of the reference surface can be measured with extremely high precision by a spherical measurement interferometer such as a Diffraction-Interferometer. Therefore, finally, the surface shape of the surface to be detected can be obtained with high accuracy.

【0013】また、請求項6に記載の非球面形状測定方
法では、前記フィゾー面の非球面形状および前記基準面
の形状は、前記被検面に対して得られる干渉縞の縞間隔
と前記基準面に対して得られる干渉縞の縞間隔とが、何
れも前記検出器上で2画素分以上となるよう設定されて
いる。このように、干渉縞の最小縞間隔dを、検出器の
画素ピッチPの2倍より大きく(2P<d)すれば、検
出器の各画素が縞の有無を確実に検知できるので、干渉
縞の検出確度は向上する。
In the aspherical surface shape measuring method according to claim 6, the aspherical surface shape of the Fizeau surface and the shape of the reference surface are determined based on a fringe interval of interference fringes obtained with respect to the test surface and the reference surface. Each of the fringe intervals of the interference fringes obtained with respect to the surface is set to be equal to or more than two pixels on the detector. As described above, if the minimum fringe interval d of the interference fringes is larger than twice the pixel pitch P of the detector (2P <d), each pixel of the detector can reliably detect the presence or absence of the fringes. Detection accuracy is improved.

【0014】また、請求項7乃至請求項9の何れか1項
に記載の非球面形状測定方法は、設計形状が非球面であ
る被検面(被検非球面)からの反射光と既知形状のフィ
ゾー面からの反射光とが成す干渉縞を検出器にて検出
し、検出した干渉縞と前記フィゾー面の形状とに基づい
て、前記被検面の形状を求めるものである。そして、こ
の非球面形状測定方法では、前記フィゾー面は非球面フ
ィゾー面である。また、前記被検面の設計形状に対して
得られる干渉縞の縞間隔が、球面フィゾー面を使用した
場合に前記被検面に対して得られる干渉縞の縞間隔より
も大きくなるように、前記非球面フィゾー面が設定され
る。
According to a seventh aspect of the present invention, there is provided a method for measuring an aspherical surface according to any one of claims 7 to 9, wherein the reflected light from the surface to be inspected (the aspherical surface to be inspected) whose design shape is an aspherical surface and the known shape. The interference fringes formed by the light reflected from the Fizeau surface are detected by a detector, and the shape of the surface to be detected is obtained based on the detected interference fringes and the shape of the Fizeau surface. In this aspheric surface shape measuring method, the Fizeau surface is an aspherical Fizeau surface. Further, the fringe interval of the interference fringes obtained for the design shape of the test surface is larger than the fringe interval of the interference fringes obtained for the test surface when a spherical Fizeau surface is used. The aspheric Fizeau surface is set.

【0015】また、請求項8又は請求項9に記載の非球
面形状測定方法では、前記フィゾー面の非球面量は、前
記被検面の設計形状とその近似球面との間の非球面量に
設定されている。このとき、被検面について得られる干
渉縞は、被検面とフィゾー面との非球面量差に応じた密
度になる。この密度は、球面フィゾー干渉計が同じ被検
面について得る干渉縞の密度、すなわち被検面と球面と
の非球面量差に応じた密度と比較して、粗となる。した
がって、被検面に対して得られる干渉縞の間隔を確実に
大きくすることができる。
In the aspherical surface shape measuring method according to claim 8 or 9, the amount of aspherical surface of the Fizeau surface is equal to the amount of aspherical surface between the design shape of the surface to be measured and its approximate spherical surface. Is set. At this time, the interference fringes obtained on the test surface have a density corresponding to the difference in the amount of aspherical surface between the test surface and the Fizeau surface. This density is coarser than the density of interference fringes obtained by the spherical Fizeau interferometer on the same test surface, that is, the density corresponding to the difference in the amount of aspherical surface between the test surface and the spherical surface. Therefore, the interval between the interference fringes obtained with respect to the test surface can be reliably increased.

【0016】請求項9に記載の非球面形状測定方法で
は、前記フィゾー面の形状は、前記被検面に対して得ら
れる干渉縞の縞間隔が、前記検出器上の2画素分以上と
なるよう設定されている。このように、干渉縞の最小縞
間隔dを、検出器の画素ピッチPの2倍より大きく(2
P<d)すれば、検出器の各画素が縞の有無を検知でき
るので、干渉縞の検出確度は向上する。
According to a ninth aspect of the present invention, in the method of measuring an aspherical surface shape, the shape of the Fizeau surface is such that a fringe interval of interference fringes obtained with respect to the test surface is equal to or more than two pixels on the detector. It is set as follows. Thus, the minimum fringe interval d of the interference fringes is larger than twice the pixel pitch P of the detector (2
If P <d), each pixel of the detector can detect the presence or absence of a fringe, so that the detection accuracy of interference fringes is improved.

【0017】請求項10に記載の非球面形状測定装置
は、フィゾー面と、光源から出射された光束を所定波面
に変換してそのフィゾー面と設計形状が非球面の被検面
との双方に導く波面変換手段と、双方の面における反射
光が成す干渉縞を検出する検出器とを備えた非球面形状
測定装置であって、前記フィゾー面は、請求項1乃至請
求項9の何れか1項に記載の非球面形状測定方法におい
て設定される形状である。この非球面形状測定装置によ
れば、上記した各非球面形状測定方法を確実に施するこ
とができる。
According to a tenth aspect of the present invention, there is provided an aspherical surface shape measuring apparatus, wherein a Fizeau surface and a light beam emitted from a light source are converted into a predetermined wavefront, and both the Fizeau surface and a test surface having an aspherical design are designed. 10. An aspherical shape measuring device comprising a wavefront converting means for guiding and a detector for detecting an interference fringe formed by light reflected on both surfaces, wherein the Fizeau surface is any one of claims 1 to 9. This is the shape set in the aspherical shape measurement method described in the section. According to this aspherical surface shape measuring device, each of the aspherical surface shape measuring methods described above can be reliably performed.

【0018】なお、基準面として非球面を使用する場合
には、上記した発明そのものをその基準面の形状測定に
適用して、基準面の形状を高精度化させることもでき
る。請求項11に記載の投影光学系は、原板に描かれた
パターンを基板上に露光する投影光学系において、前記
投影光学系に使用される光学部材の面が、請求項1乃至
請求項9の何れか1項に記載の非球面形状測定方法によ
り計測された被検面であり、計測された結果に基づき、
前記光学部材の面が所定の精度内に研磨されている。
When an aspherical surface is used as a reference surface, the above-described invention itself can be applied to measurement of the shape of the reference surface to improve the shape of the reference surface. The projection optical system according to claim 11, wherein a surface of an optical member used in the projection optical system is a projection optical system that exposes a pattern drawn on an original plate onto a substrate. A test surface measured by the aspherical shape measurement method according to any one of the above, based on the measured result,
The surface of the optical member is polished to a predetermined accuracy.

【0019】この投影光学系には、高精度に研磨された
光学部材が使われるので、原板のパターンが基板に的確
に露光される。請求項12に記載の露光方法は、投影光
学系を介して、原板に描かれたパターンを基板上に露光
する露光方法において、前記投影光学系に使用される光
学部材の面が、請求項1乃至請求項9の何れか1項に記
載の非球面形状測定方法により計測された被検面であ
り、計測された結果に基づき、前記光学部材が所定の精
度内に研磨される。
Since an optical member polished with high precision is used in this projection optical system, the pattern of the original plate is accurately exposed on the substrate. According to a twelfth aspect of the present invention, in the exposure method of exposing a pattern drawn on an original plate onto a substrate via a projection optical system, a surface of an optical member used in the projection optical system may have a first surface. A surface to be measured measured by the method for measuring an aspheric surface shape according to claim 9, wherein the optical member is polished within a predetermined accuracy based on the measured result.

【0020】この露光方法では、高精度に研磨された光
学部材を使った投影光学系が使用されるので、原板のパ
ターンが基板に的確に露光される。
In this exposure method, a projection optical system using an optical member polished with high precision is used, so that the pattern of the original plate is accurately exposed on the substrate.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】〔第1実施形態〕先ず、本発明の第1実施
形態を図1、図2、図3を用いて説明する。本実施形態
では、被検物17の被検非球面17’の面形状測定を行
うに当たり、非球面形状測定装置10と、既知形状の基
準面18’を有した基準原器18とが用意される。
[First Embodiment] First, a first embodiment of the present invention will be described with reference to FIGS. 1, 2 and 3. FIG. In the present embodiment, when measuring the surface shape of the test aspheric surface 17 ′ of the test object 17, an aspheric surface shape measuring device 10 and a reference prototype 18 having a reference surface 18 ′ of a known shape are prepared. You.

【0023】<非球面形状測定装置の構成>図1に示す
ように、本実施形態で使用される非球面形状測定装置1
0は、レーザ光源11、ビームエキスパンダ12、偏向
ビームスプリッタ(PBS)13、1/4波長板14、
波面変換手段15、非球面フィゾー面15’、被検位置
(図1中点線)において被検物17や基準原器18を支
持する部材(不図示)、ビーム径変換光学系19、CC
D撮像素子などの2次元画像検出器110などを備え、
コンピュータなどの演算装置111、モニタなどの表示
装置112に接続される。ちなみに従来の球面フィゾー
干渉計は、これらの光学系のうち、非球面フィゾー面に
代えて球面フィゾー面を備えたものに等しい。
<Configuration of Aspherical Shape Measuring Apparatus> As shown in FIG. 1, an aspherical shape measuring apparatus 1 used in the present embodiment is used.
0 denotes a laser light source 11, a beam expander 12, a deflection beam splitter (PBS) 13, a quarter-wave plate 14,
Wavefront converting means 15, aspherical Fizeau surface 15 ', member (not shown) for supporting test object 17 and reference prototype 18 at test position (dotted line in FIG. 1), beam diameter conversion optical system 19, CC
A two-dimensional image detector 110 such as a D imaging device,
It is connected to a computing device 111 such as a computer and a display device 112 such as a monitor. Incidentally, the conventional spherical Fizeau interferometer is equivalent to one of these optical systems having a spherical Fizeau surface instead of the aspherical Fizeau surface.

