JP2001235727A - Antiferroelectric liquid crystal device - Google Patents

Antiferroelectric liquid crystal device

Info

Publication number
JP2001235727A
JP2001235727A JP2001005830A JP2001005830A JP2001235727A JP 2001235727 A JP2001235727 A JP 2001235727A JP 2001005830 A JP2001005830 A JP 2001005830A JP 2001005830 A JP2001005830 A JP 2001005830A JP 2001235727 A JP2001235727 A JP 2001235727A
Authority
JP
Japan
Prior art keywords
liquid crystal
antiferroelectric liquid
electric field
crystal device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001005830A
Other languages
Japanese (ja)
Inventor
Hisanori Yamaguchi
久典 山口
Satoru Kimura
哲 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001005830A priority Critical patent/JP2001235727A/en
Publication of JP2001235727A publication Critical patent/JP2001235727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antiferroelectric liquid crystal device which can sufficiently decrease the luminance of black color and can realize display with high contrast. SOLUTION: An AC electric field of a high voltage at a low frequency not to decompose an antiferroelectric liquid crystal layer 15 is preliminarily applied for a specified time between a signal electrode 12a and a selective electrode 12b. The liquid crystal molecules respond and move by the spontaneous polarization induced by the AC field, and the movement of the molecules forms a bookshelf-like structure in the antiferroelectric liquid crystal layer 15. Thus, zigzag defects or parabolic focal conic defects in the antiferroelectric liquid crystal layer 15 are eliminated and a good alignment state can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光シャッタや表示
装置などに用いられる反強誘電性液晶素子に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antiferroelectric liquid crystal device used for an optical shutter or a display device.

【0002】[0002]

【従来の技術】反強誘電性液晶は、チャンダニらによっ
て発見された(ジャパン・ジャーナル・アプライド・フ
ィジックス 1989年28号L1256頁(Jpn.
J.Appl.Phys.,No.28,p.L125
6,1989))。
2. Description of the Related Art An antiferroelectric liquid crystal has been discovered by Chandani et al. (Japan Journal Applied Physics, 1989, 28, L1256 (Jpn.
J. Appl. Phys. , No. 28, p. L125
6, 1989)).

【0003】反強誘電性液晶素子の従来技術の一例を、
図面を用いて以下に説明する。図2は反強誘電性液晶の
模式図である。図2において、21はコーン、22は層
法線、23は液晶分子、24は偏光板の吸収軸、25は
螺旋ピッチの1/2である。
An example of the prior art of an antiferroelectric liquid crystal device is as follows.
This will be described below with reference to the drawings. FIG. 2 is a schematic diagram of an antiferroelectric liquid crystal. In FIG. 2, 21 is a cone, 22 is a layer normal, 23 is a liquid crystal molecule, 24 is an absorption axis of a polarizing plate, and 25 is a half of a helical pitch.

【0004】図3は、反強誘電性液晶素子の表示原理を
示す模式図であり、液晶を封入した対向基板を基板上方
より見た図である。図3において、31は液晶分子、3
2は層法線、33は自発分極Ps、34は偏光板の吸収
軸、35は印加電界の方向であり、図3(a)の場合
(・印)は図面に対して手前方向の電界を示し、図3
(c)の場合(×印)は図面に対して前方方向の電界を
示している。
FIG. 3 is a schematic diagram showing the display principle of an antiferroelectric liquid crystal element, and is a view of an opposing substrate in which liquid crystal is sealed, as viewed from above the substrate. In FIG. 3, 31 is a liquid crystal molecule, 3
2 is the layer normal, 33 is the spontaneous polarization Ps, 34 is the absorption axis of the polarizing plate, 35 is the direction of the applied electric field, and in FIG. Show, FIG.
In the case of (c), (x mark) indicates the electric field in the forward direction with respect to the drawing.

【0005】以上のような構成要素からなる従来の反強
誘電性液晶素子について、その動作を以下に説明する。
配向処理が施された対向基板間に封入され、基板に垂直
な方向に層をなした反強誘電性液晶は、電圧が印加され
ていない状態(無電界)では、図2や図3(b)に示す
ように、自発分極Ps33が交互に逆方向をなしている
ため、全体としては相殺されている。
The operation of the conventional antiferroelectric liquid crystal device having the above components will be described below.
The antiferroelectric liquid crystal sealed between the aligned substrates subjected to the alignment treatment and layered in a direction perpendicular to the substrate is shown in FIGS. 2 and 3 (b) when no voltage is applied (no electric field). As shown in ()), the spontaneous polarizations Ps33 are alternately in opposite directions, and thus are canceled as a whole.

