JP2001238561A - Method for preventing generation of saprolegnia and removing generated saprolegnia - Google Patents

Method for preventing generation of saprolegnia and removing generated saprolegnia

Info

Publication number
JP2001238561A
JP2001238561A JP2000055412A JP2000055412A JP2001238561A JP 2001238561 A JP2001238561 A JP 2001238561A JP 2000055412 A JP2000055412 A JP 2000055412A JP 2000055412 A JP2000055412 A JP 2000055412A JP 2001238561 A JP2001238561 A JP 2001238561A
Authority
JP
Japan
Prior art keywords
water
saprolegnia
electrolyzed
mold
electrolyzed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000055412A
Other languages
Japanese (ja)
Inventor
Yutaka Ideno
裕 出野
Masaaki Nakamura
雅昭 中村
Toshio Takagi
利夫 高木
Masaaki Kashiwagi
正章 柏木
Ryuji Ueno
隆二 上野
Hiromi Tanaka
洋美 田中
Yasu Maekawa
縁 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000055412A priority Critical patent/JP2001238561A/en
Publication of JP2001238561A publication Critical patent/JP2001238561A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

PROBLEM TO BE SOLVED: To safely perform the prevention of the generation of saprolegnia and the removal of the fungi in a fish farm. SOLUTION: Water containing chlorine ion is electrolyzed in an electrolyzed water production apparatus 17 and the electrolyzed water containing residual chlorine is applied to the planospore or mycelia of saprolegnia to exterminate the fungi. Since an agent having teratogenicity or carcinogenicity is not used in the operation, the work is safely and easily performed without causing influence on the environmental.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、養殖魚や鑑賞魚
などの魚類及び魚卵の飼育管理に関し、特にそれに伴う
水カビの発生防止及び除去に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to breeding and management of fish and fish eggs such as farmed fish and ornamental fish, and more particularly to the prevention and removal of water mold associated therewith.

【0002】[0002]

【従来の技術】ニジマスやイワナなどの孵化・養殖場で
は、水カビ科に分類される菌により、魚体や魚卵に水カ
ビが発生する。従来、これら魚類の水カビ病の予防・治
療には主としてマラカイトグリーン(Malachite gree
n)が用いられ、目下のところ本剤に優るものはないと
されている。
2. Description of the Related Art In hatching and cultivation farms such as rainbow trout and char, water mold occurs in fish bodies and fish eggs due to bacteria classified in the water mold family. Conventionally, malachite green (Malachite gree) has been mainly used for the prevention and treatment of water mold disease in these fish.
n) is used, and it is said that there is no superior product at present.

【0003】[0003]

【発明が解決しようとする課題】ところが上記マラカイ
トグリーンは、動物に対する催奇性や発ガン性が指摘さ
れ、現在、その使用が規制されている。そこで、この発
明の課題は、安全・安価で環境への影響のない水カビの
発生防止・除去手段を得ることにある。
However, the malachite green has been pointed out for its teratogenicity and carcinogenicity to animals, and its use is currently regulated. Therefore, an object of the present invention is to provide means for preventing and removing water mold which is safe and inexpensive and has no effect on the environment.

【0004】[0004]

