JP2001240732A - Composite resin, manufacturing method thereof and composite resin pipe - Google Patents

Composite resin, manufacturing method thereof and composite resin pipe

Info

Publication number
JP2001240732A
JP2001240732A JP2000049658A JP2000049658A JP2001240732A JP 2001240732 A JP2001240732 A JP 2001240732A JP 2000049658 A JP2000049658 A JP 2000049658A JP 2000049658 A JP2000049658 A JP 2000049658A JP 2001240732 A JP2001240732 A JP 2001240732A
Authority
JP
Japan
Prior art keywords
resin
composite resin
pet
weight
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000049658A
Other languages
Japanese (ja)
Inventor
Akira Mano
昭 間野
Makoto Yamaguchi
誠 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000049658A priority Critical patent/JP2001240732A/en
Publication of JP2001240732A publication Critical patent/JP2001240732A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To provide a sufficiently practical composite resin material having high impact resistance and moldability utilizing a PET resin which is contained in a PET bottle, etc., recovered from wastes. SOLUTION: A composite resin material comprises a PET resin as a material which is contained in a PET bottle, etc., recovered from wastes, including a polyolefin resin recovered from wastes, chopped strands of glass fibers and incinerated scattering ash discharged from an incinerating facility, and preferably it comprises 20-79 wt.% of the PET resin, 10-30 wt.% of the polyolefin resin, 5-30 wt.% of the chopped strands of glass fibers and 1-20 wt.% of the incinerated scattering ash.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合樹脂材及びそ
の製造方法に関し、特に、廃棄物から回収されたPET
ボトル等を利用した複合樹脂材及びその製造方法に関す
るものである。また、本発明は、かかる複合樹脂材によ
り成形された複合樹脂パイプ、特に、排水用パイプや所
定断面を有する構造用部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite resin material and a method for producing the same, and more particularly, to PET recovered from waste.
The present invention relates to a composite resin material using a bottle or the like and a method for producing the same. The present invention also relates to a composite resin pipe formed from such a composite resin material, particularly to a drainage pipe and a structural member having a predetermined cross section.

【0002】[0002]

【従来の技術】下水道等排水用パイプとしては、主とし
て鉄筋コンクリート製、塩化ビニール製、陶製のパイプ
が使用されており、これらの材料によるパイプが全体の
約85%以上を占めている。これらのパイプのうち、鉄
筋コンクリート製パイプは、その老朽化に伴いパイプの
亀裂、摩耗、腐食が進行し、パイプの流れ抵抗の増加、
漏水や浸入水の発生、耐震性の低下、破損などが生じ
る。このため、パイプの交換や大規模な補修作業が必要
とされる。
2. Description of the Related Art Reinforced concrete, vinyl chloride, and porcelain pipes are mainly used as drainage pipes for sewage and the like, and pipes made of these materials account for about 85% or more of the whole. Among these pipes, reinforced concrete pipes are subject to cracks, abrasion, and corrosion due to aging, resulting in an increase in pipe flow resistance,
Water leakage, intrusion of water, deterioration of earthquake resistance, breakage, etc. will occur. For this reason, replacement of pipes and large-scale repair work are required.

【0003】また、塩化ビニール製パイプは、成形する
際に溶融樹脂材が分解することによって塩素ガスが発生
し、この塩素ガスによって成形機や金型が腐食してしま
うという問題や、廃棄された塩化ビニールパイプを焼却
処分する際に猛毒のダイオキシンが発生するという問題
が生じる。更に、塩化ビニール製パイプは耐寒性が低
く、寒冷地で塩化ビニール管を使用するとパイプに亀裂
が生じるなどの問題が生じている。
[0003] Further, in the case of a pipe made of vinyl chloride, chlorine gas is generated due to decomposition of a molten resin material during molding, and this chlorine gas corrodes a molding machine and a mold, and is discarded. There is a problem that highly toxic dioxin is generated when incinerating vinyl chloride pipes. Furthermore, a pipe made of vinyl chloride has low cold resistance, and when a vinyl chloride pipe is used in a cold region, there is a problem that the pipe is cracked.