【0006】そして、対向基板間に一定の閾値以上の電
圧が印加されると、反強誘電性液晶内において、図3
(a)や図3(c)に示すように、電界の方向に応じて
強誘電相が誘起される。
When a voltage equal to or higher than a predetermined threshold value is applied between the opposing substrates, the anti-ferroelectric liquid crystal in FIG.
As shown in FIG. 3A and FIG. 3C, a ferroelectric phase is induced according to the direction of the electric field.

【0007】従って、例えば図3のように、液晶を封入
した対向基板を、吸収軸34の一方が層法線32の方向
と一致するように配置された一対のクロスニコル偏光板
間に設置すれば、図3(b)に示す閾値電圧以下の電界
印加での反強誘電相状態では暗状態が得られ、図3
(a)や図3(c)に示す閾値電圧以上の電界印加での
強誘電相状態では複屈折効果による明状態が得られる。
Therefore, for example, as shown in FIG. 3, a counter substrate filled with liquid crystal is placed between a pair of crossed Nicol polarizing plates arranged so that one of the absorption axes 34 coincides with the direction of the layer normal 32. For example, a dark state is obtained in the anti-ferroelectric phase state when an electric field below the threshold voltage shown in FIG.
In the ferroelectric phase state when an electric field equal to or higher than the threshold voltage shown in (a) or FIG. 3 (c), a bright state due to the birefringence effect can be obtained.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記のよ
うな従来の反強誘電性液晶素子では、図2や図3(b)
に示す反強誘電相、特に、液晶封入直後で電圧が印加さ
れる前の初期の反強誘電相の状態では、図4に示す反強
誘電性液晶の初期配向状態での層構造の模式図のよう
に、シェブロン構造をとっており、41は層であり、ヘ
アピン欠陥42やライトニング欠陥43などの配向欠陥
が生じやすいという問題点を有していた。
However, in the conventional antiferroelectric liquid crystal device as described above, FIG. 2 and FIG.
In the state of the antiferroelectric phase shown in FIG. 4, especially in the initial state of the antiferroelectric phase immediately after the liquid crystal is sealed and before the voltage is applied, a schematic diagram of the layer structure in the initial orientation state of the antiferroelectric liquid crystal shown in FIG. As described above, the layer 41 has a chevron structure, and 41 is a layer, which has a problem that alignment defects such as a hairpin defect 42 and a lightning defect 43 are likely to occur.

【0009】ここで、シェブロン構造について簡単に説
明する。スメクティック液晶を封入して配向させる主な
方法としては、等方相で液晶を封入し、その後、徐冷に
より常温まで温度を降下する方法がある。この方法によ
ると、温度降下に従って相変化によりスメクティック相
で層構造が生じ、更に、カイラルスメクティック層に相
転移して、このとき、液晶分子がティルトし、螺旋構造
が生じ、層間隔が狭くなる。この体積変化を緩和するた
めにシェブロン構造が生じる。
Here, the chevron structure will be briefly described. As a main method of enclosing and orienting the smectic liquid crystal, there is a method of encapsulating the liquid crystal in an isotropic phase and then lowering the temperature to room temperature by slow cooling. According to this method, a layer structure is generated in a smectic phase due to a phase change according to a temperature drop, and further a phase transition to a chiral smectic layer occurs. At this time, liquid crystal molecules are tilted, a helical structure is generated, and a layer interval is narrowed. A chevron structure is created to alleviate this volume change.

【0010】強誘電性液晶では、層間の相互作用が弱
く、シェブロンの方向の逆転によるヘアピン欠陥42や
ライトニング欠陥43のジグザグ欠陥が生じて、体積緩
和を補強することが多い。それに対して、反強誘電性液
晶では、自発分極を全体として相殺する必要があるため
層間の相互作用が強く、そのためジグザグ欠陥が生じに
くく、放物型のフォーカルコニック欠陥が生じることで
体積変化の緩和を補強していると考えられる。
In the ferroelectric liquid crystal, the interaction between the layers is weak, and zigzag defects such as the hairpin defect 42 and the lightning defect 43 due to the reversal of the direction of the chevron are generated, thereby reinforcing the volume relaxation. On the other hand, antiferroelectric liquid crystals need to cancel the spontaneous polarization as a whole, so the interaction between the layers is strong, so that zigzag defects are less likely to occur, and parabolic focal conic defects are generated, resulting in volume change. It is thought to be reinforcing mitigation.

【0011】従って、反強誘電性液晶素子においては、
この放物型のフォーカルコニック欠陥が、暗状態の中で
白い輝線上の欠陥となって現れ、黒輝度が上昇し、コン
トラストの低下を招くという問題点を有していた。
Therefore, in the antiferroelectric liquid crystal device,
This parabolic focal conic defect appears as a defect on a white bright line in a dark state, causing a problem that black luminance increases and contrast is reduced.