【0024】非球面形状測定装置10において、レーザ
光源11を射出した直線偏光ビームLは、ビームエキス
パンダ12でビーム径が拡大され、PBS13に入射す
る。ビームLは、その偏光面がPBS13で反射される
ように選ばれており、PBS13で反射された後、1/
4波長板14を経て波面変換手段15、非球面フィゾー
面15’へ入射する。
In the aspherical shape measuring device 10, the beam diameter of the linearly polarized light beam L emitted from the laser light source 11 is expanded by the beam expander 12, and is incident on the PBS 13. The beam L is selected such that its polarization plane is reflected by the PBS 13, and after being reflected by the PBS 13,
The light enters the wavefront converting means 15 and the aspherical Fizeau surface 15 'through the four-wavelength plate 14.

【0025】この波面変換手段15は、入射した光束の
波面を、非球面フィゾー面15’および被検位置に配置
された被検物17の被検非球面17’(又は被検位置に
配置された基準原器18の基準面18’)に、概ね垂直
に同位相で入射する波面に変換するよう設計されてい
る。この波面変換手段15に入射した光束は、一部がフ
ィゾー面15’にて反射して参照用光束LRとなり、他
の一部が非球面フィゾー面15’を透過して所定の非球
面波である測定用光束LMとなる。
The wavefront converting means 15 converts the wavefront of the incident light beam into the aspherical Fizeau surface 15 'and the aspherical surface 17' of the test object 17 located at the test position (or at the test position). It is designed so as to be converted into a wavefront which is incident on the reference plane 18 ') of the reference prototype 18 substantially perpendicularly and in phase. A part of the light beam incident on the wavefront converting means 15 is reflected on the Fizeau surface 15 'to become a reference light beam LR, and the other part is transmitted through the aspherical Fizeau surface 15' and becomes a predetermined aspherical wave. It becomes a certain measurement light beam LM.

【0026】測定用光束LMは、被検位置に配置された
被検物17の被検非球面17’(又は被検位置に配置さ
れた基準原器18の基準面18’)に入射する。これら
の面で反射した測定用光束LMは、非球面フィゾー面1
5’、波面変換手段15、1/4波長板14を経てPB
S13へ入射する。測定用光束LMは、往復で1/4波
長板を2度通過して偏光面が90度回転した状態でPB
S13を透過する。PBS13を透過した測定用光束L
Mは、ビーム径変換光学系19でビーム径が変換され、
2次元画像検出器110に入射する。
The measuring light beam LM is incident on the aspherical surface 17 'of the test object 17 placed at the test position (or the reference surface 18' of the reference standard 18 placed at the test position). The measurement light beam LM reflected by these surfaces is applied to the aspherical Fizeau surface 1
5 ′, PB through the wavefront converting means 15 and the 波長 wavelength plate 14
It is incident on S13. The measuring light beam LM passes through the quarter-wave plate twice in a reciprocating manner, and the polarization plane is rotated by 90 degrees.
The light passes through S13. Measurement light flux L transmitted through PBS13
The beam diameter of M is converted by the beam diameter conversion optical system 19,
The light enters the two-dimensional image detector 110.

【0027】一方、非球面フィゾー面15’で反射した
参照用光束LRは、波面変換手段15、1/4波長板1
4を経て、PBS13を透過し、ビーム径変換光学系1
9を介して2次元画像検出器110に入射する。この参
照用光束LRは、前記した測定用光束LMと干渉し、そ
の2次元画像検出器110上に干渉縞を成す。2次元画
像検出器110の出力は、演算装置111に取り込まれ
て解析される。この演算装置111では、位相分布(こ
こでは、測定用光束LMと参照用光束LRとの位相差の
分布を「位相分布」という。)の算出や、面形状の算出
が行われる。
On the other hand, the reference light beam LR reflected by the aspherical Fizeau surface 15 ′ is transmitted to the wavefront converting means 15 and the 波長 wavelength plate 1.
4, the light passes through the PBS 13 and passes through the beam diameter conversion optical system 1
9 and enters the two-dimensional image detector 110. The reference light beam LR interferes with the measurement light beam LM, and forms an interference fringe on the two-dimensional image detector 110. The output of the two-dimensional image detector 110 is taken into the arithmetic unit 111 and analyzed. The arithmetic unit 111 calculates the phase distribution (here, the distribution of the phase difference between the measurement light beam LM and the reference light beam LR is referred to as “phase distribution”) and the surface shape.

【0028】以上の構成では、被検位置と非球面フィゾ
ー面15’とが近接して配置されるので、振動や温度変
化などが波面形状に与える影響を、測定用光束LMと参
照用光束LRとの両者に対してほぼ同じにすることがで
きるので、測定結果に生じる誤差が小さい。なお、上記
した非球面形状測定装置10には、波面変換手段15と
フィゾー面15’とをピエゾ素子等で光軸方向に微小移
動させる手段が備えられていてもよい。この移動と、演
算装置111内の位相シフト干渉法等の演算(周知)と
によって、位相分布の算出精度はより高められる。ま
た、ビーム径変換光学系19は、被検非球面17’や基
準面18’の像を2次元画像検出器110に結像する役
割も兼ねており、被検非球面17’の形状を正確に知る
ために、ディストーションを抑えた設計にしている。デ
ィストーションの設計値や実測値を用いて、干渉縞の横
座標を補正することによって、被検非球面17’上の座
標と2次元画像検出器110上での座標を正確に関係付
けることもできる。
In the above configuration, since the position to be inspected and the aspherical Fizeau surface 15 'are arranged close to each other, the influence of vibration or temperature change on the wavefront shape is measured by the measurement light beam LM and the reference light beam LR. Can be made almost the same for both, so that the error generated in the measurement result is small. The above-mentioned aspherical shape measuring apparatus 10 may be provided with a means for slightly moving the wavefront converting means 15 and the Fizeau surface 15 'in the optical axis direction by using a piezo element or the like. By this movement and the calculation (known) such as the phase shift interferometry in the calculation device 111, the calculation accuracy of the phase distribution is further improved. Further, the beam diameter conversion optical system 19 also serves to form an image of the test aspheric surface 17 ′ and the reference plane 18 ′ on the two-dimensional image detector 110, and accurately shapes the test aspheric surface 17 ′. In order to know, the design is reduced distortion. By correcting the abscissa of the interference fringes using the design value or the actually measured value of the distortion, the coordinates on the test aspheric surface 17 ′ and the coordinates on the two-dimensional image detector 110 can be accurately related. .

【0029】また、上記波面変換手段15としては、入
射した光束の波面を非球面フィゾー面15’に概ね垂直
に同位相で入射する波面に変換するよう設計されている
のであれば、例えば、球面および平面からなるレンズで
構成されたもの、ミラーで構成されたもの、球面および
平面ミラーを含むもの、非球面レンズを含むもの、非球
面ミラーを含むもの、透過型回折光学素子を含むもの、
反射型回折光学素子を含むものなどの何れを使用しても
よい。
If the wavefront converting means 15 is designed to convert the wavefront of the incident light beam into a wavefront which is incident on the aspherical Fizeau surface 15 'almost vertically and in the same phase, for example, a spherical surface is used. And those made up of planar lenses, those made up of mirrors, those that include spherical and planar mirrors, those that include aspherical lenses, those that include aspherical mirrors, those that include transmissive diffractive optical elements,
Any of those including a reflection type diffractive optical element may be used.

【0030】また、基準原器18と被検物17とは同じ
被検位置に配置される必要はなく、両者の位置の相違が
既知であれば、互いに異なる位置としてもよい。但し、
その場合には、両者の位置の相違が予め計測されている
か、又は適宜計測されることとする。 <面形状測定手順>以下、本実施形態の面形状測定手順
を説明する。
The reference standard 18 and the test object 17 do not need to be arranged at the same test position, and may be different from each other if the difference between the two positions is known. However,
In that case, the difference between the two positions is measured in advance or is measured as appropriate. <Surface shape measurement procedure> The surface shape measurement procedure of the present embodiment will be described below.

【0031】始めに、非球面形状測定装置10の被検位
置に基準原器18を配置して、基準面18’の位相分布
W0を得る。次に、この基準原器18を光路から外すと
共に、被検位置に被検物17を配置して、被検非球面1
7’の位相分布W1を得る。
First, the reference prototype 18 is arranged at the position to be inspected by the aspherical shape measuring device 10 to obtain the phase distribution W0 of the reference surface 18 '. Next, the reference prototype 18 is removed from the optical path, and the test object 17 is disposed at the test position.
7 'is obtained.

【0032】次に、被検非球面17’の位相分布W1
と、基準面18’の位相分布W0との差から、基準面1
8’を基準とした被検非球面17’の形状差Δw1を求
める。さらに、被検非球面17’の形状差Δw1に、基
準面18’の形状w0(既知)を加え、被検非球面1
7’の形状w1を算出する。なお、この面形状測定手順
において、基準原器18の位相分布W0の取得と、被検
非球面17’の位相分布W1の取得との順序は、入れ替
わってもよい。また、基準面18’の位相分布W0と基
準面18’の形状w0(既知)とを元に、非球面フィゾ
ー面15’の面形状W4を算出し、その面形状W4と被
検非球面17’の位相分布W1とを元にして、被検非球
面17’の形状w1を算出してもよい。
Next, the phase distribution W1 of the test aspheric surface 17 '
From the phase distribution W0 of the reference plane 18 ′, the reference plane 1
The shape difference Δw1 of the test aspheric surface 17 ′ based on 8 ′ is determined. Further, the shape w0 (known) of the reference surface 18 'is added to the shape difference Δw1 of the test aspheric surface 17' to obtain the test aspheric surface 1 '.
The shape w1 of 7 ′ is calculated. Note that in this surface shape measurement procedure, the order of acquiring the phase distribution W0 of the reference prototype 18 and acquiring the phase distribution W1 of the test aspheric surface 17 'may be interchanged. Further, based on the phase distribution W0 of the reference surface 18 'and the shape w0 (known) of the reference surface 18', the surface shape W4 of the aspherical Fizeau surface 15 'is calculated, and the surface shape W4 and the aspheric surface 17 to be measured are calculated. The shape w1 of the test aspherical surface 17 'may be calculated based on the phase distribution W1 of'.

