JP2001232358A - Metazoa removal process - Google Patents

Metazoa removal process

Info

Publication number
JP2001232358A
JP2001232358A JP2000051453A JP2000051453A JP2001232358A JP 2001232358 A JP2001232358 A JP 2001232358A JP 2000051453 A JP2000051453 A JP 2000051453A JP 2000051453 A JP2000051453 A JP 2000051453A JP 2001232358 A JP2001232358 A JP 2001232358A
Authority
JP
Japan
Prior art keywords
water
treated
treatment
sand filtration
metazoans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000051453A
Other languages
Japanese (ja)
Other versions
JP3619108B2 (en
Inventor
Yoshio Hosaka
義男 保坂
Mutsuo Ito
睦雄 伊藤
Kenichi Sasaki
賢一 佐々木
Naohide Matsumoto
直秀 松本
Tsuneo Kanbayashi
常雄 神林
Tomoaki Miyanoshita
友明 宮ノ下
Yukihiko Tsutsumi
行彦 堤
Katsushi Maeda
勝史 前田
Takao Hasegawa
孝雄 長谷川
Mayumi Kurokawa
真弓 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Organo Corp
Kubota Corp
Ibaraki Prefecture
Suido Kiko Kaisha Ltd
Original Assignee
Ebara Corp
Organo Corp
Kubota Corp
Ibaraki Prefecture
Suido Kiko Kaisha Ltd
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Organo Corp, Kubota Corp, Ibaraki Prefecture, Suido Kiko Kaisha Ltd, Japan Organo Co Ltd filed Critical Ebara Corp
Priority to JP2000051453A priority Critical patent/JP3619108B2/en
Publication of JP2001232358A publication Critical patent/JP2001232358A/en
Application granted granted Critical
Publication of JP3619108B2 publication Critical patent/JP3619108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment process which enables stable removal of metazoa without forming any undesirable byproduct such as chlorinated organic compound in a chlorine disinfection process or concentrate in a membrane filtration process, and further, without any restriction with respect to the volume of water to be treated. SOLUTION: This metazoa removal process comprises passing an object to be treated, i.e., water to be treated which contains metazoans, through a UV irradiation treatment device and a sand filtration treatment device in that order. In the UV irradiation treatment, UV of 200-300 nm wavelengths are used and the total disinfectant UV output is adjusted to a value within a range less than the required dose for disinfecting 90% of the target metazoa, which value is expressed in terms of the treatment UV dose applied to the volume of water to be treated, to suppress mobility of the metazoa, and thereafter subjecting the resulting treated water to sand filtration treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、河川水等を取水源
とする上水、用水等の水処理において、後生動物を除去
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing metazoans in water treatment of tap water and water using river water or the like as a water source.

【0002】[0002]

【従来の技術】河川水等を取水源とする水処理プロセス
では、取水原水中に線虫、輪虫等の後生動物が含まれる
ことが多く、従来は塩素等の酸化剤系消毒剤による処
理、ならびに凝集沈殿、濾過処理等により除去されてい
た。しかしながら、後生動物中には、塩素耐性が高く、
なおかつ運動性を有するものが存在し、これらの処理で
は除去しきれず、その処理が問題となっている。また、
水処理系内に、活性炭処理を含む場合、活性炭層内に棲
息する細菌類等を捕食して、後生動物が増殖し、最終処
理水にまで漏出する場合も見られる。
2. Description of the Related Art In a water treatment process using river water or the like as a water source, metazoans such as nematodes and rotifers are often contained in raw water of intake water, and conventionally, treatment with an oxidizing disinfectant such as chlorine is used. , As well as by coagulation sedimentation and filtration. However, in metazoans, chlorine tolerance is high,
In addition, there is an object having mobility, and these processes cannot completely remove them, and that process is a problem. Also,
When the activated carbon treatment is included in the water treatment system, bacteria that live in the activated carbon layer are eaten, metazoans proliferate, and may leak to the final treated water.

【0003】これらの後生動物を除去する方法として
は、先に述べた酸化剤系消毒剤による消毒処理、凝集剤
による凝集処理、濾過による除去処理及びMF膜等によ
る膜濾過法による除去処理等が知られている。しかし、
酸化系消毒処理の場合に、消毒剤の濃度を高くした場合
に、塩素系ではトリハロメタン等の塩素化合物が、また
オゾンの場合にはアルデヒド系化合物の副生等の問題が
あり、注入濃度が制約される不都合が免れなかった。ま
た、最終工程における処理も、同様の理由で制約される
不都合があった。PAC(ポリ塩化アルミニウム)等に
よる凝集沈殿処理、濾過処理においても、後生動物の運
動性を完全に停止させない限りは、除去率は90%台に
留まり、原水の水質変動に伴う凝集状態の変動と合俟っ
て、完全に安定した除去性能を維持するすることは、困
難な状況に置かれている。MF膜等による膜濾過法は、
処理水量が比較的少ない場合に限定される。また、運動
性の高い後生動物ではプリーツ型のMFフィルターの膜
内を通過するものもあり、何らかの消毒処理を併用する
必要がある。
[0003] As a method for removing these metazoans, the above-mentioned disinfection treatment using an oxidizing agent-based disinfectant, coagulation treatment using a flocculant, removal treatment by filtration, and removal treatment by a membrane filtration method using an MF membrane or the like are mentioned. Are known. But,
In the case of oxidizing disinfection, when the concentration of the disinfectant is increased, chlorine compounds such as trihalomethane and chlorine are used. The inconvenience was not escaped. In addition, the processing in the final step has a disadvantage of being restricted for the same reason. In the coagulation sedimentation treatment with PAC (polyaluminum chloride) and the like, the removal rate remains in the 90% range as long as the metazoan motility is not completely stopped. Together, maintaining perfectly stable removal performance is a difficult situation. The membrane filtration method using an MF membrane, etc.
It is limited to the case where the amount of treated water is relatively small. Some metazoan animals with high mobility pass through the membrane of a pleated MF filter, so that it is necessary to use some sort of disinfection.

【0004】[0004]

【発明が解決しようとする課題】従来技術における消毒
剤による処理では、何らかの副生成物が形成され、凝集
沈殿処理あるいは、濾過処理や膜濾過単独では、後生動
物の運動性を止めない限りは、有効な除去性能を得るこ
とは難しい。また、比較的、高除去率が得られる膜処理
では、水量の規模が大きな場合には技術面、コスト面で
なお十分であるとは言い切れない。本発明は、上記の種
々諸問題に対処して、副生成物が形成することなく、安
定した後生動物の除去ができ、その上、水量規模の制約
を受けない水処理法を提供するものである。
In the prior art treatment with a disinfectant, some by-products are formed, and the coagulation sedimentation treatment or the filtration treatment or membrane filtration alone does not stop the metazoan motility unless it stops. It is difficult to obtain effective removal performance. In addition, in the case of a membrane treatment which can obtain a relatively high removal rate, it cannot be said that the technology and cost are still sufficient when the amount of water is large. The present invention provides a water treatment method capable of stably removing metazoans without forming by-products while addressing the various problems described above, and furthermore, is not restricted by the amount of water. is there.

