JP2001234798A - Air-fuel ratio control device of internal combustion engine and method for estimating intake air quantity of each of cylinders - Google Patents

Air-fuel ratio control device of internal combustion engine and method for estimating intake air quantity of each of cylinders

Info

Publication number
JP2001234798A
JP2001234798A JP2000050536A JP2000050536A JP2001234798A JP 2001234798 A JP2001234798 A JP 2001234798A JP 2000050536 A JP2000050536 A JP 2000050536A JP 2000050536 A JP2000050536 A JP 2000050536A JP 2001234798 A JP2001234798 A JP 2001234798A
Authority
JP
Japan
Prior art keywords
air
cylinder
amount
intake
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000050536A
Other languages
Japanese (ja)
Inventor
Toshihiro Aono
俊宏 青野
Takehiko Kowatari
武彦 小渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000050536A priority Critical patent/JP2001234798A/en
Publication of JP2001234798A publication Critical patent/JP2001234798A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To precisely find intake air quantity of each of cylinders even when a driving state of an internal combustion engine is variously changed without forming a map of intake air efficiency for each of the cylinders for each of engines. SOLUTION: An air-fuel ratio is controlled by measuring density of gas in a manifold, measuring quantity of air passing through a throttle, measuring an angle of a crank of the internal combustion engine, discriminating a cylinder in an air intake stroke in accordance with the crank angle, calling a computing means to correspond to the cylinder in the air intake stroke, assuming air intake efficiency by the computing means, computing the air quantity flowing into the cylinder in accordance with the air intake efficiency and the above sensor data and calculating fuel injection quantity to the cylinder in accordance with the air quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】内燃機関の燃費の向上や排気
ガス内の有害物質の低減のために、気筒に吸入される空
気の量と気筒に噴射される燃料の比を制御する空燃比制
御技術に関する。特に本発明では、気筒別の空燃比のば
らつきを解消する技術に関する。
The present invention relates to an air-fuel ratio control technique for controlling the ratio of the amount of air taken into a cylinder to the amount of fuel injected into the cylinder in order to improve the fuel efficiency of an internal combustion engine and reduce harmful substances in exhaust gas. About. In particular, the present invention relates to a technique for eliminating variations in air-fuel ratio for each cylinder.

【0002】[0002]

【従来の技術】内燃機関の空燃比を制御するには、気筒
に吸入される空気量を計測しこれにもとづいて燃料噴射
量を計算し制御したり、あるいは、排気から空燃比を計
測してこれを目標値に保つように燃料噴射量を制御する
方法があるが、これまで、内燃機関の気筒に吸入される
空気量の計測装置、あるいは空燃比の計測装置として
は、特開平7−42600号に代表されるマニフォールドに取
付けた圧力センサを用いるもの、特開平9−166464 号に
代表される吸気系配管に取付けられた熱線式空気流量計
を用いるもの、特開平7−133738 号に代表される排気系
配管に空燃比センサを取付け、排気の空燃比を目標値に
保つようフィードバックするものなどがあった。
2. Description of the Related Art In order to control the air-fuel ratio of an internal combustion engine, the amount of air taken into a cylinder is measured and the fuel injection amount is calculated and controlled based on the measured amount, or the air-fuel ratio is measured from exhaust gas. There is a method of controlling the fuel injection amount so as to keep this at a target value. Until now, as a device for measuring the amount of air taken into the cylinder of an internal combustion engine or a device for measuring the air-fuel ratio, Japanese Patent Application Laid-Open No. 7-42600 No. 1 using a pressure sensor attached to a manifold, a device using a hot-wire type air flow meter mounted on an intake system pipe such as that disclosed in JP-A-9-166464, and a device disclosed in JP-A-7-133738. In some cases, an air-fuel ratio sensor is attached to the exhaust system piping to provide feedback so as to maintain the air-fuel ratio of exhaust gas at a target value.

【0003】一般に、気筒に取込まれる空気量Mcは、
マニフォールドの圧力Pmとクランクの回転数Nに比例
し、 Mc=PmηVc/RTm で近似できることが、広く知られている。ただし、気筒
の容積Vc,気体定数R,マニフォールド内の気体の温
度Tmである。ηは吸気効率(文献によっては、充填効
率,体積効率などと呼ばれることもある)と呼ばれ、マ
ニフォールド・気筒の入口の形状や気筒入口の吸気弁の
開閉のタイミングによって、気筒への流入のロスが生じ
るが、そのロスの結果、何パーセントの空気が気筒に取
込まれるかという値である。ηは、マニフォールドの圧
力Pmやクランクの回転数Nによって若干変化するの
で、PmやNのマップとして表される。
In general, the amount of air Mc taken into a cylinder is
It is widely known that the pressure is proportional to the manifold pressure Pm and the number of revolutions N of the crank, and can be approximated by Mc = Pm * N * η * Vc / R * Tm. Here, it is the volume Vc of the cylinder, the gas constant R, and the temperature Tm of the gas in the manifold. η is called intake efficiency (sometimes referred to as charging efficiency, volume efficiency, etc., depending on the literature), and the loss of inflow into the cylinder depends on the shape of the manifold / cylinder inlet and the timing of opening / closing of the intake valve at the cylinder inlet. Is the value of what percentage of air is taken into the cylinder as a result of the loss. Since η varies slightly depending on the manifold pressure Pm and the crank rotation speed N, η is represented as a map of Pm and N.

【0004】特開平7−42600号では所謂スピードデンシ
ティーという方法を採用している。この方法では、エン
ジンの回転速度と吸気マニフォールドの圧力の関数とし
ての吸気効率のマップを事前に用意し、運転時には、エ
ンジンの回転速度とマニフォールドの圧力を計測し、エ
ンジンの回転速度とマニフォールドの圧力からマップを
検索してえられる吸気効率、観測されるエンジン回転速
度、吸気マニフォールド圧力をもとにして吸気量の計算
を行っていた。この方式では、内燃機関の運転状態によ
って変化する吸気効率をマップから検索することで運転
状態が変化しても正しい気筒への吸入空気量を計算でき
るようにしている。
Japanese Patent Application Laid-Open No. 7-42600 employs a so-called speed density method. In this method, a map of intake efficiency as a function of engine speed and intake manifold pressure is prepared in advance, and during operation, engine speed and manifold pressure are measured, and engine speed and manifold pressure are measured. The intake air amount was calculated based on the intake efficiency obtained by searching the map from, the observed engine speed, and the intake manifold pressure. In this system, the intake air efficiency that changes depending on the operating state of the internal combustion engine is searched from a map, so that the correct amount of intake air to the cylinder can be calculated even when the operating state changes.

【0005】特開平9−166464 号では熱線式空気流量計
によって気筒への流入空気量を計測している。本方式
は、気筒上流の吸気流入通路に熱線式空気流量計を配置
し、空気が熱線式空気流量計の配された断面を通過する
空気量を計測するものである。本方式では、通過空気の
絶対量が直接求められるため、吸気効率のマップがいら
ないというメリットがある。
In Japanese Patent Application Laid-Open No. 9-166644, the amount of air flowing into a cylinder is measured by a hot-wire type air flow meter. In this method, a hot-wire air flow meter is arranged in an intake inflow passage upstream of a cylinder, and the amount of air that passes through a cross section provided with the hot-wire air flow meter is measured. In this method, since the absolute amount of the passing air is directly obtained, there is an advantage that a map of the intake efficiency is not required.

【0006】特開平7−133738 号では、空気量を計るの
ではなく、空燃比を計測し、これを目標値に保つように
燃料噴射量の制御を行っている。本方式では、排気系集
合部に1つの広域空燃比センサを配置し、排気気筒のロ
ーテーションと、気筒から排気されてから空燃比センサ
に影響を及ぼすまでの遅れをモデル化し、気筒毎の空燃
比をオブザーバにより推定しようというものである。本
方式では、先述の2つの公知例では考慮されてこなかっ
た、気筒別の空燃比を計測している。
In Japanese Patent Application Laid-Open No. Hei 7-1333738, an air-fuel ratio is measured, not an air amount, and the fuel injection amount is controlled so as to maintain the air-fuel ratio at a target value. In this method, one wide-area air-fuel ratio sensor is arranged in the exhaust system collecting part, and the rotation of the exhaust cylinder and the delay from exhaustion from the cylinder to influence on the air-fuel ratio sensor are modeled, and the air-fuel ratio for each cylinder is modeled. Is to be estimated by the observer. In this method, the air-fuel ratio for each cylinder, which has not been considered in the above-mentioned two known examples, is measured.

【0007】また、吸入空気量について、特開平9−228
84 号,9−126006号,11−6460号が言及するところであ
る。
Further, regarding the intake air amount, Japanese Patent Laid-Open No. 9-228
Nos. 84, 9-126006, and 11-6460 are mentioned.

【0008】[0008]

【発明が解決しようとする課題】内燃機関の気筒に入る
空気量は、気筒毎に約5%〜約10%程度ばらつくとい
われている。このため、全ての気筒に同じ量の燃料を噴
射したのでは、気筒毎に空燃比が異なってきて、燃料を
目標空燃比より多く噴射された気筒では、排気ガス中の
炭化水素などの有害物質が増えるという問題があり、燃
料を目標空燃比より少なく噴射された気筒では、酸化窒
素の割合が増えたり、トルクにムラが生じるといった問
題がある。
It is said that the amount of air entering a cylinder of an internal combustion engine varies from about 5% to about 10% for each cylinder. For this reason, if the same amount of fuel is injected into all cylinders, the air-fuel ratio differs for each cylinder, and harmful substances such as hydrocarbons in the exhaust gas will be emitted in the cylinders in which the fuel is injected more than the target air-fuel ratio. In a cylinder in which fuel is injected less than the target air-fuel ratio, there is a problem that the ratio of nitric oxide increases and torque becomes uneven.

【0009】マニフォールドから全ての気筒へ空気が流
れ込む際の吸気効率の平均を吸気効率のマップとして保
持しており、マニフォールドの圧力が一定なら全ての気
筒に同じ量の燃料を噴射した方法にあっては、気筒毎の
空燃比にばらつきが生じてしまう。
[0009] An average of the intake efficiencies when air flows from the manifold to all the cylinders is held as an intake efficiency map. If the manifold pressure is constant, the same amount of fuel is injected into all the cylinders. In this case, variations occur in the air-fuel ratio for each cylinder.

【0010】吸気マニフォールドに流れ込む空気量は正
確に求めるが、マニフォールドに流れ込んだ空気が各気
筒に分配される割合については考慮しない方法にあって
は、全ての気筒に同じ割合で空気が分配されるものとし
て考えているので、空燃比の気筒毎のばらつきが生じて
くる。
In a method in which the amount of air flowing into the intake manifold is accurately determined, but the ratio of the air flowing into the manifold to be distributed to each cylinder is not considered, the air is distributed to all the cylinders at the same ratio. Therefore, the air-fuel ratio varies from cylinder to cylinder.

【0011】燃焼して排気過程を経て排気管に達した空
気の空燃比を計測して、これを一定に保つために排気管
の空燃比センサで燃料の割合が下がったのを観測して、
始めて燃料の割合を増加させる方法では、内燃機関2回
転分燃焼噴射量の制御が遅れることになる。
[0011] The air-fuel ratio of the air that reaches the exhaust pipe through the combustion and exhaust process is measured, and the air-fuel ratio sensor in the exhaust pipe observes that the fuel ratio has dropped to keep this constant.
In the method of increasing the fuel ratio for the first time, the control of the combustion injection amount for two revolutions of the internal combustion engine is delayed.

【0012】本発明では、燃焼する以前に各気筒に吸入
された空気量を推定し、気筒毎への空気の分配のばらつ
きに対応して燃料を噴射し、気筒毎の空燃比のばらつき
を抑制して高精度な空燃比制御を応答性良く実現するこ
とを目的とする。
According to the present invention, the amount of air taken into each cylinder before combustion is estimated, and fuel is injected in accordance with the variation in air distribution to each cylinder to suppress the variation in air-fuel ratio between cylinders. To realize highly accurate air-fuel ratio control with high responsiveness.

【0013】[0013]

【課題を解決するための手段】本発明は、気筒毎に備え
た燃料を噴射するインジェクタを備え、クランク角に基
づき吸気行程にある気筒を識別し、気筒毎に備えられた
計算プログラムの中から吸気行程にある気筒に対応する
計算プログラムを呼び出し、気筒毎の吸気ばらつきを推
定し、かつ該推定した気筒毎の吸気量に対応して各気筒
のインジェクタへの燃料噴射量を演算する燃料噴射演算
処理装置とを備えるようにした。
According to the present invention, there is provided an injector for injecting fuel provided for each cylinder, a cylinder in an intake stroke is identified based on a crank angle, and a calculation program provided for each cylinder is provided. A fuel injection calculation for calling a calculation program corresponding to a cylinder in an intake stroke, estimating intake variation for each cylinder, and calculating a fuel injection amount to an injector of each cylinder in accordance with the estimated intake amount for each cylinder. And a processing device.

【0014】本発明は具体的には次に掲げる装置を提供
する。
The present invention specifically provides the following devices.

【0015】本発明は、多気筒を備え、各気筒に吸入さ
れる空気の量と気筒に噴射される燃料の比を制御する内
燃機関の空燃比制御装置において、スロットルを通過す
る空気量を計測する流入空気量計測器と、内燃機関の吸
気マニフォールド内の空気の密度を計測する流入空気密
度計測器と、内燃機関のクランク角を計測するクランク
角センサと、気筒毎に備えた燃料を噴射するインジェク
タと、クランク角に基づき吸気行程にある気筒を識別
し、気筒毎に備えられた計算プログラムの中から吸気行
程にある気筒に対応する計算プログラムを呼び出し、ス
ロットルを通過する空気量、吸気マニフォールド内の空
気の密度およびクランク角に基づいて気筒毎の吸気特性
を推定して推定値を求め、かつ該推定値に対応して各気
筒のインジェクタへの燃料噴射量を演算する燃料噴射演
算処理装置とを備えた内燃機関の空燃比制御装置を提供
する。
The present invention measures the amount of air passing through a throttle in an air-fuel ratio control device for an internal combustion engine which has multiple cylinders and controls the ratio of the amount of air taken into each cylinder to the amount of fuel injected into the cylinder. An inflow air amount measuring device, an inflow air density measuring device for measuring the density of air in an intake manifold of an internal combustion engine, a crank angle sensor for measuring a crank angle of the internal combustion engine, and injecting fuel provided for each cylinder The injector and the cylinder in the intake stroke are identified on the basis of the crank angle, and a calculation program corresponding to the cylinder in the intake stroke is called from among the calculation programs provided for each cylinder, and the amount of air passing through the throttle and the intake manifold. The intake characteristic of each cylinder is estimated based on the air density and the crank angle of the cylinder, and an estimated value is obtained. Providing an air-fuel ratio control apparatus for an internal combustion engine having a fuel injection processing unit for calculating the fuel injection amount.

【0016】前記吸気特性は、気筒毎の吸気量または吸
気効率である。
The intake characteristic is an intake amount or intake efficiency for each cylinder.

【0017】本発明は、多気筒を備えた内燃機関の気筒
毎の流入吸気量推定方法において、スロットル通過空気
量Mthを計測し、マニフォールド内の気体の密度Pmお
よび密度の増加量△Pmを求め、この増加量△Pmにマ
ニフォールドの容積Md(スロットルと吸気弁とによっ
て仕切られた領域の容積)を掛けることでマニフォール
ド内の気体の増加量△Mmを計算し、クランク角を計測
してこれを微分してクランク角速度を計算し、次の式で
吸気効率qを q=(Mth−△Mm)/Md で計算し、次の式で各気筒への吸気量を Mc=Pm×(ω/4π)×Vc×q=Md×q (ここで1/Cは気筒の容積)を計算して求める気筒毎
の流入吸気量推定方法を提供する。
According to the present invention, in a method for estimating an inflow / intake amount of each cylinder of an internal combustion engine having multiple cylinders, a throttle passing air amount Mth is measured to obtain a gas density Pm in a manifold and a density increase ΔPm. By multiplying the increase amount △ Pm by the volume Md of the manifold (the volume of the area partitioned by the throttle and the intake valve), the increase amount 気 体 Mm of the gas in the manifold is calculated, and the crank angle is measured. Differentiation is performed to calculate the crank angular velocity, the intake efficiency q is calculated by the following equation as q = (Mth− △ Mm) / Md, and the intake air amount to each cylinder is calculated by the following equation Mc = Pm × (ω / 4π ) × Vc × q = Md × q (where 1 / C is the volume of the cylinder).

【0018】気筒毎の流入吸気量推定によって気筒毎の
吸気量ばらつきを平準化し、気筒毎の空燃比のばらつき
を制御する方法を提供する。
A method is provided for equalizing the intake air amount variation for each cylinder by estimating the inflow intake air amount for each cylinder and controlling the air-fuel ratio variation for each cylinder.

【0019】[0019]

【発明の実施の形態】《発明実施の形態1:気筒別吸気
効率推定に基づく空燃比制御》本発明の構成を図1を用
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS <Embodiment 1: Air-fuel ratio control based on cylinder-by-cylinder intake efficiency estimation> The configuration of the present invention will be described with reference to FIG.

【0020】内燃機関の外部から取込まれた空気は、ス
ロットルを通過し、マニフォールド9に取込まれる。ス
ロットルの開き具合によって通過する空気の量を調節す
ることで、内燃機関から発生するトルクを調節すること
ができる。
The air taken in from outside the internal combustion engine passes through the throttle and is taken into the manifold 9. The torque generated from the internal combustion engine can be adjusted by adjusting the amount of air passing through according to the degree of opening of the throttle.

【0021】スロットルを通過した空気は、マニフォー
ルド9を充たし、マニフォールド9の分岐部を通過し
て、気筒5内に取込まれる。マニフォールド9の分岐部
と気筒5の間には吸気弁7があり、これはクランク角度
に連動して動作し、該気筒5が吸気行程にあるときに開
き、マニフォールド9の空気は該気筒5に取込まれる。
The air that has passed through the throttle fills the manifold 9, passes through a branch of the manifold 9, and is taken into the cylinder 5. An intake valve 7 is provided between the branch portion of the manifold 9 and the cylinder 5 and operates in conjunction with the crank angle. The intake valve 7 opens when the cylinder 5 is in an intake stroke, and air in the manifold 9 is supplied to the cylinder 5. Taken in.

【0022】こうして気筒5に取込まれる空気の量Mc
を計測するために、スロットル通過空気量計測器2,マ
ニフォールド9の集合部にはマニフォールド内の空気の
密度を計測する密度計測器1、ならびに、クランク角セ
ンサ3が取付けられている。
The amount of air Mc thus taken into the cylinder 5
In order to measure the density of the air passing through the throttle 2 and the manifold 9, a density measuring instrument 1 for measuring the density of air in the manifold and a crank angle sensor 3 are attached to a collecting portion of the manifold 9.

【0023】燃料噴射演算処理装置100に備えられた
気筒判別手段6は、クランク角θに基づき、吸気行程に
ある気筒を判別する。気筒5(第i気筒)に流入した空
気量Mcを計算し、この空気量Mcに基づき該気筒5へ
の燃料噴射量Fiを計算する計算手段601〜60I
(但し、Iは気筒の数)は、気筒ごとに用意され、気筒
判別手段6により、吸気行程にあると判別された気筒に
対応するものが呼び出される。
The cylinder discriminating means 6 provided in the fuel injection arithmetic processing unit 100 discriminates the cylinder in the intake stroke based on the crank angle θ. Calculating means 601 to 60I for calculating the amount of air Mc flowing into the cylinder 5 (the i-th cylinder) and calculating the fuel injection amount Fi to the cylinder 5 based on the amount of air Mc.
(Where I is the number of cylinders) is prepared for each cylinder, and the one corresponding to the cylinder determined to be in the intake stroke by the cylinder determination means 6 is called.

【0024】呼び出された計算手段60iでは、該気筒
5の吸気効率ηi(iは1〜Iの値を取る気筒の番号)
を推定し、推定された吸気効率ηiと、密度計測器1に
より計測されたマニフォールドの密度ρm、クランク角
センサ3の出力を微分して得られるクランク回転速度ω
から気筒5への吸入空気量Mcを計算する。
In the called calculation means 60i, the intake efficiency ηi of the cylinder 5 (i is the number of a cylinder taking a value of 1 to I)
And the estimated intake efficiency ηi, the manifold density ρm measured by the density measuring device 1, and the crank rotation speed ω obtained by differentiating the output of the crank angle sensor 3.
From the intake air to the cylinder 5 is calculated.

【0025】マニフォールド9から気筒5に空気が吸入
される際に、流れのロスがない理想的な場合を考えれ
ば、気筒5に流れ込む空気の量Mdは、気筒5の容積を
Vcとして、
Considering an ideal case where there is no flow loss when air is sucked into the cylinder 5 from the manifold 9, the amount Md of air flowing into the cylinder 5 is determined by setting the volume of the cylinder 5 to Vc.

【0026】[0026]

【数1】 (Equation 1)

【0027】で与えられるが、実際には、マニフォール
ド分岐部や気筒入口の形状、吸気弁7の開閉のタイミン
グにより流れのロスが発生するので、ロスの結果気筒に
流れ込む割合(これが吸気効率ηiである)を用いて、
実際に気筒5に流れ込む空気の量Mcは、
In practice, a flow loss occurs due to the shape of the manifold branching portion and the cylinder inlet, and the opening / closing timing of the intake valve 7. Therefore, the ratio of the flow into the cylinder as a result of the loss (this is the intake efficiency ηi )
The amount Mc of air actually flowing into the cylinder 5 is:

【0028】[0028]

【数2】 (Equation 2)

【0029】で計算される。吸気効率は気筒ごとにばら
つきがあるので、気筒ごとに計算されることで空燃比の
精密な制御が可能となる。吸気効率の計算の方法の一例
は、後程、[吸気効率の計算]にて説明する。
Is calculated. Since the intake efficiency varies from cylinder to cylinder, precise control of the air-fuel ratio becomes possible by calculation for each cylinder. An example of a method of calculating the intake efficiency will be described later in [Calculation of the intake efficiency].

【0030】こうして該気筒5への吸入空気量Mcが計
算されたら、これと目標空燃比λから該気筒への燃料噴
射量Fiを、
After the intake air amount Mc to the cylinder 5 is calculated in this manner, the fuel injection amount Fi to the cylinder is calculated from the calculated intake air amount Mc and the target air-fuel ratio λ.

【0031】[0031]

【数3】 (Equation 3)

【0032】より計算する。クランク角θから該気筒5
の燃料噴射タイミングを判定し、噴射すべきタイミング
になったら計算された噴射量Fiをインジェクタ4より
噴射する。
Calculate from the following. From the crank angle θ, the cylinder 5
The fuel injection timing is determined, and when the timing for injection is reached, the calculated injection amount Fi is injected from the injector 4.

【0033】この動作手順をステップ図としてまとめた
のが図2である。まず、スロットルを通過する空気量M
thが計測され(ステップ201)、マニフォールド内の
気体の密度ρmが計測され(ステップ202)、クラン
ク角θが計測される(ステップ203)。このクランク
角θに基づいて、第i気筒5が吸気行程であるかどうか
が判別される(ステップ204)。第i気筒5が吸気行
程であるなら、第i計算手段60iが呼び出され(ステ
ップ205)、第i気筒吸気効率推定手段61i〜61
I、スロットル通過空気量Mth、マニフォールド内気体
密度ρm、クランク角θを微分して得られるクランク角
速度ωをもとに第i気筒5の吸気効率ηiが計算される
(ステップ206)。この吸気効率ηiと、マニフォー
ルド9内の気体密度ρmと、クランク角速度ωから、数
2に基づいて第i気筒5への吸入空気量Mcが計算され
る62i〜62I(ステップ207)。該気筒5への吸
入空気量Mcが計算されたら、これと目標空燃比λをも
とに、数3により該気筒への燃料噴射量Fiを計算する
63i〜63I(ステップ208)。クランク角θが該
気筒5に燃料を噴射する角度θiになったら(ステップ
209,210)、第iインジェクタ4は計算された量
の燃料を噴射する(ステップ211)。
FIG. 2 summarizes this operation procedure as a step diagram. First, the air amount M passing through the throttle
The th is measured (step 201), the density ρm of the gas in the manifold is measured (step 202), and the crank angle θ is measured (step 203). Based on the crank angle θ, it is determined whether or not the i-th cylinder 5 is in the intake stroke (step 204). If the i-th cylinder 5 is in the intake stroke, the i-th calculating means 60i is called (step 205), and the i-th cylinder intake efficiency estimating means 61i-61.
The intake efficiency ηi of the i-th cylinder 5 is calculated based on I, the throttle passing air amount Mth, the gas density ρm in the manifold, and the crank angular velocity ω obtained by differentiating the crank angle θ (step 206). From the intake efficiency ηi, the gas density ρm in the manifold 9 and the crank angular velocity ω, the intake air amount Mc to the i-th cylinder 5 is calculated based on the formula 2 (steps 207 to 62I). When the intake air amount Mc to the cylinder 5 is calculated, the fuel injection amount Fi to the cylinder is calculated based on the calculated amount Mc and the target air-fuel ratio λ according to Equation 3 (steps 208 to 63I) (step 208). When the crank angle θ becomes the angle θi at which fuel is injected into the cylinder 5 (steps 209 and 210), the i-th injector 4 injects the calculated amount of fuel (step 211).

【0034】このように、気筒毎に計算手段601〜6
0Iを設け、気筒毎の吸気効率を計算してこれに基づい
て気筒への吸入空気量を計算し、気筒への燃料噴射量を
計算することで、気筒による吸気効率のばらつきに適応
して、空燃比の精密な制御が可能となる。
As described above, the calculation means 601 to 6 are provided for each cylinder.
0I is provided, the intake efficiency for each cylinder is calculated, the intake air amount to the cylinder is calculated based on this, and the fuel injection amount to the cylinder is calculated. Precise control of the air-fuel ratio becomes possible.

【0035】[吸気効率の計算]気筒ごとに吸気効率が
異なると、吸入行程開始の時点でマニフォールド9内の
密度ρmとクランク回転速度ωが同じであっても、マニ
フォールド9から気筒5に流入する空気量Mcが異なる
ので、マニフォールド9内の空気の密度ρmの変化、ひ
いては、スロットル上下流の密度差に依存するスロット
ル通過空気量Mthが違ってくる。そこで、スロットルを
通過する空気量Mthと、マニフォールド9の密度ρmか
ら吸気効率を算出する64i。第i気筒5が吸気行程の
とき、スロットルを通過する空気流量Mth、マニフォー
ルド9内の空気量の増加量ΔMmを用いると、図3より、
第i気筒5に流入する空気量Mciは、
[Calculation of Intake Efficiency] If the intake efficiency differs for each cylinder, even if the density ρm and the crank rotation speed ω in the manifold 9 are the same at the start of the intake stroke, the cylinder 9 flows into the cylinder 5 from the manifold 9. Since the air amount Mc is different, the change in the air density ρm in the manifold 9 and, consequently, the throttle passing air amount Mth depending on the density difference between the upstream and downstream of the throttle are different. Therefore, the intake efficiency is calculated from the air amount Mth passing through the throttle and the density ρm of the manifold 9 at 64i. When the air flow Mth passing through the throttle and the increase amount ΔMm of the air amount in the manifold 9 are used when the i-th cylinder 5 is in the intake stroke, FIG.
The amount of air Mci flowing into the i-th cylinder 5 is

【0036】[0036]

【数4】 (Equation 4)

【0037】[0037]

【数5】 (Equation 5)

【0038】によって計算される。これと数2より、第
i気筒の吸気効率ηiは、
Is calculated by From this and Equation 2, the intake efficiency ηi of the i-th cylinder is

【0039】[0039]

【数6】 (Equation 6)

【0040】で計算できる。この分母は、吸気効率が1
で理想的な場合の流入量なので、これを理想流入量Md
と呼ぶことにすれば、
Can be calculated. This denominator has an intake efficiency of 1
And the inflow in an ideal case.
If you call it

【0041】[0041]

【数7】 (Equation 7)

【0042】となる。Is as follows.

【0043】ところで、スロットル通過空気量Mthの検
出精度はあまりよくないことが知られている。吸気効率
ηiは内燃機関の運転状態、特にマニフォールド9内の
気体密度ρmとクランク回転速度ωに依存するが、その
変化はゆるやかなので、数6で求められた吸気効率ηi
を平滑化する(65i)ことで、吸気効率推定の精度を
向上させることができる。平滑化した吸気効率ηiは吸
気効率メモリ66iに記憶する。
It is known that the detection accuracy of the throttle passing air amount Mth is not very good. The intake efficiency ηi depends on the operating state of the internal combustion engine, in particular, the gas density ρm in the manifold 9 and the crank rotation speed ω, but since the change is gradual, the intake efficiency ηi obtained by Equation 6 is obtained.
Is smoothed (65i), the accuracy of the intake efficiency estimation can be improved. The smoothed intake efficiency ηi is stored in the intake efficiency memory 66i.

【0044】吸気効率ηiの計算手順を図4を用いて説
明する。
The calculation procedure of the intake efficiency ηi will be described with reference to FIG.

【0045】まず、スロットル通過空気量Mthを計測す
る(ステップ401)。次に、密度計測手段1でマニフ
ォールド9内の気体の密度ρmを求め、この増加量Δρ
mにマニフォールド9の容積(スロットルと吸気弁7と
によって仕切られた領域の容積)をかけることでマニフ
ォールド9内の気体の増加量ΔMmを計算する(ステッ
プ402)。
First, the throttle passing air amount Mth is measured (step 401). Next, the density ρm of the gas in the manifold 9 is obtained by the density measuring means 1, and the increase Δρ
By multiplying m by the volume of the manifold 9 (the volume of the area partitioned by the throttle and the intake valve 7), the amount of increase ΔMm of the gas in the manifold 9 is calculated (step 402).

【0046】この後に、クランク角θを計測し、これを
微分してクランク角速度ωを計算し、これとマニフォー
ルド9内の気体の密度ρmより数1で気筒iへの理想流
入量Mdを計算し(ステップ403)。これらの計算結
果をもとにして数6に基づいて吸気効率ηiを計算する
(ステップ404)。
Thereafter, the crank angle θ is measured and differentiated to calculate the crank angular velocity ω. From this and the density ρm of the gas in the manifold 9, the ideal inflow Md into the cylinder i is calculated by the equation (1). (Step 403). Based on these calculation results, the intake efficiency ηi is calculated based on Equation 6 (step 404).

【0047】前回該気筒5が吸気行程にあったときの吸
気効率ηiを吸気効率メモリ66iから読み出してきて
(ステップ405)、前回求めた吸気効率ηiと今回の
吸気効率ηiの加重平均をとることで、吸気効率ηiを
平滑化する(ステップ406)。
The intake efficiency ηi when the cylinder 5 was in the intake stroke last time is read from the intake efficiency memory 66i (step 405), and a weighted average of the previously obtained intake efficiency ηi and the current intake efficiency ηi is obtained. Then, the intake efficiency ηi is smoothed (step 406).

【0048】このように吸気効率ηiをもとめること
で、気筒毎のばらつきに適応して、精度良く気筒毎の吸
気効率を求められる。
By obtaining the intake efficiency ηi in this manner, the intake efficiency for each cylinder can be obtained with high accuracy, adapting to the variation for each cylinder.

【0049】[密度の計測]気体の密度を計測するため
の具体的なセンサとしては、圧力センサと温度センサを
組み合わせて用いることが一例として挙げられる。密度
の定義と気体の状態方程式より、
[Measurement of Density] As a specific sensor for measuring the density of gas, use of a combination of a pressure sensor and a temperature sensor is mentioned as an example. From the definition of density and the equation of state of the gas,

【0050】[0050]

【数8】 (Equation 8)

【0051】であるから、気体の圧力Pを温度Tで割っ
て、気体定数Rで単位を補正することで密度ρは求めら
れる。本実施例のようにマニフォールド9の密度を計測
するには、図5に示すように、マニフォールド9の集合
部に圧力センサ11と温度センサ12を配置して、計算
手段60内で数8に従って計算すれば、マニフォールド
9内の気体の密度ρmは求められる。
Therefore, the density ρ can be obtained by dividing the gas pressure P by the temperature T and correcting the unit by the gas constant R. In order to measure the density of the manifold 9 as in the present embodiment, as shown in FIG. 5, the pressure sensor 11 and the temperature sensor 12 are arranged at the gathering portion of the manifold 9, and the calculation is performed in the calculation means 60 according to the equation (8). Then, the density ρm of the gas in the manifold 9 is obtained.

【0052】[スロットル通過空気量の計測1]スロッ
トルを通過する空気量Mthを求めるための具体的なセン
サの構成の一例を図6に示す。スロットルを通過する空
気量Mthは、スロットル上下流の圧力Pa,Pmと温度
Ta,Tm及びスロットル開度αによって決まる。その
求め方は、
[Measurement of Throttle Passing Air Amount 1] FIG. 6 shows an example of a specific sensor configuration for obtaining the air amount Mth passing through the throttle. The air amount Mth passing through the throttle is determined by the pressures Pa and Pm upstream and downstream of the throttle, the temperatures Ta and Tm, and the throttle opening α. How to find it

【0053】[0053]

【数9】 (Equation 9)

【0054】であることが、流体力学の本で紹介されて
いる(例えば、松尾一泰著“圧縮性流体力学”、p。6
4)。ここで13はスロットル開度センサ、14は圧力
センサおよび15は温度センサである。
Is introduced in a book on hydrodynamics (for example, Kazuyasu Matsuo, “Compressible Fluid Dynamics”, p. 6).
4). Here, 13 is a throttle opening sensor, 14 is a pressure sensor, and 15 is a temperature sensor.

【0055】従って、図6に示すような構成のセンサを
用いてスロットルを通過する空気量Mthを求める手順を
図7を用いて説明すると、スロットル上流に配された圧
力センサ14で外気圧Paを計測し(ステップ70
1)、スロットル下流に配された圧力センサ11でマニ
フォールド圧Pmを計測し(ステップ702)、スロッ
トル上流に配された温度センサ15で外気温Taを計測
し(ステップ703)、スロットル下流に配された温度
センサ12でマニフォールド温度Tmを計測し(ステッ
プ704)、スロットル開度センサ13でスロットル開
度αを計測し(ステップ705)、計算手段60内で数
9を用いてスルットル通過空気量Mthを求めれば良い
(ステップ706)。
Accordingly, the procedure for obtaining the amount of air Mth passing through the throttle using the sensor having the configuration shown in FIG. 6 will be described with reference to FIG. 7. The external pressure Pa is measured by the pressure sensor 14 disposed upstream of the throttle. Measure (Step 70
1) The manifold pressure Pm is measured by the pressure sensor 11 disposed downstream of the throttle (step 702), and the outside air temperature Ta is measured by the temperature sensor 15 disposed upstream of the throttle (step 703). The manifold temperature Tm is measured by the temperature sensor 12 (step 704), the throttle opening α is measured by the throttle opening sensor 13 (step 705), and the amount of air passing through the throttle Mth is calculated by using the equation 9 in the calculating means 60. It may be obtained (step 706).

【0056】[スロットル通過空気量の計測2]スロッ
トル通過空気量Mthを計測する他の方法としては、熱線
式空気流量計を用いる方法がある。熱線式空気流量計に
ついては、特開平9−166464 号等で述べられているが、
熱線の配された断面を気体が通過する際に熱線から奪わ
れる熱量によって気体の流量を計測しようというもので
ある。本発明の実施例では、図8に示すように、熱線式
空気流量計16をスロットルの上流に配置し、この計測
データを計算手段60で読込むことで、スロットル通過
空気量Mthを計測する。
[Measurement 2 of Throttle Passing Air Amount] As another method of measuring the throttle passing air amount Mth, there is a method using a hot wire air flow meter. The hot-wire air flow meter is described in Japanese Patent Application Laid-Open No. 9-16664, etc.
The purpose is to measure the flow rate of the gas based on the amount of heat taken from the hot wire when the gas passes through the cross section where the hot wire is arranged. In the embodiment of the present invention, as shown in FIG. 8, the hot-wire type air flow meter 16 is arranged upstream of the throttle, and the measurement data is read by the calculating means 60 to measure the throttle passing air amount Mth.

【0057】このような密度計測手段1とスロットル通
過空気量計測手段2を設け、気筒毎に計算手段601〜
60Iを設け、気筒毎の吸気効率を計算してこれに基づ
いて気筒への吸入空気量Mcを計算し、気筒への燃料噴
射量を計算することで、気筒による吸気効率のばらつき
に適応して、空燃比の精密な制御が可能となる。
The density measuring means 1 and the throttle passing air amount measuring means 2 are provided, and the calculating means 601 to 601 are provided for each cylinder.
60I, the intake efficiency for each cylinder is calculated, the intake air amount Mc to the cylinder is calculated based on the calculated intake efficiency, and the fuel injection amount to the cylinder is calculated. Thus, precise control of the air-fuel ratio becomes possible.

【0058】《発明実施の形態2:気筒毎ばらつき補正
係数を用いる空燃比制御》吸気効率は、内燃機関の運転
状態によって緩やかに変化する。[吸気効率の計算]で
は、現在の計測データより得られた吸気効率を過去の吸
気効率と加重平均をとることで平滑化し、精度の向上を
図ったが、現在値と過去の値に対する荷重のかけ方によ
っては、吸気効率の変化に追従できないことも考え得
る。
<Embodiment 2: Air-fuel ratio control using a cylinder-by-cylinder variation correction coefficient> The intake efficiency changes gradually depending on the operating state of the internal combustion engine. In [Calculation of intake efficiency], the intake efficiency obtained from the present measurement data was smoothed by taking a weighted average with the past intake efficiency to improve the accuracy. Depending on how it is applied, it may be conceivable that it cannot follow the change in intake efficiency.

【0059】同一種類の内燃機関であれば、個体による
吸気効率の関数の形状の違い、気筒による吸気効率の関
数の形状の違いは、それほどないと考えられる。第1気
筒の吸気効率、第2気筒の吸気効率と、全気筒の平均的
な吸気効率を示す共通吸気効率をマニフォールド内の気
体の密度の関数としてグラフ化すると、例えば図9
(a)のようになり、各気筒の吸気効率を共通吸気効率
で割った補正係数は、例えば図9(b)のように、1.
0 付近のなだらかな関数になるものと考えられる。そ
こで、内燃機関の運転状態によってかわる動的な部分は
共通の吸気効率マップを事前に用意して、気筒毎、内燃
機関の個体毎によってかわるスケールパラメータの部分
を補正係数として推定し、共通の吸気効率マップと気筒
毎の補正係数を掛け合わせることで、内燃機関の運転状
態の変化による吸気効率の変化に追従し、かつ、気筒
毎、内燃機関個体毎の吸気効率のばらつきにも対応でき
る吸気効率推定手段について述べる。
In the case of the same type of internal combustion engine, it is considered that there is not much difference between the shapes of the functions of the intake efficiency depending on the individual and the shapes of the functions of the intake efficiency depending on the cylinder. If the intake efficiency of the first cylinder, the intake efficiency of the second cylinder, and the common intake efficiency indicating the average intake efficiency of all cylinders are graphed as a function of the density of the gas in the manifold, for example, FIG.
9A, the correction coefficient obtained by dividing the intake efficiency of each cylinder by the common intake efficiency is, for example, as shown in FIG.
It is considered that the function becomes a gentle function near 0. Therefore, a common intake efficiency map is prepared in advance for a dynamic portion that changes depending on the operation state of the internal combustion engine, and a scale parameter portion that changes for each cylinder and each individual internal combustion engine is estimated as a correction coefficient, and a common intake efficiency map is obtained. By multiplying the efficiency map and the correction coefficient for each cylinder, the intake efficiency follows the change in intake efficiency due to changes in the operating state of the internal combustion engine, and can also respond to variations in intake efficiency for each cylinder and individual internal combustion engine. The estimating means will be described.

【0060】図10に構成を示す。図1と同じ構成には
同一番号を付してあり、説明を繰り返さない。図1に示
される空燃比制御装置と比べて、全気筒に共通する吸気
効率マップ21が新たに用意されていて、しかも、各気
筒に対応した吸気効率推定手段611〜61Iが異なっ
ている。
FIG. 10 shows the configuration. 1 are given the same reference numerals, and description thereof will not be repeated. As compared with the air-fuel ratio control device shown in FIG. 1, an intake efficiency map 21 common to all cylinders is newly prepared, and intake efficiency estimating means 611 to 61I corresponding to each cylinder is different.

【0061】第i気筒5の吸気効率推定手段61iは、
スロットル通過空気量Mthとマニフォールド9の空気の
密度Mthとクランク角速度ωから補正係数Ciを推定す
る補正係数計算手段67iと、前回該気筒5が吸気行程
にあったときの補正係数Ciを記憶しておき、あらたに
今回計測データから求められた補正係数Ciとの加重平
均をとった結果を記憶しておく補正係数メモリ69i
と、この加重平均を計算する平滑化手段65iと、求め
られた補正係数Ciと吸気効率マップ21から読込んで
きた吸気効率η0とから気筒毎の違いを補正された補正
吸気効率ηiを計算する吸気効率補正手段68iとから
なる。
The intake efficiency estimating means 61i of the i-th cylinder 5
The correction coefficient calculating means 67i for estimating the correction coefficient Ci from the throttle passing air amount Mth, the air density Mth of the manifold 9 and the crank angular velocity ω, and the correction coefficient Ci when the cylinder 5 was in the intake stroke last time is stored. And a correction coefficient memory 69i for storing a result obtained by taking a weighted average with a correction coefficient Ci obtained from the current measurement data.
Smoothing means 65i for calculating the weighted average, and intake air for calculating a corrected intake efficiency ηi in which a difference for each cylinder has been corrected from the obtained correction coefficient Ci and the intake efficiency η0 read from the intake efficiency map 21. And efficiency correcting means 68i.

【0062】図10の空燃比制御装置のうち、吸気効率
推定手段611〜61I以外の部分は図1のものと全く
同一なので、ここでは、吸気効率推定手段61iの動作
について説明する。
In the air-fuel ratio control apparatus shown in FIG. 10, the parts other than the intake efficiency estimating means 611 to 61I are completely the same as those in FIG. 1, and the operation of the intake efficiency estimating means 61i will be described here.

【0063】吸気効率ηiを、全ての気筒に共通で内燃
機関の運転状態により変化する成分η0と、気筒毎のば
らつきによるスケールファクタの成分Ciの積ηi=η
0×Ciとして考えれば、数6より、
The intake efficiency ηi is defined as the product ηi = η of a component η0, which is common to all cylinders and varies according to the operating state of the internal combustion engine, and a scale factor component Ci due to variations among the cylinders.
Assuming 0 × Ci, from equation 6,

【0064】[0064]

【数10】 (Equation 10)

【0065】となり、数6の右辺を、吸気効率マップ2
1から読込んできた共通吸気効率η0で割ることで、運
転状態によって変化する成分が除去されて、気筒毎にほ
ぼ一定の値をとる補正係数Ciが得られる。
The right side of Equation 6 is represented by the intake efficiency map 2
By dividing by 1 the common intake efficiency η0 read from 1, the component that changes depending on the operating state is removed, and a correction coefficient Ci that takes a substantially constant value for each cylinder is obtained.

【0066】これを平滑化した上で、吸気効率マップ2
1から運転状態に応じて共通吸気効率η0を読込んでき
て掛けることで、気筒毎のばらつきが補正された吸気効
率ηiが得られる。
After smoothing this, the intake efficiency map 2
By reading and multiplying the common intake efficiency η0 from 1 according to the operating state and multiplying the same, the intake efficiency ηi in which the variation among the cylinders is corrected can be obtained.

【0067】本吸気効率推定手段61iにおける、吸気
効率ηiの推定手順を、図11のステップ図を用いて説
明する。
The procedure for estimating the intake efficiency ηi in the intake efficiency estimating means 61i will be described with reference to the step diagram of FIG.

【0068】最初にスロットル通過空気量Mthを計測す
る(ステップ1101)。次に、密度計測手段1から計
測されるマニフォールド9内の気体の密度ρmからマニ
フォールド9内の気体の増加量ΔMmを計算する(ステ
ップ1102)。
First, the throttle passing air amount Mth is measured (step 1101). Next, the amount of increase ΔMm of the gas in the manifold 9 is calculated from the density ρm of the gas in the manifold 9 measured by the density measuring means 1 (step 1102).

【0069】この後に、クランク角速度ωとマニフォー
ルド9内の気体の密度ρmより数1で気筒iへの理想流
入量Mdを計算し(ステップ1103)、内燃機関の運転
状態に応じて吸気効率マップ21から共通吸気効率η0
を読出す(ステップ1104)。これらの計算結果をもと
にして数10に基づいて補正係数Ciを計算する(ステ
ップ1105)。
Thereafter, the ideal inflow Md into the cylinder i is calculated from the crank angular velocity ω and the gas density ρm in the manifold 9 by the equation (1) (step 1103), and the intake efficiency map 21 is calculated according to the operating state of the internal combustion engine. From the common intake efficiency η0
Is read (step 1104). Based on these calculation results, a correction coefficient Ci is calculated on the basis of Expression 10 (step 1105).

【0070】前回該気筒が吸気行程にあったときの補正
係数Ciを補正係数メモリ21から読出してきて(ステ
ップ1106)、前回求めた補正係数Ciと今回の補正
係数Ciの加重平均をとることで、補正係数Ciを平滑
化する(ステップ1107)。
The correction coefficient Ci when the cylinder was in the intake stroke last time is read from the correction coefficient memory 21 (step 1106), and the weighted average of the correction coefficient Ci obtained last time and the current correction coefficient Ci is obtained. , And smoothes the correction coefficient Ci (step 1107).

【0071】この補正係数Ciを共通吸気効率η0に掛
けること吸気効率ηiが求められる(ステップ110
8)。
By multiplying the correction coefficient Ci by the common intake efficiency η0, the intake efficiency ηi is obtained (step 110).
8).

【0072】このように吸気効率ηiを、内燃機関の運
転状態に依存して変化する共通吸気効率η0と、気筒に
依存する補正係数Ciに分けて考え、共通吸気効率η0
は事前にマップを用意しておき、補正係数Ciは運転時
に推定することで、気筒毎に異なる吸気効率を精度良
く、しかも内燃機関の運転状態の変化による吸気効率の
変化に素早く追従して求めることができる。
As described above, the intake efficiency ηi is divided into the common intake efficiency η0 which varies depending on the operation state of the internal combustion engine and the correction coefficient Ci which depends on the cylinder.
Prepares a map in advance, and estimates the correction coefficient Ci at the time of operation, thereby obtaining an intake efficiency that differs for each cylinder with high accuracy and quickly following a change in intake efficiency due to a change in the operating state of the internal combustion engine. be able to.

【0073】《発明実施の形態3:気筒毎に燃料噴射量
マップを設ける空燃比制御》《発明実施の形態1》で
は、内燃機関の運転を行いながら吸気効率の推定を行
い、この吸気効率に基づいて燃焼噴射量を計算したが、
センサデータと燃料噴射量の関係のマップを気筒毎に用
意し、このマップを検索することで気筒毎の燃料噴射量
を制御して、気筒毎空燃比を精密に制御するという空燃
比制御装置も考えられる。このような装置のメリット
は、空燃比制御装置に搭載する計算手段が低い計算性能
のものでも高精度な気筒別空燃比制御が実現できるとい
うことである。
<Embodiment 3: Air-fuel ratio control providing a fuel injection amount map for each cylinder> In <Invention 1>, the intake efficiency is estimated while the internal combustion engine is operating. The combustion injection amount was calculated based on
An air-fuel ratio control device that prepares a map of the relationship between sensor data and fuel injection amount for each cylinder, controls the fuel injection amount for each cylinder by searching this map, and precisely controls the air-fuel ratio for each cylinder is also available. Conceivable. An advantage of such a device is that even if the calculation means mounted on the air-fuel ratio control device has a low calculation performance, highly accurate cylinder-by-cylinder air-fuel ratio control can be realized.

【0074】この空燃比制御装置の構成を図12を用い
て説明する。なお、マップの作成方法については後ほど
[燃料噴射量マップの作成]にて述べる。
The configuration of the air-fuel ratio control device will be described with reference to FIG. The method for creating the map will be described later in [Creation of Fuel Injection Amount Map].

【0075】本装置の構成は、図1に示す空燃比制御装
置と比べて、各気筒に備えられた計算手段601〜60
Iが異なる。この計算手段601〜60Iは、計測デー
タと各気筒毎の燃料噴射量の関係を示す燃料噴射量マッ
プ711〜71Iと、スロットル通過空気量Mth、マニ
フォールド内気体密度ρm、クランク角速度ωをもとに
燃料噴射量マップ711〜71Iから燃料噴射量を読出
してインジェクタ4に噴射量の指令を送る燃料噴射量計
算手段701〜70Iからなる。
The configuration of this device is different from that of the air-fuel ratio control device shown in FIG. 1 in that the calculation means 601 to 60 provided in each cylinder are provided.
I is different. The calculation means 601 to 60I are based on the fuel injection amount maps 711 to 71I indicating the relationship between the measurement data and the fuel injection amount for each cylinder, the throttle passing air amount Mth, the gas density ρm in the manifold, and the crank angular velocity ω. It comprises fuel injection amount calculation means 701 to 70I for reading the fuel injection amount from the fuel injection amount maps 711 to 71I and sending an injection amount command to the injector 4.

【0076】このような計算手段601〜60Iを各気
筒に備えた空燃比制御装置の動作手順について図13を
用いて説明する。
The operation procedure of the air-fuel ratio control device provided with such calculation means 601 to 60I for each cylinder will be described with reference to FIG.

【0077】まず、スロットルを通過する空気量Mthの
計測(ステップ1201)、マニフォールド内の気体の
密度ρmの計測(ステップ1202)、クランク角θの
計測(ステップ1203)が行われる。このクランク角
θに基づき第i気筒5が吸気行程であるかどうかが判別
され(ステップ1204)、第i気筒5が吸気行程であ
るなら、第i計算手段60iが呼び出される(ステップ
1205)。
First, the amount of air Mth passing through the throttle is measured (step 1201), the density ρm of the gas in the manifold is measured (step 1202), and the crank angle θ is measured (step 1203). It is determined whether or not the i-th cylinder 5 is in the intake stroke based on the crank angle θ (step 1204). If the i-th cylinder 5 is in the intake stroke, the i-th calculation means 60i is called (step 1205).

【0078】第i計算手段が呼出されると、スロットル
通過空気量Mth、マニフォールド内気体密度ρm、クラ
ンク角速度ωをもとに、燃料噴射量計算手段70iは燃
料噴射量マップ71iを検索することで、第i気筒への
燃料噴射量Fiを求める(ステップ1206)。クラン
ク角θが該気筒5に燃料を噴射する角度θiになったら
(ステップ1207,1208)、第iインジェクタは
計算された量Fiの燃料を噴射する(ステップ120
9)。
When the i-th calculation means is called, the fuel injection amount calculation means 70i searches the fuel injection amount map 71i based on the throttle passing air amount Mth, the gas density ρm in the manifold, and the crank angular velocity ω. Then, the fuel injection amount Fi to the i-th cylinder is obtained (step 1206). When the crank angle θ becomes the angle θi at which fuel is injected into the cylinder 5 (steps 1207 and 1208), the i-th injector injects the calculated amount Fi of fuel (step 120).
9).

【0079】[燃料噴射量マップの作成]燃料噴射量マ
ップ711〜71Iの作成するための装置について図1
4を用いて説明する。
[Creation of Fuel Injection Amount Map] An apparatus for creating the fuel injection amount maps 711 to 71I is shown in FIG.
4 will be described.

【0080】燃料噴射量マップ711〜71Iを作成す
るために、内燃機関のスロットルの開度を制御すること
でスロットル通過空気量Mthを制御するスロットル制御
装置1401と、クランクに取付けられて負荷を与える
ことでクランクの回転速度ωを調節する負荷発生装置1
402と、スロットル通過空気量計測器2、マニフォー
ルド圧計測器1、クランク角センサ3からのセンサデー
タをもとに燃料噴射量を計算し、これらセンサデータと
燃料噴射量の関係を燃料噴射量マップ711〜71Iに
記録する燃料噴射量マップ作成装置1403を用いる。
In order to generate the fuel injection amount maps 711 to 71I, a throttle control device 1401 for controlling the throttle opening air amount Mth by controlling the opening degree of the throttle of the internal combustion engine, and a load attached to the crank to apply a load. Generator 1 that adjusts the rotational speed ω of the crank
402, a fuel injection amount is calculated based on sensor data from the throttle passing air amount measuring device 2, the manifold pressure measuring device 1, and the crank angle sensor 3, and the relationship between these sensor data and the fuel injection amount is represented by a fuel injection amount map. A fuel injection amount map creating device 1403 for recording 711-71I is used.

【0081】燃料噴射量マップ作成装置1403の動作
手順について図14を用いて説明する。
The operation procedure of the fuel injection amount map creating device 1403 will be described with reference to FIG.

【0082】まず、燃料噴射量マップ作成装置1403
は、スロットル開度の指令値をスロットル制御手段14
01に送り(ステップ1501)、クランクに与える負
荷を負荷発生手段1402に送る(ステップ150
2)。これによって、内燃機関の運転状態が設定され、
様々なスロットル流量Mth、マニフォールド密度ρm、
クランク角速度ωを実現することができる。こうして運
転状態を設定された内燃機関のスロットル通過空気量M
th(ステップ1503)、マニフォールド密度ρm(ス
テップ1504)、クランク角θ(ステップ1505)
を、燃料噴射マップ作成装置1403は読込む。燃料噴
射マップ作成装置1403は読込んだクランク角θに基
づいて、どの気筒が吸気行程にあるのか、判別を行う
(ステップ1506)。この判別結果に基づいて、吸気行
程にある気筒5の吸気効率ηiの計算が燃料噴射マップ
作成装置内1403で行われる(ステップ1507)。
吸気効率ηiの計算方法は、前述の[吸気効率の計算]
と同一である。吸気効率ηiの計算に引き続き、該気筒
5に流入した空気量Mcの計算(ステップ1508)、
該気筒5に噴射する燃料の計算Fi(ステップ1509)
を行う。この計算方法は、《発明の実施形態1》で述べ
たものと同一である。計算された燃料噴射量Fiに基づ
き、燃料噴射マップ作成装置1403は該気筒5のイン
ジェクタ4に燃料噴射指令を送り、インジェクタ4は燃
料を噴射する(ステップ1510)。このときのスロッ
トル通過空気量Mth、マニフォールド密度ρm、クラン
ク角速度ω、燃料噴射量Fiのセットは、気筒毎に燃料
噴射量マップ作成装置内1403に保存される(ステッ
プ1511)。十分な量の計測データと噴射量のセット
が保存されたなら、これらのデータを補間して、スロッ
トル通過空気量Mth、マニフォールド密度ρm、クラン
ク角速度ωから燃料噴射量を検索するためのマップを気
筒毎に作成し、このマップを空燃比制御装置内の燃料噴
射量マップ711〜71Iに書込む(ステップ151
3)。十分な計測データと噴射量のセットが保存されて
ないなら、ステップ1501に戻って、さらにデータ収
集を行う。
First, a fuel injection amount map creating device 1403
Indicates that the throttle opening command value is
01 (step 1501), and the load applied to the crank is sent to the load generating means 1402 (step 150).
2). This sets the operating state of the internal combustion engine,
Various throttle flows Mth, manifold density ρm,
The crank angular velocity ω can be realized. The throttle passing air amount M of the internal combustion engine in which the operation state is set in this manner
th (step 1503), manifold density ρm (step 1504), crank angle θ (step 1505)
Is read by the fuel injection map creating device 1403. The fuel injection map creation device 1403 determines which cylinder is in the intake stroke based on the read crank angle θ.
(Step 1506). Based on this determination result, the calculation of the intake efficiency ηi of the cylinder 5 in the intake stroke is performed in the fuel injection map creator 1403 (step 1507).
The calculation method of the intake efficiency ηi is described in [Calculation of intake efficiency] described above.
Is the same as Subsequent to the calculation of the intake efficiency ηi, the calculation of the air amount Mc flowing into the cylinder 5 (step 1508),
Calculation Fi of the fuel injected into the cylinder 5 (step 1509)
I do. This calculation method is the same as that described in << Embodiment 1 of the invention >>. Based on the calculated fuel injection amount Fi, the fuel injection map creating device 1403 sends a fuel injection command to the injector 4 of the cylinder 5, and the injector 4 injects fuel (step 1510). At this time, the set of the throttle passing air amount Mth, the manifold density ρm, the crank angular velocity ω, and the fuel injection amount Fi are stored in the fuel injection amount map creation device 1403 for each cylinder (step 1511). When a sufficient amount of measurement data and injection amount set are stored, these data are interpolated to create a map for searching the fuel injection amount from the throttle passing air amount Mth, the manifold density ρm, and the crank angular velocity ω. The map is created for each fuel injection amount map 711 to 71I in the air-fuel ratio control device (step 151).
3). If a sufficient set of the measurement data and the injection amount is not stored, the process returns to step 1501 to further collect data.

【0083】このように、《発明の実施形態1》での燃
料噴射量の計算を、空燃比制御装置とは別に用意した燃
料噴射量マップ作成装置1403で行い、その結果を空
燃比制御装置内の燃料噴射量マップ711〜71Iに書
込み、実際の運転の際にはこのマップを検索することで
燃料噴射量を制御することで、空燃比制御装置内の計算
手段601〜60Iの計算負荷を低く抑えつつ、気筒毎
の吸気効率のばらつきに対応した精密な空燃比制御が可
能となる。
As described above, the calculation of the fuel injection amount in << Embodiment 1 >> is performed by the fuel injection amount map creating device 1403 prepared separately from the air-fuel ratio control device, and the result is stored in the air-fuel ratio control device. In the actual operation, the map is searched to control the fuel injection amount by searching this map, thereby reducing the calculation load of the calculation means 601 to 60I in the air-fuel ratio control device. Precise air-fuel ratio control corresponding to the variation in intake efficiency for each cylinder can be performed while suppressing this.

【0084】[0084]

【発明の効果】エンジンや気筒毎に異なる吸気効率を推
定しながら気筒への吸入空気量を計測し燃料噴射量を制
御することで、気筒内の空燃比を精密に制御することが
可能となる。これによって、内燃機関の燃費の改善、排
気ガス中の有害物質の低減に寄与することができる。
The air-fuel ratio in the cylinder can be precisely controlled by measuring the amount of air taken into the cylinder and controlling the fuel injection amount while estimating the intake efficiency that differs for each engine or cylinder. . This can contribute to improving the fuel efficiency of the internal combustion engine and reducing harmful substances in the exhaust gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の構成の一例を示す図。FIG. 1 is a diagram illustrating an example of a configuration according to an embodiment of the present invention.

【図2】本発明の実施形態の動作手順の一例を示す図。FIG. 2 is a diagram showing an example of an operation procedure according to the embodiment of the present invention.

【図3】本発明の実施形態における空気量の増減の関係
を示す図。
FIG. 3 is a diagram showing a relationship between an increase and a decrease in the amount of air in the embodiment of the present invention.

【図4】本発明の実施形態の吸気効率の推定手順の一例
を示す図。
FIG. 4 is a diagram showing an example of a procedure for estimating intake efficiency according to the embodiment of the present invention.

【図5】本発明の実施形態の密度計測のためのセンサ構
成の一例を示す図。
FIG. 5 is a diagram illustrating an example of a sensor configuration for density measurement according to the embodiment of the present invention.

【図6】本発明の実施形態のスロットル通過空気量の計
測のためのセンサ構成の一例を示す図。
FIG. 6 is a diagram showing an example of a sensor configuration for measuring the amount of air passing through a throttle according to the embodiment of the present invention.

【図7】本発明の実施形態のスロットル通過空気量の計
算手順の一例を示す図。
FIG. 7 is a diagram showing an example of a calculation procedure of a throttle passing air amount according to the embodiment of the present invention.

【図8】本発明の実施形態のスロットル通過空気量の計
測のためのセンサ配置の他の一例を示す図。
FIG. 8 is a diagram showing another example of a sensor arrangement for measuring the amount of air passing through the throttle according to the embodiment of the present invention.

【図9】気筒毎の吸気効率のばらつきと運転状態による
吸気効率の変化を示す図の一例を示す図。
FIG. 9 is a diagram illustrating an example of a diagram illustrating a variation in intake efficiency for each cylinder and a change in intake efficiency depending on an operating state;

【図10】本発明の共通の吸気効率マップを用いる実施
形態の一例を示す図。
FIG. 10 is a diagram showing an example of an embodiment using a common intake efficiency map of the present invention.

【図11】本発明の共通の吸気効率マップを用いる実施
形態の動作手順の一例を示す図。
FIG. 11 is a diagram showing an example of an operation procedure of an embodiment using a common intake efficiency map of the present invention.

【図12】本発明の気筒別の吸気効率マップを事前に用
意する実施形態の一例を示す図。
FIG. 12 is a diagram showing an example of an embodiment in which a cylinder-by-cylinder intake efficiency map of the present invention is prepared in advance.

【図13】本発明の気筒別の吸気効率マップを事前に用
意する実施形態の動作手順の一例を示す図。
FIG. 13 is a diagram showing an example of an operation procedure of an embodiment of preparing an intake efficiency map for each cylinder in advance according to the present invention.

【図14】本発明の気筒別の吸気効率マップを事前に用
意するための手段の一例を示す図。
FIG. 14 is a diagram showing an example of means for preparing an intake efficiency map for each cylinder in advance according to the present invention.

【図15】本発明の気筒別の吸気効率マップを事前に用
意する手順の一例を示す図。
FIG. 15 is a diagram showing an example of a procedure for preparing an intake efficiency map for each cylinder in advance according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 45/00 366 F02D 45/00 366E 366F 366B Fターム(参考) 3G084 AA03 BA09 BA13 BA15 DA25 EA05 EB02 EB25 FA02 FA07 FA08 FA10 FA11 FA38 3G301 HA04 HA06 JA02 JA21 MA01 MA12 MA18 NA02 NA05 NB02 NB03 NC02 PA01Z PA04Z PA07Z PA10Z PA11Z PE03Z PE05Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 45/00 366 F02D 45/00 366E 366F 366B F-term (Reference) 3G084 AA03 BA09 BA13 BA15 DA25 EA05 EB02 EB25 FA02 FA07 FA08 FA10 FA11 FA38 3G301 HA04 HA06 JA02 JA21 MA01 MA12 MA18 NA02 NA05 NB02 NB03 NC02 PA01Z PA04Z PA07Z PA10Z PA11Z PE03Z PE05Z

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】多気筒を備え、各気筒に吸入される空気の
量と気筒に噴射される燃料の比を制御する内燃機関の空
燃比制御装置において、 気筒毎に備えた燃料を噴射するインジェクタを備え、 クランク角に基づき吸気行程にある気筒を識別し、気筒
毎に備えられた計算プログラムの中から吸気行程にある
気筒に対応する計算プログラムを呼び出し、気筒毎の吸
気ばらつきを推定して各気筒毎の吸気量を特定し、かつ
該推定した気筒毎の吸気量に対応して各気筒のインジェ
クタへの燃料噴射量を演算する燃料噴射演算処理装置と
を備えたことを特徴とする内燃機関の空燃比制御装置。
1. An air-fuel ratio control device for an internal combustion engine, comprising: a plurality of cylinders, for controlling a ratio of an amount of air taken into each cylinder to a fuel injected into the cylinder. The cylinders in the intake stroke are identified based on the crank angle, a calculation program corresponding to the cylinder in the intake stroke is called from among the calculation programs provided for each cylinder, and the intake variation for each cylinder is estimated by An internal combustion engine comprising: a fuel injection arithmetic processing unit that specifies an intake air amount for each cylinder, and calculates a fuel injection amount to an injector of each cylinder in accordance with the estimated intake air amount for each cylinder. Air-fuel ratio control device.
【請求項2】多気筒を備え、各気筒に吸入される空気の
量と気筒に噴射される燃料の比を制御する内燃機関の空
燃比制御装置において、 スロットルを通過する空気量を計測する流入空気量計測
器と、 内燃機関の吸気マニフォールド内の空気の密度を計測す
る空気密度計測器と、 内燃機関のクランク角を計測するクランク角センサと、 気筒毎に備えた燃料を噴射するインジェクタと、 クランク角に基づき吸気行程にある気筒を識別し、気筒
毎に備えられた計算プログラムの中から吸気行程にある
気筒に対応する計算プログラムを呼び出し、スロットル
を通過する空気量、吸気マニフォールド内の空気の密度
およびクランク角に基づいて気筒毎の吸気特性を推定し
て推定値を求め、かつ該推定値に対応して各気筒のイン
ジェクタへの燃料噴射量を演算する燃料噴射演算処理装
置とを備えたことを特徴とする内燃機関の空燃比制御装
置。
2. An air-fuel ratio control system for an internal combustion engine having a multi-cylinder system for controlling the ratio of the amount of air taken into each cylinder to the amount of fuel injected into the cylinder. An air amount measuring device, an air density measuring device for measuring the density of air in an intake manifold of the internal combustion engine, a crank angle sensor for measuring a crank angle of the internal combustion engine, and an injector for injecting fuel provided for each cylinder, The cylinders in the intake stroke are identified based on the crank angle, and the calculation program corresponding to the cylinder in the intake stroke is called from among the calculation programs provided for each cylinder, and the amount of air passing through the throttle, An intake value is estimated for each cylinder based on the density and the crank angle to obtain an estimated value, and fuel is injected into an injector of each cylinder in accordance with the estimated value. Air-fuel ratio control system for an internal combustion engine, characterized in that a fuel injection processing unit for calculating the.
【請求項3】請求項2において、 前記吸気特性は、気筒毎の吸気量または吸気効率である
ことを特徴とする内燃機関の空燃比制御装置。
3. The air-fuel ratio control apparatus for an internal combustion engine according to claim 2, wherein the intake characteristic is an intake amount or intake efficiency for each cylinder.
【請求項4】請求項2の燃料噴射制御装置において、 スロットルを通過する空気量と吸気マニフォールド内の
空気の密度と、クランク角の速度とに基づき各気筒に空
気が取り込まれる際の損失の割合を気筒毎に計算し、こ
の損失の割合とマニフォールド内の空気の密度とクラン
ク角の速度から該気筒に取込まれる空気量を計算し、該
気筒への燃料噴射量を計算することを特徴とした空燃比
制御装置。
4. The fuel injection control device according to claim 2, wherein a ratio of a loss when air is taken into each cylinder based on an amount of air passing through a throttle, a density of air in an intake manifold, and a crank angle speed. Is calculated for each cylinder, the amount of air taken into the cylinder is calculated from the rate of this loss, the density of air in the manifold and the speed of the crank angle, and the fuel injection amount to the cylinder is calculated. Air-fuel ratio control device.
【請求項5】請求項2の燃料噴射制御装置において、 スロットルを通過する空気量と吸気マニフォールド内の
空気の密度と、クランク角の速度とに基づき各気筒に空
気が取込まれる際の損失の割合を気筒毎に計算し、この
損失の割合を全気筒に共通して設けた共通吸気効率で割
ることで気筒毎のばらつきを表す補正係数を計算し、該
気筒の前回の補正係数との加重平均をとることで補正係
数を平滑化し、平滑化した補正係数を共通吸気効率に掛
けることで各気筒について補正した損失の割合を計算す
ることを特徴とした空燃比制御装置。
5. The fuel injection control device according to claim 2, wherein a loss when air is taken into each cylinder is determined based on an amount of air passing through a throttle, a density of air in an intake manifold, and a crank angle speed. The ratio is calculated for each cylinder, and the loss ratio is divided by a common intake efficiency provided in common for all cylinders to calculate a correction coefficient representing a variation for each cylinder, and weighted with the previous correction coefficient for the cylinder. An air-fuel ratio control device characterized in that a correction coefficient is smoothed by taking an average, and a ratio of a loss corrected for each cylinder is calculated by multiplying the smoothed correction coefficient by a common intake efficiency.
【請求項6】請求項2において、 マニフォールドの気体の密度の変化からマニフォールド
を充填するために使われた空気量を計算し、マニフォー
ルド内の気体の密度とクランク角速度とから気体の流れ
の損失を0とした場合の気筒への理論流入空気量を計算
し、スロットルを通過した空気量からマニフォールドを
充填するために使われた空気量を引き、その結果を理論
流入空気量で割って吸気効率を計算し、前回の吸気効率
と加重平均を取って吸気効率を平滑化することを特徴と
する内燃機関の空燃比制御装置。
6. The method according to claim 2, wherein the amount of air used to fill the manifold is calculated from the change in the density of the gas in the manifold, and the loss of the gas flow is calculated from the density of the gas in the manifold and the crank angular velocity. Calculate the theoretical amount of air flowing into the cylinder when it is set to 0, subtract the amount of air used to fill the manifold from the amount of air that has passed through the throttle, and divide the result by the amount of theoretical inflow air to obtain the intake efficiency. An air-fuel ratio control device for an internal combustion engine, which calculates and takes a weighted average with a previous intake efficiency to smooth the intake efficiency.
【請求項7】請求項3において、 マニフォールドの気体の密度の変化からマニフォールド
を充填するために使われた空気量を計算し、マニフォー
ルド内の気体の密度とクランク角速度とから気体の流れ
の損失を0とした場合の気筒への理論流入空気量を計算
し、スロットルを通過した空気量からマニフォールドを
充填するために使われた空気量を引き、その結果を理論
流入空気量と各気筒共通の共通吸気効率の積で割ること
で補正係数を計算して前回の補正係数と加重平均を取る
ことで補正係数を平滑化し、平滑化した補正係数を共通
吸気効率に掛けることで、各気筒について補正した吸気
効率を計算することを特徴とする空燃比制御装置。
7. The method according to claim 3, wherein the amount of air used to fill the manifold is calculated from the change in the gas density of the manifold, and the gas flow loss is calculated from the gas density in the manifold and the crank angular velocity. Calculate the theoretical amount of air flowing into the cylinder when it is set to 0, subtract the amount of air used to fill the manifold from the amount of air that has passed through the throttle, and use the result as the theoretical amount of air that is common to each cylinder. The correction coefficient was calculated by dividing by the product of the intake efficiency, the correction coefficient was smoothed by taking the weighted average with the previous correction coefficient, and the correction coefficient was corrected for each cylinder by multiplying the smoothed correction coefficient by the common intake efficiency. An air-fuel ratio controller that calculates intake efficiency.
【請求項8】請求項2において、 前記燃料噴射演算処理装置は、燃料噴射量マップを含
み、該燃料噴射量マップを使用して燃料噴射量を計算す
ることを特徴とする内燃機関の空燃比制御装置。
8. The air-fuel ratio of an internal combustion engine according to claim 2, wherein the fuel injection arithmetic processing unit includes a fuel injection amount map, and calculates the fuel injection amount using the fuel injection amount map. Control device.
【請求項9】請求項2において、 前記流入空気密度計測器は、マニフォールドに配設され
た圧力センサと温度センサとから構成することを特徴と
する内燃機関の空燃比制御装置。
9. The air-fuel ratio control device for an internal combustion engine according to claim 2, wherein the inflow air density measuring device comprises a pressure sensor and a temperature sensor disposed in a manifold.
【請求項10】請求項2において、 前記流入空気密度計測器は、マニフォールドに配設され
た圧力センサと温度センサと、およびスロットルの開度
を計る開度センサとから構成されることを特徴とする内
燃機関の空燃比制御装置。
10. The apparatus according to claim 2, wherein the inflow air density measuring device comprises a pressure sensor and a temperature sensor disposed in the manifold, and an opening sensor for measuring an opening of a throttle. Control device for an internal combustion engine.
【請求項11】請求項2において、 前記流入空気密度計測器は、熱線式空気流量計で構成す
ることを特徴とする内燃機関の空燃比制御装置。
11. An air-fuel ratio control device for an internal combustion engine according to claim 2, wherein said inflow air density measuring device comprises a hot wire air flow meter.
【請求項12】多気筒を備えた内燃機関の気筒毎の流入
吸気量推定方法において、 スロットル通過空気量Mthを計測し、 マニフォールド内の気体の密度Pmおよび密度の増加量
△Pmを求め、 この増加量△Pmにマニフォールドの容積Md(スロッ
トルと吸気弁とによって仕切られた領域の容積)を掛け
ることでマニフォールド内の気体の増加量△Mmを計算
し、 クランク角を計測してこれを微分してクランク角速度を
計算し、 次の式で吸気効率qを q=(Mth−△Mm)/Md で計算し、次の式で各気筒への吸気量を Mc=Pm×(ω/4π)×Vc×q=Md×q (ここで1/Cは気筒の容積)を計算して求めることを
特徴とする気筒毎の流入吸気量推定方法。
12. A method for estimating an inflow / intake air amount for each cylinder of an internal combustion engine having multiple cylinders, wherein a throttle passing air amount Mth is measured to obtain a density Pm of gas in the manifold and an increase ΔPm of the density. The increase amount ΔPm is multiplied by the manifold volume Md (the volume of the area partitioned by the throttle and the intake valve) to calculate the increase amount ΔMm of the gas in the manifold, and the crank angle is measured and differentiated. Calculate the crank angular velocity by using the following formula, and calculate the intake efficiency q by q = (Mth−MMm) / Md, and calculate the intake air amount to each cylinder by the following formula: Mc = Pm × (ω / 4π) × Vc × q = Md × q (where 1 / C is the volume of the cylinder).
JP2000050536A 2000-02-22 2000-02-22 Air-fuel ratio control device of internal combustion engine and method for estimating intake air quantity of each of cylinders Pending JP2001234798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050536A JP2001234798A (en) 2000-02-22 2000-02-22 Air-fuel ratio control device of internal combustion engine and method for estimating intake air quantity of each of cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050536A JP2001234798A (en) 2000-02-22 2000-02-22 Air-fuel ratio control device of internal combustion engine and method for estimating intake air quantity of each of cylinders

Publications (1)

Publication Number Publication Date
JP2001234798A true JP2001234798A (en) 2001-08-31

Family

ID=18572304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050536A Pending JP2001234798A (en) 2000-02-22 2000-02-22 Air-fuel ratio control device of internal combustion engine and method for estimating intake air quantity of each of cylinders

Country Status (1)

Country Link
JP (1) JP2001234798A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687599B2 (en) 2002-06-29 2004-02-03 Hyundai Motor Company Method and apparatus for calculating air-mass drawn into cylinders, and method and apparatus for controlling fuel
WO2004027241A1 (en) * 2002-09-19 2004-04-01 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control device
WO2004094798A1 (en) * 2003-04-21 2004-11-04 Keihin Corporation Intake and control devices for internal combustion engine
WO2004094801A1 (en) * 2003-04-21 2004-11-04 Keihin Corporation Control device of internal combustion engine
WO2004094803A1 (en) * 2003-04-22 2004-11-04 Keihin Corporation Control device of internal combustion engine
US7003390B2 (en) 2003-09-19 2006-02-21 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
WO2006075788A1 (en) * 2005-01-13 2006-07-20 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
US7089106B2 (en) 2004-03-05 2006-08-08 Toyota Jidosha Kabushiki Kaisha In-cylinder air amount estimation apparatus for an internal combustion engine and estimation method thereof
EP1705359A1 (en) * 2005-03-04 2006-09-27 STMicroelectronics S.r.l. Method of feedforward controlling a multi-cylinder internal combustion engine and relative feedforward fuel injection control system
US7270095B2 (en) 2004-12-17 2007-09-18 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling internal combustion engine
US7287525B2 (en) 2005-03-04 2007-10-30 Stmicroelectronics S.R.L. Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
US7359794B2 (en) 2005-02-03 2008-04-15 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN100465422C (en) * 2005-01-13 2009-03-04 丰田自动车株式会社 Controller of internal combustion engine
CN109882300A (en) * 2017-12-06 2019-06-14 上海汽车集团股份有限公司 A kind of method and apparatus for correcting volumetric efficiency

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687599B2 (en) 2002-06-29 2004-02-03 Hyundai Motor Company Method and apparatus for calculating air-mass drawn into cylinders, and method and apparatus for controlling fuel
WO2004027241A1 (en) * 2002-09-19 2004-04-01 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control device
CN1328496C (en) * 2002-09-19 2007-07-25 本田技研工业株式会社 Fuel injection control device
WO2004094798A1 (en) * 2003-04-21 2004-11-04 Keihin Corporation Intake and control devices for internal combustion engine
WO2004094801A1 (en) * 2003-04-21 2004-11-04 Keihin Corporation Control device of internal combustion engine
US7231909B2 (en) 2003-04-21 2007-06-19 Keihin Corporation Air intake apparatus and control apparatus for an internal combustion engine
US7191764B2 (en) 2003-04-22 2007-03-20 Keihin Corporation Control unit for an internal combustion engine
WO2004094803A1 (en) * 2003-04-22 2004-11-04 Keihin Corporation Control device of internal combustion engine
CN100370125C (en) * 2003-04-22 2008-02-20 株式会社京滨 Control device of internal combustion engine
US7003390B2 (en) 2003-09-19 2006-02-21 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
US7089106B2 (en) 2004-03-05 2006-08-08 Toyota Jidosha Kabushiki Kaisha In-cylinder air amount estimation apparatus for an internal combustion engine and estimation method thereof
US7270095B2 (en) 2004-12-17 2007-09-18 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling internal combustion engine
WO2006075788A1 (en) * 2005-01-13 2006-07-20 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
US7373238B2 (en) 2005-01-13 2008-05-13 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
CN100465422C (en) * 2005-01-13 2009-03-04 丰田自动车株式会社 Controller of internal combustion engine
US7359794B2 (en) 2005-02-03 2008-04-15 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
EP1705359A1 (en) * 2005-03-04 2006-09-27 STMicroelectronics S.r.l. Method of feedforward controlling a multi-cylinder internal combustion engine and relative feedforward fuel injection control system
US7287525B2 (en) 2005-03-04 2007-10-30 Stmicroelectronics S.R.L. Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
CN109882300A (en) * 2017-12-06 2019-06-14 上海汽车集团股份有限公司 A kind of method and apparatus for correcting volumetric efficiency
CN109882300B (en) * 2017-12-06 2021-05-18 上海汽车集团股份有限公司 Method and device for correcting inflation efficiency

Similar Documents

Publication Publication Date Title
US6662640B2 (en) Air amount detector for internal combustion engine
US5596972A (en) Integrated fueling control
JP2001234798A (en) Air-fuel ratio control device of internal combustion engine and method for estimating intake air quantity of each of cylinders
WO2006075539A1 (en) Internal combustion engine air volume estimation device
JP2973418B2 (en) Method for detecting intake pipe pressure of internal combustion engine
JP2004143994A (en) Intake air flow prediction device of internal combustion engine
JP3551675B2 (en) EGR control device for internal combustion engine
EP1004764B1 (en) Method of controlling the direct injection of fuel into a combustion chamber of an internal combustion engine
JP2002070633A (en) In-cylinder charging-air amount estimation device for internal combustion engine
JPH01244138A (en) Fuel injection control device for engine for automobile
JPS6246690B2 (en)
JP2666366B2 (en) Control device for internal combustion engine
JP4665843B2 (en) Abnormality determination device for internal combustion engine
JP2002147265A (en) Internal combustion engine control device
JPH05187305A (en) Air amount calculating device of internal combustion engine
JP2615811B2 (en) Fuel injection amount control device for internal combustion engine
JP2009197711A (en) Air volume estimation device of internal combustion engine
JP3817648B2 (en) Fuel injection amount control device for internal combustion engine
JP4737254B2 (en) Internal combustion engine system control device
JP2006090843A (en) Controller of internal combustion engine
JP2687430B2 (en) Intake air amount estimation device for internal combustion engine
JP4661325B2 (en) Control device for internal combustion engine
EP0809008A2 (en) A method of controlling a non-return fuel supply system for an internal combustion engine
JPH0742893B2 (en) Fuel system air amount estimation control method
JP3627462B2 (en) Control device for internal combustion engine