【0033】また、上記非球面形状測定装置10が、被
検物17と基準原器18とを異なる位置に配置させるよ
うな構成である場合には、上記手順に、被検物17と基
準原器18との間の配置位置の相違による、被検非球面
17’と基準面18’への入射波面形状との違いを予め
計算で求めて、位相分布等の上記測定結果を適宜補正す
る手順が加えられる。
In the case where the aspherical shape measuring apparatus 10 has a configuration in which the test object 17 and the reference prototype 18 are arranged at different positions, the above-described procedure includes the test object 17 and the reference prototype. Procedure for calculating in advance the difference between the aspheric surface 17 ′ to be measured and the shape of the wavefront incident on the reference surface 18 ′ due to the difference in the arrangement position with respect to the detector 18, and appropriately correcting the above measurement results such as the phase distribution Is added.

【0034】<各面の設計>図2は、本実施形態の基準
面18’の非球面量F2、非球面フィゾー面15’の非
球面量F3を、被検非球面17’の設計非球面量F1と
比較する図である。なお、図2では、比較を容易にする
ために、各面の非球面量F1、F2、F3の基準を、同
一の近似球面S(被検非球面17’の設計形状の近似球
面)に統一した。また、図2において非球面フィゾー1
5’の非球面量として示したF3は、正確にいうと、
「等価フィゾー面の非球面量」である(等価フィゾー面
とは、非球面フィゾー面15’の各位置からそのフィゾ
ー面の法線方向に互いに同位相で直進した各光線が、被
検位置において成す波面である。この等価フィゾー面は
また、非球面フィゾー面15’の各位置からそのフィゾ
ー面の法線方向に被検位置にまで互いに等距離だけ延ば
した各線分の端部を結んでできる面でもある。)。
<Design of Each Surface> FIG. 2 shows the aspherical surface amount F2 of the reference surface 18 'and the aspherical surface amount F3 of the aspherical Fizeau surface 15' in this embodiment, and the designed aspherical surface of the aspherical surface 17 'to be measured. It is a figure which compares with quantity F1. In FIG. 2, the reference of the aspherical surface amounts F1, F2, and F3 of each surface is unified to the same approximate spherical surface S (approximate spherical surface of the design shape of the test aspherical surface 17 ') for easy comparison. did. In FIG. 2, the aspherical Fizeau 1
F3, expressed as the aspherical amount of 5 ', is, to be precise,
(Equivalent Fizeau surface aspherical amount) (Equivalent Fizeau surface means that each ray that has traveled straight from the respective position of the aspherical Fizeau surface 15 ′ in the normal direction of the Fizeau surface in the same phase with each other at the test position This equivalent Fizeau surface is also formed by connecting the ends of respective line segments extending by an equal distance from each position of the aspherical Fizeau surface 15 'to the position to be inspected in the direction normal to the Fizeau surface. It is also a surface.)

【0035】図2に明らかなように、本実施形態では、
非球面フィゾー面15’の非球面量F3を、被検非球面
17’の設計形状とその近似球面S(非球面量0)との
間の値に設定している。ここで、一般に、干渉計が被検
面について得る干渉縞は、その被検面と参照面との非球
面量差に応じた密度となる。すなわち、非球面量差が大
きいほど、干渉縞は密となる。
As is apparent from FIG. 2, in this embodiment,
The aspherical surface amount F3 of the aspherical Fizeau surface 15 'is set to a value between the design shape of the test aspherical surface 17' and its approximate spherical surface S (aspherical amount 0). Here, in general, the interference fringes obtained by the interferometer on the test surface have a density corresponding to the difference in the amount of aspherical surface between the test surface and the reference surface. In other words, the interference fringes become denser as the difference in the amount of aspherical surface increases.

【0036】したがって、従来の球面フィゾー干渉計が
被検非球面17’について得る干渉縞は、被検非球面1
7’と球面との非球面量差(概ねΔF0)に応じた密
度、すなわち比較的高い密度となる。それに対し、本実
施形態の非球面形状測定装置10(図1)が被検非球面
17’について得る干渉縞は、被検非球面17’と非球
面フィゾー面15’との非球面量差(概ねΔF1)に応
じた密度、すなわち比較的低い密度になる。
Therefore, the interference fringes obtained by the conventional spherical Fizeau interferometer on the aspherical surface 17 'to be measured are as follows.
The density according to the difference in the amount of aspherical surface between 7 ′ and the spherical surface (generally ΔF0), that is, a relatively high density. On the other hand, the interference fringe obtained by the aspherical shape measuring apparatus 10 (FIG. 1) of the present embodiment on the aspherical surface 17 ′ to be measured is a difference in the amount of aspherical surface between the aspherical surface 17 ′ to be measured and the aspherical Fizeau surface 15 ′ ( The density substantially corresponds to ΔF1), that is, a relatively low density.

【0037】このようにして干渉縞の密度を下げれば、
図3に示すようにその干渉縞の最小縞間隔dを、2次元
画像検出器110の画素ピッチPの2倍より大きく(2
P<d)、好ましくは4倍より大きく(4P<d)、さ
らに好ましくは8倍より大きく(8P<d)広げること
もできる。その結果、干渉縞の検出確度が向上する。し
たがって、被検非球面17’の位相分布W1は、従来の
球面フィゾー干渉計を使用した場合と比較して精度高く
得られる。
If the density of interference fringes is reduced in this way,
As shown in FIG. 3, the minimum fringe interval d of the interference fringes is larger than twice the pixel pitch P of the two-dimensional image detector 110 (2
P <d), preferably more than 4 times (4P <d), more preferably more than 8 times (8P <d). As a result, the detection accuracy of interference fringes is improved. Therefore, the phase distribution W1 of the test aspherical surface 17 'can be obtained with higher accuracy as compared with the case where the conventional spherical Fizeau interferometer is used.

【0038】また、図2に明らかなように、本実施形態
では、基準面18’の非球面量F2を、被検非球面1
7’と比較して積極的に小さく設定している。このよう
に非球面量の小さい基準面18’を予め作製し、かつ面
形状測定することは、被検非球面17’の設計形状と同
じ基準面を作製し、かつ面形状測定する場合よりも、そ
の非球面量が小さい分だけ容易である。
Further, as is apparent from FIG. 2, in the present embodiment, the aspherical amount F2 of the reference surface 18 'is determined by the
7 'is set positively smaller than 7'. In this way, preparing the reference surface 18 ′ having a small amount of aspherical surface in advance and measuring the surface shape is better than preparing the same reference surface as the designed shape of the test aspherical surface 17 ′ and measuring the surface shape. , Which is easier because the amount of aspherical surface is small.

【0039】したがって、本実施形態では、基準原器1
8として、高精度に測定された基準原器を用意すること
ができる。因みに、図2に示す例では、基準面18’の
非球面量F2を、非球面フィゾー面15’の非球面量F
3よりもさらに小さく設計することで、基準面18’を
より高精度化している。
Therefore, in this embodiment, the reference prototype 1
As 8, the reference prototype measured with high accuracy can be prepared. Incidentally, in the example shown in FIG. 2, the aspherical surface amount F2 of the reference surface 18 'is replaced by the aspherical surface amount F of the aspherical Fizeau surface 15'.
By designing the reference surface 18 'to be smaller than 3, the reference surface 18' is made more precise.

【0040】また、この図2に示す例では、基準面1
8’の非球面量F2は、この基準面18’と非球面フィ
ゾー面15’との非球面量差(概ねΔF2)が、被検非
球面17’と非球面フィゾー面15’との非球面量差
(概ねΔF1)とほぼ等しくなるよう選択されている。
この場合、被検非球面17’について得られる干渉縞と
基準面18’について得られる干渉縞とが、互いに明暗
が反対で概ね等輝度のパターンを描く。
Further, in the example shown in FIG.
The aspheric amount F2 of 8 ′ is the difference between the aspheric amount between the reference surface 18 ′ and the aspherical Fizeau surface 15 ′ (generally ΔF2), and the aspherical surface of the test aspherical surface 17 ′ and the aspherical Fizeau surface 15 ′. It is selected so as to be substantially equal to the amount difference (approximately ΔF1).
In this case, the interference fringes obtained for the test aspheric surface 17 'and the interference fringes obtained for the reference plane 18' draw patterns of substantially equal brightness, with opposite lightness and darkness.

【0041】このように基準面18’を設計すれば、基
準面18’について得られる干渉縞の密度を、被検非球
面17’について得られる干渉縞と同様に「粗」(図3
に示すように、2P<d、好ましくは4P<d、さらに
好ましくは8P<d)とすることができる。したがっ
て、基準面18’の位相分布W0は、被検非球面17’
の位相分布W1と同様、精度高く得られる。
If the reference plane 18 'is designed in this manner, the density of the interference fringes obtained for the reference plane 18' will be "coarse" as in the case of the interference fringes obtained for the aspheric surface 17 '(FIG. 3).
(2P <d, preferably 4P <d, more preferably 8P <d). Therefore, the phase distribution W0 of the reference surface 18 'is determined by the
As in the case of the phase distribution W1.

【0042】すなわち、本実施形態では、面形状測定手
順における基準面18’の位相分布W0、被検非球面1
7’の位相分布W1は高精度に得られ、ひいては、被検
非球面17’の形状w1が高精度に算出される。また、
本実施形態において、特に、被検非球面17’の非球面
量が比較的小さい場合には、基準原器18に代えて球面
原器(球面の基準面を有した原器)を使用することも可
能である。その場合には、既存の干渉計、例えば球面フ
ィゾー干渉計やPoint-Diffraction-Interferometerのよ
うな球面測定用の干渉計によって、基準面の形状を極め
て高精度に測定することができる。
That is, in this embodiment, the phase distribution W0 of the reference surface 18 'in the surface shape measurement procedure,
The phase distribution W1 of 7 'is obtained with high accuracy, and the shape w1 of the test aspheric surface 17' is calculated with high accuracy. Also,
In the present embodiment, in particular, when the aspherical amount of the test aspherical surface 17 ′ is relatively small, a spherical prototype (a prototype having a spherical reference surface) is used instead of the reference prototype 18. Is also possible. In this case, the shape of the reference surface can be measured with extremely high precision by an existing interferometer, for example, a spherical measurement interferometer such as a spherical Fizeau interferometer or a Point-Diffraction-Interferometer.

【0043】したがって、最終的に得られる被検非球面
17’の面形状w1も、高精度に得られる。以上まとめ
ると、本実施形態によれば、非球面の測定を高精度化す
ることによって、大非球面の測定が可能となった。 <その他>なお、上記実施形態では、図2に示すよう
に、基準面18’の非球面量F2が、非球面フィゾー面
15’の非球面量F3よりも小さく設計されているが、
干渉縞の密度を十分に粗(図3に示すように、2P<
d、好ましくは4P<d、さらに好ましくは8P<d)
とすることができ、かつその面形状が予め十分な精度で
測定されているのであれば、その非球面量F3よりも大
きく設計してもよい。
Therefore, the finally obtained surface shape w1 of the test aspheric surface 17 'can be obtained with high accuracy. In summary, according to the present embodiment, it is possible to measure a large aspheric surface by increasing the accuracy of the measurement of the aspheric surface. <Others> In the above embodiment, as shown in FIG. 2, the aspherical surface amount F2 of the reference surface 18 'is designed to be smaller than the aspherical surface amount F3 of the aspherical Fizeau surface 15'.
If the density of the interference fringes is sufficiently coarse (2P <
d, preferably 4P <d, more preferably 8P <d)
If the surface shape is measured with sufficient accuracy in advance, the surface may be designed to be larger than the aspherical amount F3.

【0044】また、上記実施形態では、図2に示すよう
に、基準面18’の非球面量F2は、基準面18’と非
球面フィゾー面15’との非球面量差(概ねΔF2)
が、被検非球面17’と非球面フィゾー面15’との非
球面量差(概ねΔF1)と、ほぼ等しくなるよう選択さ
れているが、干渉縞の密度を十分に粗とする(図3に示
すように、2P<d、好ましくは8P<dとする)こと
ができるのであれば、異なる値に選択されていてもよ
い。
In the above embodiment, as shown in FIG. 2, the aspherical surface amount F2 of the reference surface 18 'is the difference between the aspherical surface amount of the reference surface 18' and the aspherical Fizeau surface 15 '(generally ΔF2).
Is selected so as to be substantially equal to the aspherical amount difference (approximately ΔF1) between the test aspherical surface 17 ′ and the aspherical Fizeau surface 15 ′, but the density of interference fringes is made sufficiently coarse (FIG. 3). As shown in (2), different values may be selected as long as 2P <d, preferably 8P <d.

【0045】また、上記非球面測定装置10の構成とし
ては、複数種の基準原器、複数種の非球面フィゾー面、
複数種の波面変換手段を備え、かつその中から所定の関
係(例えば図2に示す関係)を満たすような組み合わせ
を自動的に選択して設定する手段を備えた構成としても
よい。 〔第2実施形態〕次に、本発明の第2実施形態を図4、
図5、図6を用いて説明する。
The configuration of the aspherical surface measuring device 10 includes a plurality of types of reference prototypes, a plurality of types of aspherical Fizeau surfaces,
A configuration may be provided in which a plurality of types of wavefront converting means are provided, and a means for automatically selecting and setting a combination that satisfies a predetermined relationship (for example, the relationship shown in FIG. 2) from among them. [Second Embodiment] Next, a second embodiment of the present invention is shown in FIG.
This will be described with reference to FIGS.

【0046】ここでは、第1実施形態との相違について
のみ説明する。また、図4において、図1に示すものと
同じものについては同一の符号を付して示した。図4に
示すように、本実施形態における被検物27の被検非球
面27’の面形状測定では、被検非球面27’を、図5
に示すような2つの領域Da、Dbに分割して考え、こ
れら各領域Da、Dbついて個別に面形状測定が行われ
る。このように被検非球面27’を分割して測定するの
は、各測定の対象をなるべく非球面量の小さな面とし
て、その測定精度を高めるためである。
Here, only the differences from the first embodiment will be described. In FIG. 4, the same components as those shown in FIG. 1 are denoted by the same reference numerals. As shown in FIG. 4, in the surface shape measurement of the aspherical surface 27 ′ of the test object 27 in the present embodiment, the aspherical surface 27 ′ is
Are divided into two regions Da and Db as shown in FIG. 1, and the surface shape is individually measured for each of these regions Da and Db. The reason why the test aspherical surface 27 'is divided and measured in this way is to increase the measurement accuracy by setting each measurement target to a surface having as small an aspherical amount as possible.

【0047】なお、図5において、領域Daは、被検非
球面27’の径方向位置rについて0≦r≦ra2が成
立するような円状の領域であり、領域Dbは、被検非球
面27’の径方向位置rについてrb1≦r≦rb2が
成立するような輪帯状の領域である。各値ra2、rb
1、rb2の関係は、0≦rb1≦ra2≦rb2とな
っているので、領域Da、Dbは互いに重複する領域を
もつこととなるが、これは、重複する領域の測定結果を
もとに、後述する手順において生じる被検物27の姿勢
差による影響を除去するためである。
In FIG. 5, an area Da is a circular area such that 0 ≦ r ≦ ra2 is satisfied with respect to the radial position r of the aspheric surface 27 ′ to be inspected, and an area Db is an aspheric surface to be inspected. This is a ring-shaped area where rb1 ≦ r ≦ rb2 is satisfied for the radial position r of 27 ′. Each value ra2, rb
Since the relationship between 1 and rb2 is 0 ≦ rb1 ≦ ra2 ≦ rb2, the regions Da and Db have overlapping regions. This is based on the measurement result of the overlapping region. This is to remove the influence of the posture difference of the test object 27 generated in a procedure described later.

【0048】<非球面形状測定装置の構成>このような
本実施形態では、図4に示すように、基準原器として、
領域Daの面形状測定で使用される基準面28a’(基
準原器28a)と、領域Dbの面形状測定で使用される
基準面28b’(基準原器28b)との2つが用意され
る。また、本実施形態の非球面形状測定装置20には、
領域Daの面形状測定で使用される非球面フィゾー面2
5a’と、領域Dbの面形状測定で使用される非球面フ
ィゾー面25b’とが備えられる。なお、この非球面形
状測定装置20では、非球面フィゾー面25a’の使用
時には、この非球面フィゾー面25a’に概ね垂直で同
位相で入射する波面を形成するよう設計された波面変換
手段25aが適用され、一方、非球面フィゾー面25
b’の使用時には、この非球面フィゾー面25b’に概
ね垂直で同位相で入射する波面を形成するよう設計され
た波面変換手段25bが適用される。
<Structure of Aspherical Shape Measuring Apparatus> In this embodiment, as shown in FIG.
Two reference surfaces are prepared: a reference surface 28a '(reference prototype 28a) used for measuring the surface shape of the region Da and a reference surface 28b' (reference prototype 28b) used for measuring the surface shape of the region Db. The aspherical shape measuring device 20 of the present embodiment includes:
Aspherical Fizeau surface 2 used in surface shape measurement of region Da
5a 'and an aspherical Fizeau surface 25b' used for measuring the surface shape of the region Db. In this aspherical surface shape measuring apparatus 20, when the aspherical Fizeau surface 25a 'is used, a wavefront converting means 25a designed to form a wavefront which is substantially perpendicular to the aspherical Fizeau surface 25a' and enters in the same phase is provided. Applied, while the aspheric Fizeau surface 25
When b 'is used, a wavefront converting means 25b designed to form a wavefront which is substantially perpendicular to the aspheric Fizeau surface 25b' and is incident at the same phase is applied.

【0049】<面形状測定手順>先ず、被検非球面2
7’の領域Daを測定するに当たっては、非球面形状測
定装置20に非球面フィゾー面25a’と波面変換手段
25aとを配置した状態で、被検位置に、被検物27、
基準原器28aを順に配置して、領域Daの位相分布W
1aと基準面28a’の位相分布W0aとを取得する。
そして、位相分布W1a、W0aと基準面28a’の形
状(既知)とから、領域Daの形状w1aが算出され
る。
<Surface shape measurement procedure> First, the aspheric surface 2 to be inspected
In measuring the area Da of 7 ', the aspherical Fizeau surface 25a' and the wavefront converting means 25a are arranged in the aspherical shape measuring device 20, and the test object 27,
The reference prototypes 28a are arranged in order, and the phase distribution W
1a and the phase distribution W0a of the reference plane 28a 'are obtained.
Then, the shape w1a of the region Da is calculated from the phase distributions W1a and W0a and the shape (known) of the reference surface 28a '.

【0050】また、被検非球面27’の領域Dbを測定
するに当たっては、非球面形状測定装置20に非球面フ
ィゾー面25b’と波面変換手段25bとを配置した状
態で、被検位置に、被検物27、基準原器28aを順に
配置して、領域Dbの位相分布W1bと基準面28b’
の位相分布W0bとを取得する。そして、位相分布W1
b、W0bと基準面28b’の形状(既知)とから、領
域Dbの形状w1bが算出される。
In measuring the area Db of the aspherical surface 27 'to be measured, the aspherical Fizeau surface 25b' and the wavefront converting means 25b are arranged in the aspherical shape measuring device 20, and the measurement is performed at the position to be measured. The test object 27 and the reference prototype 28a are arranged in order, and the phase distribution W1b of the region Db and the reference surface 28b '
And the phase distribution W0b. And the phase distribution W1
The shape w1b of the region Db is calculated from b, W0b, and the shape (known) of the reference surface 28b '.

【0051】さらに、領域Daの形状w1aと領域Db
の形状w1bとから、重複領域(図5rについてrb1
≦r≦ra2が成立する領域)について得た位相分布又
は面形状をもとに、被検物27の姿勢差による影響を除
去する。これによって、被検非球面27’の全体の形状
w1が求められる。なお、この面形状測定手順におい
て、領域Da、Db、基準面28a、28bの位相分布
の取得の順序は、上記の順序でなくてもよい。
Further, the shape w1a of the region Da and the region Db
From the shape w1b of FIG.
Based on the phase distribution or surface shape obtained for the region satisfying ≦ r ≦ ra2, the influence of the posture difference of the test object 27 is removed. As a result, the entire shape w1 of the test aspheric surface 27 'is obtained. In the surface shape measurement procedure, the order of acquiring the phase distributions of the regions Da and Db and the reference surfaces 28a and 28b does not have to be the order described above.