【課題を解決するための手段】発明者らは、上記手段に
ついて種々模索した結果、電解水中に含まれる残留塩素
成分が水カビの発生防止にきわめて有効であることを見
出し、この発明をするに至った。すなわち、水道水ある
いはこれに食塩(NaCl)や塩化カリウム(KCl)などの
電解助剤を添加した水を電気分解すると、プラス電極側
に強酸性水が生成し、マイナス電極側に強アルカリ水が
生成するが、強酸性水は次亜塩素酸(HOCl)や次亜塩素
酸イオン(OCl-)あるいは塩素ガス(Cl2)などの残留
塩素(溶存塩素)を含み、この残留塩素、特に次亜塩素
酸が水カビに対して有効であることが判明したものであ
る。そこで、この発明は、残留塩素を含む電解水を水カ
ビの遊走子又は菌糸に作用させることにより、水カビの
遊走子あるいは菌糸を死滅させるものである(請求項
1)。
Means for Solving the Problems The inventors of the present invention sought variously for the above means, and as a result, found that the residual chlorine component contained in the electrolyzed water was extremely effective in preventing the generation of water mold. Reached. That is, when tap water or water obtained by adding an electrolytic aid such as salt (NaCl) or potassium chloride (KCl) thereto is electrolyzed, strongly acidic water is generated on the positive electrode side and strong alkaline water is generated on the negative electrode side. but generates strongly acidic water hypochlorite (HOCl) and hypochlorite ion (OCl -) include or residual chlorine (dissolved chlorine) such as chlorine gas (Cl 2), the residual chlorine, in particular hypochlorite Chloric acid has been found to be effective against water mold. Therefore, the present invention kills zoospores or hyphae of water mold by causing electrolyzed water containing residual chlorine to act on zoospores or hyphae of water mold (claim 1).

【0005】その場合、酸性水は魚類の飼育には適さな
いので、電解水は強酸性水と強アルカリ水とを電解槽内
あるいは電解槽外で混合して用いるのがよい(請求項
2)。この混合水は弱アルカリ性(pH7.5程度)を示
し、魚類の成育に影響を与えることがない。なお、電解
水の生成については、例えば特開平11-239791号公報を
参照されたい。
In this case, since acidic water is not suitable for breeding fish, it is preferable to use strongly acidic water and strongly alkaline water in an electrolytic bath or a mixture outside the electrolytic bath. . This mixed water shows weak alkalinity (about pH 7.5) and does not affect the growth of fish. For the generation of electrolyzed water, see, for example, JP-A-11-239791.

【0006】[0006]

【発明の実施の形態】以下、電解水(弱アルカリ水)を
水カビ(Saprolegnia parasticta)の遊走子及び菌糸に
作用させた実験について説明する。まず、図1は、電解
水の菌糸に対する発育阻止能力を調べた実験の説明図で
ある。図1において、シャーレ内のGY(グルコース
・イースト)寒天培地1上に菌糸2を植え付け、15℃
で4日間培養し、寒天培地1の集落辺縁部から直径4.
5mmの円形小片3を筒形カッタ切り出し、この小片3
をビーカー内の電解水(弱アルカリ水)4に浸漬して、
電磁スターラ5で攪拌しながら処理した。弱アルカリ水
4の残留塩素濃度(Cl2換算)は10,20,30ppm、処理時
間は5,15,30,60分とした。弱アルカリ水4から取
り出した小片3は蒸留水6で2回洗浄し、その後、小
片3をGY寒天培地1上に15℃で36時間静置し、菌糸
の様子を観察した。
BEST MODE FOR CARRYING OUT THE INVENTION An experiment in which electrolyzed water (weakly alkaline water) is applied to zoospores and hyphae of water mold (Saprolegnia parasticta) will be described below. First, FIG. 1 is an explanatory diagram of an experiment in which the ability of electrolyzed water to inhibit the growth of mycelium was examined. In FIG. 1, mycelium 2 was inoculated on a GY (glucose yeast) agar medium 1 in a petri dish,
For 4 days.
Cut a 5 mm circular small piece 3 into a cylindrical cutter, and
Is dipped in electrolyzed water (weakly alkaline water) 4 in a beaker,
The treatment was performed while stirring with an electromagnetic stirrer 5. The residual chlorine concentration (in terms of Cl 2 ) of the weak alkaline water 4 was 10, 20, 30 ppm, and the treatment time was 5, 15, 30, 60 minutes. The small pieces 3 taken out of the weak alkaline water 4 were washed twice with distilled water 6, and then the small pieces 3 were allowed to stand on the GY agar medium 1 at 15 ° C. for 36 hours to observe the state of hyphae.

【0007】表1に、その実験結果を比較例の水道水処
理の場合と一緒に示す。また、表2に、他薬剤としてマ
ラカイトグリーンを用いた比較実験の結果を示す。表
1,2中の数値は、水道水の寒天培地上での菌糸コロニ
ーの直径の平均値を100%とたときの、電解水で処理
した試料の同じく平均値の相対値を表したものである。
表1から、残留塩素濃度30ppmの弱アルカリ水で60分処
理した菌糸は、発育が全く見られず、完全に死滅してい
ることが確認できた。一方、表2において、マラカイト
グリーンは著効があり、1.0ppm,30分の処理で、完全に
死滅することが分かる。
Table 1 shows the experimental results together with the results of the tap water treatment of the comparative example. Table 2 shows the results of comparative experiments using malachite green as another drug. Table numbers in the 1 and 2, when the average value of the diameter of mycelial colony on the agar medium of tap water was 100%, which represents the relative value of the same average value of the samples treated with electrolytic water It is.
From Table 1, it was confirmed that the mycelium treated with weak alkaline water having a residual chlorine concentration of 30 ppm for 60 minutes showed no growth and was completely killed. On the other hand, in Table 2, it can be seen that malachite green has a remarkable effect and is completely killed by treatment at 1.0 ppm for 30 minutes.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】次に、図2は遊走子に対する電解水の発育
阻止能力を調べた実験の説明図である。図2において、
蒸留水500ml,グルコース5g,酵母エキス1.25gからなる
GY培養液7を広口びんに入れ、上述した寒天培地1
の集落辺縁部からナイフで切り出した8×8mmの方形の
小片8を液体培地7に投入し、15℃で6日間培養し
た。液中で菌糸が白い綿状に成長したら、この菌糸を
蒸留水6で3回洗浄し、水中に放出された遊走子を15
℃で3日間静置し、次いで、この遊走子をビーカー内
の電解水(弱アルカリ水)に浸漬して、電磁スターラ5
で攪拌しながら処理した。弱アルカリ水の残留塩素濃度
は2.5,5.0,7.5,10,15,20,30ppm、処理時間は10
秒,1,5,15分とした。
Next, FIG. 2 is an explanatory view of an experiment for examining the growth inhibiting ability of electrolyzed water on zoospores. In FIG.
A GY culture solution 7 consisting of 500 ml of distilled water, 5 g of glucose and 1.25 g of yeast extract was placed in a jar, and the agar medium 1 described above was added.
An 8 × 8 mm square piece 8 cut out from the edge of the colony with a knife was put into a liquid medium 7 and cultured at 15 ° C. for 6 days. When the mycelium grew into a white floc in the solution, the mycelium was washed three times with distilled water 6 to remove zoospores released into the water.
At room temperature for 3 days, and then immersed the zoospores in electrolyzed water (weakly alkaline water) in a beaker.
With stirring. The residual chlorine concentration of weak alkaline water is 2.5, 5.0, 7.5, 10, 15, 20, 30 ppm, and the treatment time is 10
Seconds, 1, 5, and 15 minutes.

【0011】その後、供試水1ml(遊走子濃度:2×1
07個/l, 2×105個/l)を3個の麻の実9と滅菌水道水30
mlを入れたシャーレにスポイトで移し、15℃で5日間
静置して、麻の実9ごとの発芽の有無を観察した。実
験は残留塩素濃度及び遊走子濃度を変えて3回実施し
た。表3〜表5にその結果を示す。また、他薬剤として
マラカイトグリーン水溶液及び次亜塩素酸ソーダ水溶液
を用いて比較実験を行ったので、その結果を表6に示
す。表中、+及び-記号はそれぞれ一つのサンプル(一つ
の麻の実9)を示し、+は遊走子が活性、-は同じく死滅
を表している。これらの実験結果から、残留塩素濃度が
2.5ppm程度の弱アルカリ水で、遊走子を完全に死滅させ
られることが分かる。また、マラカイトグリーンは著効
があるが、使用上問題があることはすでに述べた通りで
ある。
Then, 1 ml of test water (zoospore concentration: 2 × 1
0 7 pcs / l, 2 × 10 5 pcs / l) with 3 hemp seeds 9 and sterile tap water 30
The mixture was transferred to a petri dish containing ml with a dropper, and allowed to stand at 15 ° C. for 5 days. The experiment was performed three times while changing the residual chlorine concentration and the zoospore concentration. Tables 3 to 5 show the results. In addition, a comparative experiment was performed using a malachite green aqueous solution and a sodium hypochlorite aqueous solution as other agents, and the results are shown in Table 6. In the table, + and-symbols indicate one sample (one hemp seed 9), + indicates zoospore activity, and-indicates death. From these experimental results, the residual chlorine concentration
It can be seen that the zoospores can be completely killed by weak alkaline water of about 2.5 ppm. Although malachite green has a remarkable effect, it has a problem in use as described above.

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】[0014]

【表5】 [Table 5]

【0015】[0015]

【表6】 [Table 6]

【0016】上記実験結果を踏まえ、実際の魚卵の孵化
装置を用いて電解水の水カビ防止実験を行ったので、こ
れについて説明する。図1は孵化装置10の概略構成を
示す縦断面図である。図3において、孵化装置10は水
槽11が仕切板により前後2室の孵化室12と、その手
前の通水路13とに仕切られており、各孵化室12には
ニジマスの魚卵14を載せた網棚15が数段設置されて
いる。水槽11には手前側の通水路13から水(湧水)
が連続的に流され、この水は矢印で示すように、各孵化
室12を下から上に流れて魚卵14を洗流し、オーバー
フローして槽外に排出される。水槽11の容量は25l
で、湧水の流量は24l/毎分である。孵化装置10に
は、通常は湧水のみを流すが、実験では湧水のみを流す
ものと電解水に切り替えて流すものとを並置して両者を
比較した。
Based on the above experimental results, an experiment for preventing water mold from electrolyzed water using an actual fish egg hatching apparatus will be described. FIG. 1 is a longitudinal sectional view showing a schematic configuration of the hatching device 10. In FIG. 3, the hatching apparatus 10 has a water tank 11 partitioned into two front and rear hatching chambers 12 by a partition plate and a water passage 13 in front of the tank, and a rainbow trout fish egg 14 is placed in each hatching chamber 12. Several levels of net shelves 15 are provided. Water (spring) from the water channel 13 on the near side to the water tank 11
Is continuously flowed, and this water flows upward and downward through each hatching chamber 12 to wash out the fish eggs 14 as indicated by the arrows, overflows and is discharged out of the tank. The capacity of the water tank 11 is 25 l
The flow rate of spring water is 24 l / min. Normally, only the spring water flows in the hatching device 10, but in the experiment, a device in which only the spring water flows and a device in which the flow is switched to the electrolytic water were juxtaposed and compared.

【0017】図4は上記実験のための配管接続を示す平
面図である。図4において、第1の孵化装置10-1と第2
の孵化装置10-2とが並べて設置され、湧水槽16にいっ
たん溜められた湧水は、常時は孵化装置10-1,10-2に平
行して供給される。また、湧水槽16に隣接して電解水
生成装置17が設置され、三方コック18の切り替えに
より、電解水が第1の孵化装置10-1に供給されるように
なっている。実験では、第2の孵化装置10-2には湧水の
みを常時流し、第1の孵化装置10-1には、1日、1時
間、1週間に2回、つまり1週間に2時間、電解水生成装置
15で得られた残留塩素濃度30ppmの弱アルカリ水を3
l/毎分の流量で湧水と切り替えて流した。なお、その
場合、水槽11(図3)内の水は約30分で電解水にほぼ
完全に置換され、残留塩素濃度30ppmを示した。
FIG. 4 is a plan view showing a pipe connection for the above experiment. In FIG. 4, the first hatching device 10-1 and the second hatching device 10-1
The hatching device 10-2 is installed side by side, and the spring water once stored in the spring tank 16 is always supplied in parallel to the hatching devices 10-1 and 10-2. Further, an electrolyzed water generator 17 is provided adjacent to the spring tank 16, and the electrolyzed water is supplied to the first hatching device 10-1 by switching the three-way cock 18. In the experiment, only the spring water was constantly supplied to the second hatching device 10-2, and the first hatching device 10-1 was twice a day, one hour, and twice a week, that is, two hours a week. 3 weak alkaline water with a residual chlorine concentration of 30 ppm obtained in the electrolyzed water generator 15
The flow was switched to spring water at a flow rate of 1 / min. In this case, the water in the water tank 11 (FIG. 3) was almost completely replaced with electrolyzed water in about 30 minutes, and showed a residual chlorine concentration of 30 ppm.

【0018】このようにして1ヶ月経過後、孵化装置10-
1及び10-2の魚卵の観察を行った。電解水で処理したも
のと、対照区として処理せず、一般的な方法すなわち、
卵を孵化装置に置いたときだけイソジンに15分間漬け
置きして殺菌したものとの発眼率を比較した。結果を表
7に示す。表7から明らかな通り、電解水で処理した卵
は、電解水で処理してない卵より発眼率が高かった。電
解水処理区では、死卵に水カビがほとんど発生しなかっ
たため、高い発眼率が得られたものである。
After one month, the hatching apparatus 10-
1 and 10-2 fish eggs were observed. What was treated with electrolyzed water, and not treated as a control group, the general method, that is,
Only when the eggs were placed in the hatching apparatus, the eye-opening rates were compared with those obtained by immersing in eggs for 15 minutes and sterilizing. Table 7 shows the results. As is clear from Table 7, the eggs treated with the electrolyzed water had a higher eye-opening rate than the eggs not treated with the electrolyzed water. In the electrolyzed water treatment area, since water mold hardly occurred on the dead eggs, a high eye-opening rate was obtained.

【0019】[0019]

【表7】 [Table 7]

【0020】上記実験結果から、電解水により水中に浮
遊する水カビの遊走子を死滅させて水カビの発生を防止
し、また一旦発生した水カビも同様に殺菌することが確
認できた。従って、養魚場などで孵化装置の流水中や養
殖池の循環水中に電解水を注入することにより、水カビ
の発生防止や生じた水カビの除去をおこなうことができ
る。
From the above experimental results, it was confirmed that the water mold zoospores floating in the water were killed by the electrolyzed water to prevent the generation of water mold, and that the water mold once generated was similarly sterilized. Therefore, by injecting the electrolyzed water into the running water of the hatching apparatus or the circulating water of the culture pond at a fish farm or the like, it is possible to prevent the generation of water mold and to remove the generated water mold.

【0021】[0021]

【発明の効果】以上の通り、この発明によれば、電解水
を用いて水カビの発生防止・除去を行うことにより、催
奇性や発ガン性のある薬剤を取り扱うことによる危険や
面倒な作業がなくなり、また電解水は容易に生成するこ
とができるとともに、排水処理の必要もないので設備が
簡単となり、安全で安価な水カビ対策を実現することが
可能になる。
As described above, according to the present invention, by preventing and eliminating the generation of water mold using electrolyzed water, the danger and troublesome work of handling a teratogenic or carcinogenic agent can be obtained. In addition to being able to easily produce electrolyzed water and eliminating the need for wastewater treatment, the equipment is simplified, and safe and inexpensive measures against water mold can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電解水の水カビ菌糸に対する発育阻止能力を確
認するための実験の手順を示す説明図である。
FIG. 1 is an explanatory diagram showing the procedure of an experiment for confirming the ability of electrolytic water to inhibit the growth of fungal hyphae.

【図2】電解水の水カビ遊走子に対する発育阻止能力を
確認するための実験の手順を示す説明図である。
FIG. 2 is an explanatory diagram showing the procedure of an experiment for confirming the growth inhibiting ability of electrolyzed water against water mold zoospores.

【図3】魚卵孵化装置の概略構成を示す縦断面図であ
る。
FIG. 3 is a longitudinal sectional view showing a schematic configuration of a fish egg hatching apparatus.

【図4】図3の魚卵孵化装置を用いた実験の配管接続図
である。
FIG. 4 is a pipe connection diagram of an experiment using the fish egg hatching apparatus of FIG. 3;

【符号の説明】[Explanation of symbols]

1 寒天培地 2 水カビ菌糸 3 菌糸の小片 4 弱アルカリ水 5 電磁スターラ 6 蒸留水 7 寒天培養液 8 菌糸の小片 10 孵化装置 11 水槽 14 魚卵 15 網棚 16 湧水槽 17 電解水生成装置 18 三方コック DESCRIPTION OF SYMBOLS 1 Agar medium 2 Water mold mycelium 3 Mycelium small piece 4 Weak alkaline water 5 Electromagnetic stirrer 6 Distilled water 7 Agar culture liquid 8 Mycelium small piece 10 Hatching device 11 Aquarium 14 Fish egg 15 Net shelf 16 Spring tank 17 Electrolyzed water generator 18 Three-way cock

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 531 C02F 1/50 531M 540 540B 560 560F (71)出願人 500091704 田中 洋美 三重県鈴鹿市花川町1541番地31 (71)出願人 500091508 前川 縁 愛知県豊川市野口町新屋敷52番地15 (72)発明者 出野 裕 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 中村 雅昭 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 高木 利夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 柏木 正章 三重県安芸郡安濃町大字内多2844番地2 (72)発明者 上野 隆二 三重県津市渋見町722番地21 (72)発明者 田中 洋美 三重県鈴鹿市花川町1541番地31 (72)発明者 前川 縁 愛知県豊川市野口町新屋敷52番地15 Fターム(参考) 2B104 BA13 EF11 4D061 DA03 DA06 DB07 DB08 EA02 EB02 EB14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 531 C02F 1/50 531M 540 540B 560 560F (71) Applicant 500091704 Hiromi Tanaka Hana Suzuka, Mie Prefecture 1541, Kawamachi 31 (71) Applicant 500091508 Enri Maekawa 52-15, Shinyashiki, Noguchi-cho, Toyokawa-shi, Aichi Prefecture (72) Inventor Hiroshi Deno 1-1-1, Tanabe-Shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Fuji Electric Co., Ltd. (72 ) Inventor Masaaki Nakamura 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-city, Kanagawa Prefecture, Fuji Electric Co., Ltd. (72) Inventor Toshio Takagi 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-ku, Kanagawa Prefecture, Fuji Electric Co., Ltd. (72) Inventor Masaaki Kashiwagi 2844-2, Uchida, Oza, Ano-cho, Aki-gun, Mie Prefecture (72) Inventor Ryuji Ueno 722-21, Shibumicho, Tsu-shi, Mie Prefecture (72) Inventor Hiromi Tanaka 3141-154-1 Hanakawa-cho, Suzuka-shi, Mie (72) Inventor Ryo Maekawa 52-15 Shin-Yashiki, Noguchi-cho, Toyokawa-shi, Aichi F-term (reference) 2B104 BA13 EF11 4D061 DA03 DA06 DB07 DB08 EA02 EB02 EB14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】残留塩素を含む電解水を水カビの遊走子又
は菌糸に作用させることを特徴とする水カビの発生防止
及び除去方法。
1. A method for preventing and removing water mold, which comprises causing electrolyzed water containing residual chlorine to act on zoospores or hypha of water mold.
【請求項2】前記電解水として、塩素イオンを含む水を
電気分解して生じた強酸性水と強アルカリ水とを混合し
て得られる弱アルカリ水を用いることを特徴とする請求
項1記載の水カビの発生防止及び除去方法。
2. The method according to claim 1, wherein the electrolyzed water is weakly alkaline water obtained by mixing strongly acidic water and strongly alkaline water generated by electrolyzing water containing chlorine ions. Prevention and removal of water mold.
JP2000055412A 2000-03-01 2000-03-01 Method for preventing generation of saprolegnia and removing generated saprolegnia Pending JP2001238561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055412A JP2001238561A (en) 2000-03-01 2000-03-01 Method for preventing generation of saprolegnia and removing generated saprolegnia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055412A JP2001238561A (en) 2000-03-01 2000-03-01 Method for preventing generation of saprolegnia and removing generated saprolegnia

Publications (1)

Publication Number Publication Date
JP2001238561A true JP2001238561A (en) 2001-09-04

Family

ID=18576537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055412A Pending JP2001238561A (en) 2000-03-01 2000-03-01 Method for preventing generation of saprolegnia and removing generated saprolegnia

Country Status (1)

Country Link
JP (1) JP2001238561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143329A (en) * 2003-11-12 2005-06-09 Japan Science & Technology Agency Method for asepticizing zoo- and phytoplankton and method for culturing rotifer using the same method for asepticization
CN102428880A (en) * 2010-09-29 2012-05-02 中国水产科学研究院淡水渔业研究中心 Paracanthobrama guichenoti bleeker germ cell incubation method, as well as fry hatching method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143329A (en) * 2003-11-12 2005-06-09 Japan Science & Technology Agency Method for asepticizing zoo- and phytoplankton and method for culturing rotifer using the same method for asepticization
CN102428880A (en) * 2010-09-29 2012-05-02 中国水产科学研究院淡水渔业研究中心 Paracanthobrama guichenoti bleeker germ cell incubation method, as well as fry hatching method
CN102428880B (en) * 2010-09-29 2014-03-05 中国水产科学研究院淡水渔业研究中心 Paracanthobrama guichenoti bleeker germ cell incubation method, as well as fry hatching method

Similar Documents

Publication Publication Date Title
EP1261254B1 (en) Method of controlling zoological and aquatic plant growth
Montemezzani et al. Screening of potential zooplankton control technologies for wastewater treatment High Rate Algal Ponds
WO2005082071A2 (en) Antimicrobial food additive and treatment for cooked food, water and wastewater
Arens et al. Pressurized seawater as an antifouling treatment against the colonial tunicates Botrylloides violaceus and Botryllus schlosseri in mussel aquaculture
NO340140B1 (en) Method for Controlling Water Molds in Aquaculture Water
US20030098283A1 (en) Aquaculture water for marine fauna and flora and production method and system of the same
US6164244A (en) Method for treating aquatic pests
CN1319451C (en) Biocide composition and related methods
Hagström et al. Potential Methods for Managing Prymnesium parvum Blooms and Toxicity, With Emphasis on Clay and Barley Straw: A Review 1
JP2001238561A (en) Method for preventing generation of saprolegnia and removing generated saprolegnia
KR20120138265A (en) Sterilzation treatment apparatus for water of aquarium for living fish
US20060003894A1 (en) Method of controlling zoological and aquatic plant growth
KR101368491B1 (en) Appliance for electrolysis attached ship and the method of sterilizing red tied using it
KR20150093293A (en) Method for Preparing Sterilized Water using Seawater and Sterilization System for Marine Products
Rød Sori disinfection in cultivation of Saccharina latissima: Evaluation of chemical treatments against diatom contamination
Blogoslawski et al. Bacterial disinfection in shellfish hatchery disease control
JP4340472B2 (en) Seaweed treatment method for controlling seaweeds and controlling nobacterial fungi
JP4965129B2 (en) Antifouling agent
JP2016015947A (en) Oyster husbandry method
AU743075B1 (en) Control of algae and legionella
CN117486326B (en) Novel high-efficiency biological algistat
US11523620B2 (en) Method for disinfecting marine animals
KR101852010B1 (en) Manufacturing method of marine life culture water and marine life culture water thereby the same that
Wulansarie et al. Ozone Technology for Pathogenic Bacteria of Shrimp (Vibrio sp.) Disinfection
Ahari et al. Study of Electrochemical Water Reactor Concerning Food Safety in Industerial Food Processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080306