【0012】また、反強誘電性液晶は、電界により自発
分極が誘起されるので、反強誘電性液晶素子の電源を切
断した後に電極に残留する電荷による電界により、電源
切断後も強誘電相が誘起されたままとなり、しかも、こ
の残留電界は直流であるため、液晶の配向に著しい悪影
響を及ぼすという問題点をも有していた。
In addition, since spontaneous polarization of an antiferroelectric liquid crystal is induced by an electric field, the ferroelectric phase is maintained even after the power is turned off due to an electric field generated by charges remaining on the electrodes after the power of the antiferroelectric liquid crystal element is turned off. Is still induced, and since this residual electric field is a direct current, there is also a problem that the alignment of the liquid crystal is significantly adversely affected.

【0013】本発明は、上記従来の問題点を解決するも
ので、黒輝度を充分に低下することができ、高コントラ
スト表示を実現することができる反強誘電性液晶素子を
提供する。
The present invention solves the above-mentioned conventional problems, and provides an antiferroelectric liquid crystal element capable of sufficiently reducing black luminance and realizing high contrast display.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
めに本発明の反強誘電性液晶素子は、対向する基板の面
上に、信号電極と選択電極とがマトリクス状に配置され
た透明電極が形成され、前記対向する基板の少なくとも
一方の面上に配向処理が施された基板対を有し、前記基
板対の基板間に反強誘電性液晶を挟持し、電源オンを検
出して一定期間、前記信号電極と選択電極との間に、交
番電界を印加する手段を備える構成としたことを特徴と
する。
In order to solve the above-mentioned problems, an antiferroelectric liquid crystal device according to the present invention comprises a transparent substrate in which signal electrodes and selection electrodes are arranged in a matrix on a surface of an opposing substrate. An electrode is formed, having a substrate pair subjected to an alignment treatment on at least one surface of the opposed substrate, sandwiching an antiferroelectric liquid crystal between the substrates of the substrate pair, and detecting power-on. It is characterized in that a means for applying an alternating electric field is provided between the signal electrode and the selection electrode for a certain period.

【0015】以上により、反強誘電性液晶素子が使われ
ずに放置されている間の温度変化により、反強誘電性液
晶に擬似ブックシェルフの層構造がシェブロン構造に戻
ることが生じた場合でも、反強誘電性液晶素子に電源を
投入した直後の一定期間交番電界を印加することによ
り、使用時には、反強誘電性液晶にいつでも良好な擬似
ブックシェルフ構造の配向状態を実現することができ
る。
As described above, even if the pseudo ferroelectric liquid crystal returns to the chevron structure in the antiferroelectric liquid crystal due to a temperature change while the antiferroelectric liquid crystal element is left unused, By applying an alternating electric field for a certain period immediately after turning on the power to the antiferroelectric liquid crystal element, a favorable pseudo bookshelf alignment state can be realized in the antiferroelectric liquid crystal at any time during use.

【0016】[0016]

【発明の実施の形態】本発明の請求項1記載の反強誘電
性液晶素子は、対向する基板の面上に、信号電極と選択
電極とがマトリクス状に配置された透明電極が形成さ
れ、前記対向する基板の少なくとも一方の面上に配向処
理が施された基板対を有し、前記基板対の基板間に反強
誘電性液晶を挟持し、電源オンを検出して一定期間、前
記信号電極と選択電極との間に、交番電界を印加する手
段を備える構成とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The antiferroelectric liquid crystal device according to claim 1 of the present invention has a structure in which a transparent electrode in which signal electrodes and selection electrodes are arranged in a matrix on a surface of an opposing substrate, An antiferroelectric liquid crystal is sandwiched between the substrates of the pair of substrates on at least one surface of the opposing substrate, and a power-on is detected for a certain period of time. A means for applying an alternating electric field is provided between the electrode and the selection electrode.

【0017】この構成によると、反強誘電性液晶素子が
使われずに放置されている間の温度変化により、反強誘
電性液晶に擬似ブックシェルフの層構造がシェブロン構
造に戻ることが生じた場合でも、反強誘電性液晶素子に
電源を投入した直後の一定期間交番電界を印加すること
により、使用時には、反強誘電性液晶にいつでも良好な
擬似ブックシェルフ構造の配向状態を実現する。
According to this structure, when the antiferroelectric liquid crystal element returns to the chevron structure in the antiferroelectric liquid crystal due to a temperature change while the antiferroelectric liquid crystal element is left unused. However, by applying an alternating electric field for a certain period immediately after turning on the power to the antiferroelectric liquid crystal element, a favorable pseudo bookshelf alignment state can be realized in the antiferroelectric liquid crystal at any time during use.