【0052】<各面の設計>図6は、本実施形態の基準
面28a’の非球面量F2a、基準面28b’の非球面
量F2b、非球面フィゾー面25a’の非球面量F3
a、非球面フィゾー面25b’の非球面量F3bを、領
域Daの設計非球面量F1a、領域Dbの設計非球面量
F1bと比較する図である。
<Design of Each Surface> FIG. 6 shows the aspheric amount F2a of the reference surface 28a ', the aspheric amount F2b of the reference surface 28b', and the aspheric amount F3 of the aspheric Fizeau surface 25a 'in this embodiment.
FIG. 6A is a diagram comparing the aspherical surface amount F3b of the aspherical Fizeau surface 25b ′ with the designed aspherical surface amount F1a of the region Da and the designed aspherical surface amount F1b of the region Db.

【0053】なお、図6では、比較を容易にするため
に、非球面量F1a、F2a、F3aの基準を、同一の
近似球面Sa(領域Daの設計形状の近似球面)に統一
した。また、各非球面量F1b、F2b、F3bの基準
を、同一の近似球面Sb(領域Dbの設計形状の近似球
面)に統一した。因みに、F4は、被検非球面27’の
設計非球面量を、その被検非球面27’全面の近似非球
面Sを基準として示したものである。
In FIG. 6, the reference of the aspherical surface amounts F1a, F2a, and F3a is unified to the same approximate spherical surface Sa (the approximate spherical surface of the design shape of the region Da) for easy comparison. Further, the reference of each aspherical surface amount F1b, F2b, F3b is unified to the same approximate spherical surface Sb (approximate spherical surface of the design shape of the region Db). Incidentally, F4 indicates the design aspherical amount of the test aspherical surface 27 'with reference to the approximate aspherical surface S of the entire surface of the test aspherical surface 27'.

【0054】また、図6において非球面フィゾー25
a’、25b’の非球面量として示したF3a、F3b
は、正確にいうと、「等価フィゾー面の非球面量」であ
る(等価フィゾー面とは、非球面フィゾー面25a’
(又は25b’)の各位置からそのフィゾー面の法線方
向に互いに同位相で直進した各光線が、被検位置におい
て成す波面である。この等価フィゾー面はまた、非球面
フィゾー面25a’(又は25b’)の各位置からその
フィゾー面の法線方向に被検位置にまで互いに等距離だ
け延ばした各線分の端部を結んでできる面でもあ
る。)。
In FIG. 6, the aspherical Fizeau 25
F3a, F3b shown as aspherical amounts of a ′ and 25b ′
Is exactly the "aspherical amount of the equivalent Fizeau surface" (the equivalent Fizeau surface is the aspherical Fizeau surface 25a ').
(Or 25b ') are light waves that travel straight from the respective positions in the normal direction of the Fizeau surface in the same phase as each other at the test position. The equivalent Fizeau surface can also be formed by connecting the ends of the respective line segments extending by an equal distance from each position of the aspherical Fizeau surface 25a '(or 25b') to the position to be inspected in the direction normal to the Fizeau surface. It is also a surface. ).

【0055】図6に明らかなように、本実施形態では、
非球面フィゾー面25a’の非球面量F3aを、領域D
aの設計形状とその近似球面Sa(非球面量0)との間
の値に設定し、非球面フィゾー面25b’の非球面量F
3bを、領域Dbの設計形状とその近似球面Sb(非球
面量0)との間の値に設定している。この設定によれ
ば、被検非球面27’の領域Da、Dbについて得られ
る干渉縞を十分に「粗」(図3に示すように、2P<
d、好ましくは4P<d、さらに好ましくは8P<d)
とすることができる。その結果、干渉縞の検出確度が向
上する。
As is apparent from FIG. 6, in the present embodiment,
The aspherical surface amount F3a of the aspherical Fizeau surface 25a '
a is set to a value between the design shape of a and the approximate spherical surface Sa (aspherical amount 0), and the aspherical amount F of the aspherical Fizeau surface 25b 'is set.
3b is set to a value between the design shape of the region Db and its approximate spherical surface Sb (aspherical amount 0). According to this setting, the interference fringes obtained for the regions Da and Db of the test aspheric surface 27 ′ are sufficiently “coarse” (as shown in FIG. 3, 2P <
d, preferably 4P <d, more preferably 8P <d)
It can be. As a result, the detection accuracy of interference fringes is improved.

【0056】したがって、領域Da、Dbの位相分布W
1a、W1bは、従来の球面フィゾー干渉計を使用した
場合と比較して精度高く得られる。また、図6に明らか
なように、本実施形態では、基準面28a’の非球面量
F2aを、被検非球面27’の領域Daと比較して積極
的に小さく設定し、また、基準面28b’の非球面量F
2bを、被検非球面の領域Dbと比較して積極的に小さ
く設定している。
Therefore, the phase distribution W of the regions Da and Db
1a and W1b can be obtained with higher accuracy as compared with the case where a conventional spherical Fizeau interferometer is used. As is apparent from FIG. 6, in the present embodiment, the aspherical amount F2a of the reference surface 28a 'is set to be actively smaller than the area Da of the test aspherical surface 27'. 28b 'aspherical amount F
2b is set positively smaller than the area Db of the aspheric surface to be measured.

【0057】このように非球面量の小さい基準面28
a’、28b’を予め作製し、かつ面形状測定すること
は、領域Da、Dbの設計形状と同じ基準面を作製し、
かつ面形状測定する場合よりも、その非球面量が小さい
分だけ容易である。
As described above, the reference surface 28 having a small amount of aspherical surface.
a ′ and 28b ′ are prepared in advance and the surface shape is measured by preparing the same reference plane as the design shape of the regions Da and Db,
In addition, as compared with the case of measuring the surface shape, it is easier because the amount of the aspherical surface is smaller.

【0058】したがって、本実施形態では、基準原器2
8a、28bとして、高精度に測定された基準原器を用
意することができる。因みに、図6に示す例では、基準
面28a’、28b’の非球面量F2a、F2bを、そ
れぞれ非球面フィゾー面25a’の非球面量F3a、非
球面フィゾー面25b’の非球面量F3bよりもさらに
小さく設計することで、基準面28a’28b’をより
高精度化している。
Therefore, in this embodiment, the reference prototype 2
As 8a and 28b, reference prototypes measured with high accuracy can be prepared. In the example shown in FIG. 6, the aspherical surface amounts F2a and F2b of the reference surfaces 28a 'and 28b' are respectively obtained from the aspherical surface amount F3a of the aspherical Fizeau surface 25a 'and the aspherical surface amount F3b of the aspherical Fizeau surface 25b'. Are designed to be even smaller, so that the reference surfaces 28a 'and 28b' are made more precise.

【0059】また、この図6に示す例では、基準面28
a’の非球面量F2aは、この基準面28a’と非球面
フィゾー面25a’との非球面量差が、領域Daと非球
面フィゾー面25a’との非球面量差とほぼ等しくなる
よう選択され、一方、基準面28b’の非球面量F2b
は、この基準面28b’と非球面フィゾー面25b’と
の非球面量差が、領域Dbと非球面フィゾー面25b’
との非球面量差とほぼ等しくなるよう選択されている。
この場合、領域Daについて得られる干渉縞と基準面2
8a’について得られる干渉縞とが、互いに明暗が反対
で概ね等輝度のパターンを描き、一方、領域Dbについ
て得られる干渉縞と、基準面28b’について得られる
干渉縞とが、互いに明暗が反対で概ね等輝度のパターン
を描く。
In the example shown in FIG. 6, the reference surface 28
The aspherical amount F2a of a ′ is selected such that the aspherical amount difference between the reference surface 28a ′ and the aspherical Fizeau surface 25a ′ is substantially equal to the aspherical amount difference between the region Da and the aspherical Fizeau surface 25a ′. On the other hand, the aspherical amount F2b of the reference surface 28b '
Is the difference between the reference surface 28b 'and the aspherical Fizeau surface 25b'.
Are selected so as to be substantially equal to the difference in the amount of aspherical surface.
In this case, the interference fringes obtained for the region Da and the reference plane 2
The interference fringes obtained with respect to 8a 'draw a pattern of substantially equal brightness with opposite light and dark, while the interference fringes obtained with respect to the area Db and the interference fringe obtained with respect to the reference plane 28b' have opposite light and dark. Draw a pattern with approximately equal luminance.

【0060】このように基準面28a’、28b’を設
計すれば、それら基準面28a’、28b’について得
られる干渉縞の密度を、何れも領域Da、Dbについて
得られる干渉縞と同様に「粗」(図3に示すように、2
P<d、好ましくは4P<d、さらに好ましくは8P<
d)とすることができる。したがって、基準面28
a’、28b’の位相分布W0a、W0bは、領域D
a、Dbの位相分布W1a、W1bと同様、精度高く得
られる。
By designing the reference planes 28a 'and 28b' in this manner, the density of the interference fringes obtained for the reference planes 28a 'and 28b' can be changed to "Density" in the same manner as the interference fringes obtained for the areas Da and Db. Coarse ”(as shown in FIG.
P <d, preferably 4P <d, more preferably 8P <
d). Therefore, the reference plane 28
The phase distributions W0a and W0b of a 'and 28b'
As with the phase distributions W1a and W1b of a and Db, they can be obtained with high accuracy.

【0061】すなわち、本実施形態では、面形状測定手
順における基準面28a’、28b’の位相分布W0
a、W0b、領域Da、Dbの位相分布W1a、W1b
は高精度に得られ、ひいては、被検非球面27’の形状
w1が高精度に算出される。また、本実施形態におい
て、特に、被検非球面27’の各領域Da、Dbの非球
面量が比較的小さい場合には、基準原器28a、28b
に代えて球面原器を使用することも可能である。その場
合には、既存の干渉計、例えば球面フィゾー干渉計やPo
int-Diffraction-Interferometerのような球面測定用の
干渉計によって、基準面の形状を極めて高精度に測定す
ることができる。
That is, in the present embodiment, the phase distribution W0 of the reference surfaces 28a ', 28b' in the surface shape measurement procedure.
a, W0b, and phase distributions W1a, W1b of regions Da, Db
Is obtained with high accuracy, and, consequently, the shape w1 of the test aspheric surface 27 'is calculated with high accuracy. Further, in the present embodiment, especially when the aspherical amount of each area Da, Db of the aspherical surface 27 ′ to be inspected is relatively small, the reference prototypes 28a, 28b
, It is also possible to use a spherical prototype. In that case, existing interferometers, such as spherical Fizeau interferometers or Po
An interferometer for measuring a sphere, such as an int-Diffraction-Interferometer, can measure the shape of a reference surface with extremely high accuracy.

【0062】したがって、最終的に得られる被検非球面
27’の面形状w1も高精度に得られる。以上まとめる
と、本実施形態によれば、非球面の測定が高精度化さ
れ、大非球面の測定も可能となる。 <その他>なお、上記実施形態では、非球面フィゾー面
と基準原器とを、領域の分割数2に応じて2組用意して
いるが、1組の非球面フィゾー面と基準原器とを、2つ
の領域の測定に共用してもよい。なお、その場合は、測
定の対象とする領域に応じて、被検非球面、基準原器お
よび波面変換手段の光軸上の位置関係を代えればよい。
Therefore, the finally obtained surface shape w1 of the aspherical surface to be inspected 27 'can be obtained with high accuracy. In summary, according to the present embodiment, the measurement of the aspherical surface can be performed with high accuracy, and the measurement of the large aspherical surface can be performed. <Others> In the above embodiment, two sets of the aspherical Fizeau surface and the reference prototype are prepared according to the number of divisions of the area 2. However, one set of the aspherical Fizeau surface and the reference prototype are used. And may be shared for measurement of two regions. In this case, the positional relationship of the aspheric surface to be measured, the reference prototype, and the wavefront converting means on the optical axis may be changed according to the region to be measured.

【0063】また、本実施形態では、被検非球面の領域
数を2としたが、被検非球面の非球面量が大きい場合
は、各領域の非球面量が小さくなるようにこの領域数を
増やしてもよい。また、上記したように、各実施形態で
説明した非球面形状測定装置10、非球面形状測定装置
20は、測定対象とする被検非球面の形状によって、非
球面フィゾー面の形状(およびそれに対応する波面変換
手段の内容)が異なってくる。したがって、非球面形状
測定装置10、非球面形状測定装置20が予め決められ
た形状の非球面フィゾー面を有している場合には、その
非球面フィゾー面の形状によって、測定可能な被検非球
面の形状がある程度限定されてくる。この場合、これら
装置の外ケースなどに、その装置がどの程度の非球面を
測定対象としているのかをユーザに知らせるよう予め表
記しておくとよい。
In the present embodiment, the number of areas of the aspherical surface to be inspected is set to 2. However, when the amount of aspherical surfaces of the aspherical surface to be inspected is large, the number of areas of the aspherical surface is reduced so that the amount of aspherical surfaces in each area becomes small. May be increased. In addition, as described above, the aspherical shape measuring device 10 and the aspherical shape measuring device 20 described in each embodiment change the shape of the aspherical Fizeau surface (and the corresponding shape) depending on the shape of the test aspherical surface to be measured. (The content of the wavefront conversion means). Therefore, when the aspherical shape measuring device 10 and the aspherical shape measuring device 20 have an aspherical Fizeau surface having a predetermined shape, the shape of the aspherical Fizeau surface allows the measurement of a test object to be measured. The shape of the spherical surface is limited to some extent. In this case, it is preferable to preliminarily indicate on an outer case or the like of these devices so that the user can know how much aspheric surface the device targets.

【0064】また、上記各実施形態においては、予め、
基準原器、非球面フィゾー面、その非球面フィゾー面に
対応する波面変換手段、からなる組み合わせを複数種用
意しておき、さらに、測定の対象とする被検非球面の形
状に応じて、前記した関係(例えば図6に示す関係)を
満たすような組み合わせを自動的に決定する装置(例え
ばコンピュータ)を併用してもよい。
In each of the above embodiments,
Reference prototype, aspherical Fizeau surface, wavefront conversion means corresponding to the aspherical Fizeau surface, prepare a plurality of combinations consisting of, further, according to the shape of the test aspherical surface to be measured, A device (for example, a computer) that automatically determines a combination that satisfies the relationship (for example, the relationship shown in FIG. 6) may be used.

【0065】また、上記各実施形態において、基準面と
して非球面を使用する場合、上記各実施形態の何れか一
方をその基準面の形状測定に適用してもよい。このよう
にすれば、結果として非球面量のより大きな非球面の形
状測定が可能になる。 [適用例]次に、本発明の適用例について説明する。
When an aspherical surface is used as a reference surface in each of the above embodiments, any one of the above embodiments may be applied to shape measurement of the reference surface. This makes it possible to measure the shape of an aspherical surface having a larger aspherical amount as a result. [Application Example] Next, an application example of the present invention will be described.

【0066】上記説明した第1実施形態や、第2実施形
態によれば、非球面ミラーや非球面レンズなどの被検物
を高精度に測定することができる。このような測定によ
って被検物の形状精度が十分でないことが分かった場合
には、その形状誤差が圧縮されるようにその被検物を研
磨して、所定の精度内に追い込んでいくことができる。
こうして高精度に作製された非球面ミラーや非球面レン
ズは、各種の装置に適用することが可能となる。
According to the first and second embodiments described above, a test object such as an aspherical mirror or an aspherical lens can be measured with high accuracy. If such measurement reveals that the shape accuracy of the test object is not sufficient, the test object may be polished so that the shape error is compressed, and driven within the predetermined accuracy. it can.
The aspherical mirror and aspherical lens manufactured with high precision in this way can be applied to various devices.

【0067】例えば、高精度に製造されたミラーおよび
レンズを必要とする各種装置としては、軟X線(波長5
〜15nm:Extreme Ultra Violet)露光装置用の投影
光学系や、X線露光装置用の投影光学系がある。ここ
で、WO99/26728号(PCT出願公開明細書)などで開
示される軟X線露光装置用の投影光学系70について図
7を用いて詳細に説明する。この図7に示されるよう
に、光源からの光束ELは、ミラーMで反射され、レチ
クルステージRST上のレチクルRに照射される。レチ
クルRで反射された光束は、投影光学系70を介してウ
エハステージWST上のウエハW上に照射される。レチ
クルRに描かれた半導体回路パターンをウエハW上に露
光して半導体回路(チップ)を作成するためには、レチ
クルRおよびウエハWが図中の矢印で示される方向へ同
期して走査される。
For example, various devices that require mirrors and lenses manufactured with high precision include soft X-rays (wavelength
-15 nm: Extreme Ultra Violet) There is a projection optical system for an exposure apparatus and a projection optical system for an X-ray exposure apparatus. Here, the projection optical system 70 for a soft X-ray exposure apparatus disclosed in WO99 / 26728 (PCT published specification) and the like will be described in detail with reference to FIG. As shown in FIG. 7, the light beam EL from the light source is reflected by the mirror M and is irradiated on the reticle R on the reticle stage RST. The light beam reflected by reticle R is irradiated onto wafer W on wafer stage WST via projection optical system 70. In order to form a semiconductor circuit (chip) by exposing the semiconductor circuit pattern drawn on the reticle R onto the wafer W, the reticle R and the wafer W are scanned synchronously in the direction indicated by the arrow in the figure. .

【0068】投影光学系70は、レチクルRで反射され
たEUV光ELを順次反射する第1ミラーM1、第2ミ
ラーM2、第3ミラーM3、第4ミラーM4の合計4枚
のミラー(反射光学素子)と、これらのミラーM1〜M
4を保持する鏡筒PPとから構成されている。前記第1
ミラーM1および第4ミラーM4の反射面は非球面の形
状を有し、第2ミラーM2の反射面は平面であり、第3
ミラーM3の反射面は球面形状となっている。各反射面
は設計値に対して露光波長の約50分の1から60分の
1以下の加工精度が実現され、RMS値(標準偏差)で
0.2nmから0.3nm以下の誤差しかない。本適用
例では、設計形状が非球面であるこれら第1ミラーM1
および第4ミラーM4が、この誤差内に加工されている
かを検査するために、上記した第1実施形態や第2実施
形態が適用されるのである。
The projection optical system 70 includes a first mirror M1, a second mirror M2, a third mirror M3, and a fourth mirror M4 for sequentially reflecting the EUV light EL reflected by the reticle R. Element) and these mirrors M1 to M
4 holding the lens barrel PP. The first
The reflecting surfaces of the mirror M1 and the fourth mirror M4 have an aspheric shape, the reflecting surface of the second mirror M2 is a flat surface,
The reflection surface of the mirror M3 has a spherical shape. Each reflecting surface achieves a processing accuracy of about 1/50 to 1/60 or less of the exposure wavelength with respect to the design value, and has an error of 0.2 to 0.3 nm or less in RMS value (standard deviation). In this application example, these first mirrors M1 having an aspheric design shape are used.
The first embodiment and the second embodiment described above are applied to check whether the fourth mirror M4 is processed within the error.

【0069】なお、各ミラーの素材は低膨張ガラスある
いは金属であって、表面にはレチクルRと同様の2種類
の物質を交互に重ねた多層膜によりEUV光に対する反
射層が形成されている。この場合、図7に示されるよう
に、第1ミラーM1で反射された光が第2ミラーM2に
到達できるように、第4ミラーM4には穴が空けられて
いる。同様に第4ミラーM4で反射された光がウエハW
に到達できるよう第1ミラーM1には穴が設けられてい
る。勿論、穴を空けるのでなく、ミラーの外形を光束が
通過可能な切り欠きを有する形状としても良い。
The material of each mirror is low expansion glass or metal, and on its surface, a reflective layer for EUV light is formed by a multilayer film in which two kinds of substances similar to the reticle R are alternately stacked. In this case, as shown in FIG. 7, a hole is provided in the fourth mirror M4 so that the light reflected by the first mirror M1 can reach the second mirror M2. Similarly, the light reflected by the fourth mirror M4
The first mirror M1 is provided with a hole so that it can reach. Of course, instead of making a hole, the outer shape of the mirror may be formed to have a notch through which a light beam can pass.