【0005】[0005]

【課題を解決すための手段】本発明者等は、上記、従来
の処理技術において残されている諸問題を解決するため
に、後生動物を安全性が高く、また、高い除去性能で除
去処理できる方法について鋭意研究したところ、最低必
要量の紫外線照射を行なった後、表洗と逆洗の設備を具
備する砂濾過設備に通水して、混入する後生動物を除去
する方法が最も実用的かつ効果的であることを、知るに
至ったものである。即ち、本発明は、河川水等を取水源
とする水処理プロセスで、原水または各工程水中に含ま
れる後生動物を紫外線処理した後、砂濾過処理を行うこ
とにより除去する方法である。本発明の特徴は、水処理
プロセスの原水ならびに各工程処理水中に含まれる後生
動物の運動性ならびに増殖能力を静止させるために、最
低必要量の紫外線照射を行なった後、静止状態の後生動
物を砂濾過で確実に捕捉することにある。
In order to solve the above-mentioned problems remaining in the conventional processing technology, the present inventors have developed a method for removing metazoans with high safety and high removal performance. After intensive research on possible methods, the most practical method is to remove the metazoans that enter by removing the minimum necessary amount of ultraviolet light and then passing the water through a sand filtration facility equipped with surface washing and backwashing equipment. And it came to know that it was effective. That is, the present invention is a water treatment process using river water or the like as a water source, a method for removing metazoans contained in raw water or each step water by ultraviolet treatment, and then removing the treated animals by sand filtration. The feature of the present invention is that in order to stabilize the motility and growth ability of metazoans contained in the raw water of the water treatment process and the process water, the metazoans in the stationary state are irradiated with a minimum amount of ultraviolet irradiation, The purpose is to ensure that it is captured by sand filtration.

【0006】次いで、後生動物を充分に殺滅した逆洗用
水による砂濾過の逆線頻度を1回/日以上とすることに
より、捕捉した後生動物が再活性化して、運動性ならび
に増殖を行う前に逆洗水と共に系外に排出することにあ
る。更に、前記逆洗水中の後生動物を紫外線、消毒剤を
用いて処理した後、系外に排出、もしくは各消毒手段の
前工程に回収する。斯様に処理することにより、大規模
な水量中に含まれている後生動物を逆洗排水中に濃縮し
た後、効果的に殺滅し、処理水量を制約を受けることな
く、経済的かつ安全に後生動物の除去を成し遂げること
ができるものである。
[0006] Next, by setting the reversal frequency of sand filtration with backwash water, which has sufficiently killed metazoans, at least once per day, the captured metazoans are reactivated, motility and multiplication are achieved. Before discharging to the outside together with the backwash water. Further, metazoans in the backwash water are treated with ultraviolet rays and a disinfectant, and then discharged out of the system or collected in a step before each disinfecting means. By treating in this way, metazoans contained in a large-scale water volume are concentrated in the backwash wastewater, and then effectively killed. The removal of metazoans can be achieved.

【0007】即ち、本発明は以下に記載する各項により
構成される。 (1)紫外線照射処理と砂濾過処理との組み合せで構成
され、かつ、処理対象となる後生動物を含む被処理水を
紫外線照射処理、砂濾過処理の順に通水することを特徴
とする後生動物除去方法。 (2)前段の紫外線照射処理は、発光波長200〜30
0nmの光を連続あるいは断続的に出力するものであ
り、波長200〜300nmの全殺菌紫外線出力は処理
水量に対する処理紫外線量換算で標的とする後生動物の
90%殺菌必要線量以下の範囲にあり、後生動物の運動
性を抑制することを特徴とする前記(1)記載の後生動
物除去方法。
That is, the present invention comprises the following items. (1) Metazoa, which is composed of a combination of an ultraviolet irradiation treatment and a sand filtration treatment, and wherein water to be treated containing metazoa to be treated is passed in the order of an ultraviolet irradiation treatment and a sand filtration treatment. Removal method. (2) The ultraviolet irradiation treatment in the former stage is performed at an emission wavelength of 200 to 30.
0 nm light is output continuously or intermittently, and the total germicidal UV output at a wavelength of 200 to 300 nm is within the required dose of 90% sterilization of the target metazoan in terms of the amount of treated UV with respect to the amount of treated water, The method for removing metazoan animals according to the above (1), wherein motility of metazoans is suppressed.

【0008】(3)後段の砂濾過処理は表洗及び支持層
部に水逆洗及び空気洗浄の機能を持ち、水逆洗水には紫
外線、酸化剤系消毒剤であるオゾン又は塩素系消毒剤の
各処理水を用い、その逆洗頻度を1日1回以上とするこ
とを特徴とする前記(1)記載の後生動物除去方法。 (4)後段の砂濾過処理から排出される逆洗排水を紫外
線、オゾン又は塩素系の酸化剤系消毒剤による殺菌手段
で処理した後、系外に排出、もしくは各消毒手段の前工
程に回収することを特徴とする前記(1)記載の後生動
物除去方法。 (5)紫外線照射装置と砂濾過装置との組み合せで構成
され、かつ、処理対象となる後生動物を含む被処理水を
紫外線照射装置、砂濾過装置の順に通水することを特徴
とする後生動物除去装置。
[0008] (3) The sand filtration treatment in the latter stage has the functions of washing the surface and backwashing the water in the support layer, and washing the air with the backwashing water. The method for removing metazoan animals according to the above (1), wherein each treated water of the agent is used, and the frequency of the backwash is at least once a day. (4) The backwash wastewater discharged from the subsequent sand filtration treatment is treated with a sterilizing means using ultraviolet rays, ozone or a chlorine-based oxidant-based disinfectant, and then discharged outside the system or collected in a preceding process of each disinfecting means. The method for removing metazoan animals according to the above (1), wherein (5) A metazoan animal which is constituted by a combination of an ultraviolet irradiation device and a sand filtration device, and wherein the treated water containing metazoa to be treated is passed through the ultraviolet irradiation device and the sand filtration device in this order. Removal device.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を、各処理工
程に基づいて説明する。除去対象となる後生動物を含む
処理対象水を、まず紫外線照射装置に一過性で通水し、
対象水中の後生動物の運動性を抑制するために必要な波
長域の紫外線を最低必要量照射し、後生動物の運動性を
静止させる。ここで必要となる光の波長領域は、200
〜300nmであり、好ましくは250±10nm付近
の波長を主波長とし、相対強度として30%以上含むこ
とが望ましい。ここで用いられる紫外線照射装置は、波
長域200〜300nmの紫外線を連続あるいはパルス
状に断続的に発光する能力を具備する発光源であれば良
い。発光源の方式は、水銀ランプ方式、キセノンランプ
方式、レーザ方式アーク放電方式等いずれでも使用でき
るが、好ましくは、水銀ランプ方式が大量の処理水を安
価に処理するうえで実用的で望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on each processing step. The water to be treated including metazoans to be removed is first transiently passed through an ultraviolet irradiation device,
A minimum required amount of ultraviolet rays in a wavelength range necessary to suppress the motility of the metazoan in the target water is irradiated to stop the motility of the metazoan. The wavelength range of light required here is 200
To 300 nm, preferably a wavelength around 250 ± 10 nm as a main wavelength, and desirably contains 30% or more as a relative intensity. The ultraviolet irradiation device used here may be a light source having an ability to emit ultraviolet rays in a wavelength range of 200 to 300 nm continuously or intermittently in a pulsed manner. As a method of the light emitting source, any of a mercury lamp method, a xenon lamp method, a laser type arc discharge method and the like can be used. However, a mercury lamp method is practical and desirable for treating a large amount of treated water at low cost.