【0018】請求項2記載の反強誘電性液晶素子は、請
求項1記載の反強誘電性液晶素子であって、バックライ
トあるいはサイドライトの光源を有し、交番電界の印加
期間には、前記光源を消灯する手段を備える構成とす
る。
The antiferroelectric liquid crystal device according to the second aspect is the antiferroelectric liquid crystal device according to the first aspect, having a backlight or a sidelight light source. It is configured to include a unit for turning off the light source.

【0019】この構成によると、反強誘電性液晶素子に
電源を投入した直後の一定期間交番電界を印加する際に
は、光源を消灯しておき、これにより、外部に対して、
交番電界の印加時の状態を見せないで済ませる。
According to this structure, when the alternating electric field is applied for a certain period immediately after the power supply to the antiferroelectric liquid crystal element is turned on, the light source is turned off, whereby the external
It is not necessary to show the state when the alternating electric field is applied.

【0020】請求項3記載の反強誘電性液晶素子は、請
求項1または請求項2記載の反強誘電性液晶素子であっ
て、電源オフを検出して一定期間、信号電極と選択電極
のすべてを短絡する手段を備える構成とする。
The antiferroelectric liquid crystal device according to claim 3 is the antiferroelectric liquid crystal device according to claim 1 or 2, wherein a signal electrode and a selection electrode are connected for a certain period after power-off is detected. It is configured to include a means for short-circuiting all.

【0021】請求項4記載の反強誘電性液晶素子は、請
求項3記載の反強誘電性液晶素子であって、信号電極と
選択電極の短絡の際には、すべての電極の電位をグラン
ドレベルにする構成とする。
The antiferroelectric liquid crystal device according to a fourth aspect is the antiferroelectric liquid crystal device according to the third aspect, wherein when a signal electrode and a selection electrode are short-circuited, the potentials of all the electrodes are grounded. Level configuration.

【0022】これらの構成によると、反強誘電性液晶素
子の電源を切断した直後の一定期間すべての信号電極と
すべての選択電極を短絡することにより、電極の残留電
荷による直流電界を除去して、反強誘電性液晶の配向状
態を良好な状態に保つ。
According to these configurations, all the signal electrodes and all the selection electrodes are short-circuited for a certain period immediately after the power supply of the antiferroelectric liquid crystal element is cut off, thereby removing the DC electric field due to the residual charges of the electrodes. In addition, the alignment state of the antiferroelectric liquid crystal is maintained in a good state.

【0023】以下、本発明の実施の形態を示す反強誘電
性液晶素子について、図面を参照しながら具体的に説明
する。図1は本実施の形態の反強誘電性液晶素子の断面
図である。図1において、11aは基板対を構成する上
基板、11bは、上基板11aに対向して配置され、上
基板11aとともに基板対を構成する下基板、12aは
信号電極、12bは選択電極、13は絶縁性薄膜、14
は配向膜、15は反強誘電性液晶層、16は光源、17
は偏光板である。
Hereinafter, an antiferroelectric liquid crystal device according to an embodiment of the present invention will be specifically described with reference to the drawings. FIG. 1 is a sectional view of the antiferroelectric liquid crystal device of the present embodiment. In FIG. 1, 11a is an upper substrate forming a substrate pair, 11b is disposed opposite to the upper substrate 11a, and a lower substrate forming a substrate pair together with the upper substrate 11a, 12a is a signal electrode, 12b is a selection electrode, 13b Is an insulating thin film, 14
Is an alignment film, 15 is an antiferroelectric liquid crystal layer, 16 is a light source, 17
Is a polarizing plate.

【0024】本実施の形態では、上基板11aと下基板
11bとしてガラス基板を用い、その上に、信号電極1
2aと選択電極12bとして、インジウム・錫・オキサ
イド(ITO)を形成し、更に、金属酸化物を主成分と
する絶縁性薄膜13(例えば、RTZ−1、触媒化成工
業(株)製)を1000オングストロームの厚さで形成
した。その上に、配向膜14としてポリイミド(例え
ば、LX−5400、日立化成(株)製)を塗布し、焼
成により500オングストロームの厚みで形成した。そ
して、配向膜14上を、レーヨンを用いた回転ラビング
法により、ラビング方向が上下の基板で平行方向となる
ようにラビングして配向処理を施した。反強誘電性液晶
層15として、MHPOBCを主たるカイラル材料とし
たエステル系液晶の混合材料である反強誘電性液晶材料
を用い、その反強誘電性液晶層15の厚みは1.5μm
とした。また、光源16としては、サイドライトによ
る面光源ユニットを用いた。
In this embodiment, glass substrates are used as the upper substrate 11a and the lower substrate 11b, and the signal electrodes 1
Indium tin oxide (ITO) is formed as 2a and the selection electrode 12b, and further, an insulating thin film 13 (for example, RTZ-1, manufactured by Catalyst Chemical Industry Co., Ltd.) containing metal oxide as a main component is 1000 Angstrom thickness was formed. Polyimide (for example, LX-5400, manufactured by Hitachi Chemical Co., Ltd.) was applied thereon as an alignment film 14 and formed to a thickness of 500 Å by firing. Then, the alignment film 14 was rubbed by a rotational rubbing method using rayon so that the rubbing direction was parallel to the upper and lower substrates, and an alignment treatment was performed. The antiferroelectric liquid crystal layer 15 is made of an antiferroelectric liquid crystal material which is a mixture of ester liquid crystals using MHPOBC as a chiral material. The thickness of the antiferroelectric liquid crystal layer 15 is 1.5 μm.
And As the light source 16, a surface light source unit using a side light was used.

