JP2001241753A - Steam heater for low-temperature fluid and heating method thereof - Google Patents

Steam heater for low-temperature fluid and heating method thereof

Info

Publication number
JP2001241753A
JP2001241753A JP2000056068A JP2000056068A JP2001241753A JP 2001241753 A JP2001241753 A JP 2001241753A JP 2000056068 A JP2000056068 A JP 2000056068A JP 2000056068 A JP2000056068 A JP 2000056068A JP 2001241753 A JP2001241753 A JP 2001241753A
Authority
JP
Japan
Prior art keywords
steam
low
temperature
heat transfer
temperature fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000056068A
Other languages
Japanese (ja)
Other versions
JP4115064B2 (en
Inventor
Makoto Ozaki
誠 尾崎
Koichiro Kokubu
弘一郎 国分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWAJIMA PLANT CONSTRUCTIO
Ishikawajima Plant Construction Co Ltd
Original Assignee
ISHIKAWAJIMA PLANT CONSTRUCTIO
Ishikawajima Plant Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWAJIMA PLANT CONSTRUCTIO, Ishikawajima Plant Construction Co Ltd filed Critical ISHIKAWAJIMA PLANT CONSTRUCTIO
Priority to JP2000056068A priority Critical patent/JP4115064B2/en
Publication of JP2001241753A publication Critical patent/JP2001241753A/en
Application granted granted Critical
Publication of JP4115064B2 publication Critical patent/JP4115064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heater capable of heating low-temperature fluid directly by steam and controlling the temperature of the low-temperature fluid accurately. SOLUTION: In the steam heater for heating a low-temperature fluid passing through a heat transfer tube by steam, a steam supplying tube 11 is connected to the upper part of a heater cylinder 10, a condensed water discharging tube 12 is connected to the lower part of the same cylinder 10 while a condensed water phase 13 is formed in the lower part of the heater cylinder 10, and a steam phase 14 is formed in the upper part of the same to provide a heat transfer tube 15, though which the low-temperature fluid is passed, through the steam phase 14 and, subsequently, the condensed water phase 13 sequentially.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液化炭化水素、液
化アンモニア等の低温流体のスチーム加熱器に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam heater for a low-temperature fluid such as liquefied hydrocarbon and liquefied ammonia.

【0002】[0002]

【従来の技術】一般に、プラントにおいて、各種流体を
加熱するにはスチームを用いた加熱器が使用されてい
る。
2. Description of the Related Art Generally, in a plant, a heater using steam is used to heat various fluids.

【0003】このスチーム加熱器で、例えば、液化炭化
水素、液化アンモニア、その他の低温流体を過冷却状態
から飽和温度近くまで加熱する場合、伝熱管内に低温流
体を流し、その伝熱管を収容した加熱器の胴体内にスチ
ームを供給して伝熱管内の低温流体を加熱するが、伝熱
管の出口温度を精度よく制御することは、通常非常に困
難であり、また、加熱後に凝縮した凝縮水は、低温流体
が0℃以下であるため凍結する可能性があり、伝熱管を
用いて、スチームによる直接加熱するケースは少ない。
[0003] In the case of heating a liquefied hydrocarbon, liquefied ammonia, or other low-temperature fluid from a supercooled state to a temperature close to a saturation temperature with the steam heater, the low-temperature fluid flows into the heat transfer tube, and the heat transfer tube is accommodated. Steam is supplied into the body of the heater to heat the low-temperature fluid in the heat transfer tube, but it is usually very difficult to accurately control the outlet temperature of the heat transfer tube. Since the temperature of the low-temperature fluid is 0 ° C. or lower, there is a possibility of freezing, and there are few cases of direct heating by steam using a heat transfer tube.

【0004】低温流体を過冷却状態の温度から飽和温度
近くまで、加熱制御する場合、出口温度制御を精度良く
行わないと、出口温度が飽和温度以上となって、低温流
体がガス化するという不具合が発生するため、この種の
低温流体の加熱には、精度の良い温度制御が必要とな
り、スチームでの加熱は不向きとされている。
When heating the low-temperature fluid from a supercooled state to a temperature close to the saturation temperature, if the outlet temperature control is not performed accurately, the outlet temperature becomes higher than the saturation temperature and the low-temperature fluid is gasified. Therefore, accurate heating of such a low-temperature fluid requires accurate temperature control, and heating with steam is not suitable.

【0005】スチーム直接加熱で精度良く温度が制御で
きない要因として他の流体と比べて、スチームの凝縮伝
熱境膜係数が非常に大きいこと、或いは加熱器のスチー
ム相の保有熱容量が小さいこと等によると考えられる。
[0005] The reason why the temperature cannot be accurately controlled by direct steam heating is that the condensation heat transfer coefficient of steam is extremely large as compared with other fluids, or the heat capacity of the steam phase of the heater is small. it is conceivable that.

【0006】このためにスチームの微少な圧力、流量、
スーパーヒート度合い、その他の外的条件等の変動に対
して敏感に反応しすぎるか、或いは追従できないための
結果として安定した温度制御ができないと推察される。
[0006] For this reason, the minute pressure of steam, flow rate,
It is presumed that the temperature control is too sensitive to fluctuations in the degree of superheat, other external conditions, or the like, or the temperature cannot be stably controlled as a result of being unable to follow.

【0007】このような不具合の発生を防ぐために、一
般に温水バス式の加熱器では、出口流体温度を設定値に
するために加熱器をバイパスした流体を制御しながら混
合することにより、目的を達成している。
[0007] In order to prevent such a problem from occurring, a hot water bath type heater generally achieves the object by controlling and mixing the fluid that bypasses the heater in order to set the outlet fluid temperature to a set value. are doing.