【0004】ところで、ポリエチレンテレフタレート
(PET)を原料とするいわゆるPETボトルは、現
在、主に飲料容器などに広く使用されている。このPE
Tボトルの生産量は、現在約32万トン/年に達してお
り、これらのうち6万トン/年以上が、資源の活用を図
るために回収されている。回収されたPETボトルを再
利用したリサイクル樹脂材に関しては、各分野で様々な
研究・開発がなされており、例えば、繊維に加工して衣
類とする、あるいは、シート状に成形して利用するなど
の方法が実用化されている。しかし、わずかな異物の混
入が繊維加工を阻害する等の課題があり大量にリサイク
ル可能な製品の開発には未だ至っていない。
[0004] Incidentally, so-called PET bottles made of polyethylene terephthalate (PET) are currently widely used mainly for beverage containers and the like. This PE
The production volume of T bottles has now reached about 320,000 tons / year, of which more than 60,000 tons / year are recovered to utilize resources. Various researches and developments have been made on recycled plastics made from recycled PET bottles in various fields. For example, they are processed into fibers for clothing, or molded into sheets for use. Has been put to practical use. However, there is a problem that a small amount of foreign matter may impair fiber processing, and there has not yet been developed a product which can be recycled in large quantities.

【0005】ここで、回収されたPETボトルに含まれ
るPET樹脂を原料として排水用パイプを成形すること
が考えられる。一般的に、パイプ(直管の場合)を成形
する際には、コストや生産効率の観点から押出し成形が
行われるが、PET樹脂を原料としてパイプを成形する
場合においても、PET樹脂を所定温度(約270℃)
に加熱して溶融し、押出し成形を行うことになる。しか
し、PET樹脂は加熱溶融時の粘性が極端に小さく、押
出し成形に向かないという問題があるため、未だ実用化
されていない。
Here, it is conceivable to form a drainage pipe using the PET resin contained in the recovered PET bottle as a raw material. Generally, when a pipe (in the case of a straight pipe) is molded, extrusion is performed from the viewpoint of cost and production efficiency. However, even when the pipe is molded from a PET resin as a raw material, the PET resin is kept at a predetermined temperature. (About 270 ° C)
To melt and extrude. However, PET resins have not been put to practical use yet because they have a problem that the viscosity at the time of heating and melting is extremely small and they are not suitable for extrusion molding.

【0006】また、押出し成形でパイプのような厚肉成
形をする場合、PET樹脂を用いると、溶融樹脂が固化
する過程においてパイプ表面とパイプ内部の冷却速度に
相違が生じる。即ち、PET樹脂の表面は、冷却速度が
早く結晶化温度帯を短時間に通過するため透明な非晶質
層になり、一方で内部は、結晶化温度帯で滞留するため
乳白色の結晶質層になり、非晶質層に比べ収縮率も大き
くなる。このため、成形品を長期間にわたって使用する
場合には、その表面と内部との境界面付近で内部クラッ
クが発生し、耐衝撃性が低下するという問題がある。
In addition, when a thick wall such as a pipe is formed by extrusion molding, if a PET resin is used, a difference occurs between the cooling speed of the pipe surface and the cooling rate of the inside of the pipe in the process of solidifying the molten resin. In other words, the surface of the PET resin becomes a transparent amorphous layer because the cooling rate is high and passes through the crystallization temperature zone in a short time, while the inside of the PET resin stays in the crystallization temperature zone and thus has a milky white crystalline layer. And the shrinkage ratio becomes larger than that of the amorphous layer. For this reason, when the molded article is used for a long period of time, there is a problem that an internal crack is generated near the boundary between the surface and the interior, and the impact resistance is reduced.

【0007】一方、ごみや下水汚泥の焼却施設では、焼
却飛灰が大量に発生しているが、この焼却飛灰は、セメ
ント原料や道路のアスファルトのフィラー及びコンクリ
ート製品の増量材としての利用が一部で実施されている
ものの、その大部分が埋立て処分されている。しかし、
焼却飛灰を埋立て処分すると、焼却飛灰中に含まれる有
害成分が溶出する危険性がある。また、このような焼却
飛灰の埋立て処分場が不足している等の問題も生じてき
ている。
On the other hand, incineration facilities for incineration of garbage and sewage sludge generate a large amount of fly ash, and this fly ash is used as a cement raw material, asphalt filler for roads and as a filler for concrete products. Although some of them are implemented, most of them are landfilled. But,
When incinerated fly ash is landfilled, there is a risk that harmful components contained in the incinerated fly ash may elute. In addition, problems such as a shortage of landfills for incinerated fly ash have also arisen.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
従来技術の問題点に鑑みてなされたもので、廃棄物から
回収されたPET樹脂を利用して、耐衝撃性及び成形性
が高く、また十分実用的な複合樹脂材を提供することを
目的とする。また、本発明は、かかる複合樹脂材を製造
する方法を提供することを目的とする。更に、本発明
は、かかる複合樹脂材により成形される複合樹脂パイプ
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and has high impact resistance and moldability by using PET resin recovered from waste. Another object of the present invention is to provide a sufficiently practical composite resin material. Another object of the present invention is to provide a method for producing such a composite resin material. Still another object of the present invention is to provide a composite resin pipe formed from such a composite resin material.

【0009】[0009]

【課題を解決するための手段】このような従来技術にお
ける問題点を解決するために、本発明は、廃棄物から回
収されたPETボトル等に含まれるPET樹脂を原料と
する複合樹脂材であって、廃棄物から回収されたポリオ
レフィン系樹脂と、ガラス繊維のチョップドストランド
と、焼却施設から排出される焼却飛灰と、を含むことを
特徴とする。好ましくは、PET樹脂を20〜79重量
%、ポリオレフィン系樹脂を10〜30重量%、ガラス
繊維のチョップドストランドを5〜30重量%、焼却飛
灰を1〜20重量%含むことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the problems in the prior art, the present invention relates to a composite resin material made from PET resin contained in PET bottles and the like recovered from waste. And polyolefin-based resin recovered from waste, chopped strands of glass fiber, and incineration fly ash discharged from an incineration facility. Preferably, the composition contains 20 to 79% by weight of PET resin, 10 to 30% by weight of polyolefin resin, 5 to 30% by weight of glass fiber chopped strand, and 1 to 20% by weight of incinerated fly ash.

【0010】上述したように、PET樹脂だけを原料と
した成形品では、加熱溶融による押出し成形時の粘性の
目安となるラボプラストミル試験値(剪断トルク)が小
さく、その成形性が低い。また、不均一な結晶化により
耐衝撃性も低くなる傾向にある。しかし、PET樹脂に
ポリオレフィン系樹脂、例えば、PETボトルのキャッ
プや取手部分の樹脂を混入して複合樹脂パイプを成形す
ることにより、PET樹脂の分子内にポリオレフィン系
樹脂の成分が入り込むので、押出し成形時の粘性が増加
すると共に接着性能も向上する。これにより、押出し成
形性が改善される。
[0010] As described above, a molded article using only PET resin as a raw material has a small Labo Plastomill test value (shear torque), which is a measure of viscosity during extrusion molding by heating and melting, and has low moldability. In addition, the impact resistance tends to decrease due to the non-uniform crystallization. However, by mixing a polyolefin resin, such as a PET bottle cap or a handle resin, into a PET resin to form a composite resin pipe, the polyolefin resin component enters the molecules of the PET resin. As the viscosity at the time increases, the bonding performance also improves. Thereby, the extrudability is improved.

【0011】また、PET樹脂だけを原料とした成形品
は、アイゾット衝撃値が極めて低いため、ほとんど用途
がないが、PET樹脂にガラス繊維のチョップドストラ
ンドを混入して複合樹脂パイプを成形することにより、
耐衝撃性が著しく向上する。また、同時に押出し成形時
の粘性も増加させることができるので、押出し成形性が
改善される。更に、成形の際の収縮率も著しく押さえら
れるので、押出し成形する際の雄金型(マンドレル)へ
の抱き付きを防止することができ、また成形後の製品の
寸法安定性を著しく改善することができる。
A molded article made of only PET resin has very low Izod impact value, and thus has almost no application. However, a molded resin pipe is formed by mixing a chopped strand of glass fiber into PET resin. ,
The impact resistance is significantly improved. At the same time, the viscosity at the time of extrusion can be increased, so that the extrudability is improved. Furthermore, since the shrinkage rate during molding is significantly suppressed, it is possible to prevent the male mold (mandrel) from being entangled during extrusion molding, and to significantly improve the dimensional stability of the molded product. Can be.

【0012】更に、PET樹脂に焼却飛灰を混入して複
合樹脂パイプを成形することにより、微細な焼却飛灰粒
子が造核剤として機能し、PET樹脂の結晶化が促進さ
れる結果、全体に均一な成形品を得ることができ、物性
値や外観性を著しく向上することができる。また同時
に、加熱溶融による押出し成形時の粘性も増加するの
で、押出し成形性を改善することができる。ここで、焼
却飛灰の有害成分は、樹脂により封じ込まれ溶出するこ
とがないので安全であり、焼却飛灰の処理とPETボト
ル等の再利用を同時にすることができる。なお、一般
に、下水汚泥の焼却飛灰の方が、ごみの焼却飛灰よりも
含有有害物質が少なく、品質も安定しているので、下水
汚泥の焼却飛灰を使用するのが好ましい。
Furthermore, by mixing incineration fly ash with the PET resin to form a composite resin pipe, fine incineration fly ash particles function as a nucleating agent, and crystallization of the PET resin is promoted. In addition, it is possible to obtain a uniform molded product, and it is possible to remarkably improve physical properties and appearance. At the same time, the viscosity at the time of extrusion molding by heating and melting also increases, so that the extrudability can be improved. Here, the harmful components of the incineration fly ash are safe because they are not sealed and eluted by the resin, and the treatment of the incineration fly ash and the reuse of the PET bottles and the like can be performed at the same time. In general, incinerated fly ash of sewage sludge contains less harmful substances and is more stable in quality than incinerated fly ash of garbage. Therefore, it is preferable to use incinerated fly ash of sewage sludge.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る複合樹脂材
(特に複合樹脂パイプ)及びその製造方法の一実施形態
について詳細に説明する。本発明に係る複合樹脂材の製
造においては、主原料として、回収されたPETボトル
に含まれるPET樹脂と、このPETボトルのキャップ
や取手部に含まれるポリオレフィン系樹脂と、ガラス繊
維のチョップドストランドと、焼却施設から排出される
焼却飛灰を用いる。この焼却飛灰は、乾燥後の水分含有
量が0.01%以下であるものを使用する。これらの原
料は、PET樹脂を好ましくは20〜79重量%、ポリ
オレフィン系樹脂を好ましくは10〜30重量%、ガラ
ス繊維のチョップドストランドを好ましくは5〜30重
量%、焼却飛灰を好ましくは1〜20重量%含んでい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, one embodiment of a composite resin material (particularly, a composite resin pipe) and a method for producing the same according to the present invention will be described in detail. In the production of the composite resin material according to the present invention, as the main raw materials, the PET resin contained in the recovered PET bottle, the polyolefin-based resin contained in the cap or handle of the PET bottle, and the chopped strand of glass fiber Use incineration fly ash discharged from incineration facilities. The incineration fly ash used has a water content of 0.01% or less after drying. These raw materials are preferably 20 to 79% by weight of PET resin, preferably 10 to 30% by weight of polyolefin resin, preferably 5 to 30% by weight of chopped strand of glass fiber, and preferably 1 to 30% by weight of incinerated fly ash. Contains 20% by weight.

【0014】第一の実施例として、PET樹脂を64重
量%、ポリオレフィン系樹脂を16重量%、ガラス繊維
を15重量%、焼却飛灰を5重量%配合して加熱溶融し
た後、複合樹脂パイプを成形した。また、第二の実施例
として、PET樹脂を64重量%、ポリオレフィン系樹
脂を16重量%、ガラス繊維を10重量%、焼却飛灰を
10重量%配合して加熱溶融した後、複合樹脂パイプを
成形した。成形した複合樹脂材を所定形状及び大きさに
切り出して試験片を作り、それぞれの試験片について各
種物性試験(引張強度試験、曲げ強度試験、アイゾット
衝撃強度試験)及びラボプラストミル試験を行った。こ
の試験結果を表1に示す。
As a first embodiment, 64% by weight of a PET resin, 16% by weight of a polyolefin resin, 15% by weight of glass fiber, and 5% by weight of incinerated fly ash are mixed and heated and melted. Was molded. Further, as a second embodiment, after mixing and heating and melting 64% by weight of PET resin, 16% by weight of polyolefin-based resin, 10% by weight of glass fiber, and 10% by weight of incinerated fly ash, a composite resin pipe was formed. Molded. The molded composite resin material was cut into a predetermined shape and size to prepare test pieces, and each test piece was subjected to various physical property tests (tensile strength test, flexural strength test, Izod impact strength test) and lab plast mill test. Table 1 shows the test results.

【0015】[0015]

【表1】 [Table 1]

【0016】表1には、PET樹脂だけを原料としたも
の、即ち、PET樹脂を100重量%含むものの試験結
果を比較値として示してある。また、市販品の高密度ポ
リエチレン(HDPE)樹脂を100重量%含むもの及
び塩化ビニール(PVC)樹脂を100重量%含むもの
の試験結果を参考値として示してある。表1からわかる
ように、PET樹脂を100重量%含むもの(比較値)
は、耐衝撃性(アイゾット衝撃強度)が28.4J/
m、剪断トルクが6.7Nと低く、上述したように、押
出し成形には向いていないことがわかる。このPET樹
脂は、本来エンジニアリングプラスチックの一種であ
り、一般的に汎用樹脂より高物性の特性を有することが
知られている。これに対し、実施例1と実施例2におけ
る複合樹脂の各物性値はバランスが良く、実施例2では
やや剪断トルクが低いものの、実用的に十分な物性値が
得られていることがわかる。なお、汎用樹脂であるHD
PE樹脂を100重量%含むもの及びPVC樹脂を10
0重量%含むもの(参考値)は引張強度や曲げ強度で
は、良好な特性を有しており、押出し成形の排水パイプ
として広く使用されている。
Table 1 shows, as comparative values, the test results of a sample using only PET resin as a raw material, that is, a sample containing 100% by weight of PET resin. The test results of those containing 100% by weight of a commercially available high-density polyethylene (HDPE) resin and those containing 100% by weight of a vinyl chloride (PVC) resin are shown as reference values. As can be seen from Table 1, those containing 100% by weight of PET resin (comparative value)
Has an impact resistance (Izod impact strength) of 28.4 J /
m, and the shearing torque is as low as 6.7 N, which indicates that it is not suitable for extrusion molding as described above. This PET resin is originally a kind of engineering plastic, and is generally known to have higher physical properties than general-purpose resins. On the other hand, it can be seen that the physical properties of the composite resin in Examples 1 and 2 are well-balanced, and in Example 2, although the shear torque is slightly low, practically sufficient physical properties are obtained. The general-purpose resin HD
100% by weight of PE resin and 10% of PVC resin
Those containing 0% by weight (reference values) have good properties in tensile strength and bending strength, and are widely used as drainage pipes for extrusion molding.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
PET樹脂に廃棄物を利用したポリオレフィン系樹脂、
ガラス繊維のチョップドストランド、焼却飛灰を混入す
ることにより、押出し成形時の粘性を増加させると共に
接着性能も向上させることができ、押出し成形性を大幅
に改善することができる。また、均一な結晶度の複合樹
脂を得ることができ、耐衝撃性を向上させることができ
る。従って、このような複合樹脂を用いて十分実用的な
排水パイプ、例えば、下水道等に用いる排水パイプを成
形することができる。また、耐衝撃性が向上するため、
例えば、パイプを地中に埋設した場合に、地震や自動車
走行時の路面荷重、振動などに耐えることができる。
As described above, according to the present invention,
Polyolefin resin using waste as PET resin,
By mixing chopped strands and incinerated fly ash of glass fiber, the viscosity at the time of extrusion molding can be increased and the bonding performance can be improved, and the extrudability can be greatly improved. Further, a composite resin having a uniform crystallinity can be obtained, and the impact resistance can be improved. Therefore, a sufficiently practical drain pipe, for example, a drain pipe used for sewage or the like can be formed using such a composite resin. Also, because the impact resistance is improved,
For example, when the pipe is buried underground, it can withstand an earthquake, a road surface load when driving a car, vibration, and the like.

【0018】更に、主成分が廃棄物を利用したPET樹
脂及びポリオレフィン系樹脂であり、他の成形製品に比
べて材料費を安く抑えることができるので、パイプを安
価に製造することができる。加えて、複合樹脂は主成分
がPET樹脂であるため、鉄筋コンクリート製パイプな
どに比べ軽量にすることができ、これにより、パイプの
輸送や埋設工事等の必要な費用を削減することが可能と
なる。
Furthermore, the main components are PET resin and polyolefin resin using waste, and the material cost can be reduced compared to other molded products, so that the pipe can be manufactured at low cost. In addition, since the main component of the composite resin is PET resin, it can be lighter in weight than reinforced concrete pipes and the like, thereby making it possible to reduce costs required for pipe transportation and burial work. .

【0019】このような複合樹脂により成形されたパイ
プは、高耐薬品性を備えているので、例えば、下水道パ
イプに用いられた場合にも、下水中の腐食成分やガス、
菌類に対しても強い。また、腐食や摩耗に強いため、流
水面の平滑性の経年変化が小さく、汚物が付着しにくい
ため、初期の流量特性を長年に渡り維持できる。また、
接着剤による完全接合が可能なため、現場作業の効率化
や完全な水密性を保持することができ、かつ補修も容易
である。更に、耐寒性に優れており、塩化ビニールパイ
プのような亀裂も発生しにくいので、寒冷地での長年の
使用に耐えることができる。
A pipe formed of such a composite resin has high chemical resistance, so that, for example, even when used in a sewer pipe, corrosive components, gases, etc.
Strong against fungi. In addition, since it is resistant to corrosion and abrasion, the smoothness of the flowing water surface is not easily changed over time, and it is difficult for dirt to adhere thereto, so that the initial flow characteristics can be maintained for many years. Also,
Since complete joining with an adhesive is possible, efficiency of on-site work, perfect watertightness can be maintained, and repair is easy. Furthermore, since it is excellent in cold resistance and hardly generates a crack like a vinyl chloride pipe, it can withstand long-term use in a cold region.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 7/14 C08K 7/14 C08L 23/02 C08L 23/02 // B29K 23:00 B29K 23:00 67:00 67:00 105:06 105:06 105:26 105:26 509:08 509:08 B29L 23:00 B29L 23:00 Fターム(参考) 4F071 AA14 AA46 AB17 AB28 AE17 AH19 BB06 BC05 4F207 AA03 AA24 AA50 AB18 AB25 AG08 KA01 KA17 KF01 KF02 KM13 4F301 AA12 AA25 AB02 BA02 BA12 BA21 BA29 BB05 BC13 BE01 BE18 BF16 BF31 4J002 BB01X CF06W DL006 DM007 FA046 FD017 GL00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) C08K 7/14 C08K 7/14 C08L 23/02 C08L 23/02 // B29K 23:00 B29K 23:00 67 : 00 67:00 105: 06 105: 06 105: 26 105: 26 509: 08 509: 08 B29L 23:00 B29L 23:00 F term (reference) 4F071 AA14 AA46 AB17 AB28 AE17 AH19 BB06 BC05 4F207 AA03 AA24 AA50 AB18 AB25 AG08 KA01 KA17 KF01 KF02 KM13 4F301 AA12 AA25 AB02 BA02 BA12 BA21 BA29 BB05 BC13 BE01 BE18 BF16 BF31 4J002 BB01X CF06W DL006 DM007 FA046 FD017 GL00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物から回収されたポリエチレンテレ
フタレート容器(PETボトル等)に含まれるポリエチ
レンテレフタレート樹脂(PET樹脂)を原料とする複
合樹脂材であって、 廃棄物から回収されたポリオレフィン系樹脂と、ガラス
繊維のチョップドストランドと、焼却施設から排出され
る焼却飛灰と、を含むことを特徴とする複合樹脂材。
1. A composite resin material made of polyethylene terephthalate resin (PET resin) contained in a polyethylene terephthalate container (PET bottle or the like) recovered from waste, wherein the polyolefin resin recovered from waste is A composite resin material comprising: glass fiber chopped strands; and incinerated fly ash discharged from an incineration facility.
【請求項2】 上記PET樹脂を20〜79重量%、上
記ポリオレフィン系樹脂を10〜30重量%、上記ガラ
ス繊維のチョップドストランドを5〜30重量%、上記
焼却飛灰を1〜20重量%含むことを特徴とする請求項
1に記載の複合樹脂材。
2. The composition contains 20 to 79% by weight of the PET resin, 10 to 30% by weight of the polyolefin resin, 5 to 30% by weight of the glass fiber chopped strand, and 1 to 20% by weight of the incinerated fly ash. The composite resin material according to claim 1, wherein:
【請求項3】 上記焼却飛灰の乾燥後の水分含有量が
0.01%以下であることを特徴とする請求項1又は請
求項2に記載の複合樹脂材。
3. The composite resin material according to claim 1, wherein the moisture content of the incinerated fly ash after drying is 0.01% or less.
【請求項4】 廃棄物から回収されたPETボトル等に
含まれるPET樹脂を原料とする複合樹脂材の製造方法
であって、 上記PET樹脂に、廃棄物から回収されたポリオレフィ
ン系樹脂と、ガラス繊維のチョップドストランドと、焼
却施設から排出され乾燥後の水分含有量が0.01%以
下である焼却飛灰と、を混合し、これを加熱溶融して複
合樹脂材を成形することを特徴とする複合樹脂材の製造
方法。
4. A method for producing a composite resin material using a PET resin contained in a PET bottle or the like recovered from waste as a raw material, wherein the PET resin includes a polyolefin resin recovered from waste and glass. A composite resin material is formed by mixing chopped strands of fiber and incinerated fly ash discharged from an incineration facility and having a moisture content of 0.01% or less after drying, and heating and melting the mixture to form a composite resin material. Manufacturing method of composite resin material.
【請求項5】 上記請求項1から請求項3のいずれか一
項に記載の複合樹脂材により成形された複合樹脂パイ
プ。
5. A composite resin pipe formed from the composite resin material according to any one of claims 1 to 3.
JP2000049658A 2000-02-25 2000-02-25 Composite resin, manufacturing method thereof and composite resin pipe Pending JP2001240732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049658A JP2001240732A (en) 2000-02-25 2000-02-25 Composite resin, manufacturing method thereof and composite resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049658A JP2001240732A (en) 2000-02-25 2000-02-25 Composite resin, manufacturing method thereof and composite resin pipe

Publications (1)

Publication Number Publication Date
JP2001240732A true JP2001240732A (en) 2001-09-04

Family

ID=18571563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049658A Pending JP2001240732A (en) 2000-02-25 2000-02-25 Composite resin, manufacturing method thereof and composite resin pipe

Country Status (1)

Country Link
JP (1) JP2001240732A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114455A (en) * 2006-11-02 2008-05-22 Fujisawa Denko Kk Method of producing recycled pet fake bamboo and recycled pet fake bamboo obtained thereby
JP2008521638A (en) * 2004-11-26 2008-06-26 コルボント ベスローテン フェンノートシャップ Structured plates containing waste polymer and methods for producing such plates
CN101943296A (en) * 2010-09-06 2011-01-12 天津军星管业集团有限公司 Novel plastic ribbed pipe
CN101949477A (en) * 2010-09-06 2011-01-19 天津军星管业集团有限公司 Novel plastic double-wall corrugated pipe
US8043548B2 (en) 2004-01-06 2011-10-25 Iowa State University Research Foundation, Inc. Polymer mortar composite pipe material and manufacturing method
KR101483633B1 (en) * 2013-10-10 2015-01-16 인제대학교 산학협력단 Composite composition for car stopper having bottom-ash and recycled plastic resin
CN104893257A (en) * 2015-06-10 2015-09-09 周彩球 High-temperature silencing drainage pipe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043548B2 (en) 2004-01-06 2011-10-25 Iowa State University Research Foundation, Inc. Polymer mortar composite pipe material and manufacturing method
US8672666B2 (en) 2004-01-06 2014-03-18 Iowa State University Research Foundation, Inc. Polymer mortar composite pipe material and manufacturing method
JP2008521638A (en) * 2004-11-26 2008-06-26 コルボント ベスローテン フェンノートシャップ Structured plates containing waste polymer and methods for producing such plates
JP2008114455A (en) * 2006-11-02 2008-05-22 Fujisawa Denko Kk Method of producing recycled pet fake bamboo and recycled pet fake bamboo obtained thereby
CN101943296A (en) * 2010-09-06 2011-01-12 天津军星管业集团有限公司 Novel plastic ribbed pipe
CN101949477A (en) * 2010-09-06 2011-01-19 天津军星管业集团有限公司 Novel plastic double-wall corrugated pipe
KR101483633B1 (en) * 2013-10-10 2015-01-16 인제대학교 산학협력단 Composite composition for car stopper having bottom-ash and recycled plastic resin
CN104893257A (en) * 2015-06-10 2015-09-09 周彩球 High-temperature silencing drainage pipe

Similar Documents

Publication Publication Date Title
Turku et al. Characterization of wood plastic composites manufactured from recycled plastic blends
Bahij et al. Fresh and hardened properties of concrete containing different forms of plastic waste–A review
Kamaruddin et al. Potential use of plastic waste as construction materials: recent progress and future prospect
Avila et al. A mechanical analysis on recycled PET/HDPE composites
Hyvärinen et al. The effect of the use of construction and demolition waste on the mechanical and moisture properties of a wood-plastic composite
De la Colina Martínez et al. Recycled polycarbonate from electronic waste and its use in concrete: Effect of irradiation
Seghiri et al. The possibility of making a composite material from waste plastic
EP1395527B1 (en) Compositions comprising solid particles and binder
US20140054825A1 (en) Method of making structural members using waste and recycled plastics
Nyika et al. Recycling plastic waste materials for building and construction Materials: A minireview
Maneeth et al. Utilization of waste plastic in manufacturing of plastic-soil bricks
US7776243B2 (en) Recycled materials strengthening process, system and products
JP2001240732A (en) Composite resin, manufacturing method thereof and composite resin pipe
KR100521426B1 (en) Producing method of reinforcing plastic fiber for plastic concrete using plastic wastes, textures and crosslink agent
Shih et al. An Environmentally Friendly Recycled-Polyethylene Composite Reinforced by Diatomaceous Earth and Wood Fiber
WO2014007648A1 (en) Improvements in, or relating to, aggregate materials
Srivabut et al. Comparative effects of different coastal weathering on the thermal, physical, and mechanical properties of rubberwood–latex sludge flour reinforced with polypropylene hybrid composites
Kibria et al. Effect of Recycled Polystyrene Polymer in Concrete as a Coarse Aggregate
Yadav et al. Laboratory investigations of the properties of concrete containing recycled plastic aggregates
CN1209418C (en) Modified composition of waste plastics and flyash
Ponmalar et al. Waste recycled plastic granules substitute for aggregate in concrete–Review
JP2000159992A (en) Member made from resin utilizing waste material and production thereof
Karthikeyan et al. Summary of non-biodegradable wastes in concrete
WO2001055051A1 (en) An aggregate material
KR101183181B1 (en) Fill-in wall pipe for classification mark with industrial waste and plastic