【0025】図1を用いて、本発明の第1の実施の形態
について説明する。第1の実施の形態では、反強誘電性
液晶の注入後に、信号電極12aと選択電極12bの間
に、振幅電圧と周波数の異なる矩形波の交番電界を10
秒間印加した後に、電界無印加の状態で液晶素子の相対
透過率(液晶素子に電界を印加したときの最大透過率を
100%とした透過率)を画素部分でミクロ測定した。
その結果を図5に示す。なお、周波数1Hzでは55ボ
ルトで、周波数5Hzでは60ボルトで、液晶に電流が
流れて液晶が破壊された。
The first embodiment of the present invention will be described with reference to FIG. In the first embodiment, after the injection of the antiferroelectric liquid crystal, an alternating electric field of a rectangular wave having a different amplitude voltage and a different frequency is applied between the signal electrode 12a and the selection electrode 12b.
After the application for 2 seconds, the relative transmittance of the liquid crystal element (transmittance with the maximum transmittance when an electric field was applied to the liquid crystal element as 100%) was measured microscopically in the pixel portion in the state where no electric field was applied.
The result is shown in FIG. At a frequency of 1 Hz, the voltage was 55 volts, and at a frequency of 5 Hz, the voltage was 60 volts.

【0026】以上の結果から、相対透過率を充分に小さ
くし、なおかつ、液晶を破壊しないためには、交番電界
の振幅電圧としては、10ボルト以上50ボルト以下、
望むらくは、20ボルト以上40ボルト以下であること
が必要で、周波数としては、1ヘルツ以上100ヘルツ
以下、望むらくは、5ヘルツ以上50ヘルツ以下の交番
電界であることが必要である。
From the above results, in order to make the relative transmittance sufficiently small and not to destroy the liquid crystal, the amplitude voltage of the alternating electric field should be 10 to 50 volts.
Desirably, it is required to be 20 volts or more and 40 volts or less, and the frequency is required to be an alternating electric field of 1 Hz or more and 100 Hz or less, and preferably 5 Hz or more and 50 Hz or less.

【0027】また、この条件を満たす交番電界により、
少なくとも一方の基板上に電極のないスペース部にも、
黒輝度を充分小さくできるだけの電界が印加され、良好
な配向状態が実現されることも確認できた。
Further, by the alternating electric field satisfying this condition,
In the space where there is no electrode on at least one substrate,
It was also confirmed that an electric field capable of sufficiently reducing black luminance was applied, and a good alignment state was realized.

【0028】図1を用いて、本発明の第2の実施の形態
について説明する。第2の実施の形態では、反強誘電性
液晶の注入後に、信号電極12aと選択電極12bの間
に、25ボルト10ヘルツの矩形波を印加時間を変えて
印加し、第1の実施の形態と同様にして電界無印加時の
相対透過率を測定した。その結果を図6に示す。
A second embodiment of the present invention will be described with reference to FIG. In the second embodiment, after injecting the antiferroelectric liquid crystal, a rectangular wave of 25 volts and 10 Hz is applied between the signal electrode 12a and the selection electrode 12b for a different application time, and the first embodiment is applied. The relative transmittance when no electric field was applied was measured in the same manner as described above. FIG. 6 shows the result.

【0029】これより、黒輝度を実用上充分に小さくす
るためには、印加時間としての下限は、0.5秒以上、
望むらくは1秒以上が必要で、印加時間に許される長さ
の制限から上限は、60秒以下、望むらくは30秒以下
であればよいことが判る。
From the above, in order to make the black luminance sufficiently small for practical use, the lower limit of the application time is 0.5 seconds or more.
Desirably, one second or more is required, and it is understood that the upper limit should be 60 seconds or less, and desirably 30 seconds or less from the limitation of the length allowed for the application time.

【0030】図1を用いて、本発明の第3の実施の形態
について説明する。第3の実施の形態では、反強誘電性
液晶の注入後に、信号電極12aと選択電極12bの間
に、矩形波、正弦波、三角波の三つの波形で、振幅電圧
を変化させながら、10ヘルツで10秒間印加した。そ
して、上記実施の形態と同様にして電界無印加時の相対
透過率を測定した。その結果を図7に示す。
The third embodiment of the present invention will be described with reference to FIG. In the third embodiment, after injecting the antiferroelectric liquid crystal, the three-phase waveform of the rectangular wave, the sine wave, and the triangular wave is applied between the signal electrode 12a and the selection electrode 12b while changing the amplitude voltage to 10 Hz. For 10 seconds. Then, the relative transmittance when no electric field was applied was measured in the same manner as in the above embodiment. FIG. 7 shows the result.

【0031】これより、矩形波のとき最も効率よく黒輝
度を小さくできることが判るが、反強誘電性液晶が分子
運動すれば擬似ブックシェルフ化できると考えられると
ころから推察できるとおり、他の交番電界でも効果はあ
ることも判る。
From this, it can be seen that the black luminance can be reduced most efficiently in the case of a rectangular wave. But it also turns out to be effective.

【0032】図1を用いて、本発明の第4の実施の形態
について説明する。第4の実施の形態では、反強誘電性
液晶の注入後に、反強誘電性液晶素子の温度を変えて、
信号電極12aと選択電極12bの間に、10ヘルツの
矩形波を10秒間印加し、その後、上記実施の形態と同
様にして相対透過率を測定した。そして、各温度で、相
対透過率が小さくなって飽和するのに必要な最低の振幅
電圧を求めた。その結果を図8に示す。なお、グラフ内
の数値は、飽和した相対透過率の値を示している。
A fourth embodiment of the present invention will be described with reference to FIG. In the fourth embodiment, after the injection of the antiferroelectric liquid crystal, the temperature of the antiferroelectric liquid crystal element is changed,
A rectangular wave of 10 Hz was applied between the signal electrode 12a and the selection electrode 12b for 10 seconds, and then the relative transmittance was measured in the same manner as in the above embodiment. Then, at each temperature, the minimum amplitude voltage required for the relative transmittance to decrease and saturate was obtained. FIG. 8 shows the result. The numerical values in the graph indicate the values of the saturated relative transmittance.

【0033】この結果より、低温になるほど、振幅電圧
を大きくしなければならないことが判る。また、これよ
り、液晶素子の温度によって調整することで、黒輝度を
充分に小さくできることが判る。
From this result, it is understood that the lower the temperature, the larger the amplitude voltage must be. From this, it can be seen that the black luminance can be sufficiently reduced by adjusting the temperature of the liquid crystal element.

【0034】図1を用いて、本発明の第5の実施の形態
について説明する。第5の実施の形態において、この反
強誘電性液晶素子に図9のフローチャートに示すような
制御を行う機構を備えることにより、反強誘電性液晶素
子に電源を投入してオン状態とした直後の一定期間、信
号電極12aと選択電極12bの間に交番電界が印加さ
れることになる。
A fifth embodiment of the present invention will be described with reference to FIG. In the fifth embodiment, the anti-ferroelectric liquid crystal element is provided with a mechanism for performing control as shown in the flowchart of FIG. 9, so that the anti-ferroelectric liquid crystal element is turned on by turning on the power. For a certain period of time, an alternating electric field is applied between the signal electrode 12a and the selection electrode 12b.

【0035】この結果、電源を投入した後は、黒輝度が
充分小さくなる良好な配向が実現できることが確認でき
た。また、交番電界が印加されている間は、光源16が
消灯しているため、その様子は外部からは遮断される。
As a result, it was confirmed that, after the power was turned on, good orientation in which the black luminance was sufficiently reduced could be realized. Further, while the alternating electric field is being applied, the light source 16 is turned off, so that the state is shut off from the outside.

【0036】図1を用いて、本発明の第6の実施の形態
について説明する。第6の実施の形態において、この反
強誘電性液晶素子に図10のフローチャートに示すよう
な制御を行う機構を備えることにより、液晶素子の電源
を切断してオフ状態とした直後の一定期間、すべての信
号電極12aとすべての選択電極12bがグランドレベ
ルに短絡される。
A sixth embodiment of the present invention will be described with reference to FIG. In the sixth embodiment, the antiferroelectric liquid crystal element is provided with a mechanism for performing control as shown in the flowchart of FIG. 10 so that the liquid crystal element is turned off by turning off the power supply for a certain period of time. All signal electrodes 12a and all selection electrodes 12b are short-circuited to the ground level.

【0037】この結果、電源を切断した後に残留直流電
界による配向乱れが生じないことが確認できた。以上の
各実施の形態の動作により、黒輝度を充分に低くしてコ
ントラストを高くすることができる。
As a result, it was confirmed that the orientation was not disturbed by the residual DC electric field after the power was turned off. By the operation of each of the above embodiments, the black luminance can be sufficiently reduced and the contrast can be increased.

【0038】なお、言うまでもないことであるが、透明
電極や絶縁性薄膜、配向膜、反強誘電性液晶材料、光源
などは、本発明の実施の形態で用いたものに限定される
ものではなく、上記要件を満たしていれば、本発明の効
果は保証されるものであることを付け加えておく。
Needless to say, the transparent electrode, insulating thin film, alignment film, antiferroelectric liquid crystal material, light source, etc. are not limited to those used in the embodiment of the present invention. It should be added that the effects of the present invention are guaranteed if the above requirements are satisfied.

【0039】[0039]

【発明の効果】以上のように本発明によれば、液晶素子
の電源をオン状態にした直後の一定期間交番電界を印加
する機構を備えることで、液晶素子の電源の投入後は、
いつでも良好な配向状態を実現することができる。
As described above, according to the present invention, a mechanism for applying an alternating electric field for a certain period immediately after the power supply of the liquid crystal element is turned on is provided.
A good orientation state can be realized at any time.

【0040】また、交番電界を印加している期間はバッ
クライトあるいはサイドライトの光源を消灯する機構を
備えることで、その様子は外部からは遮断される。ま
た、液晶素子の電願のオフ状態にした直後の一定期間、
すべての信号電極とすべての選択電極を短絡する機構を
備えることで、特に、短絡したときの電位をグランドレ
ベルとすることで、液晶素子に残留直流電界が生じるこ
とを防ぎ、良好な配向状態を維持することができる。
Further, by providing a mechanism for turning off the light source of the backlight or the side light during the period in which the alternating electric field is applied, the state is shut off from the outside. In addition, for a certain period immediately after the liquid crystal element is turned off,
By providing a mechanism that short-circuits all signal electrodes and all selection electrodes, the potential at the time of short-circuiting is set to the ground level, thereby preventing a residual DC electric field from being generated in the liquid crystal element and ensuring a good alignment state. Can be maintained.

【0041】以上のため、黒輝度を充分に低下すること
ができ、高コントラスト表示を実現することができる。
As described above, the black luminance can be sufficiently reduced, and a high-contrast display can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の反強誘電性液晶素子の断
面図
FIG. 1 is a cross-sectional view of an antiferroelectric liquid crystal device according to an embodiment of the present invention.

【図2】反強誘電性液晶の模式図FIG. 2 is a schematic view of an antiferroelectric liquid crystal.

【図3】反強誘電性液晶素子の表示原理を示す模式図FIG. 3 is a schematic view showing a display principle of an antiferroelectric liquid crystal element.

【図4】反強誘電性液晶の初期配向状態での層構造を示
す模式図
FIG. 4 is a schematic diagram showing a layer structure of an antiferroelectric liquid crystal in an initial alignment state.

【図5】反強誘電性液晶素子の印加電界の振幅電圧と周
波数と電界無印加時の反強誘電性液晶素子の相対透過率
との関係図
FIG. 5 is a diagram showing the relationship between the amplitude voltage and frequency of an applied electric field of an antiferroelectric liquid crystal element and the relative transmittance of the antiferroelectric liquid crystal element when no electric field is applied.

【図6】反強誘電性液晶素子に印加した矩形波の印加時
間と電界無印加時の反強誘電性液晶素子の相対透過率と
の関係図
FIG. 6 is a diagram showing the relationship between the application time of a rectangular wave applied to the antiferroelectric liquid crystal device and the relative transmittance of the antiferroelectric liquid crystal device when no electric field is applied.

【図7】反強誘電性液晶素子に印加した交番電界の波形
の違い及び振幅電圧と、電界無印加時の反強誘電性液晶
素子の相対透過率との関係図
FIG. 7 is a diagram showing the relationship between the difference in the waveform of the alternating electric field applied to the antiferroelectric liquid crystal element and the amplitude voltage, and the relative transmittance of the antiferroelectric liquid crystal element when no electric field is applied.

【図8】反強誘電性液晶素子の温度と、電界無印加時の
反強誘電性液晶素子の相対透過率が飽和するのに必要な
交番電界の最低振幅電圧との関係図
FIG. 8 is a diagram showing the relationship between the temperature of the antiferroelectric liquid crystal element and the minimum amplitude voltage of the alternating electric field required for the relative transmittance of the antiferroelectric liquid crystal element to be saturated when no electric field is applied.

【図9】反強誘電性液晶素子の電源投入時のフローチャ
ート
FIG. 9 is a flowchart when the power of the antiferroelectric liquid crystal element is turned on.

【図10】反強誘電性液晶素子の電源切断時のフローチ
ャート
FIG. 10 is a flow chart when the power supply of the antiferroelectric liquid crystal element is turned off.