【0070】また、投影光学系70が置かれている環境
は真空であるため、露光用照明光の照射による熱の逃げ
場がない。このため、ミラーM1〜M4と当該ミラーM
1〜M4を保持する鏡筒PPの間をヒートパイプHPで
連結するとともに、鏡筒PPを冷却する冷却装置を設け
ている。すなわち、鏡筒PPを内側のミラー保持部71
と、その外周部に装着された冷却装置としての冷却ジャ
ケット72との2重構造とし、冷却ジャケット72の内
部には、冷却液を流入チューブ74側から流出チューブ
76側に流すための螺旋状のパイプ78が設けられてい
る。冷却ジャケット72から流出チューブ76を介して
流出した冷却水は、不図示の冷凍装置内で冷媒との間で
熱交換を行い、所定温度まで冷却された後、流入チュー
ブ74を介して冷却ジャケット72内に流入するように
なっており、このようにして冷却水が循環されるように
なっている。
Further, since the environment in which the projection optical system 70 is placed is a vacuum, there is no place for heat to escape due to the irradiation of exposure illumination light. Therefore, the mirrors M1 to M4 and the mirror M
A heat pipe HP connects between the lens barrels PP holding 1 to M4, and a cooling device for cooling the lens barrel PP is provided. That is, the lens barrel PP is connected to the inner mirror holding portion 71.
And a cooling jacket 72 as a cooling device mounted on an outer peripheral portion thereof. A spiral structure for flowing a cooling liquid from the inflow tube 74 to the outflow tube 76 is provided inside the cooling jacket 72. A pipe 78 is provided. The cooling water flowing out of the cooling jacket 72 via the outflow tube 76 exchanges heat with the refrigerant in a refrigerating device (not shown), is cooled to a predetermined temperature, and then cooled through the inflow tube 74. The cooling water is circulated in this manner.

【0071】また、投影光学系70では、露光用照明光
(EUV光)ELの照射によりミラーM1、M2、M
3、M4に熱エネルギが与えられても、ヒートパイプH
Pにより一定温度に温度調整された鏡筒PPとの間で熱
交換が行われて、ミラーM1、M2、M3、M4が一定
温度に冷却されるようになっている。この場合におい
て、図7に示されるように、ミラーM1、M2、M4等
については、その裏面側のみでなく表面側(反射面側)
の露光用照明光が照射されない部分にもヒートパイプH
Pが貼り付けられているので、裏面側のみを冷却する場
合に比べてより効果的に前記各ミラーの冷却が行われ
る。かかる冷却温度と合致するように、温度管理するこ
とが好ましい。
In the projection optical system 70, the mirrors M1, M2, M2 are irradiated by the exposure illumination light (EUV light) EL.
3. Even if heat energy is given to M4, heat pipe H
Heat exchange is performed between the lens barrel PP whose temperature has been adjusted to a constant temperature by P, and the mirrors M1, M2, M3, and M4 are cooled to a constant temperature. In this case, as shown in FIG. 7, mirrors M1, M2, M4, etc. are not only on the back side but also on the front side (reflection side).
The heat pipe H is also used for the portion where the illumination light for exposure is not irradiated.
Since P is attached, the cooling of each mirror is performed more effectively than when only the back surface is cooled. It is preferable to control the temperature so as to match the cooling temperature.

【0072】なお、いうまでもないが、以上説明したよ
うに、極めて高精度が要求される第1ミラーM1、第4
ミラーM4の面形状測定では、干渉縞の最小縞間隔d
(図3参照)が2次元画像検出器110の画素ピッチP
の8倍より十分に大きくなるよう、非球面フィゾー面、
基準原器の形状が選択される。
Needless to say, as described above, the first mirror M1 and the fourth mirror M4, which require extremely high accuracy,
In the measurement of the surface shape of the mirror M4, the minimum fringe interval d of the interference fringes is determined.
(See FIG. 3) is the pixel pitch P of the two-dimensional image detector 110.
Aspherical Fizeau surface to be sufficiently larger than 8 times
The shape of the reference prototype is selected.

【0073】[0073]

【発明の効果】以上のように、本発明によれば、非球面
の測定が高精度化され、大非球面の測定も可能となる。
その結果、的確な露光転写を行うことも可能となる。
As described above, according to the present invention, the measurement of an aspherical surface can be performed with high accuracy, and the measurement of a large aspherical surface can be performed.
As a result, accurate exposure transfer can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態を説明する図である。FIG. 1 is a diagram illustrating a first embodiment.

【図2】基準面18’の非球面量F2、非球面フィゾー
面15’の非球面量F3を、被検非球面17’の設計非
球面量F1と比較する図である。
FIG. 2 is a diagram comparing an aspheric amount F2 of a reference surface 18 ′ and an aspheric amount F3 of an aspheric Fizeau surface 15 ′ with a designed aspheric amount F1 of a test aspheric surface 17 ′.

【図3】2次元画像検出器110の画素ピッチPと、干
渉縞の最小縞間隔dとの関係を示す図である。
FIG. 3 is a diagram showing a relationship between a pixel pitch P of a two-dimensional image detector 110 and a minimum fringe interval d of interference fringes.

【図4】第2実施形態を説明する図である。FIG. 4 is a diagram illustrating a second embodiment.

【図5】第2実施形態の被検非球面27の分割の仕方を
説明する図である。
FIG. 5 is a diagram illustrating a method of dividing a test aspheric surface 27 according to a second embodiment.

【図6】基準面28a’の非球面量F2a、基準面28
b’の非球面量F2b、非球面フィゾー面25a’の非
球面量F3a、非球面フィゾー面25b’の非球面量F
3bを、領域Daの設計非球面量F1a、領域Dbの設
計非球面量F1bと比較する図である。
FIG. 6 is an aspherical surface amount F2a of the reference surface 28a ′, and the reference surface 28;
b ′, the aspheric amount F3a of the aspheric Fizeau surface 25a ′, and the aspheric amount F of the aspheric Fizeau surface 25b ′
FIG. 3B is a diagram comparing 3b with a design aspherical amount F1a in a region Da and a design aspherical amount F1b in a region Db.

【図7】本発明が適用される投影光学系70を示す図で
ある。
FIG. 7 is a diagram showing a projection optical system 70 to which the present invention is applied.

【符号の説明】[Explanation of symbols]

10、20 非球面形状測定装置 11 レーザ光源 12 ビームエキスパンダ 13 偏光ビームスプリッタ 14 1/4波長板 15 波面変換手段 15’ 非球面フィゾー面 15、25a、25b波面変換手段 17、27 被検物 17’、27’ 被検非球面 18、28a、28b 基準原器 18’、28a’、28b’ 基準面 19 ビーム径変換光学系 110 2次元画像検出器 111 演算装置 112 表示装置 70 投影光学系 M1、M2、M3、M4 ミラー Reference Signs List 10, 20 Aspherical shape measuring device 11 Laser light source 12 Beam expander 13 Polarizing beam splitter 14 1/4 wavelength plate 15 Wavefront converting means 15 'Aspherical Fizeau surface 15, 25a, 25b Wavefront converting means 17, 27 Test object 17 ', 27' Aspherical surface to be inspected 18, 28a, 28b Reference prototype 18 ', 28a', 28b 'Reference surface 19 Beam diameter conversion optical system 110 Two-dimensional image detector 111 Arithmetic unit 112 Display unit 70 Projection optical system M1, M2, M3, M4 mirror

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/30 515D Fターム(参考) 2F064 AA09 BB04 BB05 CC04 DD02 DD05 EE05 FF01 GG23 GG38 GG47 GG51 GG70 HH03 HH08 JJ01 2F065 AA53 BB22 BB25 CC21 DD03 FF51 GG04 GG12 HH03 JJ03 JJ26 LL09 LL36 LL37 NN05 QQ21 QQ29 QQ32 SS13 2G086 FF01 5F046 BA03 CB03 CB12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/30 515D F-term (Reference) 2F064 AA09 BB04 BB05 CC04 DD02 DD05 EE05 FF01 GG23 GG38 GG47 GG51 GG70 HH03 HH08 JJ01 2F065 AA53 BB22 BB25 CC21 DD03 FF51 GG04 GG12 HH03 JJ03 JJ26 LL09 LL36 LL37 NN05 QQ21 QQ29 QQ32 SS13 2G086 FF01 5F046 BA03 CB03 CB12

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 検出器により、設計形状が非球面である
被検面からの反射光とフィゾー面からの反射光とが成す
干渉縞を検出するとともに、前記被検面に代えて配置さ
れた既知形状の基準面からの反射光と前記フィゾー面か
らの反射光とが成す干渉縞を検出し、検出した二つの干
渉縞と前記基準面の形状とに基づいて、前記被検面の形
状を求める非球面形状測定方法において、 前記フィゾー面は非球面フィゾー面であり、前記被検面
の設計形状に対して得られる干渉縞の縞間隔と前記基準
面に対して得られる干渉縞の縞間隔とが、何れも球面フ
ィゾー面を使用した場合に前記被検面に対して得られる
干渉縞の縞間隔よりも大きくなるように、少なくとも前
記非球面フィゾー面又は前記基準面の形状が設定される
ことを特徴とする非球面形状測定方法。
1. A detector detects interference fringes formed by reflected light from a test surface having an aspheric design shape and reflected light from a Fizeau surface, and is arranged in place of the test surface. The interference fringes formed by the reflected light from the reference surface having a known shape and the reflected light from the Fizeau surface are detected, and based on the two detected interference fringes and the shape of the reference surface, the shape of the surface to be measured is determined. In the method for measuring an aspherical surface shape to be determined, the Fizeau surface is an aspherical Fizeau surface, and the fringe interval of interference fringes obtained with respect to the design shape of the test surface and the fringe interval of interference fringes obtained with respect to the reference surface The shape of at least the aspherical Fizeau surface or the reference surface is set so that both are larger than the fringe interval of interference fringes obtained with respect to the test surface when using a spherical Fizeau surface. Aspherical shape measurement Method.
【請求項2】 前記フィゾー面の非球面量は、前記被検
面の設計形状とその近似球面との間の非球面量に設定さ
れることを特徴とする請求項1記載の非球面形状測定方
法。
2. The aspherical shape measurement according to claim 1, wherein the aspherical amount of the Fizeau surface is set to an aspherical amount between a design shape of the test surface and an approximate spherical surface thereof. Method.
【請求項3】 前記基準面の非球面量は、前記被検面の
設計形状の非球面量よりも小さく設定されることを特徴
とする請求項2記載の非球面形状測定方法。
3. The aspherical shape measuring method according to claim 2, wherein the aspherical amount of the reference surface is set smaller than the aspherical amount of the design shape of the test surface.
【請求項4】 前記基準面の非球面量は、前記非球面フ
ィゾー面と前記被検面の設計形状の近似球面との間の非
球面量に設定されることを特徴とする請求項3記載の非
球面形状測定方法。
4. The amount of aspherical surface of the reference surface is set to an amount of aspherical surface between the aspherical Fizeau surface and an approximate spherical surface having a design shape of the surface to be measured. Aspheric shape measurement method.
【請求項5】 前記基準面の形状は、球面に設定される
ことを特徴とする請求項3記載の非球面形状測定方法。
5. The method according to claim 3, wherein the shape of the reference surface is set to a spherical surface.
【請求項6】 前記フィゾー面の非球面形状および前記
基準面の形状は、前記被検面に対して得られる干渉縞の
縞間隔と前記基準面に対して得られる干渉縞の縞間隔と
が、何れも前記検出器上で2画素分以上となるよう設定
されていることを特徴とする請求項1乃至請求項5の何
れか1項に記載の非球面形状測定方法。
6. The aspherical shape of the Fizeau surface and the shape of the reference surface are such that a fringe interval of interference fringes obtained on the test surface and a fringe interval of interference fringes obtained on the reference surface are different. The aspherical shape measuring method according to any one of claims 1 to 5, wherein both are set to be equal to or more than two pixels on the detector.
【請求項7】 設計形状が非球面である被検面からの反
射光と既知形状のフィゾー面からの反射光とが成す干渉
縞を検出器にて検出し、検出した干渉縞と前記フィゾー
面の形状とに基づいて、前記被検面の形状を求める非球
面形状測定方法において、 前記フィゾー面は非球面フィゾー面であり、前記被検面
の設計形状に対して得られる干渉縞の縞間隔が、球面フ
ィゾー面を使用した場合に前記被検面に対して得られる
干渉縞の縞間隔よりも大きくなるように、前記非球面フ
ィゾー面が設定されることを特徴とする非球面形状測定
方法。
7. An interference fringe formed by a reflected light from a test surface having an aspherical design shape and a reflected light from a Fizeau surface having a known shape is detected by a detector, and the detected interference fringe and the Fizeau surface are detected. In the aspherical shape measuring method for obtaining the shape of the test surface based on the shape of the, the Fizeau surface is an aspherical Fizeau surface, fringe spacing of interference fringes obtained with respect to the design shape of the test surface However, when using a spherical Fizeau surface, the aspherical Fizeau surface is set so as to be larger than the fringe interval of interference fringes obtained with respect to the test surface, wherein the aspherical shape measurement method .
【請求項8】 前記フィゾー面の非球面量は、前記被検
面の設計形状とその近似球面との間の非球面量に設定さ
れることを特徴とする請求項7記載の非球面形状測定方
法。
8. The aspherical shape measurement according to claim 7, wherein the amount of aspherical surface of the Fizeau surface is set to an amount of aspherical surface between a design shape of the surface to be measured and an approximate spherical surface thereof. Method.
【請求項9】 前記フィゾー面の形状は、前記被検面に
対して得られる干渉縞の縞間隔が、前記検出器上の2画
素分以上となるよう設定されていることを特徴とする請
求項7又は請求項8に記載の非球面形状測定方法。
9. The shape of the Fizeau surface is set such that a fringe interval of interference fringes obtained with respect to the test surface is equal to or more than two pixels on the detector. The method for measuring an aspheric surface shape according to claim 7 or 8.
【請求項10】 フィゾー面と、光源から出射された光
束を所定波面に変換してそのフィゾー面と設計形状が非
球面の被検面との双方に導く波面変換手段と、双方の面
における反射光が成す干渉縞を検出する検出器とを備え
た非球面形状測定装置であって、 前記フィゾー面は、請求項1乃至請求項9の何れか1項
に記載の非球面形状測定方法において設定される形状で
あることを特徴とする非球面形状測定装置。
10. A Fizeau surface, wavefront converting means for converting a light beam emitted from a light source into a predetermined wavefront and guiding the light beam to both the Fizeau surface and a test surface having an aspheric design shape, and reflections on both surfaces. An aspherical shape measuring device comprising a detector for detecting interference fringes formed by light, wherein the Fizeau surface is set in the aspherical shape measuring method according to any one of claims 1 to 9. An aspherical shape measuring device, characterized in that the shape is a shape to be formed.
【請求項11】 原板に描かれたパターンを基板上に露
光する投影光学系において、前記投影光学系に使用され
る光学部材の面が、請求項1乃至請求項9の何れか1項
に記載の非球面形状測定方法により計測された被検面で
あり、 計測された結果に基づき、前記光学部材の面が所定の精
度内に研磨されたことを特徴とする投影光学系。
11. A projection optical system for exposing a pattern drawn on an original plate onto a substrate, wherein a surface of an optical member used in the projection optical system is according to any one of claims 1 to 9. A projection optical system, characterized in that the surface of the optical member is polished to a predetermined accuracy based on a result of the measurement by the aspherical shape measurement method.
【請求項12】 投影光学系を介して、原板に描かれた
パターンを基板上に露光する露光方法において、 前記投影光学系に使用される光学部材の面が、請求項1
乃至請求項9の何れか1項に記載の非球面形状測定方法
により計測された被検面であり、 計測された結果に基づき、前記光学部材が所定の精度内
に研磨されたことを特徴とする露光方法。
12. An exposure method for exposing a pattern drawn on an original plate onto a substrate via a projection optical system, wherein a surface of an optical member used in the projection optical system is provided.
A surface to be measured measured by the aspherical surface shape measuring method according to any one of claims 9 to 9, wherein the optical member is polished to a predetermined accuracy based on the measured result. Exposure method.
JP2000055690A 2000-03-01 2000-03-01 Method and apparatus for measuring aspherical shape, projection optical system and exposing method Pending JP2001241929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055690A JP2001241929A (en) 2000-03-01 2000-03-01 Method and apparatus for measuring aspherical shape, projection optical system and exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055690A JP2001241929A (en) 2000-03-01 2000-03-01 Method and apparatus for measuring aspherical shape, projection optical system and exposing method

Publications (1)

Publication Number Publication Date
JP2001241929A true JP2001241929A (en) 2001-09-07

Family

ID=18576773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055690A Pending JP2001241929A (en) 2000-03-01 2000-03-01 Method and apparatus for measuring aspherical shape, projection optical system and exposing method

Country Status (1)

Country Link
JP (1) JP2001241929A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043353A (en) * 2003-07-05 2005-02-17 Carl Zeiss Smt Ag Polarization proper investigation method, optical imaging system, and calibration method
US6992306B2 (en) 2003-04-15 2006-01-31 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the same, and device fabricating method
JP2006526790A (en) * 2003-06-04 2006-11-24 トモフェイズ コーポレーション Measurement of optical heterogeneity and other properties in materials using light propagation modes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992306B2 (en) 2003-04-15 2006-01-31 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the same, and device fabricating method
US7250616B2 (en) 2003-04-15 2007-07-31 Canon Kabushiki Kaisha Temperature adjustment apparatus, exposure apparatus having the same, and device fabricating method
JP2006526790A (en) * 2003-06-04 2006-11-24 トモフェイズ コーポレーション Measurement of optical heterogeneity and other properties in materials using light propagation modes
JP4756218B2 (en) * 2003-06-04 2011-08-24 トモフェイズ コーポレーション Measurement of optical heterogeneity and other properties in materials using light propagation modes
JP2005043353A (en) * 2003-07-05 2005-02-17 Carl Zeiss Smt Ag Polarization proper investigation method, optical imaging system, and calibration method

Similar Documents

Publication Publication Date Title
US10429183B2 (en) Non-contact coordinate measuring machine using hybrid cyclic binary code structured light
US6266389B1 (en) Method for manufacturing a device, an exposure apparatus, and a method for manufacturing an exposure apparatus
US6208407B1 (en) Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
TWI307812B (en) Radiation system, lithographic apparatus, device manufacturing method and device manufactured thereby
US9164405B2 (en) Measurement apparatus for calculation of substrate tilt, exposure apparatus, and device fabrication method
US8593615B2 (en) Height measurement apparatus, exposure apparatus, and device fabrication method
US20090262323A1 (en) Measurement apparatus, exposure apparatus, and device manufacturing method
US10996571B2 (en) Adjustment of a metrology apparatus or a measurement thereby based on a characteristic of a target measured
CN102686972A (en) Method of measuring a shape of an optical surface and interferometric measuring device
US20060039067A1 (en) Wavefront splitting element for EUV light and phase measuring apparatus using the same
JP3162355B2 (en) Surface shape measurement method and device
US20150138559A1 (en) Flare-measuring mask, flare-measuring method, and exposure method
US5831739A (en) Alignment method
US6937345B2 (en) Measuring system for measuring performance of imaging optical system
US7333175B2 (en) Method and system for aligning a first and second marker
JP2009281992A (en) Measurement method, measurement apparatus, and method for manufacturing optical system
US9261402B2 (en) Lithographic method and apparatus
JP2006017485A (en) Device and method for measuring surface shape, manufacturing method of projection optical system, projection optical system, and projection exposing device
JP2001241929A (en) Method and apparatus for measuring aspherical shape, projection optical system and exposing method
JP2000097620A (en) Interferometer
CN117083501A (en) Measuring device for interferometry of surface shape
Laubis et al. Characterization of large off-axis EUV mirrors with high accuracy reflectometry at PTB
JP2001280931A (en) Interferometer, instrument and method for measuring shape, and exposure device
JP2007109957A (en) Mirror mounting structure, projection optical system, and aligner
Takacs et al. Mirror distortion measurements with an in-situ LTP