【0008】図5は、温水バス式の加熱器を示したもの
であり、加熱槽50には、温水51が満たされ、その温
水で満たされた加熱槽50に、被加熱流体である低温流
体の通る伝熱管52が設けられ、その加熱槽50の底部
にスチーム供給管53が設けられ、温水51を温度計5
4で検出し、スチーム供給管53に接続した制御弁55
を制御してスチームの吹き込み量を制御して温水51の
温度を制御している。
FIG. 5 shows a heater of a hot water bath type. A heating tank 50 is filled with hot water 51, and the heating tank 50 filled with the hot water is supplied with a low-temperature fluid as a fluid to be heated. Is provided at the bottom of the heating tank 50, and a steam supply pipe 53 is provided at the bottom of the heating tank 50.
4, the control valve 55 connected to the steam supply pipe 53
To control the temperature of the hot water 51 by controlling the amount of steam blown.

【0009】[0009]

【発明が解決しようとする課題】この形式では、温水5
1を多量に溜めているので、熱容量が大きく、被加熱流
体の流量変化に対して温度が精度良く制御できないため
に、伝熱管52の入口側に三方弁56を設け、他方出口
側に温度計57を設け、その温度計57にて検出された
温度が設定温度となるように三方弁56を切り換え、低
温流体をバイパス管58にて出口側にバイパスさせて出
口温度を制御することが必要となる。また、流体がガス
化しないように目的温度の飽和圧力より高い圧力を維持
するために、圧力調節弁59が設けられている。
In this type, hot water 5
Since a large amount of 1 is stored, the heat capacity is large and the temperature cannot be controlled accurately with respect to a change in the flow rate of the fluid to be heated. Therefore, a three-way valve 56 is provided at the inlet side of the heat transfer tube 52 and a thermometer is provided at the other outlet side It is necessary to control the outlet temperature by switching the three-way valve 56 so that the temperature detected by the thermometer 57 becomes the set temperature, and bypassing the low-temperature fluid to the outlet side by the bypass pipe 58. Become. Further, a pressure control valve 59 is provided to maintain a pressure higher than the saturation pressure at the target temperature so that the fluid does not gasify.

【0010】この温水バス式の加熱器は、被加熱流体に
対して多量の熱容量を保有しているため、低流量変更時
には、被加熱流体である低温流体がガス化するので、温
度精度が悪くなる。
[0010] This hot water bath type heater has a large heat capacity for the fluid to be heated, and when the flow rate is changed to a low flow rate, the low-temperature fluid as the fluid to be heated is gasified, so that the temperature accuracy is poor. Become.

【0011】温度制御を良くするために、直接スチーム
で流体加熱しないで中間熱媒体を加熱する方法も使用さ
れている。
In order to improve the temperature control, a method of heating the intermediate heat medium without directly heating the fluid with steam is also used.

【0012】この加熱器は、図4に示すように、加熱ド
ラム40内にLPGなどの中間熱媒体41を収容し、そ
のガス相側に、被加熱流体の通る伝熱管42を配置し、
液相側のスチームの通る伝熱管43を配置し、被加熱流
体の通る伝熱管42の出口側に温度計44を設け、その
温度計44の検出値で制御弁45を制御してスチーム量
を制御するようにしている。
In this heater, as shown in FIG. 4, an intermediate heat medium 41 such as LPG is accommodated in a heating drum 40, and a heat transfer tube 42 through which a fluid to be heated passes is disposed on the gas phase side thereof.
A heat transfer tube 43 through which steam on the liquid phase passes is arranged, and a thermometer 44 is provided at the outlet side of the heat transfer tube 42 through which the fluid to be heated passes. A control valve 45 is controlled by a detection value of the thermometer 44 to control the amount of steam. I try to control.

【0013】この加熱器は、LPGのような中間熱媒体
を使用すれば、凝縮伝熱境膜係数がスチームほど大きく
ないので、LPGの蒸気と伝熱管42を挟んで被加熱流
体との温度差のバランスが、スチーム直接の場合に比べ
て非常によい。またスチームは、中間熱媒体41である
LPGの液相を加熱して中間熱媒体41の液に熱を蓄積
しているので、被加熱流体の変動によるLPG蒸気相の
圧力(温度)変動を液熱量が吸収して、安定した伝熱を
行うことができる。
In this heater, if an intermediate heat medium such as LPG is used, since the condensation heat transfer film coefficient is not as large as that of steam, the temperature difference between the LPG vapor and the fluid to be heated across the heat transfer tube 42 is obtained. The balance is very good compared to the case of direct steam. Further, the steam heats the liquid phase of the LPG, which is the intermediate heat medium 41, and accumulates heat in the liquid of the intermediate heat medium 41. Therefore, the steam changes the pressure (temperature) of the LPG vapor phase due to the fluctuation of the fluid to be heated. The heat is absorbed and stable heat transfer can be performed.

【0014】またスチームの微少変化は液の大熱容量が
吸収して平準化するので、システムの温度精度は精度良
く行うことができると共に、低温流体の加熱温度に応
じ、その温度でも、凝固しない熱媒体を選定すれば、ス
チームのような凍結の問題ない。
Further, since the minute change in steam is leveled by absorbing the large heat capacity of the liquid, the temperature accuracy of the system can be precisely controlled, and the heat which does not solidify even at that temperature depending on the heating temperature of the low temperature fluid. If you select a medium, there is no problem of freezing like steam.

【0015】しかしながら、伝熱管42,43を2種類
必要とするため、装置が大型になると共に中間熱媒体4
1を用い、そのガス相の圧力によっては加熱ドラムに耐
圧が要求されるためコストが高くなる問題がある。
However, since two types of heat transfer tubes 42 and 43 are required, the apparatus becomes large and the intermediate heat medium 4
No. 1, there is a problem that the cost is increased because the heating drum is required to withstand pressure depending on the pressure of the gas phase.

【0016】またこのように伝熱機構が2段階となるの
で、必要な温度差が大きくなり、伝熱面積が大きくな
る。このために加熱流体の利用温度幅が狭くなる。
Further, since the heat transfer mechanism has two stages as described above, the required temperature difference increases, and the heat transfer area increases. For this reason, the temperature range of use of the heating fluid is reduced.

【0017】そこで、本発明の目的は、上記課題を解決
し、スチームで低温流体を直接加熱し、しかも精度良く
低温流体の温度制御が行える加熱器を提供することにあ
る。
It is an object of the present invention to solve the above-mentioned problems and to provide a heater that directly heats a low-temperature fluid by steam and that can accurately control the temperature of the low-temperature fluid.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、伝熱管内を通る低温流体をスチ
ームで加熱する低温流体のスチーム加熱器において、加
熱器胴体の上部にスチーム供給管を接続すると共に下部
に凝縮水排出管を接続し、その加熱器胴体内の下部に凝
縮水相を上部にスチーム相を形成し、上記加熱器胴体
に、低温流体の通る伝熱管をスチーム相から凝縮相を通
るように設けた低温流体のスチーム加熱器である。
In order to achieve the above object, the present invention is directed to a low-temperature fluid steam heater for heating a low-temperature fluid passing through a heat transfer tube with steam. Connect the steam supply pipe and the condensed water discharge pipe at the lower part, form the condensed water phase at the lower part inside the heater body and form the steam phase at the upper part, and connect the heat transfer pipe through which the low temperature fluid passes to the heater body. This is a low-temperature fluid steam heater provided so as to pass from the steam phase to the condensed phase.

【0019】請求項2の発明は、伝熱管の出口側に温度
計が設けられ、スチーム供給管に制御弁が接続され、そ
の温度計の検出温度に応じて該制御弁を制御する制御装
置が設けられた請求項1記載の低温流体のスチーム加熱
器である。
According to a second aspect of the present invention, there is provided a control device, wherein a thermometer is provided on the outlet side of the heat transfer tube, a control valve is connected to the steam supply pipe, and the control valve controls the control valve in accordance with the temperature detected by the thermometer. A low temperature fluid steam heater according to claim 1 provided.

【0020】請求項3の発明は、加熱器胴体に凝縮水相
の液面レベルを調整する液面レベル調子手段が設けられ
た請求項1又は2記載の低温流体のスチーム加熱器。
According to a third aspect of the present invention, there is provided the low temperature fluid steam heater according to the first or second aspect, wherein the heater body is provided with a liquid level adjusting means for adjusting the liquid level of the condensed water phase.

【0021】請求項4の発明は、加熱器胴体と伝熱管と
を、横型のシェルアンドチューブ式の熱交換器で形成
し、低温流体の出入口室となる頭部を、上部から下部に
かけて複数の室に仕切って形成し、伝熱管を、これら室
を結ぶU字管で形成し、上記加熱胴体内に、その上下の
室の中間に凝縮水相の液面レベルが位置するように形成
される請求項1〜3いずれか記載の低温流体のスチーム
加熱器である。
According to a fourth aspect of the present invention, the heater body and the heat transfer tube are formed by a horizontal shell-and-tube heat exchanger, and a plurality of heads serving as low-temperature fluid inlet / outlet chambers are formed from the upper part to the lower part. The heat transfer tube is formed by a U-shaped tube connecting these chambers, and is formed in the heating body such that the liquid level of the condensed water phase is located between the upper and lower chambers. A steam heater for a low-temperature fluid according to claim 1.

【0022】請求項5の発明は、伝熱管内を通る低温流
体を、その圧力下での飽和温度近くまでスチームで加熱
する低温流体の加熱方法において、加熱器胴体の上部に
スチーム供給管を接続すると共に下部に凝縮水の排出管
を接続し、その加熱器胴体内の下部に凝縮水相を上部に
スチーム相を形成し、上記加熱器胴体に、低温流体の通
る伝熱管をスチーム相から凝縮相を通るように設け、そ
の伝熱管の低温流体の出口温度に応じてスチーム供給量
を制御するようにした低温流体の加熱方法である。
According to a fifth aspect of the present invention, there is provided a method for heating a low-temperature fluid passing through a heat-transfer tube with steam to near a saturation temperature under the pressure, wherein a steam supply pipe is connected to an upper portion of a heater body. At the same time, a condensed water discharge pipe is connected to the lower part, a condensed water phase is formed at the lower part of the heater body, a steam phase is formed at the upper part, and the heat transfer pipe through which the low-temperature fluid passes through the heater body is condensed from the steam phase. This is a method for heating a low-temperature fluid which is provided so as to pass through a phase and controls the steam supply amount according to the outlet temperature of the low-temperature fluid of the heat transfer tube.

【0023】請求項6の発明は、低温流体の設定流量に
応じて加熱器胴体内の設定圧力を設定し、伝熱管の入口
側の低温流体の流量を検出すると共に加熱器胴体内のス
チーム相内の圧力を検出し、検出した低温流体の流量に
応じたスチーム相内の圧力を設定し、その設定した圧力
となるようスチーム量をフィードフォワード制御すると
共に伝熱管の出口温度に応じてスチーム量をフィードバ
ック制御する請求項5記載の低温流体の加熱方法であ
る。
According to a sixth aspect of the present invention, a set pressure in the heater body is set in accordance with a set flow rate of the low-temperature fluid, the flow rate of the low-temperature fluid at the inlet side of the heat transfer tube is detected, and the steam phase in the heater body is detected. Pressure in the steam phase, set the pressure in the steam phase according to the detected flow rate of the low-temperature fluid, feed-forward control the steam amount so as to reach the set pressure, and adjust the steam amount according to the outlet temperature of the heat transfer tube. 6. The method for heating a low-temperature fluid according to claim 5, wherein feedback control is performed.

【0024】[0024]

【発明の実施の形態】以下、本発明の好適一実施の形態
を添付図面に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0025】図1は、本発明の概略構成を示したもので
ある。
FIG. 1 shows a schematic configuration of the present invention.

【0026】図において、加熱器胴体10の上部にスチ
ーム供給管11が接続され、底部に凝縮水の排出管12
が接続され、加熱器胴体10内に、凝縮水相13とスチ
ーム相14とが形成され、そのスチーム相14と凝縮水
相13とを通過するように伝熱管15が設けられる。
In the figure, a steam supply pipe 11 is connected to an upper portion of a heater body 10 and a condensed water discharge pipe 12 is connected to a bottom portion.
Are connected, a condensed water phase 13 and a steam phase 14 are formed in the heater body 10, and a heat transfer tube 15 is provided so as to pass through the steam phase 14 and the condensed water phase 13.

【0027】伝熱管15の上部の入口側には、液化アン
モニア等の低温流体供給管16が接続され、下部の出口
側には、低温流体排出管17が接続される。
A low-temperature fluid supply pipe 16 such as liquefied ammonia is connected to an upper inlet side of the heat transfer pipe 15, and a low-temperature fluid discharge pipe 17 is connected to a lower outlet side.

【0028】加熱器胴体10には、凝縮水相13内のレ
ベルLを調整するレベル調整手段18が設けられる。こ
のレベル調整手段18は、凝縮水相13内のレベルLを
検出するレベル計19と、排出管12に接続され、レベ
ル計19で制御される調整弁弁20とから構成される。
なお、レベル調整手段18は、本例に限らず他の手段を
用いてもよい。
The heater body 10 is provided with level adjusting means 18 for adjusting the level L in the condensed water phase 13. The level adjusting means 18 includes a level meter 19 for detecting the level L in the condensed water phase 13, and an adjusting valve valve 20 connected to the discharge pipe 12 and controlled by the level meter 19.
The level adjusting means 18 is not limited to this example, and other means may be used.

【0029】低温流体供給管16には、流量計21と流
量調整弁22が接続され、スチーム供給管11には、制
御弁23が接続される。また加熱器胴体10には、スチ
ーム相14内の圧力を検出する圧力計24が設けられ、
低温流体排出管17には伝熱管15からの低温流体の出
口温度を検出する温度計25が設けられる。
A flow meter 21 and a flow regulating valve 22 are connected to the low temperature fluid supply pipe 16, and a control valve 23 is connected to the steam supply pipe 11. Further, the heater body 10 is provided with a pressure gauge 24 for detecting the pressure in the steam phase 14,
The low temperature fluid discharge pipe 17 is provided with a thermometer 25 for detecting the outlet temperature of the low temperature fluid from the heat transfer pipe 15.

【0030】圧力計24と温度計25の検出値は制御手
段26に入力され、この検出値に応じて制御装置26
が、制御弁23を制御するようになっている。
The detected values of the pressure gauge 24 and the thermometer 25 are inputted to the control means 26, and the control device 26
However, the control valve 23 is controlled.

【0031】図2、図3は、加熱器胴体10と伝熱管1
5の具体的例を示したもので、加熱器胴体10と伝熱管
15とを、横型のシェルアンドチューブ式の熱交換器で
形成した例を示している。
FIGS. 2 and 3 show the heater body 10 and the heat transfer tube 1.
5 shows a specific example, in which the heater body 10 and the heat transfer tube 15 are formed by a horizontal shell-and-tube heat exchanger.

【0032】この横型のシェルアンドチューブ式の熱交
換器からなる加熱器は、熱交換器胴体としての加熱器胴
体10の上部にスチーム供給口11aが形成され、下部
に凝縮水排水口12aが形成され、その側部に低温流体
Fの出入口を形成する頭部30が設けられ、その頭部3
0が、上部から下部にかけて入口室27、中間室28、
出口室29に仕切られて形成され、伝熱管15が、入口
室27と中間室28とを結ぶU字管からなる伝熱管15
sと、中間室28と出口室29とを結ぶU字管からなる
伝熱管15dとで形成され、入口室27に低温流体Fの
供給口16aが設けられ、出口室29に低温液体Fの排
出口17aが設けられる。
This horizontal shell-and-tube type heat exchanger comprises a heater body 10 serving as a heat exchanger body, a steam supply port 11a formed at an upper portion, and a condensed water discharge port 12a formed at a lower portion. A head 30 is provided on the side of the head 30 to form an inlet / outlet for the low-temperature fluid F.
0 is an entrance chamber 27, an intermediate chamber 28,
The heat transfer tube 15 is formed by being partitioned by the outlet chamber 29, and is formed of a U-shaped tube connecting the inlet chamber 27 and the intermediate chamber 28.
s, and a heat transfer tube 15 d formed of a U-shaped tube connecting the intermediate chamber 28 and the outlet chamber 29. The inlet chamber 27 is provided with a supply port 16 a for the low-temperature fluid F, and the outlet chamber 29 is configured to discharge the low-temperature liquid F. An outlet 17a is provided.

【0033】またその加熱器胴体10内に、伝熱管15
sと伝熱管15dの間に凝縮水相13の液面レベルが位
置するように形成される。
The heat transfer tube 15 is provided inside the heater body 10.
s and the heat transfer tube 15d are formed so that the liquid level of the condensed water phase 13 is located.

【0034】この横型のシェルアンドチューブ式の熱交
換器からなる加熱器においては、頭部30に、入口室2
7、中間室28、出口室29を形成する例で説明した
が、中間室28は必ずしも設ける必要はなく、入口室2
7と出口室29とで仕切り、伝熱管15はその出入口室
27,29を結ぶように設けてもよく、逆に中間室28
を複数形成し、伝熱管15をこれら上下の室27,2
8,29を結ぶように構成してもよい。
In this heater comprising a horizontal shell-and-tube heat exchanger, the head 30 has an inlet chamber 2
7, the intermediate chamber 28 and the outlet chamber 29 have been described. However, the intermediate chamber 28 is not necessarily provided.
7 and the outlet chamber 29, the heat transfer tube 15 may be provided so as to connect the inlet and outlet chambers 27, 29, and conversely, the intermediate chamber 28
Are formed, and the heat transfer tube 15 is connected to these upper and lower chambers 27 and 2.
It is also possible to configure so as to connect 8, 29.

【0035】また、この場合凝縮水相13の液面レベル
は、これら室27,28,29の略中間に位置するよう
に形成すればよい。
Further, in this case, the liquid level of the condensed water phase 13 may be formed so as to be located substantially in the middle of these chambers 27, 28 and 29.

【0036】次に、この加熱器で、スチームを用いて低
温流体を加熱する方法を説明する。
Next, a method of heating a low-temperature fluid using steam with the heater will be described.

【0037】低温流体として、液化アンモニア(大気圧
での沸点−33.4℃)を、圧力がかかったサブクール
状態(−33℃)から、その圧における飽和ガス温度近
くの+1℃まで加熱する例で説明する。
Example of heating liquefied ammonia (boiling point at atmospheric pressure −33.4 ° C.) as a low temperature fluid from a subcooled state (−33 ° C.) under pressure to + 1 ° C. near a saturated gas temperature at that pressure Will be described.

【0038】加熱器胴体10内のスチーム相14にスチ
ーム供給管11からスチームが供給され、低温流体供給
管16からの低温流体は、そのスチーム相14の伝熱管
15sを流れて加熱され、スチーム相14内のスチーム
は、その加熱によって一部凝縮し、凝縮水相13に溜ま
る。その後、低温流体は、凝縮水相13内の伝熱管15
dを通ってその凝縮相の温水で加熱されて低温流体排出
管17より排出される。
Steam is supplied to the steam phase 14 in the heater body 10 from the steam supply pipe 11, and the low-temperature fluid from the low-temperature fluid supply pipe 16 flows through the heat transfer pipe 15 s of the steam phase 14, and is heated. The steam in 14 is partially condensed by the heating and accumulates in the condensed water phase 13. Thereafter, the cryogenic fluid is transferred to the heat transfer tubes 15 in the condensed water phase 13.
Then, it is heated by the condensed phase warm water through d and discharged from the low temperature fluid discharge pipe 17.

【0039】この低温液体Fの出口温度は温度検出器2
5で検出され、制御装置23がその温度が設定温度(例
えば1℃)となるように制御弁23の開度を制御してス
チーム量をフィードバック制御する。
The outlet temperature of the low-temperature liquid F is determined by the temperature detector 2
5, the control device 23 controls the opening of the control valve 23 so that the temperature becomes a set temperature (for example, 1 ° C.), and performs feedback control of the steam amount.

【0040】このように低温流体を伝熱管15を通し、
最初にスチーム相14のスチームで加熱し、次に凝縮相
13のスチームが凝縮した温水で加熱することで、出口
温度を精度良く迅速に加熱することができる。
As described above, the low-temperature fluid passes through the heat transfer tube 15,
By heating with the steam of the steam phase 14 first and then with the hot water in which the steam of the condensed phase 13 is condensed, the outlet temperature can be quickly and accurately heated.

【0041】一般に、スチームの凝縮時の伝熱境膜係数
は、伝熱管15の低温流体内の境膜係数に比較して、非
常に大きく、20〜100倍以上になる。この領域で
は、スチームと管壁の温度差は、管壁と低温流体の温度
差に比べて非常に小さいので、スチームの圧力(圧力)
が微小に変化しても、伝熱の温度差に与える割合はかな
り大きくなる。
Generally, the heat transfer film coefficient at the time of condensation of steam is very large, 20 to 100 times or more as compared with the film transfer coefficient in the low temperature fluid of the heat transfer tube 15. In this region, the temperature difference between the steam and the pipe wall is very small compared to the temperature difference between the pipe wall and the cryogenic fluid.
However, even if the temperature changes slightly, the ratio of the heat transfer to the temperature difference becomes considerably large.

【0042】すなわち、管外スチームの温度をTo、伝
熱管の管壁温度Tp、低温流体の温度をTiとし管外ス
チームと伝熱管の温度差をΔTo(=To−Tp)、管
壁と低温流体の温度差をΔTi(=Tp−Ti)とする
と、伝熱境膜係数の関係で、ΔTiは、ΔToに対して
十分に大きい(ΔTi/ΔTo >20)ため、その管
外スチーム温度Toの微小の変化が、低温流体側に伝達
されるまでには時間を要することとなる。
That is, assuming that the temperature of the outside tube is To, the tube wall temperature of the heat transfer tube is Tp, and the temperature of the low-temperature fluid is Ti, the temperature difference between the outside tube and the heat transfer tube is ΔTo (= To−Tp). Assuming that the temperature difference of the fluid is ΔTi (= Tp−Ti), ΔTi is sufficiently larger than ΔTo (ΔTi / ΔTo> 20) in relation to the heat transfer film coefficient. It takes time for a small change to be transmitted to the low-temperature fluid side.

【0043】よって、単にスチームで低温流体を加熱
し、その低温流体の出口温度を検出してスチーム量をフ
ィードバック制御しても、応答遅れがあるため、低温流
体の出口温度安定しないこととなり、精度良い温度制御
を行うことはできず、出口温度でスチーム量をフィード
バック制御するには、スチームの微少圧力変化を緩和し
なければ、実質的に制御は成り立たない。
Therefore, even if the low-temperature fluid is simply heated with steam and the outlet temperature of the low-temperature fluid is detected and the steam amount is feedback-controlled, the outlet temperature of the low-temperature fluid is not stabilized because of a response delay, and the accuracy is low. Good temperature control cannot be performed, and the feedback control of the steam amount at the outlet temperature cannot be practically realized unless the minute pressure change of the steam is reduced.

【0044】本発明においては、スチーム相14と凝縮
水相13とを形成し、スチーム相14内での微少な圧力
変化を凝縮相13に溜めた凝縮水で対応するようにした
ものである。
In the present invention, a steam phase 14 and a condensed water phase 13 are formed, and a slight pressure change in the steam phase 14 is dealt with by the condensed water stored in the condensed phase 13.

【0045】すなわち、凝縮相13に溜まっている温水
は、その表面から底部の排出管12まで次第に温度が低
下するものの、凝縮相13の表面は、スチーム相14と
接しており、気相圧力と平衡した飽和圧力の温度になっ
ているので、気相圧力の微少圧力変化は、この表面温水
によって緩和される。つまり、スチーム量が少なくなり
スチーム相14が設定圧力より減圧すれば、凝縮相13
の表面から温水が蒸発し、逆に昇圧すれば、スチーム相
14のスチームが凝縮するので、スチームの圧力変動が
吸収される。またこれら相変化の速度は、量が少ないと
きには非常に速いことが一般に知られている。
That is, the temperature of the hot water stored in the condensed phase 13 gradually decreases from the surface to the discharge pipe 12 at the bottom, but the surface of the condensed phase 13 is in contact with the steam phase 14 and the vapor pressure is Since the temperature is at an equilibrium saturated pressure, a slight pressure change in the gas phase pressure is mitigated by the surface hot water. In other words, if the steam amount is reduced and the steam phase 14 is reduced below the set pressure, the condensed phase 13
If the hot water evaporates from the surface of the gas and the pressure increases, the steam in the steam phase 14 condenses, so that the pressure fluctuation of the steam is absorbed. It is generally known that the speed of these phase changes is very fast when the amount is small.

【0046】従って、温度計25で温度を検出し、その
温度に応じて制御装置26が制御弁23を制御すること
で精度の良いフィードバック制御をおこなうことが可能
となる。
Therefore, the temperature can be detected by the thermometer 25, and the control device 26 controls the control valve 23 in accordance with the temperature, so that accurate feedback control can be performed.

【0047】熱交換器の伝熱管15は、縦方向の配位置
で説明したが、伝熱管15の配列は、水平配列であって
もよい。但し、この場合中間室28が1室以上設け、上
部の伝熱管15sと下部の伝熱管15dの中間に凝縮相
13の液面を設定すればよい。
Although the heat transfer tubes 15 of the heat exchanger have been described in the vertical arrangement, the arrangement of the heat transfer tubes 15 may be horizontal. However, in this case, one or more intermediate chambers 28 may be provided, and the liquid level of the condensed phase 13 may be set between the upper heat transfer tube 15s and the lower heat transfer tube 15d.

【0048】上述の制御は、低温流体の流量が設定した
100%の流量に達した安定した定常状態についての説
明であり、実際の運転においては、加熱器胴体10内に
スチームを供給して凝縮させて凝縮相13とスチーム相
14とを形成しながら低温流体の流量を100%まで徐
々に上げて定常運転しなければならない。
The above-described control is a description of a stable steady state in which the flow rate of the low-temperature fluid has reached the set flow rate of 100%. In actual operation, steam is supplied into the heater body 10 to condense. Thus, the steady-state operation must be performed by gradually increasing the flow rate of the low-temperature fluid to 100% while forming the condensed phase 13 and the steam phase 14.

【0049】この場合、上述したフィードバック制御で
は、制御系の遅れは必須であり、このため、本発明にお
いては、設定流量に対して加熱器胴体10内の適正なス
チーム相14内の圧力を制御装置26に予め入力してお
き、低温流体の流量を流量検出器21で検出し、同時に
加熱器胴体10内の圧力を圧力計24を用いて検出しそ
の流量値に応じて制御弁23を制御することで、低温流
体の出口温度をフィードフォワード制御するようにした
ものである。
In this case, in the above-described feedback control, a delay in the control system is essential. Therefore, in the present invention, an appropriate pressure in the steam phase 14 in the heater body 10 is controlled with respect to the set flow rate. The flow rate of the low-temperature fluid is detected by the flow rate detector 21 at the same time, and the pressure in the heater body 10 is simultaneously detected by the pressure gauge 24 and the control valve 23 is controlled in accordance with the flow rate value. By doing so, the outlet temperature of the low-temperature fluid is controlled in a feed-forward manner.

【0050】すなわち、流量100%、50%、24
%、15%流量時に、低温流体の出口温度を設定値に保
つに、必要なスチーム量を予め計算で求めておき、その
スチーム量に対する加熱器胴体10内の容積から、凝縮
水の保有熱量を考慮して適正な加熱器胴体10内の圧力
を設定することで、運転開始から100%流量の定常運
転まで、安定ししかも精度の良い低温流体の出口温度制
御が行える。
That is, the flow rates are 100%, 50%, 24%
In order to maintain the outlet temperature of the low-temperature fluid at the set value at the flow rate of 15% or 15%, the necessary steam amount is previously calculated, and the heat amount of the condensed water is calculated from the volume in the heater body 10 with respect to the steam amount. By setting an appropriate pressure in the heater body 10 in consideration of the above, stable and accurate low-temperature fluid outlet temperature control can be performed from the start of operation to a steady operation at a 100% flow rate.

【0051】これをさらに詳しく説明すると、流量負荷
100%、50%、25%、15%としたときのスチー
ム量と設定圧力の関係を、例えば下表のように設定して
おく。
More specifically, the relationship between the steam amount and the set pressure when the flow rate load is set to 100%, 50%, 25%, and 15% is set, for example, as shown in the following table.

【0052】 流量 スチーム量 凝縮水出口温度 加熱器胴体内設定圧力 100% 0.34MPa 77.8℃ 0.247MPa 50% 0.25MPa 43.3℃ 0.182MPa 25% 0.15MPa 10.3℃ 0.167MPa 15% 0.1 MPa 2.9℃ 0.120MPa 立ち上げから低温流体の流量が増加させるには、上記表
のように段階的に加熱器胴体内設定圧力を段階的に上げ
ていき、それに応じた圧力となるように制御弁23を制
御して流量に対応したスチーム量をフィードフォワード
制御し、さらに温度計25による検出値で、スチーム量
をフィードバック制御を行うことで、幅広い流量域で、
精度の良いか熱が行える。また逆に、運転終了時など流
量を段階的に少なくする場合には、この逆に設定圧力値
を下げて、徐々にスチーム量を下げて行けばよい。
Flow rate Steam amount Condensate outlet temperature Heater body pressure setting 100% 0.34 MPa 77.8 ° C. 0.247 MPa 50% 0.25 MPa 43.3 ° C. 0.182 MPa 25% 0.15 MPa 10.3 ° C. 0 .167 MPa 15% 0.1 MPa 2.9 ° C. 0.120 MPa In order to increase the flow rate of the low-temperature fluid from the start, the set pressure in the heater body is increased stepwise as shown in the above table. By controlling the control valve 23 so as to obtain a pressure corresponding thereto and performing feedforward control on the steam amount corresponding to the flow rate, and further performing feedback control on the steam amount based on the detection value of the thermometer 25, over a wide flow rate range. ,
Heat can be done with high accuracy. Conversely, when the flow rate is reduced stepwise, such as at the end of operation, the set pressure value may be reduced, and the steam amount may be gradually reduced.

【0053】なお、レベル調整手段18は、その制御弁
23の排出量を制御することでレベルLを設定できると
共にそのレベルLで、凝縮水相13とスチーム相14の
容積比を可変できるため、そのレベルを調整すること
で、季節による負荷変動や、蒸気圧の変動などによる熱
交換量のマッチングを適正に保つことができるようにし
ている。
The level adjusting means 18 can set the level L by controlling the discharge amount of the control valve 23 and can change the volume ratio of the condensed water phase 13 and the steam phase 14 at the level L. By adjusting the level, it is possible to appropriately maintain the matching of the heat exchange amount due to seasonal load fluctuation, steam pressure fluctuation, and the like.

【0054】[0054]

【発明の効果】以上要するに本発明によれば、低温流体
をスチームで精度良く加熱できると共にコストを低減す
ることが可能となる。
In summary, according to the present invention, it is possible to heat a low-temperature fluid with steam with high precision and to reduce the cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す概略図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】図1の加熱器の具体的例を示す断面図である。FIG. 2 is a sectional view showing a specific example of the heater of FIG.

【図3】図2の側断面と平面を示す図である。FIG. 3 is a diagram showing a side cross section and a plane of FIG. 2;

【図4】従来の中間熱媒体を用いた加熱器の概略断面図
である。
FIG. 4 is a schematic sectional view of a conventional heater using an intermediate heat medium.

【図5】従来のスチーム加熱器を示す図概略である。FIG. 5 is a schematic view showing a conventional steam heater.

【符号の説明】[Explanation of symbols]

10 加熱器胴体 11 スチーム供給管 12 凝縮水排出管 13 凝縮水相 14 スチーム相 15 伝熱管 DESCRIPTION OF SYMBOLS 10 Heater body 11 Steam supply pipe 12 Condensed water discharge pipe 13 Condensed water phase 14 Steam phase 15 Heat transfer pipe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 伝熱管内を通る低温流体をスチームで加
熱する低温流体のスチーム加熱器において、加熱器胴体
の上部にスチーム供給管を接続すると共に下部に凝縮水
排出管を接続し、その加熱器胴体内の下部に凝縮水相を
上部にスチーム相を形成し、上記加熱器胴体に、低温流
体の通る伝熱管をスチーム相から凝縮相を通るように設
けたことを特徴とする低温流体のスチーム加熱器。
1. A low-temperature fluid steam heater for heating a low-temperature fluid passing through a heat transfer tube by steam, wherein a steam supply pipe is connected to an upper portion of a heater body, and a condensed water discharge pipe is connected to a lower portion of the heater body. The condensed water phase is formed on the upper part of the lower part of the vessel body and the steam phase is formed on the upper part. Steam heater.
【請求項2】 伝熱管の出口側に温度計が設けられ、ス
チーム供給管に制御弁が接続され、その温度計の検出温
度に応じて該制御弁を制御する制御装置が設けられた請
求項1記載の低温流体のスチーム加熱器。
2. A thermometer is provided on the outlet side of the heat transfer tube, a control valve is connected to the steam supply pipe, and a control device for controlling the control valve in accordance with the temperature detected by the thermometer is provided. 2. A steam heater for cryogenic fluid according to claim 1.
【請求項3】 加熱器胴体に凝縮水相の液面レベルを調
整する液面レベル調子手段が設けられた請求項1又は2
記載の低温流体のスチーム加熱器。
3. A heater level adjusting means for adjusting a liquid level of a condensed water phase in a heater body.
A cryogenic fluid steam heater as described.
【請求項4】 加熱器胴体と伝熱管とを、横型のシェル
アンドチューブ式の熱交換器で形成し、低温流体の出入
口室となる頭部を、上部から下部にかけて複数の室に仕
切って形成し、伝熱管を、これら室を結ぶU字管で形成
し、上記加熱胴体内に、その上下の室の中間に凝縮水相
の液面レベルが位置するように形成される請求項1〜3
いずれか記載の低温流体のスチーム加熱器。
4. A heater body and a heat transfer tube are formed by a horizontal shell-and-tube heat exchanger, and a head serving as an inlet / outlet chamber for a low-temperature fluid is formed by partitioning a plurality of chambers from an upper part to a lower part. The heat transfer tube is formed by a U-shaped tube connecting these chambers, and the heat transfer tube is formed in the heating body such that the liquid level of the condensed water phase is located between the upper and lower chambers.
A cryogenic fluid steam heater according to any of the preceding claims.
【請求項5】 伝熱管内を通る低温流体を、その圧力下
での飽和温度近くまでスチームで加熱する低温流体の加
熱方法において、加熱器胴体の上部にスチーム供給管を
接続すると共に下部に凝縮水の排出管を接続し、その加
熱器胴体内の下部に凝縮水相を上部にスチーム相を形成
し、上記加熱器胴体に、低温流体の通る伝熱管をスチー
ム相から凝縮相を通るように設け、その伝熱管の低温流
体の出口温度に応じてスチーム供給量を制御することを
特徴とする低温流体の加熱方法。
5. A method for heating a low-temperature fluid passing through a heat transfer tube with steam to near a saturation temperature under the pressure, wherein a steam supply pipe is connected to an upper portion of a heater body and condensed to a lower portion. A water discharge pipe is connected, a condensed water phase is formed at the lower part of the heater body, a steam phase is formed at the upper part, and a heat transfer pipe through which a low-temperature fluid passes through the heater body is passed from the steam phase to the condensed phase. A method for heating a low-temperature fluid, wherein the steam supply amount is controlled according to an outlet temperature of the low-temperature fluid of the heat transfer tube.
【請求項6】 低温流体の設定流量に応じて加熱器胴体
内の設定圧力を設定し、伝熱管の入口側の低温流体の流
量を検出すると共に加熱器胴体内のスチーム相内の圧力
を検出し、検出した低温流体の流量に応じたスチーム相
内の圧力を設定し、その設定した圧力となるようスチー
ム量をフィードフォワード制御すると共に伝熱管の出口
温度に応じてスチーム量をフィードバック制御する請求
項5記載の低温流体の加熱方法。
6. A set pressure in the heater body is set according to a set flow rate of the low temperature fluid, and a flow rate of the low temperature fluid at an inlet side of the heat transfer tube is detected, and a pressure in a steam phase in the heater body is detected. Requesting to set a pressure in the steam phase according to the detected flow rate of the low-temperature fluid, feed-forward control the steam amount so as to reach the set pressure, and feedback-control the steam amount according to the outlet temperature of the heat transfer tube. Item 6. The method for heating a low-temperature fluid according to Item 5.
JP2000056068A 2000-02-28 2000-02-28 Steam heating method for cryogenic fluid Expired - Lifetime JP4115064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056068A JP4115064B2 (en) 2000-02-28 2000-02-28 Steam heating method for cryogenic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056068A JP4115064B2 (en) 2000-02-28 2000-02-28 Steam heating method for cryogenic fluid

Publications (2)

Publication Number Publication Date
JP2001241753A true JP2001241753A (en) 2001-09-07
JP4115064B2 JP4115064B2 (en) 2008-07-09

Family

ID=18577089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056068A Expired - Lifetime JP4115064B2 (en) 2000-02-28 2000-02-28 Steam heating method for cryogenic fluid

Country Status (1)

Country Link
JP (1) JP4115064B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061478A (en) * 2003-08-08 2005-03-10 Ishikawajima Plant Construction Co Ltd Cryogenic liquid heating method and its device
JP2007263475A (en) * 2006-03-29 2007-10-11 Ihi Corp Gas cooler
KR20180065262A (en) * 2016-12-07 2018-06-18 대우조선해양 주식회사 Steam heater control system and control method
JP2021507199A (en) * 2017-12-26 2021-02-22 スゴン・データエナジー・(ベイジン)・カンパニー・リミテッド High efficiency phase change capacitors for supercomputers
CN112440403A (en) * 2019-08-30 2021-03-05 株式会社钟化 Apparatus and method for producing expanded beads
CN114152113A (en) * 2021-11-03 2022-03-08 华能核能技术研究院有限公司 High temperature resistant type heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061478A (en) * 2003-08-08 2005-03-10 Ishikawajima Plant Construction Co Ltd Cryogenic liquid heating method and its device
JP4540315B2 (en) * 2003-08-08 2010-09-08 Ihiプラント建設株式会社 Cryogenic liquid heating method and apparatus
JP2007263475A (en) * 2006-03-29 2007-10-11 Ihi Corp Gas cooler
KR20180065262A (en) * 2016-12-07 2018-06-18 대우조선해양 주식회사 Steam heater control system and control method
KR102608690B1 (en) * 2016-12-07 2023-12-01 한화오션 주식회사 Steam heater control system and control method
JP2021507199A (en) * 2017-12-26 2021-02-22 スゴン・データエナジー・(ベイジン)・カンパニー・リミテッド High efficiency phase change capacitors for supercomputers
JP7282098B2 (en) 2017-12-26 2023-05-26 スゴン・データエナジー・(ベイジン)・カンパニー・リミテッド High Efficiency Phase Change Capacitor for Supercomputers
CN112440403A (en) * 2019-08-30 2021-03-05 株式会社钟化 Apparatus and method for producing expanded beads
CN112440403B (en) * 2019-08-30 2023-03-21 株式会社钟化 Apparatus and method for producing expanded beads
CN114152113A (en) * 2021-11-03 2022-03-08 华能核能技术研究院有限公司 High temperature resistant type heat exchanger

Also Published As

Publication number Publication date
JP4115064B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US4852524A (en) Gas fired water heater
KR20100080551A (en) Thermal control system and method
KR101476965B1 (en) Vessel, liquefied gas vaporization device, and control method therefor as well as improvement method therefor
JP4115064B2 (en) Steam heating method for cryogenic fluid
TW201600816A (en) A fluid heating and/or cooling system and related methods
CN109004250A (en) A kind of device and method of quick adjusting pipeline gas temperature humidity
RU2224189C2 (en) Cooling absorption plant
JP4434659B2 (en) Cryogenic liquid heating method and apparatus
JPH0557505B2 (en)
JP2005226665A (en) Liquefied natural gas vaporizing system
JP2009097794A (en) Cryogenic liquid heating method and its device
JPS5838678B2 (en) Liquefied natural gas cold recovery equipment
JP4668398B2 (en) Method and apparatus for producing city gas
JP2001263592A (en) Method and device for vaporizing lng
JPH0715354B2 (en) How to inject the hydraulic fluid into the heat pipe
JP4540315B2 (en) Cryogenic liquid heating method and apparatus
JP4621379B2 (en) Evaporator
JP2005061484A (en) Cryogenic liquid heating method and its device
JPS588210A (en) Heat medium flow control system for ranking cycle to flow variations liquefied natural gas
JPS6124844Y2 (en)
JP3042637B2 (en) Control method of decompression boiler type vaporizer
JPS6380167A (en) Heat pump hot-water supply machine
JPH0688653A (en) Method for preventing crystallization of absorption refrigerating machine
JPH0460383A (en) Controlling method for heat accumulation type hot water supplying apparatus
RU2138316C1 (en) Sublimation still

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4115064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term