【符号の説明】 11a 上基板 11b 下基板 15 反強誘電性液晶層 16 光源[Description of Signs] 11a Upper substrate 11b Lower substrate 15 Antiferroelectric liquid crystal layer 16 Light source

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対向する基板の面上に、信号電極と選択
電極とがマトリクス状に配置された透明電極が形成さ
れ、前記対向する基板の少なくとも一方の面上に配向処
理が施された基板対を有し、前記基板対の基板間に反強
誘電性液晶を挟持し、電源オンを検出して一定期間、前
記信号電極と選択電極との間に、交番電界を印加する手
段を備える反強誘電性液晶素子。
1. A substrate in which signal electrodes and selection electrodes are arranged in a matrix on a surface of an opposing substrate, and a transparent electrode is formed on at least one surface of the opposing substrate. Anti-ferroelectric liquid crystal is sandwiched between the substrates of the pair of substrates, and means for applying an alternating electric field between the signal electrode and the selection electrode for a certain period after power-on is detected. Ferroelectric liquid crystal device.
【請求項2】 バックライトあるいはサイドライトの光
源を有し、交番電界の印加期間には、前記光源を消灯す
る手段を備える請求項1記載の反強誘電性液晶素子。
2. The antiferroelectric liquid crystal device according to claim 1, further comprising a light source of a backlight or a sidelight, and a means for turning off the light source during an application of an alternating electric field.
【請求項3】 電源オフを検出して一定期間、信号電極
と選択電極のすべてを短絡する手段を備える請求項1ま
たは請求項2記載の反強誘電性液晶素子。
3. The anti-ferroelectric liquid crystal device according to claim 1, further comprising means for short-circuiting all of the signal electrode and the selection electrode for a certain period of time after detecting power-off.
【請求項4】 信号電極と選択電極の短絡の際には、す
べての電極の電位をグランドレベルにする請求項3記載
の反強誘電性液晶素子。
4. The anti-ferroelectric liquid crystal device according to claim 3, wherein when the signal electrode and the selection electrode are short-circuited, the potentials of all the electrodes are set to the ground level.
JP2001005830A 2001-01-15 2001-01-15 Antiferroelectric liquid crystal device Pending JP2001235727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001005830A JP2001235727A (en) 2001-01-15 2001-01-15 Antiferroelectric liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001005830A JP2001235727A (en) 2001-01-15 2001-01-15 Antiferroelectric liquid crystal device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP936895A Division JPH08201774A (en) 1995-01-25 1995-01-25 Antiferroelectric liquid crystal element

Publications (1)

Publication Number Publication Date
JP2001235727A true JP2001235727A (en) 2001-08-31

Family

ID=18873817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001005830A Pending JP2001235727A (en) 2001-01-15 2001-01-15 Antiferroelectric liquid crystal device

Country Status (1)

Country Link
JP (1) JP2001235727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146086A (en) * 2007-12-28 2008-06-26 Seiko Epson Corp Driving method of electro-optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008146086A (en) * 2007-12-28 2008-06-26 Seiko Epson Corp Driving method of electro-optical device

Similar Documents

Publication Publication Date Title
JP5710110B2 (en) ELECTRO-OPTICAL LIGHT CONTROL ELEMENT, DISPLAY AND MEDIUM
EP1042702B1 (en) Bistable nematic liquid crystal device
JPH02176625A (en) Liquid crystal display device
JPH10186411A (en) Liquid crystal display element
JP4790121B2 (en) Monostable ferroelectric active matrix display
EP0095012B1 (en) Liquid crystal display device
EP1246158B1 (en) Display unit for displaying moving pictures
KR101137864B1 (en) Liquid Crystal Display Device
JPH05297376A (en) Ferroelectric liquid crystal display element
JP2011099909A (en) Liquid crystal display device
JP2001235727A (en) Antiferroelectric liquid crystal device
JP2927662B2 (en) Liquid crystal display
JP4312586B2 (en) Display element driving method, display element, display device, and program
JPH08201774A (en) Antiferroelectric liquid crystal element
JP4728479B2 (en) Monostable ferroelectric active matrix display
KR20020062223A (en) Liquid crystal device
JP3824328B2 (en) Ferroelectric liquid crystal device with burn-in prevention and recovery processing means
JP2977356B2 (en) Driving method of active matrix liquid crystal display device
JP3365587B2 (en) Liquid crystal device
JP3029171B2 (en) Liquid crystal display device and method of manufacturing the same
JPH08152654A (en) Liquid crystal device
Mitrokhin et al. Prevention of smectic-A LC mixtures electrolytic degradation
EP0271344B1 (en) Liquid crystal display element and method for driving same
JP3723109B2 (en) Method for manufacturing liquid crystal display element and liquid crystal display element
JPH08134452A (en) Liquid crystal composition