JP2001235643A - Opto-electric circuit board - Google Patents

Opto-electric circuit board

Info

Publication number
JP2001235643A
JP2001235643A JP2000043128A JP2000043128A JP2001235643A JP 2001235643 A JP2001235643 A JP 2001235643A JP 2000043128 A JP2000043128 A JP 2000043128A JP 2000043128 A JP2000043128 A JP 2000043128A JP 2001235643 A JP2001235643 A JP 2001235643A
Authority
JP
Japan
Prior art keywords
wiring conductor
substrate
optical waveguide
layer
electric circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000043128A
Other languages
Japanese (ja)
Other versions
JP3694630B2 (en
Inventor
Katsuhiro Kaneko
勝弘 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000043128A priority Critical patent/JP3694630B2/en
Publication of JP2001235643A publication Critical patent/JP2001235643A/en
Application granted granted Critical
Publication of JP3694630B2 publication Critical patent/JP3694630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electro-optic circuit substrate which is formed with an organic system optical wavehuide having sufficient strength of tight adhesion on a wiring conductor of the electro-optic circuit substrate. SOLUTION: This electro-optic circuit substrate is constituted by forming the optical waveguide of an organic system having a layer consisting of an organic optical material having a hydroxyl group or alkyl group as a lower clad layer 4 on the electric circuit substrate formed with the wiring conductor 2 atop the same by disposing an intermediate layer 3 consisting of silicon oxide or silicon between the substrate and the wiring conductor 2. The hydroxyl group of the end terminal of the surface of the intermediate layer 3 and the hydroxyl group or alkyl group of the lower clad layer 4 are bonded by dehydration polymerization and dealcohol polymerization and therefore the high strength of tight adhesion may be obtained and the organic optical waveguide may be formed with the high strength of tight adhesion on the wiring conductor 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信モジュール
等に用いられる光電気回路基板に関し、より詳細には、
電気回路基板上に光導波路が形成された光電気回路基板
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an opto-electric circuit board used for an optical communication module and the like.
The present invention relates to an opto-electric circuit board having an optical waveguide formed on an electric circuit board.

【0002】[0002]

【従来の技術】従来、光通信モジュール等には、例えば
シリコン基板に配線導体を用いた電気回路と光導波路を
用いた光回路とを形成した光電気回路基板に各種の光デ
バイスを搭載したものが使われている。また、シリコン
基板よりも電気的な高周波特性や機械的強度に優れ、さ
らに多層化による高い電気配線密度が実現できるセラミ
ック回路基板に光導波路を形成した光電気回路基板が提
案されている。
2. Description of the Related Art Conventionally, an optical communication module or the like has various optical devices mounted on an opto-electric circuit board in which, for example, an electric circuit using a wiring conductor and an optical circuit using an optical waveguide are formed on a silicon substrate. Is used. In addition, there has been proposed an opto-electric circuit board in which an optical waveguide is formed on a ceramic circuit board which has better electrical high-frequency characteristics and mechanical strength than a silicon substrate, and can realize a high electric wiring density by multilayering.

【0003】一方、光導波路としては、例えば石英ガラ
ス基板やシリコン基板上に火炎堆積法により成膜したシ
リカ膜を利用して3次元形状のクラッド部およびコア部
を形成したシリカ系光導波路や、ニオブ酸リチウム単結
晶基板をクラッド部とし、この基板上にチタンを熱拡散
して3次元導波路形状にコア部を形成した光導波路等が
ある。
On the other hand, as an optical waveguide, for example, a silica-based optical waveguide in which a three-dimensional clad portion and a core portion are formed using a silica film formed by a flame deposition method on a quartz glass substrate or a silicon substrate, There is an optical waveguide or the like in which a lithium niobate single crystal substrate is used as a clad portion and titanium is thermally diffused on the substrate to form a core portion in a three-dimensional waveguide shape.

【0004】しかしながら、これらのシリカ系光導波路
等を形成するには約1000℃以上の高温の熱処理が必要で
あるため、電気回路基板上にこれら光導波路による光回
路を形成する際に下地となる電気回路基板に損傷を与え
ることとなってしまう。
However, since a high-temperature heat treatment of about 1000 ° C. or more is required to form these silica-based optical waveguides and the like, they form a base when forming an optical circuit using these optical waveguides on an electric circuit board. The electric circuit board will be damaged.

【0005】これに対し、作製時に高温処理が必要なこ
れら従来のシリカ系光導波路等に代えて、低温形成が可
能な有機系光学材料による光導波路が検討されている。
この光導波路に利用される有機系光学材料としては、P
MMA(ポリメチルメタアクリレート)・ポリカーボネ
ート・ポリイミド・ポリシロキサン・BCB(ベンゾシ
クロブテン)・フッ素樹脂等が検討されている。
On the other hand, instead of these conventional silica-based optical waveguides and the like which require high-temperature treatment during fabrication, optical waveguides made of organic optical materials that can be formed at a low temperature are being studied.
Organic optical materials used for this optical waveguide include P
MMA (polymethyl methacrylate), polycarbonate, polyimide, polysiloxane, BCB (benzocyclobutene), fluorine resin, and the like are being studied.