【0010】以下の説明では、水銀ランプ方式を用いて
本発明を説明するが、本発明の発光源はこれにより限定
されるものではない。水銀ランプ方式の種類は、従来の
殺菌用途に使用される低圧ランプ、中圧ランプなど、2
00〜300nmの波長を発光し、なおかつ、250±
10nmの波長を相対強度として30%以上含むもので
あれば良い。なお、一過性の紫外線処理を行う装置で
は、棒状ランプの場合、被処理水をランプの長手方向に
対して平行ないし垂直に流して処理するが、本発明では
一定の波長域の紫外線を一定量均一に照射できるもので
あれば、いずれでもよい。
In the following description, the present invention will be described using a mercury lamp system, but the light emitting source of the present invention is not limited thereto. The types of mercury lamp systems include low-pressure lamps and medium-pressure lamps used for conventional sterilization applications.
Emits a wavelength of 00 to 300 nm, and
What is necessary is just to include a wavelength of 10 nm as a relative intensity of 30% or more. In a device for performing a transient ultraviolet treatment, in the case of a rod-shaped lamp, the water to be treated is processed by flowing the water parallel or perpendicular to the longitudinal direction of the lamp. Any material can be used as long as it can be irradiated uniformly.

【0011】これらの紫外線照射装置により、対象とな
る後生動物に加える照射量は、従来の殺菌手段として用
いられる90%殺菌必要量、即ち対象となる生物の生存
数を1/10に減少させ、9割を致死に至らしめるため
に必要な照射線量以下であり、発光源の波長特性によ
り、巾を生じるが、好ましくは従来の90%殺菌必要線
量の1/2〜3/4量を照射する。本発明者等は、この
線量下において、対象とする後生動物を一時的に運動性
を失った静止状態とすることができることを発見した。
また、本発明者らは、254nmを90%以上主波長と
する低圧ランプの場合、照射線量90%殺菌必要線量の
3/4とし、250±10nmの波長域を30%以上含
み、なおかつ200〜240nm、260〜300nm
の近・遠紫外線を含む中圧ランプの場合は、前記必要線
量の1/2量の照射線量を加えることにより、対象とす
る後生動物が24時間以上に亙り運動性を停止した静止
状態に入り、24時間を超えると運動性が回復する現象
を発見した。
[0011] With these ultraviolet irradiation devices, the amount of irradiation to be applied to the target metazoan reduces the required amount of 90% sterilization used as conventional sterilization means, that is, the number of living target organisms to 1/10, The irradiation dose is 90% or less, which is less than the irradiation dose necessary to cause lethality, and a width is generated depending on the wavelength characteristics of the light emitting source. However, preferably, the irradiation amount is 1/2 to 3/4 of the conventional 90% sterilization required dose. . The present inventors have discovered that at this dose, the metazoan of interest can be brought into a stationary state, which has temporarily lost its motility.
In addition, the present inventors assume that the low-pressure lamp having a main wavelength of 254 nm of 90% or more is 照射 of the irradiation dose required for 90% sterilization, contains a wavelength range of 250 ± 10 nm of 30% or more, and 200 to 240 nm, 260-300 nm
In the case of a medium-pressure lamp containing near- and far-ultraviolet rays, the target metazoan enters a quiescent state in which motility has been stopped for more than 24 hours by adding an irradiation dose of 1/2 of the required dose. , A phenomenon in which motility was restored after more than 24 hours was discovered.

【0012】このような傾向は、従来の紫外線の殺菌機
構とは異なるものである。従来の殺菌機構の理論は、細
菌類、ウィルス、カビ等の原核微生物を対象とするもの
である。そのメカニズムは生物の生命活動の源である細
胞核内のDNA、RNAに254nmの紫外線が特異的
に吸収され、DNA、RNAの複製機能を阻害すること
により、生物が死滅に至ると説明されている。しかしな
がら、後生動物等の進化した真核生物の場合、細胞組織
は分化しており、一般的に原核細胞に比べ致死に必要と
される照射線量も高く、紫外線による損傷メカニズム、
その回復作用も原核生物とは異なる傾向を取ることは、
容易に考えられることである。
This tendency is different from the conventional ultraviolet sterilization mechanism. The conventional theory of the sterilization mechanism targets prokaryotic microorganisms such as bacteria, viruses, and molds. It is explained that the mechanism is that DNA and RNA in the cell nucleus, which are the source of life activity of the organism, absorb 254 nm ultraviolet rays specifically and inhibit the replication function of DNA and RNA, resulting in death of the organism. . However, in eukaryotes that have evolved, such as metazoans, the cell tissue is differentiated, and the irradiation dose required for lethality is generally higher than that of prokaryotic cells, and the damage mechanism by ultraviolet rays,
Its resilience also tends to be different from prokaryotes,
It is easy to imagine.

【0013】また、波長特性による効果の相違に関して
は、原核生物において波長域が広いほど、多種の生体成
分に吸収され、複合的な障害を生じることが知られてい
る。因みに、酸素の存在下で紫外線を加えた場合、損傷
部位は細胞膜脂質の脂肪酸、特に不飽和脂肪酸の酸化に
よるラジカル生成が損傷の引き金になると考えられてい
る。波長域が広い中圧ランプでは、複合的な障害を生じ
るために、後生動物の運動性を抑制するために必要とな
る照射線量が小さくなったものと考えられる。なお、照
射線量の範囲は、対象とする後生動物において、致死に
至るものが認められ始める線量を下限として、光源を低
圧ランプとした場合には、90%殺菌必要量の3/4量
以下、また、中圧ランプの場合には、1/2量以下を上
限とした。この上限は、紫外線処理した処理水中に含ま
れる対象となる後生動物が総て24時間以上に亙って、
運動性を回復することが無いことを条件として求めた値
である。
[0013] Regarding the difference in the effect due to the wavelength characteristics, it is known that the wider the wavelength range in prokaryotes, the more it is absorbed by various biological components and causes multiple obstacles. Incidentally, when ultraviolet light is applied in the presence of oxygen, it is considered that the damage site is triggered by the radical generation due to oxidation of fatty acids of cell membrane lipids, particularly unsaturated fatty acids. It is probable that the medium pressure lamp with a wide wavelength range caused a complex obstacle, so that the irradiation dose required to suppress the motility of metazoans was reduced. In addition, the range of the irradiation dose is the lower limit of the dose at which metabolic animals to be treated begin to cause lethality. When the light source is a low-pressure lamp, the required dose is 3/4 or less of the 90% sterilization required amount. In the case of a medium-pressure lamp, the upper limit is set to 1/2 or less. The upper limit is that the metazoans to be contained in the treated water subjected to the ultraviolet treatment are all over 24 hours,
It is a value obtained on condition that there is no recovery of motility.

【0014】上記のように、90%殺菌必要線量の1/
2〜3/4量を照射して運動性を抑制した後生動物を次
工程の砂濾過処理により除去する。後生動物は運動性を
有する状態では、砂濾過層内を容易に移動することがで
き、処理水側に混入し漏出することが知られており、砂
濾過処理で確実に後生動物を捕獲するためには、紫外線
照射により、その運動性を抑止して静止状態にしておく
ことが必須の処理条件となる。上記の砂濾過処理に用い
る砂濾過設備は、一般の上水道処理等で用いられている
下降流方式の急速濾過地であり、逆洗設備を有するもの
であれば、何れのものでもよい。設備の基本仕様として
は、濾過速度が120〜150m/d以内であり、水理
的には重力式、圧力式の何れでも良い。
As described above, 1/90 of the required dose for 90% sterilization.
After the motility is suppressed by irradiating 2/3/4 of the animals, the live animals are removed by sand filtration in the next step. It is known that metazoans can easily move in the sand filtration layer when they have motility, and it is known that they mix into the treated water side and leak out. In this case, it is an essential processing condition to suppress the motility and keep a stationary state by irradiating ultraviolet rays. The sand filtration equipment used for the above-mentioned sand filtration processing is a downflow type rapid filtration ground used in general water supply treatment and the like, and any sand filtration equipment having a backwashing equipment may be used. As the basic specifications of the equipment, the filtration speed is within 120 to 150 m / d, and hydraulically, any of a gravity type and a pressure type may be used.

【0015】濾過砂の品質は、日本水道協会規格に準ず
るものであり、砂層の厚さは60〜70cmを標準とす
ることが望ましい。また、逆洗設備は、砂層の表面部を
洗浄する表面洗浄と、濾層下部からの逆流洗浄との両者
の機能を有するものであることが好ましい。また、濾層
内の付着濁質が多いなどの場合には、逆流洗浄と空気洗
浄を併用しても良い。ここで用いる表面洗浄装置は、固
定式、回転式いずれでもよく、洗浄圧力等の条件は、水
流の剪断力によって表面部の泥状層を破砕し、洗浄効果
を上げられる条件であれば良い。また、逆流洗浄は、濾
層内の抑留物質を濾材から剥離し、剥離した物質を濾層
から分離してトラフから排出させるに充分な洗浄流速と
均一な水流分布が保たれ、最も洗浄効果が有効とされる
層の膨張率20〜30%に保てる条件であれば良い。
The quality of the filtered sand conforms to the standards of the Japan Water Works Association, and the thickness of the sand layer is desirably 60 to 70 cm as a standard. Further, it is preferable that the backwash facility has both functions of surface cleaning for cleaning the surface portion of the sand layer and backflow cleaning from the lower part of the filter layer. When the amount of suspended solids in the filter layer is large, backwashing and air washing may be used in combination. The surface cleaning device used here may be either a fixed type or a rotary type, and the conditions such as the cleaning pressure may be any conditions as long as the muddy layer on the surface is crushed by the shear force of the water flow to improve the cleaning effect. Backwashing also keeps a sufficient washing flow rate and uniform water flow distribution to separate the detained substances in the filter layer from the filter medium, separate the separated substances from the filter layer and discharge them from the trough. Any condition can be used as long as the expansion coefficient of the layer to be effective can be maintained at 20 to 30%.

【0016】本発明において、厳守しなければならない
条件は、表面洗浄と逆流洗浄の頻度であり、この頻度
は、上記した紫外線照射により運動性が静止した後生動
物が再活性化して、運動性を回復するまでの所要時間で
決定され、先の紫外線照射線量を加えた場合、24時
間、1回/1日以上の頻度が必須であり、濾過層におけ
る補捉効率、逆洗における使用水量等のことを考慮する
と、1回/1日が妥当であり、好ましい。また、この逆
洗に用いる用水は、本発明の砂濾過処理水を最低限の水
質とし、出来る限り、後生動物を殺滅した水を用いるこ
とが望ましく、更に、砂濾過処理水に10-4レベルの紫
外線照射、またはオゾン等の酸化剤系薬剤による消毒を
施した用水を使用することがより好ましい。なお、オゾ
ン処理の場合、逆洗操作後の濾層内にオゾン水が残留す
ることがあり、その水が処理水として出てしまうことが
あるので、捨水により残留オゾン水が除かれたことを確
認できた後に、採水を行うことが必要となる。上記、逆
洗に用いる用水の両者の処理を考慮すると、用水の使用
量、逆洗に要する時間等の点で紫外線処理が最も実用的
である。
In the present invention, the condition to be strictly adhered to is the frequency of surface washing and backwashing, and this frequency is determined by the above-mentioned irradiation of ultraviolet light, after which the living animal is reactivated and the motility is reduced. It is determined by the time required to recover, and when the above ultraviolet irradiation dose is added, the frequency of 24 hours, once a day or more is essential, and the trapping efficiency in the filtration layer, the amount of water used in backwashing, etc. Considering this, once / day is appropriate and preferable. Also, water used for the backwashing, the sand filtration process water of the present invention with a minimum of water, as much as possible, it is desirable to use water that kill metazoan, further 10-4 to sand filtration treatment water It is more preferable to use water that has been subjected to a level of ultraviolet irradiation or disinfected with an oxidizing agent such as ozone. In the case of ozone treatment, ozone water may remain in the filter layer after the backwash operation, and the water may come out as treated water. After confirming that it is necessary to collect water. Considering both of the above treatments of the water used for backwashing, ultraviolet treatment is most practical in terms of the amount of water used, the time required for backwashing, and the like.

【0017】前記したように、逆洗用水中の対象となる
後生動物の数は、1個/1m3 以下のレベルであること
が望ましい。本発明の逆洗用水である砂濾過水中の後生
動物数は、1個/1リットル以下のレベルであることが
望ましい。仮に、逆洗用水中に後生動物が、1個/1m
3 以上存在している水を用いた場合、砂濾過層下部側に
おいて、それらの後生動物が増殖し、容易に処理水中に
流出して、見掛け上、除去性能が顕しく低下することに
なる。次に、砂濾層から分離された後生動物を含む逆洗
排水は、そのまま排水すると、排水先において多量の後
生動物が再活性化して排水系を汚染するなどの問題を生
じる可能性があり、問題のないレベルまで消毒した後、
系外に排出するか、もしくは、前段の処理工程におい
て、後生動物を除去あるいは消毒しうる工程の前に戻し
て回収することが望ましい。
As described above, the number of metazoans to be treated in the backwash water is desirably at a level of 1 / m 3 or less. It is desirable that the number of metazoans in the sand-filtered water, which is the backwashing water of the present invention, is at a level of 1 / liter or less. Assuming that metazoans are 1 / m in backwash water
When three or more existing waters are used, metazoans grow on the lower side of the sand filtration layer, easily flow into the treated water, and apparently have a markedly reduced removal performance. Next, if the backwash wastewater containing metazoans separated from the sand filter layer is drained as it is, there is a possibility that a large amount of metazoans will be reactivated at the drainage destination and cause problems such as contaminating the drainage system, After disinfecting to a safe level,
It is desirable to discharge them to the outside of the system, or to collect them in a preceding treatment step before returning to a step capable of removing or disinfecting metazoans.

【0018】排水を消毒して排出する場合、消毒手段と
しては、まず、酸化剤系消毒剤による処理が挙げられ
る。これに用いる消毒剤としては、二酸化塩素等の無機
塩素系消毒剤が、また、処理時間を短縮したい場合に
は、オゾン消毒が挙げられる。なお、消毒剤の場合、そ
の致死効果は消毒剤濃度と処理時間で主に決まるため、
接触槽などを設け、10-6〜10-7レベルの消毒効果が
得られる処理を行う必要がある。因に、最も酸化系消毒
剤に対して耐性を持つとされる、Rhabditis sp. 、 Prec
tus sp. 等の線虫をオゾンで処理する場合、10-6〜1
-7レベルの不活性化を達成するためには、CT値(m
g・min/リットル)換算で30〜35mg・min
/リットルの処理を加えることになる。
When the wastewater is disinfected and discharged, the disinfecting means firstly includes a treatment with an oxidizing disinfectant. Examples of the disinfectant used for this purpose include an inorganic chlorine-based disinfectant such as chlorine dioxide, and ozone disinfection for shortening the processing time. In the case of a disinfectant, its lethal effect is mainly determined by the concentration of the disinfectant and the processing time.
It is necessary to provide a contact tank or the like and perform a treatment capable of obtaining a disinfection effect of a level of 10 -6 to 10 -7 . However, Rhabditis sp., Prec, which is said to be most resistant to oxidizing disinfectants
When treating nematodes such as tus sp. with ozone, 10 -6 to 1
To achieve 0-7 level of inactivation, the CT value (m
g-min / liter) 30-35 mg · min
Per liter of processing.

【0019】また、UVを用いる場合は、対象となる後
生動物の90%殺菌必要線量から換算して、10-6〜1
-7の不活性必要線量を求め、一過性もしくは滞留槽に
外部循環式の紫外線照射装置を設けて、必要線量に応じ
た処理を加えればよい。紫外線照射処理を加えた逆洗排
水は、そのまま系外に排出してもよく、逆洗排水中の濁
質、後生動物の死骸を除去しうる凝集沈殿、凝集濾過な
どの前段に戻してもよい。なお、オゾン又は塩素系の酸
化剤系消毒剤を用いた場合、逆洗排水は、残留する消毒
剤を中和もしくは除去した後、系外に排出するか、もし
くは紫外線と同様に、SS成分を除去しうる工程の前段
に戻して回収してもよい。また、逆洗排水を一旦、消毒
せずに回収する場合は、対象となる後生動物を消毒でき
る工程、好ましくは、凝集沈殿、濾過工程、その後段に
オゾン処理等の消毒工程を有する場合は、凝集の前段に
戻すことが望ましい。
When UV is used, it is calculated to be 10 -6 to 1 based on the required dose of 90% sterilization of the metazoan to be treated.
0 -7 seek inert required dose, and the external circulation type ultraviolet irradiation apparatus provided transiently or residence tank, may be added to the process in accordance with the required dose. The backwash wastewater to which the ultraviolet irradiation treatment has been added may be discharged to the outside of the system as it is, or may be returned to the previous stage such as coagulation sedimentation and coagulation filtration capable of removing turbidity and metacarp dead in the backwash wastewater. . When an ozone or chlorine-based oxidant-based disinfectant is used, the backwash wastewater is either neutralized or removed from the remaining disinfectant and then discharged out of the system, or the SS component is removed in the same manner as ultraviolet rays. You may collect | recover by returning to the former stage of the process which can be removed. In addition, when the backwash wastewater is collected once without disinfection, a process capable of disinfecting the metazoan of interest, preferably a coagulation sedimentation, a filtration process, and a disinfection process such as ozone treatment in the subsequent stage, It is desirable to return to the stage before aggregation.

【0020】以上、詳細に説明したように、本発明にお
いては後生動物を含む被処理水、特に、大水量の水の中
から、紫外線処理と砂濾過処理により不必要なエネルギ
ーを投入することなく、対象とする後生動物を除去、濃
縮し、更に逆洗排水中に濃縮された後生動物を効率高
く、かつ、安全に不活性化して系外に排出、もしくは回
収するものであり、従来、困難とされていた後生動物の
除去を高い効率で、かつまた、安全になし得るものであ
る。
As described above in detail, in the present invention, from the water to be treated including metazoans, in particular, a large amount of water, unnecessary energy is supplied by ultraviolet treatment and sand filtration treatment. The target metazoan is removed and concentrated, and the metazoan concentrated in the backwash wastewater is efficiently and safely inactivated and discharged or collected out of the system. It is possible to remove metazoans with high efficiency and safely.

【0021】[0021]

【実施例】以下において、実施例により本発明を更に詳
しく説明するが、本発明はこれによって制限されるもの
ではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0022】実施例 図1は、本発明を実施する処理系統の一例で、処理を連
続形式で行った場合について説明する。原水1には河川
水を用い、この原水1を550m3 /dの流量で接触池
2に供給する過程において、二酸化塩素(ClO2 )3
を2mg/リットルを添加し、滞留時間60分で接触酸
化処理を行う。次いで、接触酸化処理を経た処理水4に
凝集剤(PAC)5を75〜115mg/リットル添加
して凝集沈殿池6に移送し、滞留時間60分で凝集沈殿
処理を行う。凝集沈殿処理で沈殿物を分離した処理水7
は、次いでオゾン接触池8に移行させて、濃度1.5〜
2.0mg/リットル、接触時間12分のオゾン処理を
する。オゾン処理を経た処理水9は、活性炭接触池10
に通水速度SV=5h-1で通水して線虫類を含む対象水
11を得る。
Embodiment FIG. 1 shows an example of a processing system for carrying out the present invention, and describes a case where processing is performed in a continuous format. River water is used as the raw water 1. In the process of supplying the raw water 1 to the contact pond 2 at a flow rate of 550 m 3 / d, chlorine dioxide (ClO 2 ) 3 is used.
Is added, and a catalytic oxidation treatment is performed with a residence time of 60 minutes. Then, 75 to 115 mg / liter of a coagulant (PAC) 5 is added to the treated water 4 which has been subjected to the catalytic oxidation treatment, and the coagulant (PAC) 5 is transferred to the coagulation sedimentation basin 6. Treated water 7 from which sediment is separated by coagulation sedimentation
Is then transferred to the ozone contact pond 8 to a concentration of 1.5 to
Ozone treatment is performed at 2.0 mg / liter for a contact time of 12 minutes. The treated water 9 that has undergone the ozone treatment is converted into an activated carbon contact pond 10.
At a water flow rate SV = 5 h -1 to obtain target water 11 containing nematodes.

【0023】次いで、この対象水11を、本発明による
中圧UVランプ方式紫外線照射装置12→砂濾過池13
a→処理水槽15a→逆洗ポンプ16a→紫外線照射装
置17→砂濾過池13aに至る試験区(A)ラインと、
砂濾過池13b→処理水槽15b→逆洗ポンプ16b→
砂濾過池13bに至る試験区(B)ラインの各々に、2
20m3 /日で通水し、本発明の効果を確認した。な
お、砂濾過池13a、13bの濾過速度はLV=100
m/日とし、逆洗は表面洗浄と逆洗洗浄を併用し、逆洗
頻度は24時間毎とした。
Next, the target water 11 is converted into a medium pressure UV lamp type ultraviolet irradiation device 12 → sand filtration pond 13 according to the present invention.
a → treatment water tank 15a → backwash pump 16a → ultraviolet irradiation device 17 → test zone (A) line leading to sand filtration pond 13a
Sand filtration pond 13b → treated water tank 15b → backwash pump 16b →
Each of the test section (B) lines leading to the sand filtration reservoir 13b has 2
Water was passed at 20 m 3 / day, and the effect of the present invention was confirmed. The filtration speed of the sand filtration ponds 13a and 13b is LV = 100.
m / day, backwashing used both surface washing and backwashing, and the frequency of backwashing was every 24 hours.

【0024】紫外線照射装置12による紫外線照射量
は、対象とした後生動物である線虫類の90%殺菌必要
線量68mJ/cm2 の1/2量である34mJ/cm
2 とした。なお、最終段の砂濾過池13aの逆洗用水
は、砂濾過池13aの処理水14aを処理水貯槽15
a、逆洗ポンプ16aを経て紫外線照射装置17で処理
した水17aを使用した。砂濾過池13aの逆洗排水1
8aは、原水1に返戻、回収する。一方、砂濾過池13
bの逆洗用水には、砂濾過池13bの処理水14bを処
理水槽15b、逆洗ポンプ16bを経て返戻した水18
bを使用した。上記において、夏季3ケ月間の運転で得
られた結果をそれぞれ、第1表、図2に示す。
The amount of ultraviolet irradiation by the ultraviolet irradiation device 12 is 34 mJ / cm, which is 量 of 90 m sterilization required dose 68 mJ / cm 2 of nematodes which are metazoans of interest.
And 2 . The backwash water of the sand filtration pond 13a at the final stage is the treated water 14a of the sand filtration pond 13a and the treated water storage tank 15a.
a, Water 17a treated by an ultraviolet irradiation device 17 through a backwash pump 16a was used. Backwash drainage 1 from sand filter 13a
8a is returned to the raw water 1 and collected. On the other hand, sand filtration pond 13
In the backwashing water b, treated water 14b of the sand filtration pond 13b is returned through the treated water tank 15b and the backwash pump 16b.
b was used. In the above, the results obtained by driving for three months in summer are shown in Table 1 and FIG. 2, respectively.

【0025】[0025]

【表1】 [Table 1]

【0026】第1表の結果は、各工程における処理水中
の線虫類の生体数、死体数の計測値とその値から換算し
た各工程処理水中の線虫の致死率と各工程での除去率を
示したものである。ここで言う致死率は、生体数と死体
数を合わせた総数を分母とし、その工程の死体数を分子
として求めた値であり、死体、生体を合わせた値であ
る。図1の流れに順じて線虫類の挙動を説明すると、ま
ず、原水には総数で20〜220個/2リットルが見ら
れ、その内、死体は5%〜21%程度で、生きているも
のが大半である。次の前二酸化塩素及び凝集沈殿処理を
受けた凝集沈殿処理水では総数で10〜20個/2リッ
トルに減少し、なおかつ凝集沈殿で残留するものは、総
て運動性をもつ生体である。次のオゾン処理水は、総数
では変化は見られないが、大半は死体となる。死体の大
半は残存するため、除去率は変わらない。更に対象水で
ある活性炭処理水では、生体数、死体数ともに増加し、
総数で7〜147個/2リットルとなり、活性炭処理で
線虫類が増殖している様子が解る。
The results in Table 1 show the measured values of the numbers of living organisms and corpses of nematodes in the treated water in each process and the mortality of nematodes in the treated water in each process converted from the measured values and the removal in each process. It shows the rate. The lethality referred to here is a value obtained by using the total number of the number of living bodies and the number of dead bodies as a denominator and the number of dead bodies in the process as a numerator, and is a value obtained by combining the dead bodies and living bodies. The behavior of the nematodes will be described according to the flow of FIG. 1. First, a total of 20 to 220/2 liters are found in the raw water, of which about 5% to 21% of the corpses are alive. Most of them are. In the following coagulated sedimentation water subjected to the pre-chlorine dioxide and coagulated sedimentation treatment, the total number is reduced to 10 to 20/2 liters, and all that remains in the coagulated sedimentation are living bodies having mobility. The next ozonated water remains the same, but most are dead. The removal rate remains the same, as most of the corpses remain. Furthermore, in activated carbon treated water, which is the target water, both the number of living organisms and the number of carcasses increase,
The total number is 7 to 147 pieces / 2 liters, indicating that nematodes are growing by activated carbon treatment.

【0027】次に、本発明による紫外線、砂濾過処理水
では、総数の除去率で99.5%以上、残存するものは
生体1個/2リットルのみとなり、明らかに除去されて
いることが解る。一方、対照とした砂濾過処理のみで
は、総数15〜147個/2リットルと若干ながら増え
ている様子すら見られ、砂濾過処理のみでは十分な除去
がし得ないことが解る。次に、図2において、本発明の
対象水とした活性炭処理水、試験区である紫外線・砂濾
過処理水、対照区である砂濾過処理水、更には砂濾過の
逆洗用水中の線虫類の存在状態を生体、死体、更には本
発明の特徴である運動性を失った静止体に区分して測定
した結果を示す。状態判定の基準は、次の通りである。
生体は、顕微鏡観察下30秒間で明らかに動くもの。死
体は、直線状態を採り、1分間以上動かないもの。静止
体は、1分間以内に、僅かながらも動くもの、または体
が直線状にならないもの。として、それぞれを計測し
た。
Next, it can be seen that, in the treatment water treated with ultraviolet rays and sand according to the present invention, the total removal rate is 99.5% or more, and only one living body / 2 liter remains, which is clearly removed. . On the other hand, in the case of only the sand filtration process as a control, it can be seen that the total number is slightly increased to 15 to 147 pieces / 2 liters, and it can be seen that the sand filtration process alone cannot perform sufficient removal. Next, in FIG. 2, nematodes in the activated carbon treated water as the target water of the present invention, the ultraviolet ray / sand filtration treated water as the test plot, the sand filtration treated water as the control plot, and the water for back washing of the sand filtration. FIG. 4 shows the results of measurement of the existence state of a kind in a living body, a cadaver, and a stationary body that has lost motility, which is a feature of the present invention. The criteria for the state determination are as follows.
The living body clearly moves in 30 seconds under microscopic observation. A corpse is a straight one that does not move for more than one minute. A stationary body is one that moves slightly within one minute, or one that does not straighten. Each was measured.

【0028】対象水である活性炭素処理水には、生体と
死体に判断されるものが多く、生体と判定されたもの
の、大半は明瞭な運動性を示した。試験区の紫外線処理
を加えたものでは、死体数も2%程度は増加するが、大
半は、運動性を著しく失い静止体と判定される状態とな
る。次の砂濾過処理により、生体の一部のみが残存する
ものの、線虫類の大半は除去されていることが解る。対
象区の砂濾過処理のみでは、生体数、死体数ともに僅か
ではあるが増えている様子も見られる。
The activated carbon treated water, which is the target water, is often determined to be a living body or a corpse, and although it is determined to be a living body, the majority showed clear motility. The number of dead bodies increased by about 2% when the test group was treated with ultraviolet light, but most of them lost much of their motility and were determined to be stationary. It can be seen that by the following sand filtration treatment, although only a part of the living body remains, most of the nematodes have been removed. The number of living organisms and the number of carcasses are slightly increased in the target area only by the sand filtration treatment.

【0029】特に、処理水中には、対象水と同程度の死
体数が認められ、砂濾過層内で再繁殖している可能性が
示唆された。更に、紫外線・砂濾過処理水を、再度紫外
線処理した逆洗用水中には、僅かに死体が見られる程度
であり、逆洗用水による二次汚染は完全に防止されてい
ることが解る。また、本試験では、逆洗排水を原水接触
池に回収しているが、第1表に見られるように、凝集沈
殿、続くオゾン処理では、大半が不活性化されて死体と
なっており、何ら問題なく、本発明が機能していること
が解る。
In particular, the number of dead bodies in the treated water was about the same as that of the target water, suggesting the possibility of re-propagation in the sand filtration layer. Further, only a small amount of dead bodies were found in the backwashing water after the ultraviolet / sand filtration treatment water was again subjected to the ultraviolet treatment, indicating that the secondary contamination by the backwashing water was completely prevented. In this test, the backwash wastewater was collected in the raw water contact pond, but as shown in Table 1, most of the coagulated sedimentation and subsequent ozone treatment resulted in inactivation and mortality. It turns out that the present invention works without any problem.

【0030】[0030]

【発明の効果】本発明は、以上において詳細に説明した
ことから明らかなように、従来の水処理において困難で
あった、被処理水中に混入する後生動物の除去を、無駄
なエネルギーを投入することなく、紫外線照射処理と砂
濾過処理という比較的簡単な処理で、効率よく、容易か
つ経済的に除去することができるので、極めて有益であ
る。本発明においては、紫外線照射処理においては後生
動物が運動性を著しく失う程度の照射量を加えればよい
ので、紫外線照射量が少なくて良く、その運動性を著し
く失った後生動物を砂濾過処理で分離することができ
る。さらに、その砂濾過装置で溜まった後生動物を逆洗
で除去すれば、砂濾過装置で後生動物が増殖することを
抑えられ、逆洗水中の後生動物を処理して除くことがで
きる。
As is apparent from the above description, the present invention removes metazoans mixed in the water to be treated, which was difficult in the conventional water treatment, by inputting useless energy. This is extremely advantageous because it can be efficiently, easily and economically removed by a relatively simple treatment such as an ultraviolet irradiation treatment and a sand filtration treatment. In the present invention, in the ultraviolet irradiation treatment, it is only necessary to add an irradiation amount to the extent that metazoans significantly lose their motility.Therefore, the amount of ultraviolet irradiation may be small, and the metazoans that have significantly lost their motility may be subjected to sand filtration. Can be separated. Further, if metazoans accumulated in the sand filtration device are removed by backwashing, the growth of metazoans in the sand filtration device can be suppressed, and metazoans in the backwash water can be treated and removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する処理系統の一例を示す図面で
ある。
FIG. 1 is a drawing showing an example of a processing system for implementing the present invention.

【図2】本発明の対象水の処理別に、線虫類の存在状態
を生体、死体、静止体に区分して測定した結果を示す。
FIG. 2 shows the results of measurement of the nematode existence state classified into living body, dead body, and stationary body, according to the treatment of the target water of the present invention.

【符号の説明】[Explanation of symbols]

1 原水 2 接触池 3 二酸化塩素 4 処理水 5 凝集剤 6 凝集沈殿地 7 処理水 8 オゾン接触池 9 処理水 10 活性炭接触池 11 対象水 12 中圧UVランプ方式紫外線照射装置 13a、13b 砂濾過池 14a、14b 処理水 15a、15b 処理水槽 16a、16b 逆洗ポンプ 17 紫外線照射装置 17a 紫外線照射装置で処理した水 18a 砂濾過池13aの逆洗排水 18b 逆洗ポンプ16bを経て返戻した水 DESCRIPTION OF SYMBOLS 1 Raw water 2 Contact pond 3 Chlorine dioxide 4 Treated water 5 Coagulant 6 Coagulated sedimentation ground 7 Treated water 8 Ozone contact pond 9 Treated water 10 Activated carbon contact pond 11 Target water 12 Medium pressure UV lamp type ultraviolet irradiation device 13a, 13b Sand filter pond 14a, 14b Treated water 15a, 15b Treated water tank 16a, 16b Backwash pump 17 Ultraviolet irradiation device 17a Water treated by ultraviolet irradiation device 18a Backwash drainage of sand filter pond 13a 18b Water returned via backwash pump 16b

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 531 C02F 1/50 560C 560Z 560 1/76 A 1/78 1/76 9/00 502D 1/78 502N 9/00 502 502R 503A 504B 503 B01D 29/08 510B 504 520A 540A 29/38 510B (71)出願人 000001052 株式会社クボタ 大阪府大阪市浪速区敷津東一丁目2番47号 (71)出願人 000193508 水道機工株式会社 東京都世田谷区桜丘五丁目48番16号 (74)上記3名の代理人 100073874 弁理士 萩野 平 (外1名) (72)発明者 保坂 義男 茨城県水戸市笠原町978番6 茨城県企業 局内 (72)発明者 伊藤 睦雄 茨城県水戸市笠原町978番6 茨城県企業 局内 (72)発明者 佐々木 賢一 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 松本 直秀 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 神林 常雄 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 宮ノ下 友明 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 (72)発明者 堤 行彦 大阪府大阪市浪速区敷津東1丁目2番47号 株式会社クボタ内 (72)発明者 前田 勝史 東京都中央区日本橋室町三丁目1番3号 株式会社クボタ東京本社内 (72)発明者 長谷川 孝雄 東京都世田谷区桜丘5丁目48番16号 水道 機工株式会社内 (72)発明者 黒川 真弓 東京都世田谷区桜丘5丁目48番16号 水道 機工株式会社内 Fターム(参考) 4D037 AA01 AA02 AB18 BA18 CA02 CA11 CA12 4D050 AA08 AB06 BB02 BB04 BC09 BD06 CA07 CA15 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 531 C02F 1/50 560C 560Z 560 1/76 A 1/78 1/76 9/00 502D 1 / 78 502N 9/00 502 502R 503A 504B 503 B01D 29/08 510B 504 520A 540A 29/38 510B (71) Applicant 000001052 Kubota Co., Ltd. 2-47, Shikitsuhigashi, Namiwa-ku, Osaka City, Osaka (71) Applicant 000193508 Waterworks Co., Ltd. 5-48-16 Sakuragaoka, Setagaya-ku, Tokyo (74) The above three agents 100073874 Patent Attorney Hagino Taira (one outside) (72) Inventor Yoshio Hosaka Kasahara-cho, Mito-shi, Ibaraki 978-6 Ibaraki Prefectural Enterprise Bureau (72) Inventor Mutsuo Ito 978-6 Kasaharacho, Mito-shi, Ibaraki Pref.Ibaraki Prefectural Enterprise Bureau (72) Akiya Kenichi Sasaki 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa Prefecture Ebara Research Institute, Inc. (72) Inventor Naohide Matsumoto 11-1, Haneda Asahi-cho, Ota-ku, Tokyo Ebara Corporation (72) Invention Person Tsuneo Kambayashi 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation (72) Inventor Tomoaki Miyanoshita 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation (72) Inventor Yukihiko Tsutsumi 1-47, Shikitsu-Higashi 1-chome, Naniwa-ku, Osaka-shi, Osaka (72) Inventor Katsumi Maeda 3-3-1, Nihonbashi Muromachi, Chuo-ku, Tokyo In-house Kubota Tokyo Co., Ltd. (72) Inventor Hasegawa Takao 5-48-16 Sakuragaoka, Setagaya-ku, Tokyo Waterworks Kiko Co., Ltd. (72) Inventor Mayumi Kurokawa 5-48-16 Sakuragaoka, Setagaya-ku, Tokyo F-term (reference) 4D037 AA01 AA02 AB18 BA18 CA02 CA11 CA12 4D050 AA08 AB06 BB02 BB04 BC09 BD06 CA07 CA15

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 紫外線照射処理と砂濾過処理との組み合
せで構成され、かつ、処理対象となる後生動物を含む被
処理水を紫外線照射処理、砂濾過処理の順に通水するこ
とを特徴とする後生動物除去方法。
1. A treatment method comprising a combination of an ultraviolet irradiation treatment and a sand filtration treatment, wherein water to be treated including metazoans to be treated is passed in the order of the ultraviolet irradiation treatment and the sand filtration treatment. Metazoan removal method.
【請求項2】 前段の紫外線照射処理は、発光波長20
0〜300nmの光を連続あるいは断続的に出力するも
のであり、波長200〜300nmの全殺菌紫外線出力
は処理水量に対する処理紫外線量換算で標的とする後生
動物の90%殺菌必要線量以下の範囲にあり、後生動物
の運動性を抑制することを特徴とする請求項1記載の後
生動物除去方法。
2. The method according to claim 1, wherein the ultraviolet irradiation is performed at an emission wavelength of 20.
It outputs light of 0 to 300 nm continuously or intermittently, and the total germicidal ultraviolet output at a wavelength of 200 to 300 nm falls within the required dose of 90% or less for the target metazoan in terms of the amount of treated ultraviolet light in terms of the amount of treated water. 2. The method for removing metazoan animals according to claim 1, wherein the metamorphosis of the metazoans is suppressed.
【請求項3】 後段の砂濾過処理は表洗及び支持層部に
水逆洗及び空気洗浄の機能を持ち、水逆洗水には紫外
線、酸化剤系消毒剤であるオゾン又は塩素系消毒剤の各
処理水を用い、その逆洗頻度を1日1回以上とすること
を特徴とする請求項1記載の後生動物除去方法。
3. The subsequent sand filtration treatment has the function of washing the surface and backwashing the support layer with water, and the backwashing water contains ultraviolet light, an oxidant-based disinfectant such as ozone or a chlorine-based disinfectant. 2. The method of removing metazoan animals according to claim 1, wherein each of the treated waters is used, and the frequency of the backwash is at least once a day.
【請求項4】 後段の砂濾過処理から排出される逆洗排
水を紫外線、オゾン又は塩素系の酸化剤系消毒剤による
殺菌手段で処理した後、系外に排出、もしくは各消毒手
段の前工程に回収することを特徴とする請求項1記載の
後生動物除去方法。
4. The backwash wastewater discharged from the subsequent sand filtration treatment is treated by a sterilizing means using ultraviolet, ozone, or chlorine-based oxidant-based disinfectant, and then discharged outside the system or a pre-process of each disinfecting means. The method for removing metazoan animals according to claim 1, wherein the animal is collected.
【請求項5】 紫外線照射装置と砂濾過装置との組み合
せで構成され、かつ、処理対象となる後生動物を含む被
処理水を紫外線照射装置、砂濾過装置の順に通水するこ
とを特徴とする後生動物除去装置。
5. A water treatment system comprising a combination of an ultraviolet irradiation device and a sand filtration device, wherein water to be treated including metazoans to be treated is passed through the ultraviolet irradiation device and the sand filtration device in this order. Metazoan removal equipment.
JP2000051453A 2000-02-28 2000-02-28 Metazoan removal method Expired - Fee Related JP3619108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000051453A JP3619108B2 (en) 2000-02-28 2000-02-28 Metazoan removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000051453A JP3619108B2 (en) 2000-02-28 2000-02-28 Metazoan removal method

Publications (2)

Publication Number Publication Date
JP2001232358A true JP2001232358A (en) 2001-08-28
JP3619108B2 JP3619108B2 (en) 2005-02-09

Family

ID=18573105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000051453A Expired - Fee Related JP3619108B2 (en) 2000-02-28 2000-02-28 Metazoan removal method

Country Status (1)

Country Link
JP (1) JP3619108B2 (en)

Also Published As

Publication number Publication date
JP3619108B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
US6451209B1 (en) Method and a system for the treatment of water
RU2738259C2 (en) Liquid treatment system and method
Ghernaout et al. On the treatment trains for municipal wastewater reuse for irrigation
JP2005502457A (en) Combined use of ozone / ultraviolet light for decomposition of contained substances
SG183405A1 (en) Ballast water treatment system using a highly efficient electrolysis device
Bustos-Terrones et al. Degradation of organic matter from wastewater using advanced primary treatment by O3 and O3/UV in a pilot plant
KR100939442B1 (en) Algae removal method and the system which using the chlorine dioxide
US7989673B2 (en) High energy disinfection of waste
KR20110046589A (en) System and method purifying water using biological activated carbon and granular activated carbon
JPH11290848A (en) Method and apparatus for filtration
ITRM20100372A1 (en) METHOD FOR THE PREPARATION AND USE OF ENRICHED BIOCIDES IN ACTIVE RADICALS BEFORE USE.
JP2004025018A (en) Sea water desalting apparatus by reverse osmosis
JP2017176149A (en) Closed circulation type land-based aquaculture system making ozone treatment and biological filtration treatment coexist and its control method
JP2001232358A (en) Metazoa removal process
KR100497771B1 (en) Simplicity clean water treatment system
JP2844071B2 (en) Water purification device
RU2092448C1 (en) Method of cleaning and disinfecting aqueous media
Adewale et al. Decontamination of Treated Wastewater By means of a Modern Ultraviolet LED Reactor System
JP2001314851A (en) Water circulating and sterilizing apparatus
JPH08155445A (en) Water treatment apparatus
Zăbavă et al. Advanced technologies for wastewater treatment by ozonation-a review.
KR20230170610A (en) Apparatus and Method for Preventing Biofilm Formation of Membrane Filter Surface Using Effluent Water
RU2099294C1 (en) Method and apparatus for finely cleaning highly loaded waste waters
RU2188168C1 (en) Method of treatment of circulation water
JP3088397U (en) Sterilization purification system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3619108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees