JP2001234999A - Axial force generating device and traction transmission - Google Patents

Axial force generating device and traction transmission

Info

Publication number
JP2001234999A
JP2001234999A JP2000042901A JP2000042901A JP2001234999A JP 2001234999 A JP2001234999 A JP 2001234999A JP 2000042901 A JP2000042901 A JP 2000042901A JP 2000042901 A JP2000042901 A JP 2000042901A JP 2001234999 A JP2001234999 A JP 2001234999A
Authority
JP
Japan
Prior art keywords
axial force
centrifugal force
disk
shaft
force generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000042901A
Other languages
Japanese (ja)
Inventor
Eiichi Yamakawa
榮一 山川
Tatsuhiko Goi
龍彦 五井
Koji Kawakami
浩司 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INST ADV TECH HELICOPTER Ltd
Advanced Technology Institute of Commuter Helicopter Ltd
Original Assignee
INST ADV TECH HELICOPTER Ltd
Advanced Technology Institute of Commuter Helicopter Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST ADV TECH HELICOPTER Ltd, Advanced Technology Institute of Commuter Helicopter Ltd filed Critical INST ADV TECH HELICOPTER Ltd
Priority to JP2000042901A priority Critical patent/JP2001234999A/en
Publication of JP2001234999A publication Critical patent/JP2001234999A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0293Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being purely mechanical
    • F16H61/0295Automatic gear shift control, e.g. initiating shift by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/52Pulleys or friction discs of adjustable construction
    • F16H55/56Pulleys or friction discs of adjustable construction of which the bearing parts are relatively axially adjustable
    • F16H55/563Pulleys or friction discs of adjustable construction of which the bearing parts are relatively axially adjustable actuated by centrifugal masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/664Friction gearings
    • F16H61/6649Friction gearings characterised by the means for controlling the torque transmitting capability of the gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/40Actuators for moving a controlled member
    • B60Y2400/41Mechanical transmissions for actuators
    • B60Y2400/416Centrifugal actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable axial force generating device by a simple constitution and to provide a traction transmission using it. SOLUTION: This axial force generating mechanism 10 comprises a centrifugal force generating mechanism, a converting mechanism converting the centrifugal force into the axial force, etc. The centrifugal force generating mechanism comprises a weight 11 rotating from a rotation center at a prescribed rotation radius. The converting mechanism comprises an operating member 14 fixed to an input shaft 2, a reference member 15 rotating with the input shaft 2 and displaceably supported along the input shaft 2, a positioning mechanism 20 regulating the position of the reference member 15, an arm 12 connecting the operating member 14 to the weight 11 by a pin connection, an arm 13 connecting the reference member 15 to the weight 11 by the pin connection, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転運動に伴う遠
心力を利用して軸力を発生するための軸力発生装置およ
びこれを用いたトラクション変速装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial force generator for generating an axial force by utilizing a centrifugal force caused by a rotational motion, and a traction transmission using the same.

【0002】[0002]

【従来の技術】一般のトラクション変速機構は、入力軸
と連動して回転する入力ディスクと、出力軸と連動して
回転する出力ディスクと、入力ディスクおよび出力ディ
スクの間に介在する伝動ローラと、伝動ローラの押付力
を発生するための軸力発生機構などで構成される。伝動
ローラは、トラニオンと呼ばれる支持部材によって、ロ
ーラ軸回りの回転を許容し、かつローラ軸およびディス
ク回転軸を含む平面内で傾転自在に支持されている。
2. Description of the Related Art A general traction transmission mechanism includes an input disk rotating in conjunction with an input shaft, an output disk rotating in conjunction with an output shaft, a transmission roller interposed between the input disk and the output disk, and It is composed of an axial force generating mechanism for generating a pressing force of the transmission roller. The transmission roller is supported by a support member called a trunnion to allow rotation about the roller axis and to be tiltable in a plane including the roller axis and the disk rotation axis.

【0003】[0003]

【発明が解決しようとする課題】こうしたトラクション
変速機構の軸力発生機構として、2つの回転カムの間に
ローラを介在させて、回転トルクの制御によってカム面
同士の間隔変化に応じて軸力を発生する回転カム方式が
一般に採用されている(たとえば特開平10−2671
01号)。この方式の場合、回転トルクが小さい時に押
付力が小さくなり伝動ローラとディスクの間にスリップ
が生じる問題がある。
As an axial force generating mechanism of such a traction transmission mechanism, a roller is interposed between two rotating cams, and the axial force is controlled in accordance with a change in the distance between the cam surfaces by controlling the rotating torque. In general, a rotating cam system is used (for example, Japanese Patent Application Laid-Open No. H10-2671).
No. 01). In the case of this method, there is a problem that when the rotational torque is small, the pressing force becomes small and a slip occurs between the transmission roller and the disk.

【0004】また、回転カムを用いないで、トラニオン
をディスク側に直接引き寄せるためのアクチュエータを
設けて、伝動ローラの押付力を発生する直接引寄せ方式
を本出願人は提案している(特許第2972688
号)。
In addition, the present applicant has proposed a direct pulling system in which an actuator for directly pulling the trunnion to the disk side is provided without using a rotating cam to generate a pressing force of a transmission roller (Japanese Patent No. 2972688
issue).

【0005】本発明の目的は、別の方式を提案するもの
で、簡単な構成で信頼性の高い軸力発生装置およびこれ
を用いたトラクション変速装置を提供することである。
An object of the present invention is to propose another system, and to provide a highly reliable axial force generator with a simple structure and a traction transmission using the same.

【0006】[0006]

【課題を解決するための手段】本発明は、回転軸ととも
に回転し、遠心力を発生する遠心力発生機構と、遠心力
発生機構で発生した遠心力を回転軸に沿った軸力に変換
する変換機構とを備えることを特徴とする軸力発生装置
である。
According to the present invention, there is provided a centrifugal force generating mechanism which rotates with a rotating shaft to generate a centrifugal force, and converts the centrifugal force generated by the centrifugal force generating mechanism into an axial force along the rotating axis. An axial force generator comprising a conversion mechanism.

【0007】本発明に従えば、回転運動に伴う遠心力を
利用することによって、特別な駆動源を用意しなくても
済むため、構成の簡素化が図られる。また、遠心力Fc
は、質量m、回転半径r、角速度ωを用いてFc=mr
ω^2で表されるため、回転半径r、角速度ωを変化させ
ることによって、遠心力の大きさを広い範囲で調整で
き、軸力も広い範囲で調整可能になる。
[0007] According to the present invention, by utilizing the centrifugal force associated with the rotational movement, it is not necessary to prepare a special drive source, so that the configuration can be simplified. Also, the centrifugal force Fc
Is Fc = mr using mass m, radius of gyration r, and angular velocity ω.
Since it is represented by ω ^ 2, the magnitude of the centrifugal force can be adjusted in a wide range and the axial force can be adjusted in a wide range by changing the rotation radius r and the angular velocity ω.

【0008】また本発明は、遠心力発生機構は、回転中
心から所定の回転半径で回転する錘を有し、変換機構
は、回転軸と錘とを連結する第1アームと、回転軸方向
の変位が規制された基準部材と錘とを連結する第2アー
ムとを有することを特徴とする。
Further, according to the present invention, the centrifugal force generating mechanism has a weight that rotates with a predetermined radius of rotation from the center of rotation, and the conversion mechanism includes a first arm connecting the rotary shaft and the weight, It is characterized by having a second arm connecting the weight and the reference member whose displacement is regulated.

【0009】本発明に従えば、錘の回転運動によって大
きな遠心力を発生させることができる。また、錘を2つ
のアームで連結支持することによって、錘に遠心力が発
生すると、第1アームは回転軸を基準部材側に押圧する
ようになる。その結果、簡単な機構で遠心力を効率的に
軸力に変換できる。
According to the present invention, a large centrifugal force can be generated by the rotational movement of the weight. In addition, when the centrifugal force is generated in the weight by connecting and supporting the weight with the two arms, the first arm presses the rotation shaft toward the reference member. As a result, the centrifugal force can be efficiently converted to the axial force with a simple mechanism.

【0010】また本発明は、基準部材の規制位置を回転
軸方向に沿って調整して、錘の回転半径を調整するため
の遠心力調整機構を備えることを特徴とする。
Further, the present invention is characterized in that a centrifugal force adjusting mechanism for adjusting the rotation radius of the weight by adjusting the regulation position of the reference member along the rotation axis direction is provided.

【0011】本発明に従えば、基準部材の規制位置を回
転軸方向に沿って調整することによって、錘の回転半径
が調整可能になり、これに伴って遠心力の大きさも可変
となる。その結果、回転軸の回転数ωが一定であっても
軸力の大きさを任意に調整できる。
According to the present invention, by adjusting the regulation position of the reference member along the direction of the rotation axis, the rotation radius of the weight can be adjusted, and accordingly, the magnitude of the centrifugal force also becomes variable. As a result, the magnitude of the axial force can be arbitrarily adjusted even when the rotation speed ω of the rotating shaft is constant.

【0012】また本発明は、遠心力発生機構は、中空部
に封入された流体を有し、変換機構は、流体を保持し、
流体圧力に応じて回転軸方向に沿って変位可能な受圧部
材を有することを特徴とする。
Further, according to the present invention, the centrifugal force generating mechanism has a fluid sealed in a hollow portion, the conversion mechanism holds the fluid,
It is characterized by having a pressure receiving member that can be displaced along the rotation axis direction according to the fluid pressure.

【0013】本発明に従えば、封入流体の回転運動によ
って大きな遠心力を発生させることができる。遠心力を
発生する流体として比重の大きな液体が好ましく、たと
えば油、水、水銀等が例示できる。また、回転軸方向に
沿って変位可能な受圧部材を設けることによって、流体
に遠心力が発生すると、流体圧力に応じて受圧部材は回
転軸方向に沿った押圧力を発生する。その結果、簡単な
機構で遠心力を効率的に軸力に変換できる。
According to the present invention, a large centrifugal force can be generated by the rotational movement of the sealed fluid. A liquid having a large specific gravity is preferable as the fluid generating the centrifugal force, and examples thereof include oil, water, and mercury. Further, by providing a pressure receiving member displaceable along the rotation axis direction, when a centrifugal force is generated in the fluid, the pressure reception member generates a pressing force along the rotation axis direction according to the fluid pressure. As a result, the centrifugal force can be efficiently converted to the axial force with a simple mechanism.

【0014】また本発明は、回転軸に形成された連通孔
および該連通孔と中空部とを連通する連通路を含む流体
補充路を有することを特徴とする。
Further, the present invention is characterized in that it has a fluid replenishment passage including a communication hole formed in the rotating shaft and a communication passage communicating the communication hole with the hollow portion.

【0015】本発明に従えば、封入流体を補充するため
の流体補充路を設けることによって、中空部から漏出し
た流体の循環再利用が可能になる。そのため大きな遠心
力が作用する流体を完全に封入するという機構上の困難
さを解消できる。
According to the present invention, by providing a fluid replenishment passage for replenishing the sealed fluid, the fluid leaked from the hollow portion can be circulated and reused. Therefore, it is possible to eliminate the mechanical difficulty of completely enclosing the fluid on which a large centrifugal force acts.

【0016】また本発明は、封入流体の圧力を調整する
ためのリリーフ弁を備えることを特徴とする。
Further, the present invention is characterized by including a relief valve for adjusting the pressure of the sealed fluid.

【0017】本発明に従えば、封入流体の漏出流量を制
御するリリーフ弁を設けて、封入流体の圧力を調整する
ことによって、受圧部材に作用する圧力が調整可能にな
る。その結果、回転軸の回転数ωが一定であっても軸力
の大きさを任意に調整できる。
According to the present invention, the pressure acting on the pressure receiving member can be adjusted by providing the relief valve for controlling the leakage flow rate of the sealed fluid and adjusting the pressure of the sealed fluid. As a result, the magnitude of the axial force can be arbitrarily adjusted even when the rotation speed ω of the rotating shaft is constant.

【0018】また本発明は、外部の駆動源によって回転
する入力軸と、入力軸と連動する入力ディスクと、出力
軸と連動する出力ディスクと、入力ディスクおよび出力
ディスクの間に介在する伝動ローラと、入力軸および出
力軸の少なくとも一方に設けられ、伝動ローラの押付力
を発生する上記の軸力発生機構とを備えることを特徴と
するトラクション変速装置である。
The present invention also provides an input shaft rotated by an external drive source, an input disk interlocked with the input shaft, an output disk interlocked with the output shaft, and a transmission roller interposed between the input disk and the output disk. And a shaft force generating mechanism provided on at least one of the input shaft and the output shaft for generating a pressing force of the transmission roller.

【0019】本発明に従えば、軸力発生機構の構成が簡
素化でき、しかも軸力の大きさを広い範囲で調整できる
ため、簡単な構成で信頼性の高い連続可変の変速装置を
実現できる。
According to the present invention, the structure of the axial force generating mechanism can be simplified, and the magnitude of the axial force can be adjusted in a wide range. Therefore, a highly reliable continuously variable transmission with a simple structure can be realized. .

【0020】[0020]

【発明の実施の形態】図1(a)は、本発明の第1実施
形態を示す構成図である。トラクション変速装置1は、
エンジンやモータ等の外部駆動源によって回転する入力
軸2と、入力軸2と連動して回転する入力ディスク3
と、出力軸7と連動して回転する出力ディスク6と、入
力ディスク3および出力ディスク6の間に介在する伝動
ローラ4と、伝動ローラ4の押付力を発生するための軸
力発生機構10などで構成される。
FIG. 1A is a configuration diagram showing a first embodiment of the present invention. The traction transmission 1 is
An input shaft 2 that is rotated by an external drive source such as an engine or a motor, and an input disk 3 that rotates in conjunction with the input shaft 2
An output disk 6 that rotates in conjunction with the output shaft 7, a transmission roller 4 interposed between the input disk 3 and the output disk 6, an axial force generating mechanism 10 for generating a pressing force of the transmission roller 4, and the like. It consists of.

【0021】伝動ローラ4は、トラニオンと呼ばれる支
持部材5によって、ローラ軸回りの回転を許容し、かつ
ローラ軸およびディスク回転軸を含む平面内で傾転自在
に支持されている。
The transmission roller 4 is supported by a support member 5 called a trunnion to allow rotation about the roller axis and to be tiltable in a plane including the roller axis and the disk rotation axis.

【0022】伝動ローラ4と入力ディスク3とが接触す
る位置をディスク回転軸から測った距離を入力側接触半
径Riとし、伝動ローラ4と出力ディスク6とが接触す
る位置をディスク回転軸から測った距離を出力側接触半
径Roとし、入力軸2および入力ディスク3の回転数を
Niとし、出力軸7および出力ディスク6の回転数をN
oとすると、変速比No/Ni=Ri/Roという関係
が成立する。そこで、伝動ローラ4の傾転角を制御する
ことによって、各接触半径Ri、Roが連続的に変化す
るため、変速比No/Niを連続的に変化させることが
可能になる。
The distance measured from the disk rotation axis at the position where the transmission roller 4 contacts the input disk 3 is defined as the input contact radius Ri, and the position where the transmission roller 4 contacts the output disk 6 is measured from the disk rotation axis. The distance is the contact radius Ro on the output side, the rotation speed of the input shaft 2 and the input disk 3 is Ni, and the rotation speed of the output shaft 7 and the output disk 6 is N
If o, the relationship of speed ratio No / Ni = Ri / Ro is established. Thus, by controlling the tilt angle of the transmission roller 4, each of the contact radii Ri and Ro changes continuously, so that the speed ratio No / Ni can be changed continuously.

【0023】軸力発生機構10は、入力軸2とともに回
転し、遠心力を発生する遠心力発生機構と、遠心力発生
機構で発生した遠心力を入力軸2に沿った軸力に変換す
る変換機構等で構成される。
The axial force generating mechanism 10 rotates together with the input shaft 2 to generate a centrifugal force, and converts the centrifugal force generated by the centrifugal force generating mechanism into an axial force along the input shaft 2. It is composed of a mechanism.

【0024】遠心力発生機構は、回転中心から所定の回
転半径で回転する錘11で構成され、錘11の質量m、
回転半径rおよび角速度ωを用いて、遠心力Fc=mr
ω^2を発生する。
The centrifugal force generating mechanism is composed of a weight 11 that rotates at a predetermined radius of rotation from the center of rotation.
Using the turning radius r and the angular velocity ω, the centrifugal force Fc = mr
Generates ω ^ 2.

【0025】変換機構は、入力軸2に固定された作動部
材14と、入力軸2とともに回転し、入力軸2に沿って
変位自在に支持される基準部材15と、基準部材15の
位置を規制する位置決め機構20と、作動部材14と錘
11とをピン結合で連結するアーム12と、基準部材1
5と錘11とをピン結合で連結するアーム13等で構成
される。
The conversion mechanism includes an operating member 14 fixed to the input shaft 2, a reference member 15 that rotates together with the input shaft 2 and is displaceably supported along the input shaft 2, and regulates the position of the reference member 15. A positioning mechanism 20, an arm 12 for connecting the operating member 14 and the weight 11 by a pin connection, and a reference member 1
It is composed of an arm 13 and the like connecting the weight 5 and the weight 11 by pin connection.

【0026】図1(b)は、軸力発生機構10を入力軸
2の先端側から見た配置図である。錘11は入力軸2の
周りに軸対称に複数(ここでは4個)配置され、各錘1
1を支えるアーム12,13が作動部材14および基準
部材15に軸対称に連結されている。
FIG. 1B is an arrangement view of the axial force generating mechanism 10 as viewed from the front end side of the input shaft 2. A plurality of weights 11 (here, four) are arranged axially symmetrically around the input shaft 2, and each weight 1
Arms 12 and 13 supporting the first member 1 are connected to the operating member 14 and the reference member 15 in an axisymmetric manner.

【0027】作動部材14は、皿ばね8によって予圧
(プリロード)が印加され一定の軸力を発生しており、
入力軸2を出力ディスク6に向かって押圧することで、
回転停止状態での伝動ローラ4の押付力を確保してい
る。基準部材15と作動部材14との間にはスプライン
軸受16が介在し、両者間の軸方向変位が許容され、両
者の回転運動が一体化される。このスプライン軸受は基
準部材15と入力軸2との間に配置してもよい。
The operating member 14 is applied with a preload (preload) by the disc spring 8 to generate a constant axial force.
By pressing the input shaft 2 toward the output disk 6,
The pressing force of the transmission roller 4 in the rotation stopped state is secured. A spline bearing 16 is interposed between the reference member 15 and the operating member 14, allowing axial displacement between the two and integrating the rotational movements of the two. This spline bearing may be arranged between the reference member 15 and the input shaft 2.

【0028】次に軸力発生機構10の動作を説明する。
入力軸2が角速度ωで回転すると、錘11もアーム1
2,13の支持角度で決まる回転半径rで回転して、各
錘11に遠心力Fcが発生する。遠心力Fcはアーム1
2,13に伝達され、アーム13に伝達された力Faは
基準部材15によって剛性支持され、一方、アーム12
に伝達された力Fbは、作動部材14において入力軸2
に平行な力Fpと入力軸2の半径方向の力Frに分解さ
れる。アーム12の支持角度をθとすると、力Fp=F
b・cosθが成立し、これが作動部材14が発生する
軸力に相当する。半径方向の力Frは、4本のアーム1
2が軸対称に連結されているため、互いに相殺される。
Next, the operation of the axial force generating mechanism 10 will be described.
When the input shaft 2 rotates at the angular velocity ω, the weight 11 also moves to the arm 1
The centrifugal force Fc is generated in each weight 11 by rotating with the rotation radius r determined by the support angles 2 and 13. Centrifugal force Fc is arm 1
2 and 13 and the force Fa transmitted to the arm 13 is rigidly supported by the reference member 15, while the force Fa is transmitted to the arm 12.
Is transmitted to the input shaft 2 of the operating member 14.
, And a force Fr in the radial direction of the input shaft 2. When the support angle of the arm 12 is θ, the force Fp = F
b · cos θ is established, and this corresponds to the axial force generated by the operating member 14. The radial force Fr includes four arms 1
2 are offset symmetrically because they are connected axisymmetrically.

【0029】こうして発生した軸力Fpは、伝動ローラ
4と入力ディスク3との間の押付力および伝動ローラ4
と出力ディスク6との間の押付力として作用する。
The axial force Fp thus generated depends on the pressing force between the transmission roller 4 and the input disk 3 and the transmission roller 4
And the output disk 6 acts as a pressing force.

【0030】遠心力Fcは錘11の質量m、回転半径r
および角速度ωの関数であるため、いずれかのパラメー
タを変化させることによって、軸力Fpの大きさを変化
させることができる。
The centrifugal force Fc is the mass m of the weight 11 and the radius of gyration r.
And the angular velocity ω, the magnitude of the axial force Fp can be changed by changing any of the parameters.

【0031】そこで、位置決め機構20によって基準部
材15の軸方向位置を調整することによって、アーム1
2,13の支持角度が変化して、錘11の回転半径rも
変化するため、遠心力Fcおよび軸力Fpを任意に調整
できる。
Therefore, by adjusting the axial position of the reference member 15 by the positioning mechanism 20, the arm 1 is moved.
Since the rotation angle r of the weight 11 changes as the supporting angles of the weights 2 and 13 change, the centrifugal force Fc and the axial force Fp can be arbitrarily adjusted.

【0032】図1(c)は、軸力Fpと錘11の回転半
径rとの関係を示すグラフである。軸力Fpは回転半径
rに関して比例するため、回転半径rの調整によって軸
力Fpの大きさを任意に調整できる。なお、グラフ中の
F1は皿ばね8の予圧に相当し、作動部材14が入力デ
ィスク3側に変位して、作動部材14の軸力Fpが予圧
F1を超えた時点で、皿ばね8が作動しなくなる。
FIG. 1C is a graph showing the relationship between the axial force Fp and the turning radius r of the weight 11. Since the axial force Fp is proportional to the turning radius r, the magnitude of the axial force Fp can be arbitrarily adjusted by adjusting the turning radius r. Note that F1 in the graph corresponds to the preload of the disc spring 8, and when the operating member 14 is displaced toward the input disk 3 and the axial force Fp of the operating member 14 exceeds the preload F1, the disc spring 8 is activated. No longer.

【0033】また、外部駆動源の回転数を変化させるこ
とによって、入力軸2の角速度ωも変化するため、遠心
力Fcおよび軸力Fpを任意に調整できる。
Further, by changing the rotation speed of the external drive source, the angular velocity ω of the input shaft 2 also changes, so that the centrifugal force Fc and the axial force Fp can be arbitrarily adjusted.

【0034】図1(d)は、軸力Fpと入力軸2の角速
度ωとの関係を示すグラフである。軸力Fpは角速度ω
に関して二乗で比例するため、角速度ωの調整によって
軸力Fpの大きさを任意に調整できる。グラフ中のF1
は同様に皿ばね8の予圧に相当する。
FIG. 1D is a graph showing the relationship between the axial force Fp and the angular velocity ω of the input shaft 2. The axial force Fp is the angular velocity ω
, The magnitude of the axial force Fp can be arbitrarily adjusted by adjusting the angular velocity ω. F1 in the graph
Similarly corresponds to the preload of the disc spring 8.

【0035】こうした軸力可変型の軸力発生機構10を
トラクション変速装置1に適用することによって、トラ
クション変速装置1での伝達トルクが大きい場合に、伝
動ローラ4の押付力を高くすることで、伝動ローラ4の
スリップ発生を確実に防止できる。特に回転数が非常に
高い場合、ディスクと伝動ローラ間の接触面(トラクシ
ョン面)でのすべりが大きくなるため、スリップする危
険性が高くなる。しかし、遠心力を利用した軸力発生機
構を用いると、回転数(角速度)に応じた軸力制御が容
易にでき、高速時のスリップも防止できる。また、トラ
クション変速装置1での伝達トルクが小さい場合に、伝
動ローラ4の押付力を低くすることで、過度のストレス
が伝動ローラ4、入力ディスク3、出力ディスク6等に
加わるのを防止でき、部材の寿命、信頼性を大幅に改善
できる。
By applying such a variable axial force generating mechanism 10 to the traction transmission 1, when the transmission torque in the traction transmission 1 is large, the pressing force of the transmission roller 4 can be increased. It is possible to reliably prevent the transmission roller 4 from slipping. In particular, when the rotation speed is very high, the slip on the contact surface (traction surface) between the disk and the transmission roller increases, and the risk of slipping increases. However, if an axial force generating mechanism using centrifugal force is used, axial force control according to the rotation speed (angular velocity) can be easily performed, and slip at high speed can be prevented. Further, when the transmission torque in the traction transmission 1 is small, by reducing the pressing force of the transmission roller 4, it is possible to prevent excessive stress from being applied to the transmission roller 4, the input disk 3, the output disk 6, and the like. The life and reliability of members can be greatly improved.

【0036】図2は、本発明の第2実施形態を示す構成
図である。ここでは位置決め機構20の構成例を説明す
る。
FIG. 2 is a configuration diagram showing a second embodiment of the present invention. Here, a configuration example of the positioning mechanism 20 will be described.

【0037】基準部材15と入力軸2との間にはスプラ
イン軸受16が介在し、両者間の軸方向変位が許容さ
れ、両者の回転運動が一体化される。基準部材15の外
側には、中空形状のボールねじ21が配置される。基準
部材15とボールねじ21との間にアンギュラ軸受22
が装着され、両者間の軸方向変位が伝達され、両者間の
回転運動が分離される。ボールねじ21の外側にはボー
ル列23を介してナット24が螺合しており、ここでは
ナット24がハウジング等に固定され、ボールねじ21
が直線運動する。
A spline bearing 16 is interposed between the reference member 15 and the input shaft 2, allowing axial displacement between the two and integrating the rotational movements of the two. A hollow ball screw 21 is disposed outside the reference member 15. Angular bearing 22 between reference member 15 and ball screw 21
Is mounted, the axial displacement between the two is transmitted, and the rotational movement between the two is separated. A nut 24 is screwed to the outside of the ball screw 21 via a ball row 23. Here, the nut 24 is fixed to a housing or the like.
Moves linearly.

【0038】ボールねじ21の外周に形成された歯は歯
車25と噛合し、さらに歯車25は歯車26と噛合し、
歯車26はステップモータ等の回転角制御型のモータ2
7によって回転駆動される。
The teeth formed on the outer periphery of the ball screw 21 mesh with the gear 25, and the gear 25 meshes with the gear 26,
The gear 26 is a rotation angle control type motor 2 such as a step motor.
7 is driven to rotate.

【0039】次に動作を説明する。モータ27の正回転
または逆回転によって、ボールねじ21も正回転または
逆回転し、固定されたナット24に対して前後に変位
し、基準部材15も入力軸2に沿って作動部材14また
は入力ディスク3に向かって変位する。基準部材15が
作動部材14側に位置決めされると、アーム12,13
の支持角度が大きくなり、錘11の回転半径rが長くな
って、遠心力Fcおよび軸力Fpが大きくなる。
Next, the operation will be described. By forward or reverse rotation of the motor 27, the ball screw 21 also rotates forward or backward, displaces back and forth with respect to the fixed nut 24, and the reference member 15 moves along the input shaft 2 to the operating member 14 or the input disk. Displaced toward 3. When the reference member 15 is positioned on the operation member 14 side, the arms 12 and 13
Is increased, the radius of rotation r of the weight 11 is increased, and the centrifugal force Fc and the axial force Fp are increased.

【0040】一方、基準部材15が入力ディスク3側に
位置決めされると、アーム12,13の支持角度が小さ
くなり、錘11の回転半径rが短くなって、遠心力Fc
および軸力Fpが小さくなる。
On the other hand, when the reference member 15 is positioned on the input disk 3 side, the support angles of the arms 12 and 13 become small, the turning radius r of the weight 11 becomes short, and the centrifugal force Fc
And the axial force Fp decreases.

【0041】以上、位置決め機構20としてボールねじ
21を使用した構成を説明したが、その他のリニアアク
チュエータを使用しても構わない。
Although the configuration using the ball screw 21 as the positioning mechanism 20 has been described above, another linear actuator may be used.

【0042】図3は、本発明の第3実施形態を示す構成
図である。トラクション変速装置1は、図1と同様に、
エンジンやモータ等の外部駆動源によって回転する入力
軸2と、入力軸2と連動して回転する入力ディスク3
と、出力軸と連動して回転する出力ディスクと、入力デ
ィスク3および出力ディスクの間に介在する伝動ローラ
4と、伝動ローラ4の押付力を発生するための軸力発生
機構10などで構成され、図3では出力軸および出力デ
ィスクの図示を省略している。
FIG. 3 is a block diagram showing a third embodiment of the present invention. The traction transmission 1 is, like FIG.
An input shaft 2 that is rotated by an external drive source such as an engine or a motor, and an input disk 3 that rotates in conjunction with the input shaft 2
And an output disk that rotates in conjunction with the output shaft, a transmission roller 4 interposed between the input disk 3 and the output disk, an axial force generating mechanism 10 for generating a pressing force of the transmission roller 4, and the like. 3, the output shaft and the output disk are not shown.

【0043】軸力発生機構10は、入力軸2とともに回
転し、遠心力を発生する遠心力発生機構と、遠心力発生
機構で発生した遠心力を入力軸2に沿った軸力に変換す
る変換機構等で構成される。
The axial force generating mechanism 10 rotates together with the input shaft 2 to generate a centrifugal force, and converts the centrifugal force generated by the centrifugal force generating mechanism into an axial force along the input shaft 2. It is composed of a mechanism.

【0044】遠心力発生機構は、入力ディスク3の背面
とシリンダディスク30とで挟まれた中空部32に封入
された流体Qを有する。流体Qの微小体積には、質量
m、回転半径rおよび角速度ωを用いて遠心力Fc=m
rω^2が発生するため、入力軸2から離れるほど大きな
遠心力Fcが分布する。
The centrifugal force generating mechanism has a fluid Q sealed in a hollow portion 32 sandwiched between the rear surface of the input disk 3 and the cylinder disk 30. Using the mass m, the radius of gyration r and the angular velocity ω, the centrifugal force Fc = m
Since rω ^ 2 is generated, a larger centrifugal force Fc is distributed as the distance from the input shaft 2 increases.

【0045】変換機構は、皿状円盤から軸方向に沿って
延出する大小2つの円筒部を有するシリンダディスク3
0と、外側円筒部および内側円筒部の内面に摺動する入
力ディスク3とを有する。シリンダディスク30は入力
軸2に固定される。
The conversion mechanism is a cylinder disk 3 having two large and small cylindrical portions extending in the axial direction from the dish-shaped disk.
0, and an input disk 3 that slides on the inner surface of the outer cylindrical portion and the inner cylindrical portion. The cylinder disk 30 is fixed to the input shaft 2.

【0046】入力ディスク3と入力軸2との間にはスプ
ライン軸受41が介在して、入力ディスク3は軸方向変
位が許容され、中空部32に封入された流体Qの圧力に
応じて変位可能な受圧ピストンとして機能する。シリン
ダディスク30と入力ディスク3との摺動面および入力
ディスク3と入力軸2との隙間には、流体Qのリークを
防止するシール部材40が設けられる。
A spline bearing 41 is interposed between the input disk 3 and the input shaft 2. The input disk 3 is allowed to be displaced in the axial direction, and can be displaced according to the pressure of the fluid Q sealed in the hollow portion 32. Function as a simple pressure receiving piston. A seal member 40 for preventing leakage of the fluid Q is provided on a sliding surface between the cylinder disk 30 and the input disk 3 and a gap between the input disk 3 and the input shaft 2.

【0047】入力ディスク3は、皿ばね8によって予圧
(プリロード)が印加され一定の軸力を発生しており、
入力ディスク3を伝動ローラ4に向かって押圧すること
で、回転停止状態での伝動ローラ4の押付力を確保して
いる。
A preload (preload) is applied to the input disk 3 by the disc spring 8 to generate a constant axial force.
By pressing the input disk 3 toward the transmission roller 4, the pressing force of the transmission roller 4 in the rotation stopped state is secured.

【0048】入力軸2には流体Qが通過する連通孔2a
が形成され、さらにシリンダディスク30の取付け位置
において連通孔2aと中空部32とを連通するための連
通路2b,30aが形成され、連通孔2aから中空部3
2に至る流体補充路が確保される。流体Qが潤滑油とし
て使用できる場合、入力軸2の連通孔2cを通ってスプ
ライン軸受41や他のトラクション変速部材にも供給さ
れる。
The input shaft 2 has a communication hole 2a through which the fluid Q passes.
Are formed, and communication passages 2b and 30a for communicating the communication hole 2a and the hollow portion 32 at the mounting position of the cylinder disk 30 are formed.
2 is secured. When the fluid Q can be used as lubricating oil, it is also supplied to the spline bearing 41 and other traction transmission members through the communication hole 2c of the input shaft 2.

【0049】シリンダディスク30の外側円筒部にも、
流体Qが通過する連通孔30bが形成され、さらに封入
流体Qの圧力を調整するためのリリーフ弁31が連通孔
30bの出口に設けられる。
The outer cylindrical portion of the cylinder disk 30
A communication hole 30b through which the fluid Q passes is formed, and a relief valve 31 for adjusting the pressure of the sealed fluid Q is provided at an outlet of the communication hole 30b.

【0050】リリーフ弁31および他の部材から漏出し
た流体Qは、流体受け45に回収される。回収された流
体Qは、異物を除去するフィルタ46を経て、ポンプ4
7によって加圧され、再び連通孔2aに供給され、中空
部32へ補充される。なお、ポンプ47の圧力は流体Q
を循環させる程度で足りる。
The fluid Q leaked from the relief valve 31 and other members is collected in the fluid receiver 45. The collected fluid Q passes through a filter 46 for removing foreign matter, and
Then, the pressure is supplied to the communication hole 2 a again, and the pressure is supplied to the hollow portion 32. The pressure of the pump 47 is equal to the fluid Q
It is enough to circulate.

【0051】次に軸力発生機構10の動作を説明する。
入力軸2が角速度ωで回転すると、シリンダディスク3
0および入力ディスク3も回転して、中空部32に封入
された流体Qには遠心力Fcの分布に応じた圧力が発生
する。流体Qの圧力は、受圧ピストンである入力ディス
ク3の背面を押圧して、入力ディスク3を伝動ローラ4
側に変位させる軸力が発生する。
Next, the operation of the axial force generating mechanism 10 will be described.
When the input shaft 2 rotates at an angular velocity ω, the cylinder disk 3
0 and the input disk 3 also rotate, and a pressure corresponding to the distribution of the centrifugal force Fc is generated in the fluid Q sealed in the hollow portion 32. The pressure of the fluid Q presses the back surface of the input disk 3 which is a pressure receiving piston, and the input disk 3
An axial force is generated to displace the side.

【0052】こうして発生した軸力は、伝動ローラ4と
入力ディスク3との間の押付力および伝動ローラ4と出
力ディスクとの間の押付力として作用する。
The axial force thus generated acts as a pressing force between the transmission roller 4 and the input disk 3 and a pressing force between the transmission roller 4 and the output disk.

【0053】遠心力Fcは質量m、回転半径rおよび角
速度ωの関数であるため、いずれかのパラメータを変化
させることによって、軸力の大きさを変化させることが
できる。
Since the centrifugal force Fc is a function of the mass m, the radius of gyration r and the angular velocity ω, the magnitude of the axial force can be changed by changing any of the parameters.

【0054】ここでは、リリーフ弁31の開度調整によ
って、流体Qの漏出流量を制御して、封入流体Qの圧力
を調整することによって、入力ディスク3に作用する圧
力が調整可能になる。その結果、回転軸の角速度ωが一
定であっても軸力の大きさが任意に調整可能になる。
Here, the pressure acting on the input disk 3 can be adjusted by controlling the leakage flow rate of the fluid Q by adjusting the opening of the relief valve 31 and adjusting the pressure of the sealed fluid Q. As a result, the magnitude of the axial force can be arbitrarily adjusted even if the angular velocity ω of the rotating shaft is constant.

【0055】以上、入力ディスク3が受圧部材として兼
用する構成を説明したが、入力ディスク3と別に受圧部
材を設けて、両者を連結した構成でも構わない。また、
中空部32は、入力軸2から離れるほど間隔が狭くなる
テーパー断面形状の例を説明したが、その他の形状でも
構わない。
The configuration in which the input disk 3 also serves as a pressure receiving member has been described above. However, a configuration in which a pressure receiving member is provided separately from the input disk 3 and both are connected may be used. Also,
Although the hollow portion 32 has been described as an example of the tapered cross-sectional shape in which the interval becomes narrower as the distance from the input shaft 2 increases, other shapes may be used.

【0056】図4(a)(b)および(c)は軸力発生
機構10の別の構成例を示す部分断面図である。図4
(a)では、シリンダディスク30と受圧ディスク35
との間隔が回転半径にかかわらず一定となる中空部32
の例を示す。図4(b)では、シリンダディスク30と
受圧ディスク35との間隔が入力軸2から離れるほど広
くなる中空部32の例を示す。受圧ディスク35は、中
空部32に封入された流体Qの遠心力Fcによって、軸
力を発生する。図4(c)では、シール部材40に代る
エラストマ39がシリンダディスク30と受圧ディスク
35に接着されており、両ディスクの相対変位はエラス
トマ39の弾性変形で吸収される。
FIGS. 4A, 4B and 4C are partial cross-sectional views showing another example of the structure of the axial force generating mechanism 10. FIG. FIG.
(A), the cylinder disk 30 and the pressure receiving disk 35
The hollow part 32 whose distance between them is constant irrespective of the turning radius
Here is an example. FIG. 4B shows an example of the hollow portion 32 in which the distance between the cylinder disk 30 and the pressure receiving disk 35 increases as the distance from the input shaft 2 increases. The pressure receiving disk 35 generates an axial force due to the centrifugal force Fc of the fluid Q sealed in the hollow portion 32. In FIG. 4C, an elastomer 39 instead of the seal member 40 is bonded to the cylinder disk 30 and the pressure receiving disk 35, and the relative displacement between the two disks is absorbed by the elastic deformation of the elastomer 39.

【0057】図5〜図7は、トラクション変速装置1の
軸力制御系を示すブロック図である。図5では、上述し
た軸力発生機構10をトラクション変速装置1の入力軸
2に設けた例を示す。
FIGS. 5 to 7 are block diagrams showing the axial force control system of the traction transmission 1. FIG. FIG. 5 shows an example in which the above-described axial force generating mechanism 10 is provided on the input shaft 2 of the traction transmission 1.

【0058】外部のエンジン50の駆動トルクは入力軸
2に伝達され、さらに入力ディスク3、伝動ローラ4お
よび出力ディスク6等で構成されたトラクション変速機
構によって無段階変速され、出力軸7から取り出され
る。
The driving torque of the external engine 50 is transmitted to the input shaft 2, and is continuously variable by a traction transmission mechanism constituted by the input disk 3, the transmission roller 4, the output disk 6 and the like, and is taken out from the output shaft 7. .

【0059】入力軸2にはトルクセンサ51が取り付け
られ、入力軸2に作用するトルクに応じたトルク信号S
tを出力する。伝動ローラ4には伝動ローラ4の傾斜角
を検出する傾斜角センサ52が取り付けられ、傾斜角信
号Sαを出力する。伝動ローラ4の傾斜角は入力ディス
ク3の入力側接触半径Riおよび出力ディスク6の出力
側接触半径Roを反映するため、傾斜角センサ52によ
ってトラクション変速機構の変速比を間接的に測定でき
る。
A torque sensor 51 is attached to the input shaft 2 and outputs a torque signal S corresponding to the torque acting on the input shaft 2.
Output t. The transmission roller 4 is provided with a tilt angle sensor 52 for detecting the tilt angle of the transmission roller 4 and outputs a tilt angle signal Sα. Since the inclination angle of the transmission roller 4 reflects the input contact radius Ri of the input disk 3 and the output contact radius Ro of the output disk 6, the gear ratio of the traction transmission mechanism can be indirectly measured by the inclination angle sensor 52.

【0060】制御部53は、トルク信号Stから現在の
駆動トルクの大きさを判定し、傾斜角信号Sαからトラ
クション変速機構の変速比を判定して、軸力制御信号S
pを軸力発生機構10へ出力して、伝動ローラ4のスリ
ップを防止しつつ、過度のストレスとならないように必
要かつ充分な軸力を発生させる。さらに、入力軸2に回
転数センサを取付けて、回転数信号を制御部53に入力
する構成とすれば、駆動回転数も考慮した必要かつ充分
な軸力を発生させることが可能となる。
The control unit 53 determines the magnitude of the current driving torque from the torque signal St, determines the gear ratio of the traction transmission mechanism from the inclination angle signal Sα, and determines the axial force control signal S
p is output to the axial force generating mechanism 10 to generate a necessary and sufficient axial force so as not to cause excessive stress while preventing the transmission roller 4 from slipping. Further, if a rotation speed sensor is attached to the input shaft 2 and a rotation speed signal is input to the control unit 53, it is possible to generate a necessary and sufficient axial force in consideration of the driving rotation speed.

【0061】図6では上述した軸力発生機構10をトラ
クション変速装置1の出力軸7に設けた例を示す。軸力
発生機構10は遠心力を利用して軸力を発生させている
ため、回転軸である出力軸7に設けて伝動ローラ4の押
付力を発生することも可能である。
FIG. 6 shows an example in which the above-described axial force generating mechanism 10 is provided on the output shaft 7 of the traction transmission 1. Since the axial force generating mechanism 10 generates the axial force using the centrifugal force, the axial force generating mechanism 10 can be provided on the output shaft 7 that is a rotating shaft to generate the pressing force of the transmission roller 4.

【0062】制御部53は、トルクセンサ51からのト
ルク信号Stおよび傾斜角センサ52からの傾斜角信号
Sαに基づいて、軸力制御信号Spを軸力発生機構10
へ出力して、伝動ローラ4のスリップを防止しつつ、過
度のストレスとならないように必要かつ充分な軸力を発
生させる。
The control section 53 outputs the axial force control signal Sp to the axial force generating mechanism 10 based on the torque signal St from the torque sensor 51 and the tilt angle signal Sα from the tilt angle sensor 52.
To generate a necessary and sufficient axial force so as not to cause excessive stress while preventing the transmission roller 4 from slipping.

【0063】図7では上述した軸力発生機構10をトラ
クション変速装置1の入力軸2および出力軸7の両方に
設けた例を示す。軸力発生機構10は遠心力を利用して
軸力を発生させているため、回転軸である入力軸2およ
び出力軸7に設けて、両方の軸力発生機構10が伝動ロ
ーラ4の押付力を発生することも可能である。
FIG. 7 shows an example in which the above-described axial force generating mechanism 10 is provided on both the input shaft 2 and the output shaft 7 of the traction transmission 1. Since the axial force generating mechanism 10 generates the axial force by using the centrifugal force, the axial force generating mechanism 10 is provided on the input shaft 2 and the output shaft 7 which are the rotating shafts. Can also be generated.

【0064】制御部53は、トルクセンサ51からのト
ルク信号Stおよび傾斜角センサ52からの傾斜角信号
Sαに基づいて、軸力制御信号Spを両方の軸力発生機
構10へ出力して、伝動ローラ4のスリップを防止しつ
つ、過度のストレスとならないように必要かつ充分な軸
力を発生させる。
The control unit 53 outputs an axial force control signal Sp to both the axial force generating mechanisms 10 based on the torque signal St from the torque sensor 51 and the inclination angle signal Sα from the inclination angle sensor 52 to transmit power. A necessary and sufficient axial force is generated so as not to cause an excessive stress while preventing the roller 4 from slipping.

【0065】[0065]

【発明の効果】以上詳説したように本発明によれば、回
転運動に伴う遠心力を利用することによって、特別な駆
動源を用意しなくても済むため、構成の簡素化が図られ
る。遠心力Fcは、質量m、回転半径r、角速度ωを用
いてFc=mrω^2で表されるため、回転半径r、角速
度ωを変化させることによって、遠心力の大きさを広い
範囲で調整でき、軸力も広い範囲で調整可能になる。
As described in detail above, according to the present invention, the use of the centrifugal force associated with the rotational movement eliminates the need for preparing a special drive source, thereby simplifying the configuration. Since the centrifugal force Fc is expressed by Fc = mrω ^ 2 using the mass m, the turning radius r, and the angular velocity ω, the magnitude of the centrifugal force can be adjusted in a wide range by changing the turning radius r and the angular velocity ω. It is possible to adjust the axial force in a wide range.

【0066】また、錘を2つのアームで連結支持するこ
とによって、錘に遠心力が発生すると第1アームは回転
軸を基準部材側に押圧するため、簡単な機構で遠心力を
効率的に軸力に変換できる。
The centrifugal force generated by the weight is supported by connecting the weight with the two arms, so that when the centrifugal force is generated in the weight, the first arm presses the rotating shaft toward the reference member. Can be converted to force.

【0067】また、基準部材の規制位置を回転軸方向に
沿って調整することによって、軸力の大きさを任意に調
整できる。
Further, the magnitude of the axial force can be arbitrarily adjusted by adjusting the regulating position of the reference member along the rotation axis direction.

【0068】また、封入流体の回転運動によって大きな
遠心力を発生させ、流体圧力に応じて受圧部材は回転軸
方向に沿った押圧力を発生するため、簡単な機構で遠心
力を効率的に軸力に変換できる。
Further, since a large centrifugal force is generated by the rotational motion of the sealed fluid, and the pressure receiving member generates a pressing force along the direction of the rotation axis according to the fluid pressure, the centrifugal force is efficiently generated by a simple mechanism. Can be converted to force.

【0069】これらの遠心力式軸力発生機構を用いる
と、回転半径を変えない限り回転数が高くなると押付力
は増加するので、高速回転時のスリップ防止に非常に有
効である。さらにトルク、回転数、傾転角に基づく制御
を行うことにより、常に最適な軸力へ調節することもで
き、大トルク時のスリップ防止、また装置の寿命の延長
も図られる。
When the centrifugal force type axial force generating mechanism is used, the pressing force increases as the number of rotations increases as long as the rotation radius is not changed, which is very effective in preventing slip during high-speed rotation. Further, by performing control based on the torque, the number of revolutions, and the tilt angle, it is possible to always adjust to the optimal axial force, thereby preventing slip at a large torque and extending the life of the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明の第1実施形態を示す構成
図、図1(b)は軸力発生機構10を入力軸2の先端側
から見た配置図、図1(c)は軸力Fpと錘11の回転
半径rとの関係を示すグラフ、図1(d)は軸力Fpと
入力軸2の角速度ωとの関係を示すグラフである。
FIG. 1A is a configuration diagram showing a first embodiment of the present invention, FIG. 1B is a layout view of an axial force generating mechanism 10 viewed from the tip end side of an input shaft 2, and FIG. ) Is a graph showing the relationship between the axial force Fp and the turning radius r of the weight 11, and FIG. 1D is a graph showing the relationship between the axial force Fp and the angular velocity ω of the input shaft 2.

【図2】本発明の第2実施形態を示す構成図である。FIG. 2 is a configuration diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施形態を示す構成図である。FIG. 3 is a configuration diagram showing a third embodiment of the present invention.

【図4】図4(a)(b)(c)は軸力発生機構10の
別の構成例を示す部分断面図である。
FIGS. 4A, 4B, and 4C are partial cross-sectional views illustrating another configuration example of the axial force generation mechanism 10. FIGS.

【図5】トラクション変速装置1の軸力制御系を示すブ
ロック図である。
FIG. 5 is a block diagram showing an axial force control system of the traction transmission 1.

【図6】トラクション変速装置1の軸力制御系を示すブ
ロック図である。
6 is a block diagram showing an axial force control system of the traction transmission 1. FIG.

【図7】トラクション変速装置1の軸力制御系を示すブ
ロック図である。
FIG. 7 is a block diagram showing an axial force control system of the traction transmission 1.

【符号の説明】[Explanation of symbols]

1 トラクション変速装置 2 入力軸 3 入力ディスク 4 伝動ローラ 5 支持部材 6 出力ディスク 7 出力軸 8 皿ばね 10 軸力発生機構 11 錘 12,13 アーム 14 作動部材 15 基準部材 20 位置決め機構 21 ボールねじ 24 ナット 30 シリンダディスク 31 リリーフ弁 32 中空部 45 流体受け 51 トルクセンサ 52 傾斜角センサ 53 制御部 DESCRIPTION OF SYMBOLS 1 Traction transmission 2 Input shaft 3 Input disk 4 Transmission roller 5 Support member 6 Output disk 7 Output shaft 8 Disc spring 10 Axial force generating mechanism 11 Weight 12, 13 Arm 14 Operating member 15 Reference member 20 Positioning mechanism 21 Ball screw 24 Nut Reference Signs List 30 Cylinder disk 31 Relief valve 32 Hollow part 45 Fluid receiver 51 Torque sensor 52 Inclination angle sensor 53 Control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 浩司 岐阜県各務原市川崎町2番地 株式会社コ ミュータヘリコプタ先進技術研究所内 Fターム(参考) 3J051 AA03 BA03 BD02 BE09 CA05 CB07 DA02 EA07 EB03  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Koji Kawakami 2 Kawasaki-cho, Kakamigahara-shi, Gifu F-term in Commuter Helicopter Advanced Technology Research Institute Co., Ltd. (Reference) 3J051 AA03 BA03 BD02 BE09 CA05 CB07 DA02 EA07 EB03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 回転軸とともに回転し、遠心力を発生す
る遠心力発生機構と、遠心力発生機構で発生した遠心力
を回転軸に沿った軸力に変換する変換機構とを備えるこ
とを特徴とする軸力発生装置。
1. A centrifugal force generating mechanism that rotates together with a rotation shaft to generate a centrifugal force, and a conversion mechanism that converts the centrifugal force generated by the centrifugal force into an axial force along the rotation axis. Axial force generator.
【請求項2】 遠心力発生機構は、回転中心から所定の
回転半径で回転する錘を有し、 変換機構は、回転軸と錘とを連結する第1アームと、回
転軸方向の変位が規制された基準部材と錘とを連結する
第2アームとを有することを特徴とする請求項1記載の
軸力発生装置。
2. The centrifugal force generating mechanism has a weight that rotates with a predetermined radius of rotation from a center of rotation, and the conversion mechanism has a first arm that connects the rotary shaft and the weight, and a displacement in the direction of the rotary axis is restricted. 2. The axial force generator according to claim 1, further comprising a second arm connecting the reference member and the weight.
【請求項3】 基準部材の規制位置を回転軸方向に沿っ
て調整して、錘の回転半径を調整するための遠心力調整
機構を備えることを特徴とする請求項2記載の軸力発生
装置。
3. The axial force generating device according to claim 2, further comprising a centrifugal force adjusting mechanism for adjusting a regulating position of the reference member along a rotation axis direction to adjust a rotation radius of the weight. .
【請求項4】 遠心力発生機構は、中空部に封入された
流体を有し、 変換機構は、流体を保持し、流体圧力に応じて回転軸方
向に沿って変位可能な受圧部材を有することを特徴とす
る請求項1記載の軸力発生装置。
4. The centrifugal force generating mechanism has a fluid sealed in a hollow portion, and the conversion mechanism has a pressure receiving member that holds the fluid and is displaceable along a rotation axis direction according to the fluid pressure. The axial force generator according to claim 1, wherein:
【請求項5】 回転軸に形成された連通孔および該連通
孔と中空部とを連通する連通路を含む流体補充路を有す
ることを特徴とする請求項4記載の軸力発生装置。
5. The axial force generating device according to claim 4, further comprising a fluid replenishing passage including a communication hole formed in the rotating shaft and a communication passage communicating the communication hole with the hollow portion.
【請求項6】 封入流体の圧力を調整するためのリリー
フ弁を備えることを特徴とする請求項5記載の軸力発生
装置。
6. The axial force generator according to claim 5, further comprising a relief valve for adjusting a pressure of the sealed fluid.
【請求項7】 外部の駆動源によって回転する入力軸
と、 入力軸と連動する入力ディスクと、 出力軸と連動する出力ディスクと、 入力ディスクおよび出力ディスクの間に介在する伝動ロ
ーラと、 入力軸および出力軸の少なくとも一方に設けられ、伝動
ローラの押付力を発生する請求項1〜6のいずれかに記
載の軸力発生機構とを備えることを特徴とするトラクシ
ョン変速装置。
7. An input shaft rotated by an external drive source, an input disk interlocked with the input shaft, an output disk interlocked with the output shaft, a transmission roller interposed between the input disk and the output disk, and an input shaft. And a shaft force generating mechanism according to any one of claims 1 to 6, provided on at least one of the output shaft and the output shaft, for generating a pressing force of the transmission roller.
JP2000042901A 2000-02-21 2000-02-21 Axial force generating device and traction transmission Pending JP2001234999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000042901A JP2001234999A (en) 2000-02-21 2000-02-21 Axial force generating device and traction transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000042901A JP2001234999A (en) 2000-02-21 2000-02-21 Axial force generating device and traction transmission

Publications (1)

Publication Number Publication Date
JP2001234999A true JP2001234999A (en) 2001-08-31

Family

ID=18565907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000042901A Pending JP2001234999A (en) 2000-02-21 2000-02-21 Axial force generating device and traction transmission

Country Status (1)

Country Link
JP (1) JP2001234999A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184850A (en) * 2012-06-04 2012-09-27 Makoto Uchiumi Actuator device and robot device using the same
JP2016151287A (en) * 2015-02-16 2016-08-22 三和テッキ株式会社 Rotational inertia vibration control device and vibration suppressing device for structure
WO2017201078A1 (en) * 2016-05-20 2017-11-23 Fallbrook Intellectual Property Company Llc Systems and methods for axial force generation
US9950608B2 (en) 2005-10-28 2018-04-24 Fallbrook Intellectual Property Company Llc Electromotive drives
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10056811B2 (en) 2007-04-24 2018-08-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US10066713B2 (en) 2008-06-23 2018-09-04 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10066712B2 (en) 2010-03-03 2018-09-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10094453B2 (en) 2007-02-16 2018-10-09 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10100927B2 (en) 2007-11-16 2018-10-16 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US10197147B2 (en) 2010-11-10 2019-02-05 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10253880B2 (en) 2008-10-14 2019-04-09 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10260629B2 (en) 2007-07-05 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10260607B2 (en) 2007-02-12 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US10400872B2 (en) 2015-03-31 2019-09-03 Fallbrook Intellectual Property Company Llc Balanced split sun assemblies with integrated differential mechanisms, and variators and drive trains including balanced split sun assemblies
US10428915B2 (en) 2012-01-23 2019-10-01 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10704657B2 (en) 2008-08-26 2020-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10703372B2 (en) 2007-02-01 2020-07-07 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10746270B2 (en) 2009-04-16 2020-08-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
CN112128313A (en) * 2020-07-31 2020-12-25 江苏大学 Ball screw type memory inertia container device applying conical pendulum
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950608B2 (en) 2005-10-28 2018-04-24 Fallbrook Intellectual Property Company Llc Electromotive drives
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US10703372B2 (en) 2007-02-01 2020-07-07 Fallbrook Intellectual Property Company Llc Systems and methods for control of transmission and/or prime mover
US10260607B2 (en) 2007-02-12 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmissions and methods therefor
US10094453B2 (en) 2007-02-16 2018-10-09 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10056811B2 (en) 2007-04-24 2018-08-21 Fallbrook Intellectual Property Company Llc Electric traction drives
US10260629B2 (en) 2007-07-05 2019-04-16 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10100927B2 (en) 2007-11-16 2018-10-16 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US10066713B2 (en) 2008-06-23 2018-09-04 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10704657B2 (en) 2008-08-26 2020-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10253880B2 (en) 2008-10-14 2019-04-09 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10746270B2 (en) 2009-04-16 2020-08-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10066712B2 (en) 2010-03-03 2018-09-04 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
US10197147B2 (en) 2010-11-10 2019-02-05 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US10428915B2 (en) 2012-01-23 2019-10-01 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
JP2012184850A (en) * 2012-06-04 2012-09-27 Makoto Uchiumi Actuator device and robot device using the same
JP2016151287A (en) * 2015-02-16 2016-08-22 三和テッキ株式会社 Rotational inertia vibration control device and vibration suppressing device for structure
US10400872B2 (en) 2015-03-31 2019-09-03 Fallbrook Intellectual Property Company Llc Balanced split sun assemblies with integrated differential mechanisms, and variators and drive trains including balanced split sun assemblies
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US10047861B2 (en) 2016-01-15 2018-08-14 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission
US10253881B2 (en) 2016-05-20 2019-04-09 Fallbrook Intellectual Property Company Llc Systems and methods for axial force generation
CN109154384A (en) * 2016-05-20 2019-01-04 福博科知识产权有限责任公司 System and method for generating axial force
WO2017201078A1 (en) * 2016-05-20 2017-11-23 Fallbrook Intellectual Property Company Llc Systems and methods for axial force generation
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11624432B2 (en) 2018-11-06 2023-04-11 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US12000458B2 (en) 2019-02-26 2024-06-04 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
CN112128313A (en) * 2020-07-31 2020-12-25 江苏大学 Ball screw type memory inertia container device applying conical pendulum

Similar Documents

Publication Publication Date Title
JP2001234999A (en) Axial force generating device and traction transmission
RU2382917C2 (en) Device for infinitely variable control of reduction ratio (variator)
JP5133914B2 (en) Improvements on continuously variable ratio power transmission
US6312358B1 (en) Constant speed drive apparatus for aircraft generator and traction speed change apparatus
US6926636B2 (en) Gear driven power converter
EP0130033A1 (en) Double eccentric wave generator arrangement
JP5643220B2 (en) Continuously variable transmission
JPH07238944A (en) Constant velocity joint and axial piston pump using the same
US4726244A (en) Reversible continuously variable transmission
JP2005036855A (en) Belt-type continuously variable transmission
JP2972688B2 (en) Constant speed drive and traction transmission for aircraft generators
RU2286495C1 (en) Friction toroidal variator
US4392395A (en) Infinitely variable transmission
US6676560B1 (en) Continuously variable transmission
EP0370040B1 (en) Continuously-variable-ratio transmissions of the toroidal race rolling traction type
JP4576263B2 (en) Traction drive device
EP0601114A1 (en) Variable-speed drive, particularly for vehicles.
EP1054193A1 (en) Constant speed traction drive apparatus for aircraft generator
EP0797027A2 (en) Hydro-mechanical gearbox
JP3269260B2 (en) Operating force adjustment device
JP3103830B2 (en) Toroidal type continuously variable transmission
JP2006132727A (en) Toroidal type continuously variable transmission
JPH1073154A (en) Engine accessories driving device
JP3193967B2 (en) Toroidal type continuously variable transmission
RU2122665C1 (en) Self-braking mechanism for reversible drive