【0006】これら有機系光学材料から成る光導波路の
作製方法としては、シリコン基板やガラス基板上に下部
クラッド層を形成し、次に、この下部クラッド層よりも
高い屈折率を持つコア層を形成して、薄膜微細加工技術
を用いてコア層をRIE(リアクティブイオンエッチン
グ)等により加工してコア部を形成した後、コア部より
も低い屈折率を有する上部クラッド層を被覆して3次元
形状の光導波路を形成する方法が行なわれている。
As a method of manufacturing an optical waveguide made of these organic optical materials, a lower cladding layer is formed on a silicon substrate or a glass substrate, and then a core layer having a higher refractive index than the lower cladding layer is formed. Then, the core layer is processed by RIE (reactive ion etching) or the like using a thin film microfabrication technique to form a core portion, and then the upper cladding layer having a lower refractive index than the core portion is covered to form a three-dimensional structure. A method of forming an optical waveguide having a shape has been performed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、有機系
光学材料による光導波路をセラミック回路基板等の電気
回路基板上に形成しようとする場合、光導波路用の有機
系光学材料と電気回路基板の電気配線である金属等から
成る配線導体との密着強度が低いため、光導波路の作製
工程やその後のデバイス実装等の後工程において、光導
波路用の有機系光学材料から成る下部クラッド層が電気
回路基板の配線導体から剥がれたり、下部クラッド層に
クラックが発生するという問題点があった。
However, when an optical waveguide made of an organic optical material is to be formed on an electric circuit board such as a ceramic circuit board, the organic optical material for the optical waveguide and the electric wiring of the electric circuit board are required. The lower cladding layer made of an organic optical material for an optical waveguide is used in an electric circuit board in a post-process such as a manufacturing process of an optical waveguide or a subsequent device mounting because of a low adhesion strength with a wiring conductor made of a metal or the like. There has been a problem in that the lower cladding layer is peeled off from the wiring conductor and cracks occur in the lower cladding layer.

【0008】本発明は上記従来技術の問題点に鑑みて案
出されたものであり、その目的は、電気回路基板の配線
導体上に十分な密着強度で有機系光導波路を形成した光
電気回路基板を提供することにある。
The present invention has been devised in view of the above-mentioned problems of the prior art, and has as its object to provide an opto-electric circuit in which an organic optical waveguide is formed with sufficient adhesion strength on a wiring conductor of an electric circuit board. It is to provide a substrate.

【0009】[0009]

【課題を解決するための手段】本発明の光電気回路基板
は、上面に配線導体が形成された電気回路基板上に、前
記配線導体との間に酸化珪素または珪素から成る中間層
を介在させて、水酸基またはアルキル基を有する有機系
光学材料から成る層を下部クラッド層とした有機系光導
波路を形成したことを特徴とするものである。
According to the present invention, there is provided an opto-electric circuit board having an intermediate layer made of silicon oxide or silicon interposed between the wiring conductor and an electric circuit board having a wiring conductor formed on an upper surface thereof. An organic optical waveguide having a layer made of an organic optical material having a hydroxyl group or an alkyl group as a lower cladding layer.

【0010】また、本発明の光電気回路基板は、上記構
成において、前記有機系光学材料がシロキサン系ポリマ
であることを特徴とするものである。
In the above-mentioned structure, the optoelectronic circuit board according to the present invention is characterized in that the organic optical material is a siloxane-based polymer.

【0011】本発明の光電気回路基板によれば、電気回
路基板の配線導体上に、間に酸化珪素または珪素から成
る中間層を介在させて、水酸基またはアルキル基を有す
る有機系光学材料から成る層を下部クラッド層とした有
機系光導波路を形成したことから、酸化珪素または珪素
から成る中間層が、配線導体上に例えばスパッタリング
法や電子ビーム蒸着法・イオンビーム蒸着法・レーザア
ブレーション成膜法・CVD法等の周知の方法により形
成されることにより、活性の高い状態で配線導体表面に
中間層が形成されることによる化学的な結合が行なわれ
ることや配線導体表面への成膜材料粒子の打ち込みによ
る物理的なアンカー効果が得られることで配線導体に対
して十分な密着強度を有するとともに、中間層の表面終
端の水酸基と光導波路の下部クラッド層の水酸基やアル
キル基とが脱水重合や脱アルコール重合によって強固に
結合することとなり、金属等から成る配線導体上にも十
分な密着強度で有機系光導波路を形成した光電気回路基
板を得ることができる。
According to the opto-electric circuit board of the present invention, an organic optical material having a hydroxyl group or an alkyl group is provided on the wiring conductor of the electric circuit board with an intermediate layer made of silicon oxide or silicon interposed therebetween. Since an organic optical waveguide having a lower cladding layer was formed, an intermediate layer made of silicon oxide or silicon was formed on a wiring conductor by, for example, a sputtering method, an electron beam evaporation method, an ion beam evaporation method, or a laser ablation film formation method.・ By being formed by a well-known method such as a CVD method, chemical bonding is performed by forming an intermediate layer on the wiring conductor surface in a highly active state, and film forming material particles on the wiring conductor surface Has sufficient adhesion strength to the wiring conductor by obtaining the physical anchor effect by the implantation of A hydroxy group or alkyl group in the lower cladding layer of the path is strongly bonded by dehydration polymerization or dealcoholization polymerization, and an optoelectronic circuit with an organic optical waveguide formed with sufficient adhesion strength on a wiring conductor made of metal etc. A substrate can be obtained.

【0012】[0012]

【発明の実施の形態】以下、本発明の光電気回路基板に
ついて図面を参照しつつ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an opto-electric circuit board according to the present invention will be described with reference to the drawings.

【0013】図1は本発明の光導波路の実施の形態の一
例を示す断面図である。図1において、1は基板、2は
基板1の上面に形成された配線導体であり、これらによ
り電気回路基板が構成されている。3は中間層、4は光
導波路の有機系光学材料から成る下部クラッド層、5は
光導波路のコア部、6は光導波路の上部クラッド層であ
る。
FIG. 1 is a sectional view showing an example of an embodiment of an optical waveguide according to the present invention. In FIG. 1, reference numeral 1 denotes a substrate, and 2 denotes wiring conductors formed on the upper surface of the substrate 1, and these constitute an electric circuit substrate. Reference numeral 3 denotes an intermediate layer, 4 denotes a lower cladding layer made of an organic optical material for an optical waveguide, 5 denotes a core portion of the optical waveguide, and 6 denotes an upper cladding layer of the optical waveguide.

【0014】基板1は電気回路および光回路を形成して
電気回路基板を構成するための基板であり、光集積回路
基板や光電子混在基板等の光信号を扱う基板として使用
される種々の基板、例えばシリコン基板やアルミナ基板
・ガラスセラミック基板・多層セラミック電気回路基板
・薄膜多層電気回路が形成されたセラミック電気回路基
板・プラスチック電気配線基板等が使用できる。
The substrate 1 is a substrate for forming an electric circuit substrate by forming an electric circuit and an optical circuit. Various substrates used as substrates for handling optical signals, such as an optical integrated circuit substrate and a photoelectric mixed substrate, For example, a silicon substrate, an alumina substrate, a glass ceramic substrate, a multilayer ceramic electric circuit substrate, a ceramic electric circuit substrate on which a thin film multilayer electric circuit is formed, a plastic electric wiring substrate, and the like can be used.

【0015】配線導体2は、基板1の表面や内部におい
て所定の電気回路を形成して電気回路基板を構成するも
のであり、AuやPt・Al・Cu・W・Ti・Mo・
Cr・Ni等の周知の電気配線用導体材料を使用して形
成すればよい。この配線導体2は、例えばスパッタリン
グ法・電子ビーム蒸着法・イオンビーム蒸着法・レーザ
アブレーション成膜法・CVD法等を利用して導体層を
形成した後、フォトリソグラフィ等の薄膜加工技術を用
いて所望の配線パターンに加工すればよい。また、スク
リーン印刷等による周知のセラミック基板へのメタライ
ジング技術等を利用して所望の配線パターンに形成して
もよい。
The wiring conductor 2 forms a predetermined electric circuit on the surface or inside of the substrate 1 to form an electric circuit board, and includes Au, Pt, Al, Cu, W, Ti, Mo,
What is necessary is just to form using a well-known conductor material for electric wirings, such as Cr and Ni. The wiring conductor 2 is formed using a thin film processing technique such as photolithography after forming a conductor layer using, for example, a sputtering method, an electron beam evaporation method, an ion beam evaporation method, a laser ablation film formation method, a CVD method, or the like. What is necessary is just to process it into a desired wiring pattern. Also, a desired wiring pattern may be formed by utilizing a well-known metallizing technique for a ceramic substrate by screen printing or the like.

【0016】中間層3は、基板1の上面の少なくとも配
線導体2の表面に形成された、酸化珪素または珪素から
成る層である。この中間層3の形成方法としては、スパ
ッタリング法・電子ビーム蒸着法・イオンビーム蒸着法
・レーザアブレーション成膜法・CVD法等を利用する
ことができる。中でも、スパッタリング法やイオンビー
ム蒸着法は、配線導体2表面への成膜材料粒子の打ち込
み効果が大きいので、アンカー効果によって中間層3と
配線導体2との密着強度が大きくなることから好適であ
る。
The intermediate layer 3 is a layer formed of silicon oxide or silicon and formed on at least the surface of the wiring conductor 2 on the upper surface of the substrate 1. As a method for forming the intermediate layer 3, a sputtering method, an electron beam evaporation method, an ion beam evaporation method, a laser ablation film formation method, a CVD method, or the like can be used. Among them, the sputtering method and the ion beam evaporation method are preferable because the adhesion effect between the intermediate layer 3 and the wiring conductor 2 is increased by the anchor effect because the effect of implanting the film forming material particles on the surface of the wiring conductor 2 is large. .

【0017】本発明において中間層3として酸化珪素ま
たは珪素を用いるのは、中間層3とその上に形成する下
部クラッド層4との密着強度を十分に大きくすることが
できるためである。その理由は、酸化珪素または珪素か
ら成る中間層3の表面は水酸基で終端することができる
ことと、有機系光学材料から成る下部クラッド層4に水
酸基やアルキル基が含まれることから、中間層3の表面
の水酸基と下部クラッド層4の水酸基やアルキル基とが
脱水重合や脱アルコール重合によって強固に結合し、両
層の間で大きな密着強度が得られるためである。
The reason why silicon oxide or silicon is used as the intermediate layer 3 in the present invention is that the adhesion strength between the intermediate layer 3 and the lower cladding layer 4 formed thereon can be sufficiently increased. The reason is that the surface of the intermediate layer 3 made of silicon oxide or silicon can be terminated with a hydroxyl group, and the lower clad layer 4 made of an organic optical material contains a hydroxyl group or an alkyl group. This is because a hydroxyl group on the surface and a hydroxyl group or an alkyl group of the lower cladding layer 4 are strongly bonded by dehydration polymerization or dealcoholization polymerization, and a large adhesion strength is obtained between the two layers.

【0018】なお、有機系光学材料から成る下部クラッ
ド層4自体に水酸基やアルキル基が含まれない場合であ
っても、下地が酸化珪素または珪素であれば、周知のシ
ラン系カップリング材を用いることによって中間層3と
の間に中間層3と結合する水酸基やアルキル基と、下部
クラッド層4との密着強度が大きい有機官能基とを有す
るものとすることができて、大きな密着強度を得ること
ができる。このようなシラン系カップリング材として
は、グリシドキシプロピルトリメトキシシラン・ヘキサ
メトキシジメチルシラザン・メタクリロキシプロピルト
リメトキシシラン・トリメトキシシリルプロピルエチレ
ンジアミン等が使用できる。
Even if the lower cladding layer 4 made of an organic optical material does not contain a hydroxyl group or an alkyl group, if the underlying layer is silicon oxide or silicon, a well-known silane coupling material is used. Thereby, a hydroxyl group or an alkyl group bonded to the intermediate layer 3 and the organic functional group having a large adhesion strength to the lower clad layer 4 can be provided between the intermediate layer 3 and a large adhesion strength. be able to. As such a silane coupling material, glycidoxypropyltrimethoxysilane, hexamethoxydimethylsilazane, methacryloxypropyltrimethoxysilane, trimethoxysilylpropylethylenediamine, or the like can be used.

【0019】中間層3の厚さとしては、酸化珪素または
珪素が数分子層あるいは数原子層あれば原理的に問題な
いが、一般的に配線導体2の表面は下地となる基板1の
表面粗さを反映するため、例えば基板1としてアルミナ
基板や窒化アルミニウム基板を用いた場合には、配線導
体2表面は10nm以上の表面粗さを有することになるの
で、中間層3による十分な被覆性を得るためには10nm
以上の厚さとすることが好ましい。
The thickness of the intermediate layer 3 is not problematic in principle as long as silicon oxide or silicon has several molecular layers or several atomic layers, but the surface of the wiring conductor 2 generally has a rough surface For example, when an alumina substrate or an aluminum nitride substrate is used as the substrate 1, the surface of the wiring conductor 2 has a surface roughness of 10 nm or more. 10nm to get
It is preferable that the thickness be not less than the above.

【0020】一方、酸化珪素または珪素をスパッタリン
グ法・電子ビーム蒸着法・イオンビーム蒸着法・レーザ
アブレーション成膜法・CVD法等で成膜した場合は、
膜応力が100MPa以上であることが普通であり、層の
厚さが厚い場合には、膜応力によって基板を大きく反ら
せたり、基板表面から層が剥がれたり、クラックが生じ
たりする問題がある。これに対し、中間層3の厚さが50
0nm以下であれば、有機系光学材料から成る下部クラ
ッド層4と同程度の膜応力に抑えることができるので、
そのような問題が生じることはない。
On the other hand, when silicon oxide or silicon is formed by a sputtering method, an electron beam evaporation method, an ion beam evaporation method, a laser ablation film formation method, a CVD method, or the like,
Usually, the film stress is 100 MPa or more. When the thickness of the layer is large, there is a problem that the substrate is largely warped by the film stress, the layer is peeled off from the substrate surface, and cracks are generated. On the other hand, the thickness of the intermediate layer 3 is 50
When the thickness is 0 nm or less, the film stress can be suppressed to about the same level as that of the lower cladding layer 4 made of an organic optical material.
Such a problem does not occur.

【0021】配線導体2表面を含む基板1上面に、少な
くとも配線導体2との間に中間層3を介在させて形成さ
れる光導波路は、下部クラッド層4および上部クラッド
層6から成るクラッド部4・6中にコア部5が形成され
た三次元導波路形状の光導波路である。その形成材料と
しては、例えばポリイミド・フッ化ポリイミド・シロキ
サン系ポリマ・PMMA・オレフィン系樹脂等から成
り、末端基として水酸基またはアルキル基を有している
有機系の光学材料から成る光導波路を用いる。
The optical waveguide formed on the upper surface of the substrate 1 including the surface of the wiring conductor 2 with at least the intermediate layer 3 interposed between the substrate and the wiring conductor 2 is composed of a cladding portion 4 comprising a lower cladding layer 4 and an upper cladding layer 6. 6 is an optical waveguide having a three-dimensional waveguide shape in which a core portion 5 is formed. As the forming material, an optical waveguide made of an organic optical material made of, for example, polyimide, fluorinated polyimide, siloxane-based polymer, PMMA, or olefin-based resin and having a hydroxyl group or an alkyl group as a terminal group is used.

【0022】光導波路の作製方法としては、まず下部ク
ラッド層4を形成する。これにはポリイミド・フッ化ポ
リイミド・シロキサン系ポリマ・PMMA・オレフィン
系樹脂等の有機系光学材料の有機溶媒溶液を、中間層3
が形成された基板1にスピンコート法等により所定厚み
に塗布し、熱処理することにより形成する。
As a method of manufacturing the optical waveguide, first, the lower cladding layer 4 is formed. For this, an organic solvent solution of an organic optical material such as polyimide, fluorinated polyimide, siloxane-based polymer, PMMA, or olefin-based resin is applied to the intermediate layer 3.
Is formed on the substrate 1 on which is formed a predetermined thickness by a spin coating method or the like and heat-treated.

【0023】コア部5は、下部クラッド層4上にポリイ
ミド・フッ化ポリイミド・シロキサン系ポリマ・PMM
A・オレフィン系樹脂等の有機系光学材料の有機溶媒溶
液を下部クラッド層4が形成された基板1に例えばスピ
ンコート法等により所定厚みに塗布し、熱処理すること
により層形成した後、フォトリソグラフィやRIE等の
周知の薄膜微細加工技術を用いて所定の形状で形成すれ
ばよい。ここで、コア部5は下部クラッド層4よりも高
い屈折率を有する材料とする。
The core part 5 has a polyimide / fluorinated polyimide / siloxane-based polymer / PMM on the lower cladding layer 4.
A. An organic solvent solution of an organic optical material such as an olefin resin is applied to the substrate 1 on which the lower cladding layer 4 is formed to a predetermined thickness by, for example, a spin coating method or the like, and a layer is formed by heat treatment. It may be formed in a predetermined shape by using a known thin film microfabrication technique such as RIE or RIE. Here, the core portion 5 is made of a material having a higher refractive index than the lower cladding layer 4.

【0024】上部クラッド層6は、コア部5を形成した
後に、ポリイミド・フッ化ポリイミド・シロキサン系ポ
リマ・PMMA・オレフィン系樹脂等の有機系光学材料
の有機溶媒溶液を下部クラッド層4およびコア部5が形
成された基板1に例えばスピンコート法等により所定厚
みに塗布し、熱処理することにより形成する。
After forming the core portion 5, the upper cladding layer 6 is formed by applying an organic solvent solution of an organic optical material such as polyimide, fluorinated polyimide, siloxane-based polymer, PMMA, or olefin-based resin to the lower cladding layer 4 and the core portion. 5 is formed on the substrate 1 on which the layer 5 is formed by applying a predetermined thickness by, for example, a spin coating method or the like, and performing a heat treatment.

【0025】ここで、コア部5の高さや幅・屈折率、下
部クラッド層4の厚さ・屈折率、上部クラッド層6の厚
さ・屈折率は、周知の光導波路理論を用いて所望の仕様
で設計すればよい。
Here, the height, width and refractive index of the core portion 5, the thickness and refractive index of the lower cladding layer 4, and the thickness and refractive index of the upper cladding layer 6 can be set to desired values using a well-known optical waveguide theory. What is necessary is just to design by specification.

【0026】以上のようにして、埋め込み型の三次元導
波路形状の光導波路を作製する。
As described above, an optical waveguide having a buried three-dimensional waveguide shape is manufactured.

【0027】本発明の光電気回路基板において、下部ク
ラッド層4を形成する有機系光学材料としてシロキサン
系ポリマを用いた場合には、例えばシロキサン系ポリマ
の有機溶媒をスピンコート法等により基板1に塗布した
後、100℃から300℃程度の低温熱処理によって下部クラ
ッド層4を形成することができ、また、屈折率を制御す
るために金属アルコキシドを混合して金属を含有したシ
ロキサン系ポリマを容易に作製することができ、それに
より所望の屈折率に精度良く制御できるので、光導波路
の作製が容易となる。さらに、層形成の際の収縮が小さ
いので、基板1表面に形成した層の表面の平坦化性・平
滑化性に優れており、基板1として表面粗さが大きな基
板1や配線導体2による大きな起伏がある電気回路基板
を用いた場合でもその上にも精度良く光導波路を作製す
ることができる。
In the photoelectric circuit substrate of the present invention, when a siloxane-based polymer is used as an organic optical material for forming the lower cladding layer 4, for example, an organic solvent of the siloxane-based polymer is applied to the substrate 1 by spin coating or the like. After the application, the lower cladding layer 4 can be formed by a low-temperature heat treatment at about 100 ° C. to 300 ° C., and a metal-containing siloxane-based polymer can be easily mixed with a metal alkoxide to control the refractive index. Since the optical waveguide can be manufactured, and the desired refractive index can be accurately controlled, the optical waveguide can be easily manufactured. Further, since the shrinkage during the formation of the layer is small, the surface of the layer formed on the surface of the substrate 1 is excellent in flatness and smoothness, and the substrate 1 or the wiring conductor 2 having a large surface roughness as the substrate 1 Even when an undulating electric circuit board is used, an optical waveguide can be manufactured with high accuracy on it.

【0028】また、シロキサン系ポリマはシロキサン結
合を有しているため優れた熱的安定性を有する光導波路
を形成することができる。さらに、水酸基やアルキル基
を末端基とすることが容易であり、中間層3上に下部ク
ラッド層4となる膜を形成した場合に、中間層3の表面
の水酸基との脱水重合や脱アルコール重合によって中間
層3との大きな密着強度が得られる。
Since the siloxane-based polymer has a siloxane bond, an optical waveguide having excellent thermal stability can be formed. Furthermore, it is easy to make a hydroxyl group or an alkyl group a terminal group, and when a film serving as the lower cladding layer 4 is formed on the intermediate layer 3, dehydration polymerization or dealcoholization polymerization with the hydroxyl group on the surface of the intermediate layer 3 is performed. Thereby, a large adhesion strength with the intermediate layer 3 is obtained.

【0029】このような光導波路のクラッド部4・6お
よびコア部5に用いるシロキサン系ポリマとしては、基
本的にポリマの骨格にシロキサン結合が含まれている樹
脂であればよく、例えばポリフェニルシルセスキオキサ
ン・ポリジフェニルシルセスキオキサン・ポリメチルフ
ェニルシルセスキオキサン等を用いることができる。
The siloxane-based polymer used for the cladding portions 4 and 6 and the core portion 5 of such an optical waveguide may be basically a resin having a siloxane bond included in the polymer skeleton, for example, polyphenylsilyl. Sesquioxane, polydiphenylsilsesquioxane, polymethylphenylsilsesquioxane, and the like can be used.

【0030】[0030]

【実施例】次に、本発明の光電気回路基板について具体
例を説明する。
Next, a specific example of the photoelectric circuit board of the present invention will be described.

【0031】<実施例1>まず、Ti/Pt/Auの3
層構造を有する最表面がAuから成る配線導体2を形成
した窒化アルミニウムから成る基板1上の全面に、スパ
ッタリング法を用いて厚さ10nmの酸化珪素層から成る
中間層3を形成した。次に、クラッド部4・6がシロキ
サン系ポリマ、コア部5がチタン含有シロキサン系ポリ
マから成るステップインデックス型光導波路を形成し
た。このときコア部5およびクラッド部の屈折率をそれ
ぞれ1.444および1.440として、コア部5の幅を8μm、
高さを8μmとし、コア部5の上部の上部クラッド層6
の厚さを4μmとした。また、基板1とコア部5との間
の下部クラッド層4の厚さは12μmとした。
<Example 1> First, 3 of Ti / Pt / Au
An intermediate layer 3 made of a silicon oxide layer having a thickness of 10 nm was formed by a sputtering method on the entire surface of a substrate 1 made of aluminum nitride on which a wiring conductor 2 having an outermost surface having a layer structure made of Au was formed. Next, a step index type optical waveguide was formed in which the cladding parts 4 and 6 were composed of a siloxane-based polymer and the core part 5 was composed of a titanium-containing siloxane-based polymer. At this time, the refractive index of the core part 5 and the clad part were 1.444 and 1.440, respectively, the width of the core part 5 was 8 μm,
The height is 8 μm, and the upper cladding layer 6
Was 4 μm in thickness. The thickness of the lower cladding layer 4 between the substrate 1 and the core 5 was 12 μm.

【0032】このとき、作製中に光導波路層の剥がれや
クラックの発生は見られなかった。また、光導波路形成
後のダイシングによるチップ切り分けにおいても光導波
路層の剥がれの発生は見られなかった。さらに、光導波
路の導波路特性にも何ら問題は見られなかった。
At this time, no peeling or cracking of the optical waveguide layer was observed during the fabrication. Also, in the chip separation by dicing after the formation of the optical waveguide, peeling of the optical waveguide layer was not observed. Further, no problem was found in the waveguide characteristics of the optical waveguide.

【0033】<実施例2>本発明との比較のため、Ti
/Pt/Auの3層構造を有する最表面がAuから成る
配線導体を形成した窒化アルミニウム基板上に、クラッ
ド部がシロキサン系ポリマ、コア部がチタン含有シロキ
サン系ポリマから成るステップインデックス型光導波路
を形成した。このとき、実施例1と同様に、コア部およ
びクラッド部の屈折率をそれぞれ1.444および1.440とし
て、コア部の幅を8μm、高さを8μmとし、コア部の
上部の上部クラッド層の厚さを4μmとした。また、基
板とコア部との間の下部クラッド層の厚さは12μmとし
た。
<Example 2> For comparison with the present invention, Ti
A step index type optical waveguide having a cladding portion made of a siloxane-based polymer and a core portion made of a titanium-containing siloxane-based polymer is formed on an aluminum nitride substrate having a three-layer structure of / Pt / Au on which a wiring conductor made of Au is formed. Formed. At this time, as in Example 1, the refractive indices of the core portion and the cladding portion were 1.444 and 1.440, respectively, the width of the core portion was 8 μm, the height was 8 μm, and the thickness of the upper cladding layer above the core portion was 4 μm. The thickness of the lower cladding layer between the substrate and the core was 12 μm.

【0034】中間層を形成しない本実施例の場合では、
作製中に配線導体の部分において光導波路層の剥がれや
クラックが見られた。
In the case of this embodiment in which no intermediate layer is formed,
During fabrication, peeling and cracking of the optical waveguide layer were observed in the portion of the wiring conductor.

【0035】以上のように、本発明によれば、電気回路
基板の配線導体上にも十分な密着強度で有機系光導波路
を形成した光電気回路基板を提供できることが確認でき
た。
As described above, according to the present invention, it was confirmed that an opto-electric circuit board having an organic optical waveguide formed with sufficient adhesion strength on the wiring conductor of the electric circuit board could be provided.

【0036】なお、本発明は以上の実施の形態の例に限
定されるものではなく、本発明の要旨を逸脱しない範囲
で種々の変更・改良を加えることは何ら差し支えない。
It should be noted that the present invention is not limited to the above-described embodiments, and that various changes and improvements can be made without departing from the scope of the present invention.

【0037】[0037]

【発明の効果】以上のように、本発明の光電気回路基板
によれば、上面に配線導体が形成された電気回路基板上
に、配線導体との間に酸化珪素または珪素から成る中間
層を介在させて、水酸基またはアルキル基を有する有機
系光学材料から成る層を下部クラッド層とした有機系光
導波路を形成したことから、酸化珪素または珪素から成
る中間層が、配線導体上に例えばスパッタリング法や電
子ビーム蒸着法・イオンビーム蒸着法・レーザアブレー
ション成膜法・CVD法等の周知の方法により形成され
ることにより、活性の高い状態で配線導体表面に中間層
が形成されることによる化学的な結合が行なわれること
や配線導体表面への成膜材料粒子の打ち込みによる物理
的なアンカー効果が得られることで配線導体に対して十
分な密着強度を有するとともに、中間層の表面終端の水
酸基と光導波路の下部クラッド層の水酸基やアルキル基
とが脱水重合や脱アルコール重合によって強固に結合す
る。この結果、金属等から成る配線導体上にも十分な密
着強度で有機系光導波路を形成した光電気回路基板を得
ることができた。
As described above, according to the opto-electric circuit board of the present invention, the intermediate layer made of silicon oxide or silicon is provided between the wiring conductor and the electric circuit board having the wiring conductor formed on the upper surface. Since the organic optical waveguide having the lower clad layer made of the organic optical material having a hydroxyl group or an alkyl group was formed therebetween, an intermediate layer made of silicon oxide or silicon was formed on the wiring conductor by, for example, a sputtering method. And the formation of an intermediate layer on the surface of the wiring conductor in a highly active state by forming it by well-known methods such as electron beam evaporation, ion beam evaporation, laser ablation film formation, and CVD. It has sufficient adhesion strength to the wiring conductor by performing a strong coupling and obtaining a physical anchor effect by driving the film-forming material particles into the wiring conductor surface. Rutotomoni, a hydroxyl group or alkyl group of the lower cladding layer of the hydroxyl group and the optical waveguide of the surface termination of the intermediate layer is firmly bonded by dehydration polymerization or dealcoholization polymerization. As a result, it was possible to obtain an opto-electric circuit board having an organic optical waveguide formed on a wiring conductor made of metal or the like with sufficient adhesion strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光電気回路基板の実施の形態の一例を
示す断面図である。
FIG. 1 is a cross-sectional view illustrating an example of an embodiment of a photoelectric circuit substrate of the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・配線導体 3・・・中間層 4・・・光導波路の下部クラッド層(クラッド部) 5・・・光導波路のコア部 6・・・光導波路の上部クラッド層(クラッド部) DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Wiring conductor 3 ... Intermediate layer 4 ... Lower cladding layer (cladding part) of optical waveguide 5 ... Core part of optical waveguide 6 ... Upper cladding layer of optical waveguide (Cladding)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上面に配線導体が形成された電気回路基
板上に、前記配線導体との間に酸化珪素または珪素から
成る中間層を介在させて、水酸基またはアルキル基を有
する有機系光学材料から成る層を下部クラッド層とした
光導波路を形成したことを特徴とする光電気回路基板。
1. An organic optical material having a hydroxyl group or an alkyl group, wherein an intermediate layer made of silicon oxide or silicon is interposed between the wiring conductor and an electric circuit board having a wiring conductor formed on an upper surface thereof. An opto-electric circuit board, comprising: an optical waveguide having a layer formed as a lower cladding layer.
【請求項2】 前記有機系光学材料がシロキサン系ポリ
マであることを特徴とする請求項1記載の光電気回路基
板。
2. The optoelectronic circuit board according to claim 1, wherein the organic optical material is a siloxane polymer.
JP2000043128A 2000-02-21 2000-02-21 Optoelectric circuit board Expired - Fee Related JP3694630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000043128A JP3694630B2 (en) 2000-02-21 2000-02-21 Optoelectric circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000043128A JP3694630B2 (en) 2000-02-21 2000-02-21 Optoelectric circuit board

Publications (2)

Publication Number Publication Date
JP2001235643A true JP2001235643A (en) 2001-08-31
JP3694630B2 JP3694630B2 (en) 2005-09-14

Family

ID=18566093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000043128A Expired - Fee Related JP3694630B2 (en) 2000-02-21 2000-02-21 Optoelectric circuit board

Country Status (1)

Country Link
JP (1) JP3694630B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100756374B1 (en) 2006-08-21 2007-09-10 삼성전기주식회사 Printed circuit board and method of manufacturing thereof
KR100809396B1 (en) * 2006-02-21 2008-03-05 한국전자통신연구원 Opto-Electric Printed Circuit Board, method of preparing the same, and method of transmitting opto-electric using the same
CN100449358C (en) * 2002-11-19 2009-01-07 鲁梅热股份有限公司 Electro-optic polymer waveguide devices and method for making such devices
JP2012128072A (en) * 2010-12-14 2012-07-05 Sumitomo Bakelite Co Ltd Optical waveguide and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449358C (en) * 2002-11-19 2009-01-07 鲁梅热股份有限公司 Electro-optic polymer waveguide devices and method for making such devices
KR100809396B1 (en) * 2006-02-21 2008-03-05 한국전자통신연구원 Opto-Electric Printed Circuit Board, method of preparing the same, and method of transmitting opto-electric using the same
US7657144B2 (en) 2006-02-21 2010-02-02 Electronics And Telecommunications Research Institute Optoelectric printed circuit board, method of manufacturing the same, and optoelectric transmission method using the optoelectric printed circuit board
KR100756374B1 (en) 2006-08-21 2007-09-10 삼성전기주식회사 Printed circuit board and method of manufacturing thereof
JP2012128072A (en) * 2010-12-14 2012-07-05 Sumitomo Bakelite Co Ltd Optical waveguide and method for manufacturing the same

Also Published As

Publication number Publication date
JP3694630B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
JP2651509B2 (en) Optoelectronic device having optical waveguide on metallized substrate and method of forming the optical waveguide
US7035489B2 (en) Thin film electro-optical deflector device and a method of fabrication of such a device
EP0598395B1 (en) An optical waveguide device and a method for fabricating the same
US7738753B2 (en) CMOS compatible integrated dielectric optical waveguide coupler and fabrication
JP2015527608A (en) Method for manufacturing a photonic circuit with active and passive structures
JPH0792337A (en) Polymer core optical waveguide and its production
US12032205B2 (en) Co-manufacturing of silicon-on-insulator waveguides and silicon nitride waveguides for hybrid photonic integrated circuits
US20030052082A1 (en) Method of forming optical waveguides in a semiconductor substrate
EP3035092B1 (en) Integrated semiconductor optical coupler.
JP2002022984A (en) Optical waveguide and its manufacturing method
US11953730B2 (en) Method of fabricating semiconductor structure
WO2004106986A2 (en) Maskless fabrication of waveguide mirrors
JP3694630B2 (en) Optoelectric circuit board
JP3690648B2 (en) Optical waveguide substrate
TW202422156A (en) Methods for fabrication of optical structures on photonic glass layer substrates
JP3559528B2 (en) Opto-electric circuit board
JP2002341162A (en) Optical waveguide substrate
CN113437162A (en) Preparation method of substrate structure of hybrid integrated photoelectric chip and substrate structure
JPH0915440A (en) Production of packaging substrate for hybrid optical integration
JP3825227B2 (en) Photoelectric circuit board manufacturing method
US20240319440A1 (en) Method for integration of electro-optical materials in a photonic integrated circuit
EP4435503A1 (en) Method for integration of electro-optical materials in a photonic integrated circuit
JP4759813B2 (en) Optical wiring layer manufacturing method, optical wiring layer, and optical / electrical wiring board
JP3436035B2 (en) Manufacturing method of optical waveguide device
Lo et al. Fabricating a hollow optical waveguide for optical communication applications

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees