JP2001230621A - Directivity control method for reception, antenna system, base station and mobile station for communication for moving object using the same - Google Patents

Directivity control method for reception, antenna system, base station and mobile station for communication for moving object using the same

Info

Publication number
JP2001230621A
JP2001230621A JP2000039818A JP2000039818A JP2001230621A JP 2001230621 A JP2001230621 A JP 2001230621A JP 2000039818 A JP2000039818 A JP 2000039818A JP 2000039818 A JP2000039818 A JP 2000039818A JP 2001230621 A JP2001230621 A JP 2001230621A
Authority
JP
Japan
Prior art keywords
signal
azimuth
power
directivity
weight coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000039818A
Other languages
Japanese (ja)
Other versions
JP4166401B2 (en
Inventor
Yoichi Nakagawa
洋一 中川
Takashi Fukagawa
隆 深川
Hiroyuki Tsuji
宏之 辻
Ami Kanazawa
亜美 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communications Research Laboratory
Panasonic Holdings Corp
Original Assignee
Communications Research Laboratory
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory, Matsushita Electric Industrial Co Ltd filed Critical Communications Research Laboratory
Priority to JP2000039818A priority Critical patent/JP4166401B2/en
Publication of JP2001230621A publication Critical patent/JP2001230621A/en
Application granted granted Critical
Publication of JP4166401B2 publication Critical patent/JP4166401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve sensitivity characteristics of a directivity control antenna system, using an array antenna. SOLUTION: While using an azimuth 11 of a received signal and a power 12 of the received signal estimated by an azimuth/power estimating means 4, an angle difference between an azimuth 13 of a desired signal and the azimuth of an interference signal and the ratio of an interference signal power to a desired signal power are calculated, and on the basis of the previously found thresholds of the angle difference and the power ratio, an optimal weight coefficient 16 is selected out of a beam forming weight coefficient 14 and a null- forming weight coefficient 15 by a weight coefficient selecting means 8. By performing weight combining processing to a received intermediate frequency signal or baseband signal 10, while using the optimal weight coefficient 16 selected by the weight coefficient selecting means 8, and the directivity of receiving is synthesized by a receiving directivity synthesizing means 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアレーアンテナを用
いて電波の到来方向と電力を推定し、その推定結果を基
にアレーアンテナの指向性ビームを可変する指向性制御
アンテナ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a directivity control antenna device for estimating the arrival direction and power of a radio wave using an array antenna and changing the directional beam of the array antenna based on the estimation result.

【0002】[0002]

【従来の技術】近年、伝搬環境に応じてアンテナの指向
性をダイナミックに変化させ通信品質や周波数利用効率
の向上を図る技術として、アダプティブアレーなどに代
表されるアレーアンテナとデジタル信号処理を用いたア
ンテナ指向性制御技術が注目されている。アダプティブ
アレーはアレーアンテナにおける受信の複素デジタル信
号を解析することで、所望のアンテナ指向性が得られる
ようなアレー素子の複素重み係数を求めるように動作す
る。このとき解析アルゴリズムはある既知情報を基に複
素重み係数を求めるのが一般的で、その既知情報のひと
つとして考えられるが電波の到来方向である。仮に所望
波と干渉波の到来方向が分かれば、所望波の方向にアレ
ーアンテナの指向性のピークを向け、干渉波の方向には
ヌルが向くような複素重み係数を求めれば良い。一方で
送受信の周波数が異なる場合に受信信号のパイロット信
号などを既知情報として重み係数を求めると送信時に所
望のアンテナ指向性が得られない。しかし受信電波の到
来方向を用いて送信時のアンテナ指向性制御を行えばこ
のような問題は生じない。
2. Description of the Related Art In recent years, as a technique for dynamically changing the directivity of an antenna in accordance with a propagation environment to improve communication quality and frequency use efficiency, an array antenna represented by an adaptive array and the like and digital signal processing have been used. Attention has been focused on antenna directivity control technology. The adaptive array operates by analyzing a complex digital signal received by the array antenna to obtain a complex weight coefficient of the array element that can obtain a desired antenna directivity. At this time, the analysis algorithm generally calculates a complex weight coefficient based on certain known information. One of the known information is considered as the direction of arrival of a radio wave. If the arrival directions of the desired wave and the interference wave are known, a complex weighting factor may be obtained such that the directivity peak of the array antenna is directed in the direction of the desired wave and null is directed in the direction of the interference wave. On the other hand, when the transmission and reception frequencies are different, if a weight coefficient is obtained using the pilot signal of the received signal as known information, a desired antenna directivity cannot be obtained during transmission. However, such a problem does not occur if antenna directivity control at the time of transmission is performed using the arrival direction of the received radio wave.

【0003】アレーアンテナの受信信号から電波の到来
方向を高精度に推定する手法として、MUSIC(MUltiple
Signal Classification)法に代表される固有空間法が
上げられる。固有空間法は各アレー素子で受信信号から
得られる共分散行列の固有ベクトルを利用する。また受
信信号の到来方向を既知とした場合に信号と雑音の電力
を推定する手法のひとつとして、CFE(Covariance Fit
Estimator)法がある。CFE法はMUSIC法と同様にアレー
アンテナの受信信号から計算される共分散行列を用いて
その最適基準関数をもとにした信号と雑音電力の同時推
定を行う。MUSIC法の詳細は、R.O.Schmidt, "Multiple
Emitter Location and Signal Parameter Estimation",
IEEE Trans. AP-34, 3, 1986に、CFE法の詳細はH.A.D'
assumpcao, "Some New Signal Processors for Arrays
of Sensors", IEEE Trans. IT-26, 4, 1980にそれぞれ
記載されている。
[0003] As a technique for estimating the direction of arrival of a radio wave from a received signal of an array antenna with high precision, MUSIC (MUltiple
The eigenspace method represented by the Signal Classification method is used. The eigenspace method uses an eigenvector of a covariance matrix obtained from a received signal at each array element. As one of the methods for estimating the power of signal and noise when the arrival direction of a received signal is known, CFE (Covariance Fit
Estimator) method. Similar to the MUSIC method, the CFE method uses a covariance matrix calculated from the received signals of the array antenna to simultaneously estimate the signal and noise power based on the optimal criterion function. For details of the MUSIC method, see ROSchmidt, "Multiple
Emitter Location and Signal Parameter Estimation ",
IEEE Trans. AP-34, 3, 1986, details of CFE method are HAD '
assumpcao, "Some New Signal Processors for Arrays
of Sensors ", IEEE Trans. IT-26, 4, 1980.

【0004】一方で、推定された受信電波の到来方向と
信号電力を用いて、アレーアンテナの指向性が所望波の
方向にはピークが干渉波の方向にはヌル点が向くように
制御する代表的な手法として、DCMP(Directionally Co
nstrained Minimization ofPower)法がある。DCMP法は
所望波の方向に対するアレーアンテナの応答ベクトルを
拘束条件とし受信電力を最小化するアルゴリズムであ
る。DCMP法の詳細は、K.Takao, M.Fujita, and T.Nish
i, "An Adaptive Antenna Array under Directional Co
nstraint", IEEE trans. AP-24, 5, 1976に掲載されて
いる。
On the other hand, using the estimated arrival direction of the received radio wave and signal power, representative control is performed so that the directivity of the array antenna is directed to a peak in the direction of the desired wave and to a null point in the direction of the interference wave. A direct approach is DCMP (Directionally Co
nstrained Minimization of Power). The DCMP method is an algorithm that minimizes received power by using a response vector of an array antenna for a desired wave direction as a constraint. For details of the DCMP method, see K. Takao, M. Fujita, and T. Nish
i, "An Adaptive Antenna Array under Directional Co
nstraint ", IEEE trans. AP-24, 5, 1976.

【0005】[0005]

【発明が解決しようとする課題】DCMP法を用いたアレー
アンテナの指向性制御を行うとき、所望波と干渉波の到
来方向の角度差が比較的大きい場合には所望波方向に指
向性のピークが向き干渉波方向には指向性のヌルが形成
される。しかしながら、所望波と干渉波の到来方向の角
度差が小さくなると干渉波方向に強制的にヌルが形成さ
れることにより所望波方向のピークレベルが下がる。そ
のため干渉波の受信信号電力が所望波の電力に比べて比
較的小さくかつ所望波と干渉波の到来方向の角度差も小
さいような場合は干渉波抑圧の効果よりも、所望波方向
のピークレベルが下がることによる特性劣化の影響の方
が大きくなる。このことは、所望波の信号電力が小さく
受信の感度点付近にあるような条件において、単純にア
レーアンテナで指向性のピークを所望波の方向に向けた
場合とDCMP法を用いた場合とを、復調信号の誤り率特性
を測定し比較することで確認できる。
When the directivity control of the array antenna using the DCMP method is performed, if the angle difference between the arrival direction of the desired wave and the interference wave is relatively large, the peak of the directivity in the desired wave direction is obtained. However, a directional null is formed in the interference wave direction. However, when the angle difference between the arrival direction of the desired wave and the interference wave becomes small, a null is forcibly formed in the interference wave direction, and the peak level in the desired wave direction decreases. Therefore, when the received signal power of the interference wave is relatively small compared to the power of the desired wave and the angle difference between the arrival direction of the desired wave and the interference wave is small, the peak level in the desired wave direction is more than the effect of the interference wave suppression. The effect of the characteristic deterioration due to the decrease in the value is greater. This means that under the condition that the signal power of the desired wave is small and close to the sensitivity point of reception, the case where the directivity peak is simply directed by the array antenna in the direction of the desired wave and the case where the DCMP method is used. It can be confirmed by measuring and comparing the error rate characteristics of the demodulated signal.

【0006】本発明は、このようなDCMP法に代表される
ヌル形成アルゴリズムを用いた場合に生じる所望波の受
信電力の低下を防ぎ、所望波電力対干渉波電力比が大き
い場合には単純にアレーアンテナの指向性のピークを所
望波方向に向ける方式に切り替えることで感度特性を改
善させることができる指向性制御アンテナ装置を提案す
ることを目的とする。
The present invention prevents the reception power of a desired wave from decreasing when a null forming algorithm typified by the DCMP method is used. An object of the present invention is to propose a directivity control antenna device that can improve sensitivity characteristics by switching to a method in which the directivity peak of an array antenna is directed to a desired wave direction.

【0007】[0007]

【課題を解決するための手段】以上の課題を解決するた
めに本発明は、受信の指向性制御方法として、アレーア
ンテナにより受信された無線周波数信号の中間周波数信
号またはベースバンド信号から推定された受信信号の方
位と受信信号の電力を用いて、所望信号の方位と干渉信
号の方位の角度差と所望信号電力に対する干渉信号電力
の比を算出し、予め求めておいた角度差と電力比の閾値
をもとにビーム形成重み係数とヌル形成重み係数から最
適な重み係数を選択し、選択された最適重み係数を用い
て、受信の中間周波数信号またはベースバンド信号に対
して重み付け合成処理を行うことによって受信の指向性
合成を行うようにしたことを要旨とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a directivity control method for reception, which is estimated from an intermediate frequency signal or a baseband signal of a radio frequency signal received by an array antenna. Using the azimuth of the received signal and the power of the received signal, the angle difference between the azimuth of the desired signal and the azimuth of the interference signal and the ratio of the interference signal power to the desired signal power are calculated. An optimal weighting factor is selected from the beamforming weighting factor and the nulling weighting factor based on the threshold value, and a weighted combining process is performed on the received intermediate frequency signal or baseband signal using the selected optimal weighting factor. Accordingly, the gist of the present invention is to perform directivity synthesis of reception.

【0008】かかる受信の指向性制御方法により、所望
波と複数の干渉波が混在する環境において移動体通信を
行なうに際し、所望波の受信電力の低下を防ぎ、所望波
電力対干渉波電力比が大きい場合には単純にアレーアン
テナの指向性のピークを所望波方向に向ける方式に切り
替えることで感度特性を改善させることができる。
According to such a reception directivity control method, when performing mobile communication in an environment where a desired wave and a plurality of interference waves coexist, a decrease in the reception power of the desired wave is prevented, and the power ratio of the desired wave to the interference wave is reduced. If it is large, the sensitivity characteristic can be improved by simply switching to a method in which the directivity peak of the array antenna is directed to a desired wave direction.

【0009】また、本発明の別の態様では、指向性制御
アンテナ装置として、所望波と複数の干渉波が混在する
環境における移動体通信の基地局または移動局におい
て、複数個のアンテナをアレー素子として使用したアレ
ーアンテナと、前記アレーアンテナの各アレー素子で受
信された無線周波数信号を受信の中間周波数信号または
ベースバンド信号に変換する受信周波数変換手段と、前
記受信の中間周波数信号またはベースバンド信号を用い
て受信信号の方位と受信信号の電力を推定する方位電力
推定手段と、前記方位電力推定手段によって推定された
受信信号の方位と受信信号の電力から所望信号の方位を
指定する所望信号指定手段と、前記所望信号の方位を入
力とし前記所望信号の方位に前記アレーアンテナの指向
性のピークを向けるためのビーム形成重み係数を算出す
るビーム形成重み係数算出手段と、前記受信信号の方位
と前記受信信号の電力および前記所望信号の方位を入力
として、前記所望信号指定手段によって得られた所望信
号の方位以外で前記方位電力推定手段によって推定され
た前記受信信号の方位を干渉信号の方位とし、前記干渉
信号の方位に前記アレーアンテナの指向性のヌル点を向
けるためのヌル形成重み係数を算出するヌル形成重み係
数算出手段と、前記方位電力推定手段によって推定され
た前記受信信号の方位と前記受信信号の電力を用い前記
所望信号の方位と前記干渉信号の方位の角度差と所望信
号電力に対する干渉信号電力の比を算出し、予め求めて
おいた角度差と電力比の閾値をもとに前記ビーム形成重
み係数と前記ヌル形成重み係数から最適重み係数を選択
する重み係数選択手段と、前記重み係数選択手段によっ
て選択された最適重み係数を用いて、前記受信の中間周
波数信号またはベースバンド信号に対して重み付け合成
処理を行うことによって受信の指向性合成を行う受信指
向性合成手段を有する構成としたものである。かかる構
成により、前記ヌル形成重み係数算出手段としてDCMPに
代表されるようなヌル形成アルゴリズムを用いた場合に
生じる所望信号の受信電力の低下を防ぎ、干渉信号の電
力が所望信号に対して比較的小さい場合には単純にアレ
ーアンテナの指向性のピークを所望信号の方位に向ける
方式に切り替えることで特性を改善させ、通信品質を向
上させることができる。
In another aspect of the present invention, as a directivity control antenna device, a plurality of antennas are arrayed in a base station or mobile station of mobile communication in an environment where a desired wave and a plurality of interference waves coexist. An array antenna used as: a reception frequency conversion unit for converting a radio frequency signal received by each array element of the array antenna into a reception intermediate frequency signal or baseband signal; and the reception intermediate frequency signal or baseband signal. Azimuth power estimating means for estimating the azimuth of the received signal and the power of the received signal by using the directional power estimating means; Means for inputting the azimuth of the desired signal and directing the directivity peak of the array antenna to the azimuth of the desired signal Beam forming weight coefficient calculating means for calculating a beam forming weight coefficient for inputting the azimuth of the received signal, the power of the received signal and the azimuth of the desired signal, and inputting the desired signal obtained by the desired signal specifying means. The azimuth of the received signal estimated by the azimuth power estimating means other than the azimuth is set as the azimuth of the interference signal, and a null formation weight coefficient for pointing the null point of the directivity of the array antenna to the azimuth of the interference signal is calculated. Null formation weight coefficient calculating means, and an angle difference between the azimuth of the desired signal and the azimuth of the interference signal using the azimuth of the received signal and the power of the received signal estimated by the azimuth power estimating means, and interference with the desired signal power. A signal power ratio is calculated, and a maximum value is calculated from the beam forming weight coefficient and the null forming weight coefficient based on a previously determined angle difference and a threshold value of the power ratio. A weighting factor selecting means for selecting a weighting factor, and a weighting synthesis process for the intermediate frequency signal or the baseband signal for reception by using the optimum weighting factor selected by the weighting factor selecting means, thereby enabling directivity of reception. In this configuration, there is provided a receiving directivity synthesizing unit that performs directivity synthesis. With this configuration, it is possible to prevent the reception power of the desired signal from decreasing when the null formation algorithm typified by DCMP is used as the null formation weight coefficient calculation unit, so that the power of the interference signal is relatively lower than that of the desired signal. If it is small, the characteristics can be improved by simply switching the method to direct the peak of the directivity of the array antenna to the direction of the desired signal, and the communication quality can be improved.

【0010】[0010]

【発明の実施の形態】本発明の請求項1に記載の発明
は、受信の指向性制御方法として、アレーアンテナによ
り受信された無線周波数信号の中間周波数信号またはベ
ースバンド信号から推定された受信信号の方位と受信信
号の電力を用いて、所望信号の方位と干渉信号の方位の
角度差と所望信号電力に対する干渉信号電力の比を算出
し、予め求めておいた角度差と電力比の閾値をもとにビ
ーム形成重み係数とヌル形成重み係数から最適な重み係
数を選択し、選択された最適重み係数を用いて、受信の
中間周波数信号またはベースバンド信号に対して重み付
け合成処理を行うことによって受信の指向性合成を行う
ようにしたものであり、所望波と複数の干渉波が混在す
る環境において移動体通信を行なうに際し、所望波の受
信電力の低下を防ぎ、所望波電力対干渉波電力比が大き
い場合には単純にアレーアンテナの指向性のピークを所
望波方向に向ける方式に切り替えることで感度特性を改
善させるという作用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to a first aspect of the present invention, as a reception directivity control method, a reception signal estimated from an intermediate frequency signal or a baseband signal of a radio frequency signal received by an array antenna is provided. Using the azimuth and the power of the received signal, calculate the angle difference between the azimuth of the desired signal and the azimuth of the interference signal and the ratio of the interference signal power to the desired signal power, and calculate the threshold of the angle difference and the power ratio determined in advance. By selecting the optimal weighting factor from the beamforming weighting factor and the nulling weighting factor based on the original, and using the selected optimal weighting factor, weighting and combining the received intermediate frequency signal or the baseband signal, Directivity synthesis of reception is performed, and when performing mobile communication in an environment where a desired wave and a plurality of interference waves are mixed, a reduction in reception power of the desired wave is prevented. It has the effect that simply improving the sensitivity characteristic of directivity of the peak of the array antenna by switching the system to direct the desired wave direction when desired wave power to interference wave power ratio is large.

【0011】本発明の請求項2に記載の発明は、所望波
と複数の干渉波が混在する環境における移動体通信の基
地局または移動局において、複数個のアンテナをアレー
素子として使用したアレーアンテナと、前記アレーアン
テナの各アレー素子で受信された無線周波数信号を受信
の中間周波数信号またはベースバンド信号に変換する受
信周波数変換手段と、前記受信の中間周波数信号または
ベースバンド信号を用いて受信信号の方位と受信信号の
電力を推定する方位電力推定手段と、前記方位電力推定
手段によって推定された受信信号の方位と受信信号の電
力から所望信号の方位を指定する所望信号指定手段と、
前記所望信号の方位を入力とし前記所望信号の方位に前
記アレーアンテナの指向性のピークを向けるためのビー
ム形成重み係数を算出するビーム形成重み係数算出手段
と、前記受信信号の方位と前記受信信号の電力および前
記所望信号の方位を入力として、前記所望信号指定手段
によって得られた所望信号の方位以外で前記方位電力推
定手段によって推定された前記受信信号の方位を干渉信
号の方位とし、前記干渉信号の方位に前記アレーアンテ
ナの指向性のヌル点を向けるためのヌル形成重み係数を
算出するヌル形成重み係数算出手段と、前記方位電力推
定手段によって推定された前記受信信号の方位と前記受
信信号の電力を用い前記所望信号の方位と前記干渉信号
の方位の角度差と所望信号電力に対する干渉信号電力の
比を算出し、予め求めておいた角度差と電力比の閾値を
もとに前記ビーム形成重み係数と前記ヌル形成重み係数
から最適重み係数を選択する重み係数選択手段と、前記
重み係数選択手段によって選択された最適重み係数を用
いて、前記受信の中間周波数信号またはベースバンド信
号に対して重み付け合成処理を行うことによって受信の
指向性合成を行う受信指向性合成手段を有することを特
徴とし、受信信号の方位や受信信号の電力の情報を用い
て算出された最適重み係数を用いて、ビーム形成重み係
数算出手段から得られた結果とヌル形成重み係数算出手
段から得られた結果とを、重み係数選択手段が状況に応
じて選択することによって、通信環境に適した重み係数
をアレーアンテナに適用することにより受信信号の特性
を改善できる作用を有する。
According to a second aspect of the present invention, there is provided an array antenna using a plurality of antennas as array elements in a mobile communication base station or a mobile station in an environment where a desired wave and a plurality of interference waves coexist. And reception frequency conversion means for converting a radio frequency signal received by each array element of the array antenna into a reception intermediate frequency signal or baseband signal; and a reception signal using the reception intermediate frequency signal or baseband signal. Azimuth power estimating means for estimating the azimuth and the power of the received signal, desired signal specifying means for specifying the azimuth of the desired signal from the azimuth of the received signal and the power of the received signal estimated by the azimuth power estimating means,
Beam forming weight coefficient calculating means for inputting the azimuth of the desired signal as input and calculating a beam forming weight coefficient for directing the directivity peak of the array antenna to the azimuth of the desired signal; and the azimuth of the received signal and the received signal The direction of the received signal estimated by the direction power estimating means other than the direction of the desired signal obtained by the desired signal designating means as an input and the direction of the interference signal, Null formation weight coefficient calculating means for calculating a null formation weight coefficient for directing a null point of the directivity of the array antenna to the direction of the signal, the direction of the received signal estimated by the direction power estimating means, and the received signal Calculate the ratio of the interference signal power to the desired signal power and the angle difference between the azimuth of the desired signal and the azimuth of the interference signal using the power of Weighting factor selecting means for selecting an optimum weighting factor from the beam forming weighting factor and the null forming weighting factor based on the threshold value of the angle difference and the power ratio, and an optimum weight selected by the weighting factor selecting means It is characterized by having reception directivity synthesizing means for performing directivity synthesis of reception by performing weighting synthesis processing on the intermediate frequency signal or baseband signal of reception by using a coefficient. Using the optimum weighting factor calculated using the power information of the signal, the weighting factor selecting unit compares the result obtained from the beamforming weighting factor calculating unit with the result obtained from the null forming weighting factor calculating unit. , The weighting factor suitable for the communication environment can be applied to the array antenna to improve the characteristics of the received signal.

【0012】本発明の請求項3に記載の発明は、前記ヌ
ル形成重み係数算出手段は、前記所望信号指定手段にお
いて得られた所望信号の方位を拘束条件とし、前記方位
電力推定手段において推定されたその他の受信信号の方
位と電力を用いて前記アレーアンテナにおける受信電力
が最小となるように重み係数を算出することを特徴と
し、干渉信号の電力が所望信号の電力に比較して大きい
場合でもヌル形成によって干渉波が抑圧されるため受信
信号の特性を改善できる作用を有する。
In the invention according to a third aspect of the present invention, the null forming weight coefficient calculating means sets the azimuth of the desired signal obtained by the desired signal specifying means as a constraint condition and estimates the azimuth power by the azimuth power estimating means. The weight coefficient is calculated so that the received power at the array antenna is minimized using the azimuth and power of the other received signals, even when the power of the interference signal is larger than the power of the desired signal. Since the interference wave is suppressed by the null formation, there is an effect that the characteristics of the received signal can be improved.

【0013】本発明の請求項4に記載の発明は、前記ビ
ーム形成重み係数算出手段と前記ヌル形成重み係数算出
手段および前記重み係数算出手段選択手段の代わりに、
予め算出された重み係数を記憶した重み係数テーブル
と、前記所望信号の方位と前記干渉信号の方位の角度差
と所望信号電力に対する干渉信号電力の比を算出し、予
め求めておいた角度差と電力比の閾値をもとに最適重み
係数を前記重み係数テーブルより選択参照する重み係数
選択手段を有することを特徴とし、重み係数算出に必要
な処理時間を短縮できる作用を有する。
According to a fourth aspect of the present invention, in place of the beam forming weight coefficient calculating means, the null forming weight coefficient calculating means, and the weight coefficient calculating means selecting means,
A weight coefficient table storing a weight coefficient calculated in advance, the angle difference between the azimuth of the desired signal and the azimuth of the interference signal and the ratio of the interference signal power to the desired signal power are calculated. It is characterized by having weight coefficient selecting means for selecting and referring to the optimum weight coefficient from the weight coefficient table based on the threshold value of the power ratio, and has the effect of reducing the processing time required for calculating the weight coefficient.

【0014】本発明の請求項5に記載の発明は、前記ヌ
ル形成重み係数算出手段は、前記受信の中間周波数信号
またはベースバンド信号と前記方位電力推定手段におい
て推定された方位および前記所望信号指定手段において
得られた所望信号の方位を用いて前記アレーアンテナの
重み係数を算出することを特徴とし、前記アレーアンテ
ナの受信信号を用いることで干渉信号の方位に、より正
確なヌル形成できる作用を有する。
According to a fifth aspect of the present invention, the null forming weighting factor calculating means includes: the received intermediate frequency signal or baseband signal; the azimuth estimated by the azimuth power estimating means; and the desired signal designation. The weighting factor of the array antenna is calculated using the azimuth of the desired signal obtained in the means, and the nucleus of the interference signal can be more accurately formed in the azimuth of the interference signal by using the reception signal of the array antenna. Have.

【0015】本発明の請求項6に記載の発明は、前記方
位電力推定手段の代わりに、受信信号の方位を推定する
方位推定手段と、前記方位推定手段とは別に受信信号の
電力を推定する電力推定手段を有することを特徴とし、
方位推定処理と電力推定処理を並列化することで処理を
高速化することができる作用を有する。
According to a sixth aspect of the present invention, in place of the azimuth power estimating means, an azimuth estimating means for estimating the azimuth of the received signal, and estimating the power of the received signal separately from the azimuth estimating means. Characterized by having power estimation means,
By parallelizing the direction estimation processing and the power estimation processing, the processing can be speeded up.

【0016】本発明の請求項7に記載の発明は、前記重
み係数算出手段選択手段によって選択された最適重み係
数を用いて送信の指向性合成を行う送信指向性合成手段
と、送信の中間周波数信号またはベースバンド信号を前
記無線周波数信号に変換する送信周波数変換手段を有す
ることを特徴とし、受信時だけでなく送信時においても
通信品質を向上させることができる作用を有する。
According to a seventh aspect of the present invention, there is provided transmission directivity combining means for performing transmission directivity combining using the optimum weighting factor selected by the weighting factor calculating means selecting means, and transmission intermediate frequency. It is characterized by having transmission frequency conversion means for converting a signal or a baseband signal into the radio frequency signal, and has an effect of improving communication quality not only at the time of reception but also at the time of transmission.

【0017】本発明の請求項8に記載の発明は、移動体
通信の基地局として請求項2記載の指向性制御アンテナ
装置を用いたものであり、所望波と複数の干渉波が混在
する環境において移動体通信を行なうに際し、所望波の
受信電力の低下を防ぐという作用を有する。
According to an eighth aspect of the present invention, the directivity control antenna device according to the second aspect is used as a base station for mobile communication, and an environment in which a desired wave and a plurality of interference waves coexist. Has the effect of preventing a decrease in the reception power of a desired wave when performing mobile communication.

【0018】本発明の請求項9に記載の発明は、移動体
通信の移動局として請求項2記載の指向性制御アンテナ
装置を用いたものであり、所望波と複数の干渉波が混在
する環境において移動体通信を行なうに際し、所望波の
受信電力の低下を防ぐという作用を有する。
According to a ninth aspect of the present invention, the directivity control antenna device according to the second aspect is used as a mobile station for mobile communication, and an environment in which a desired wave and a plurality of interference waves coexist. Has the effect of preventing a decrease in the reception power of a desired wave when performing mobile communication.

【0019】以下、本発明に係る指向性制御アンテナ装
置の種々の実施の形態について、図1から図8を参照し
て説明する。
Hereinafter, various embodiments of the directivity control antenna device according to the present invention will be described with reference to FIGS.

【0020】(実施の形態1)図1は本発明の実施の形
態1における指向性制御アンテナ装置の構成を示すブロ
ック図である。この指向性制御アンテナ装置は、所望波
と複数の干渉波が混在する環境における移動体通信の基
地局または移動局に適用されるとより適しているもので
ある。
(Embodiment 1) FIG. 1 is a block diagram showing a configuration of a directivity control antenna apparatus according to Embodiment 1 of the present invention. This directivity control antenna device is more suitable when applied to a base station or mobile station of mobile communication in an environment where a desired wave and a plurality of interference waves coexist.

【0021】図1において1は複数個のアンテナをアレ
ー素子として使用するアレーアンテナ、2はアレーアン
テナ1に用いられる複数のアレー素子、3は各アレー素
子2で受信された無線周波数信号を受信の中間周波数信
号またはベースバンド信号に変換する受信周波数変換手
段、4は上記中間周波数信号またはベースバンド信号を
用いて受信信号の方位と受信信号の電力を推定する方位
電力推定手段、5は方位電力推定手段4によって推定さ
れた受信信号の方位と受信信号の電力から所望信号の方
位を指定する所望信号指定手段、6は所望信号指定手段
5から出力された所望信号の方位に前記アレーアンテナ
の指向性のピークを向けるためのビーム形成重み係数を
算出するビーム形成重み係数算出手段、7は受信信号の
方位と、記受信信号の電力と、前記所望信号の方位とか
ら干渉信号の方位に前記アレーアンテナの指向性のヌル
点を向けるためのヌル形成重み係数を算出するヌル形成
重み係数算出手段、8は方位電力推定手段4によって推
定された受信信号の方位と受信信号の電力を用い所望信
号の方位と干渉信号の方位の角度差と所望信号電力に対
する干渉信号電力の比を算出し、予め求めておいた角度
差と電力比の閾値をもとに前記ビーム形成重み係数と前
記ヌル形成重み係数から最適重み係数を選択する重み係
数選択手段、9は重み係数選択手段8によって選択され
た最適重み係数を用いて、前記受信の中間周波数信号ま
たはベースバンド信号に対して重み付け合成処理を行う
ことによって受信の指向性合成を行う受信指向性合成手
段である。ヌル形成重み係数算出手段7は、受信信号の
方位と前記受信信号の電力および前記所望信号の方位を
入力として、前記所望信号指定手段によって得られた所
望信号の方位以外で前記方位電力推定手段によって推定
された前記受信信号の方位を干渉信号の方位とし、前記
干渉信号の方位に前記アレーアンテナの指向性のヌル点
を向けるためのヌル形成重み係数を算出する。
In FIG. 1, reference numeral 1 denotes an array antenna using a plurality of antennas as array elements, 2 denotes a plurality of array elements used in an array antenna 1, and 3 denotes a radio frequency signal received by each array element 2. Receiving frequency converting means for converting the signal into an intermediate frequency signal or a baseband signal; 4, a direction power estimating means for estimating the direction of the received signal and the power of the received signal using the intermediate frequency signal or the baseband signal; Desired signal designating means for designating the direction of the desired signal from the direction of the received signal estimated by the means 4 and the power of the received signal, and the directivity of the array antenna is changed to the direction of the desired signal output from the desired signal designating means 5. Beam forming weight coefficient calculating means 7 for calculating a beam forming weight coefficient for directing the peak of the received signal; Null forming weight coefficient calculating means for calculating a null forming weight coefficient for directing a null point of the directivity of the array antenna to the azimuth of the interference signal from the power of the desired signal and the azimuth of the desired signal. Using the azimuth of the received signal and the power of the received signal estimated by the above, the angle difference between the azimuth of the desired signal and the azimuth of the interference signal and the ratio of the interference signal power to the desired signal power are calculated, and the angle difference and the power determined in advance Weighting coefficient selecting means for selecting an optimum weighting coefficient from the beam forming weighting coefficient and the null forming weighting coefficient based on a threshold value of the ratio; Is a reception directivity combining unit that performs reception directivity synthesis by performing weighting synthesis processing on the intermediate frequency signal or the baseband signal. The null forming weight coefficient calculating unit 7 receives the azimuth of the received signal, the power of the received signal and the azimuth of the desired signal, and receives the azimuth of the desired signal obtained by the desired signal designating unit. The estimated azimuth of the received signal is set as the azimuth of the interference signal, and a null formation weight coefficient for directing a null point of the directivity of the array antenna to the azimuth of the interference signal is calculated.

【0022】また、図1において、符号10は受信の中
間周波数信号またはベースバンド信号、11は受信信号
の方位、12は受信信号の電力、13は所望信号の方
位、14はビーム形成重み係数、15はヌル形成重み係
数、16は最適重み係数である。図2はビーム形成重み
係数算出手段6によって得られたビーム形成重み係数1
4をもとに受信指向性合成手段9によって形成されるア
レーアンテナ1の指向性パターンの例である。図3はヌ
ル形成重み形成算出手段7によって得られたヌル形成重
み係数15をもとに受信指向性合成手段9によって形成
されるアレーアンテナ1の指向性パターンの例である。
図4(a)は図2および図3に示した指向性パターンを
形成したときの実験による所望信号電力対干渉信号電力
比に対する誤り率の測定結果である。図4(b)は所望
信号電力対干渉信号電力比に対する本装置の誤り率特性
である。
In FIG. 1, reference numeral 10 denotes an intermediate frequency signal or baseband signal for reception, 11 denotes the direction of the received signal, 12 denotes the power of the received signal, 13 denotes the direction of the desired signal, 14 denotes the beam forming weight coefficient, Numeral 15 is a null formation weight coefficient, and 16 is an optimum weight coefficient. FIG. 2 shows the beam forming weight coefficient 1 obtained by the beam forming weight coefficient calculating means 6.
4 is an example of the directivity pattern of the array antenna 1 formed by the reception directivity combining means 9 based on the pattern No. 4; FIG. 3 shows an example of the directivity pattern of the array antenna 1 formed by the reception directivity synthesis means 9 based on the null formation weight coefficient 15 obtained by the null formation weight formation calculation means 7.
FIG. 4A is a measurement result of an error rate with respect to a desired signal power to interference signal power ratio by an experiment when the directivity patterns shown in FIGS. 2 and 3 are formed. FIG. 4B shows an error rate characteristic of the present apparatus with respect to a desired signal power to interference signal power ratio.

【0023】以上のように構成された指向性制御アンテ
ナ装置について、図1を用いて以下にその動作を説明す
る。M(M>1)個のアンテナをアレー素子2として用いたア
レーアンテナ1により到来電波を受信する。受信周波数
変換手段3は、アレーアンテナ1の各アレー素子2にお
ける受信の無線周波数を中間周波数信号またはベースバ
ンド信号10に変換する。方位電力推定手段4は、受信
の中間周波数信号またはベースバンド信号10を用いて
受信信号の方位11とその方位に対する受信信号の電力
12を推定する。所望信号指定手段5は、方位電力推定
手段4の方位と電力の推定結果をもとに所望信号の方位
13を指定する。ビーム形成重み係数算出手段6は、所
望信号の方位13を入力とし所望信号の方位13にアレ
ーアンテナ1の指向性のピークを向けるためのビーム形
成重み係数14を算出する。ヌル形成重み係数算出手段
7は、受信信号の方位11と受信信号の電力12および
所望信号の方位13を入力として、所望信号の方位13
以外で方位電力推定手段4によって推定された受信信号
の方位11を干渉波信号の方位とし、この干渉信号の方
位にアレーアンテナ1の指向性のヌル点を向けるための
ヌル形成重み係数15を算出する。重み係数算出手段選
択手段8は、方位電力推定手段4によって推定された受
信信号の方位11と受信信号の電力12を用いて所望信
号と干渉信号の方位の角度差と所望信号電力に対する干
渉信号電力の比を算出し、予め求めておいた角度差と電
力比の閾値をもとにビーム形成重み係数算出手段6とヌ
ル形成重み係数算出手段7とを選択する。受信指向性合
成手段9は、重み係数算選択手段8によって選択された
アレーアンテナの最適重み係数16を用いて、受信の中
間周波数信号またはベースバンド信号10に対して重み
付け合成処理を行うことによって受信の指向性合成を行
う。
The operation of the directivity control antenna device configured as described above will be described below with reference to FIG. An incoming radio wave is received by an array antenna 1 using M (M> 1) antennas as an array element 2. The reception frequency conversion means 3 converts the radio frequency of reception at each array element 2 of the array antenna 1 into an intermediate frequency signal or a baseband signal 10. The azimuth power estimating means 4 estimates the azimuth 11 of the received signal and the power 12 of the received signal for the azimuth using the intermediate frequency signal or the baseband signal 10 for reception. The desired signal specifying means 5 specifies the azimuth 13 of the desired signal based on the azimuth and the power estimation result of the azimuth power estimating means 4. The beamforming weight coefficient calculating means 6 receives the azimuth 13 of the desired signal as input and calculates a beamforming weight coefficient 14 for directing the peak of the directivity of the array antenna 1 to the azimuth 13 of the desired signal. The null forming weight coefficient calculating means 7 receives the azimuth 11 of the received signal, the power 12 of the received signal, and the azimuth 13 of the desired signal, and receives the azimuth 13 of the desired signal.
Other than the above, the azimuth 11 of the received signal estimated by the azimuth power estimating means 4 is set as the azimuth of the interference signal, and the null formation weight coefficient 15 for pointing the null point of the directivity of the array antenna 1 to the azimuth of the interference signal is calculated. I do. The weight coefficient calculating means selecting means 8 uses the azimuth 11 of the received signal and the power 12 of the received signal estimated by the azimuth power estimating means 4 to calculate the angular difference between the azimuth of the desired signal and the interference signal and the interference signal power with respect to the desired signal power. Is calculated, and the beam forming weight coefficient calculating means 6 and the null forming weight coefficient calculating means 7 are selected based on the angle difference and the power ratio threshold value obtained in advance. The reception directivity synthesizing means 9 performs weighting synthesizing processing on the intermediate frequency signal or baseband signal 10 for reception by using the optimum weighting factor 16 of the array antenna selected by the weighting factor calculation selecting means 8 to thereby perform reception. Is performed.

【0024】次に、方位電力推定手段4について説明す
る。方位推定は例えばMUSIC法のような分解能に優れた
アルゴリズムを用いることにより受信電波の到来方向を
高精度に推定できる。MUSIC法は固有空間法と呼ばれア
レーアンテナ1の受信信号から共分散行列を計算しその
共分散行列の固有ベクトルを利用して到来方向を推定す
る。また受信信号の到来方向を既知とした場合に信号と
雑音の電力を推定する手法のひとつとして、例えばCFE
法がある。CFE法はMUSIC法と同様にアレーアンテナ1の
受信信号から計算される共分散行列を用いてその最適基
準関数をもとにした信号と雑音電力の同時推定を行う。
共分散行列RXXは、M素子アレーアンテナ1の受信信号
をXとしたとき、
Next, the azimuth power estimation means 4 will be described. The azimuth estimation can estimate the arrival direction of the received radio wave with high accuracy by using an algorithm having an excellent resolution such as the MUSIC method. The MUSIC method is called an eigenspace method and calculates a covariance matrix from a received signal of the array antenna 1 and estimates an arrival direction using an eigenvector of the covariance matrix. One of the techniques for estimating the power of signal and noise when the direction of arrival of a received signal is known is, for example, CFE
There is a law. Similar to the MUSIC method, the CFE method uses a covariance matrix calculated from a received signal of the array antenna 1 to simultaneously estimate a signal and noise power based on the optimal reference function.
The covariance matrix R XX is expressed as follows, where X is the received signal of the M-element array antenna 1.

【0025】[0025]

【数1】 となる。ここで、Xは各アレー素子2の受信信号を要素
とするM行1列の行列、HはXの複素共役転置、―は平
均をそれぞれ示す。
(Equation 1) Becomes Here, X represents a matrix of M rows and 1 column having the received signal of each array element 2 as an element, H represents the complex conjugate transpose of X, and-represents the average.

【0026】次に、ヌル形成重み係数算出手段7につい
て説明する。既知情報として方位電力推定手段4によっ
て得られた受信信号の方位11と受信信号の電力12お
よび所望信号指定手段5によって指定された所望信号の
方位13を用い、受信指向性合成手段9において得られ
るアレーアンテナ1の指向性パターンのヌルが干渉波の
方位に向くようにヌル形成重み係数16を算出する。こ
のように受信信号の到来方位が既知である場合にはヌル
形成アルゴリズムとしてDCMP法が適当である。DCMP法は
所望信号の方位を拘束条件とし受信指向性合成手段9の
出力が最小となるように動作する。DCMP法によって得ら
れる重み係数WはM素子のアレーアンテナ1を用いた場
合は次式で与えられる。だたし、ここではアレーアンテ
ナ1として無指向特性を持つ各アレー素子2が素子間隔
dで一直線上に配列された直線アレーアンテナを例にと
り説明する。
Next, the null forming weight coefficient calculating means 7 will be described. It is obtained by the reception directivity combining means 9 using the azimuth 11 of the received signal and the power 12 of the received signal obtained by the azimuth power estimation means 4 and the azimuth 13 of the desired signal specified by the desired signal specifying means 5 as known information. The null formation weight coefficient 16 is calculated so that the null of the directivity pattern of the array antenna 1 is directed to the direction of the interference wave. As described above, when the arrival direction of the received signal is known, the DCMP method is appropriate as the null forming algorithm. The DCMP method operates so that the output of the reception directivity synthesis means 9 is minimized with the azimuth of the desired signal as a constraint. The weight coefficient W obtained by the DCMP method is given by the following equation when the M element array antenna 1 is used. However, here, a description will be given of a linear array antenna in which the array elements 2 having omnidirectional characteristics are arranged in a straight line at an element interval d as the array antenna 1.

【0027】[0027]

【数2】 (Equation 2)

【0028】[0028]

【数3】 ここで、Cは拘束行列、Hは拘束応答値、*は複素共役
を示す。このとき所望信号の数を1とし、所望信号の方
位13を拘束方向θ、到来電波の波長をλとすると拘束
行列Cは、
(Equation 3) Here, C indicates a constraint matrix, H indicates a constraint response value, and * indicates a complex conjugate. At this time, assuming that the number of desired signals is 1, the direction 13 of the desired signal is the constraint direction θ, and the wavelength of the arriving radio wave is λ, the constraint matrix C is

【0029】[0029]

【数4】 (Equation 4)

【0030】[0030]

【数5】 で表される。ここでTは転置を示す。また、所望信号の
方位13である拘束方向θに対するアレーアンテナ1の
拘束応答値をとすると、
(Equation 5) It is represented by Here, T indicates transposition. Further, assuming that the constraint response value of the array antenna 1 with respect to the constraint direction θ which is the azimuth 13 of the desired signal is:

【0031】[0031]

【数6】 となる。(Equation 6) Becomes

【0032】次に、重み係数選択手段8について説明す
る。所望波と干渉波がそれぞれ1波存在する場合に、ア
レーアンテナ1を8素子の直線アレーアンテナとし、本
発明請求項2記載の構成による指向性制御アンテナ装置
を使用して受信信指向性合成を行った測定例を用いて説
明する。方位電力手段4によって推定された所望波と干
渉波の水平面内の方位11はそれぞれ−1度と−8度で
あり、このときビーム形成重み係数算出手段6で算出さ
れたビーム形成重み係数14を用いて受信指向性合成手
段9によって得られたアレーアンテナ1の指向性パター
ンを図2に示す。図2に示すように所望信号の方位13
に指向性のピークが向いている。同様にしてヌル形成重
み係数算出手段7によって得られたアレーアンテナ1の
指向性パターンを図3に示す。図3に示すように干渉信
号の方位にヌル点が向けられている。ただし、ヌル形成
アルゴリズムとしてDCMP法を使用した。図4(a)は、
図2および図3に示した指向性パターンを用いて、所望
信号の受信電力が実験装置の感度点+3デシベルとなる
ように環境において干渉信号の受信電力を変化させたと
きの復調信号の誤り率特性を測定した結果である。ただ
し、ここでの感度点は誤り率が1E−4となる点とし
た。図4(a)は横軸が所望信号電力対干渉信号電力
比、縦軸が誤り率であり、破線がビーム形成重み係数1
4を用いた場合の特性、実線がヌル形成重み係数15を
用いた場合の特性を示している。図4(a)から所望信
号電力対干渉信号電力比が比較的小さい範囲においてヌ
ル形成重み係数15を用いると誤り率特性が良いことが
わかる。
Next, the weight coefficient selecting means 8 will be described. When there is one desired wave and one interference wave, the array antenna 1 is an eight-element linear array antenna, and the received signal directivity is synthesized by using the directivity control antenna device according to the second aspect of the present invention. A description will be given using a measurement example performed. The azimuths 11 of the desired wave and the interference wave in the horizontal plane estimated by the azimuth power means 4 are -1 degrees and -8 degrees, respectively. At this time, the beam forming weight coefficient 14 calculated by the beam forming weight coefficient calculating means 6 is used. FIG. 2 shows the directivity pattern of the array antenna 1 obtained by using the reception directivity synthesis means 9. As shown in FIG.
Has a directivity peak. Similarly, the directivity pattern of the array antenna 1 obtained by the null forming weight coefficient calculating means 7 is shown in FIG. As shown in FIG. 3, the null point is directed to the direction of the interference signal. However, the DCMP method was used as a null formation algorithm. FIG. 4 (a)
Using the directivity patterns shown in FIGS. 2 and 3, the error rate of the demodulated signal when the reception power of the interference signal is changed in an environment such that the reception power of the desired signal is equal to the sensitivity point of the experimental apparatus + 3 dB. It is a result of measuring characteristics. However, the sensitivity point here was a point at which the error rate was 1E-4. In FIG. 4A, the horizontal axis represents the desired signal power to interference signal power ratio, the vertical axis represents the error rate, and the broken line represents the beamforming weight coefficient 1.
4, the solid line shows the characteristics when the null forming weight coefficient 15 is used. FIG. 4A shows that the error rate characteristic is good when the null forming weight coefficient 15 is used in a range where the desired signal power to the interference signal power ratio is relatively small.

【0033】しかしながら、所望信号電力対干渉信号電
力比が約5デシベル以上になると誤り率は1E−3点付
近からそれ以上改善されなくなる。この理由は、図3で
示したアレーアンテナ1の指向性パターンが、所望信号
の方位13において図2に示したアレーアンテナ1の指
向性パターンのピーク利得に対して約2デシベルほど下
がっているためである。つまりDCMP法によるヌル形成を
行うと干渉信号の方位に強制的にヌルが形成されるた
め、所望信号の方位13と干渉信号の方位の角度差がア
レーアンテナ1によって形成されるビーム幅より小さい
場合には、所望信号の方位13に対するアレーアンテナ
1の利得が低下する。このような特性の劣下を防ぐた
め、例えば図4(a)において、ヌル形成重み係数15
を用いたときの誤り率の下限を1E−3点とし、ビーム
形成重み係数16を用いたときの破線が1E−3点を横
切る点を所望信号電力対干渉信号電力比の閾値とする。
図4(b)は、この閾値を用いてヌル形成重み係数15
とビーム形成重み係数14を切り替えて選択した場合の
所望信号電力対干渉信号電力比に対する誤り率特性であ
り、本発明の請求項2に記載の構成による指向性制御ア
ンテナ装置の特性を示している。以上のように、所望信
号の方位13と干渉信号の方位の角度差から得られる本
装置の所望信号電力対干渉信号電力比の閾値を予め算出
し、ヌル形成重み係数15とビーム形成重み係数14を
切り替えることで最適重み係数16を選択することがで
きる。
However, when the desired signal power to interference signal power ratio becomes about 5 dB or more, the error rate cannot be further improved from around 1E-3. The reason for this is that the directivity pattern of the array antenna 1 shown in FIG. 3 is lower by about 2 dB than the peak gain of the directivity pattern of the array antenna 1 shown in FIG. It is. That is, when the null formation by the DCMP method is performed, a null is forcibly formed in the azimuth of the interference signal. Therefore, when the angle difference between the azimuth 13 of the desired signal and the azimuth of the interference signal is smaller than the beam width formed by the array antenna 1. In this case, the gain of the array antenna 1 for the azimuth 13 of the desired signal decreases. In order to prevent such deterioration of the characteristics, for example, in FIG.
Is set as the lower limit of the error rate when 1E-3 is used, and the point where the broken line crosses the 1E-3 point when the beamforming weight coefficient 16 is used is set as the threshold of the desired signal power to interference signal power ratio.
FIG. 4B shows that a null formation weight coefficient 15
And the error rate characteristic with respect to the desired signal power to interference signal power ratio when switching and selecting the beamforming weight coefficient 14, and shows the characteristic of the directivity control antenna device according to the configuration of claim 2 of the present invention. . As described above, the threshold of the desired signal power to interference signal power ratio of the present apparatus, which is obtained from the angle difference between the azimuth 13 of the desired signal and the azimuth of the interference signal, is calculated in advance, and the null forming weight coefficient 15 and the beam forming weight coefficient 14 are calculated. , The optimum weighting factor 16 can be selected.

【0034】(実施の形態2)図5は実施の形態2にお
ける指向性制御アンテナ装置の構成を示すブロック図で
ある。図において、21は重み係数テーブルである。以
上のように構成された指向性制御アンテナ装置につい
て、以下にその動作を説明する。
(Embodiment 2) FIG. 5 is a block diagram showing a configuration of a directivity control antenna device according to Embodiment 2. In the figure, reference numeral 21 denotes a weight coefficient table. The operation of the directivity control antenna device configured as described above will be described below.

【0035】本実施の形態で実施の形態1と異なるの
は、ビーム形成重み係数算出手段6とヌル形成重み係数
算出手段7の代わりに、重み係数選択手段8が予め算出
された重み係数を記憶した重み係数テーブル21を有す
る。重み係数選択手段5は、方位電力推定手段4によっ
て推定された受信信号の方位11と受信信号の電力12
および所望信号指定手段5によって得られた所望信号の
方位13を用いて、所望信号と干渉信号の方位の角度差
と所望信号電力に対する干渉信号電力の比を算出し、予
め求めておいた角度差と電力比の閾値をもとに最適重み
係数16を重み係数テーブル21より選択参照すること
で、重み係数算出に必要な処理時間を短縮できる。
The difference between the present embodiment and the first embodiment is that instead of the beam forming weight coefficient calculating means 6 and the null forming weight coefficient calculating means 7, the weight coefficient selecting means 8 stores the weight coefficient calculated in advance. The weight coefficient table 21 is provided. The weighting coefficient selection means 5 calculates the azimuth 11 of the received signal estimated by the azimuth power estimation means 4 and the power 12 of the received signal.
And using the azimuth 13 of the desired signal obtained by the desired signal designating means 5 to calculate the angle difference between the azimuth of the desired signal and the interference signal and the ratio of the interference signal power to the desired signal power, and obtain the angle difference determined in advance. By selecting and referencing the optimal weighting factor 16 from the weighting factor table 21 based on the threshold of the power ratio and the power ratio, the processing time required for calculating the weighting factor can be reduced.

【0036】(実施の形態3)図6は実施の形態3にお
ける指向性制御アンテナ装置の構成を示すブロック図で
ある。以上のように構成された指向性制御アンテナ装置
について、以下にその動作を説明する。
(Embodiment 3) FIG. 6 is a block diagram showing a configuration of a directivity control antenna apparatus according to Embodiment 3. The operation of the directivity control antenna device configured as described above will be described below.

【0037】本実施の形態で実施の形態1と異なるの
は、ヌル形成重み係数算出手段7は、受信の中間周波数
信号またはベースバンド信号10と方位電力推定手段4
において推定された受信信号の方位11および所望信号
指定手段5において得られた所望信号の方位13を用い
てヌル形成重み係数15を算出することを特徴とし、ア
レーアンテナ1の受信信号を用いることで干渉波方向に
より正確なヌル形成を行うことができる。
The difference between the present embodiment and the first embodiment is that the null forming weight coefficient calculating means 7 includes the received intermediate frequency signal or baseband signal 10 and the azimuth power estimating means 4.
Calculating the null formation weighting coefficient 15 using the azimuth 11 of the received signal estimated in the above and the azimuth 13 of the desired signal obtained by the desired signal designating means 5, and by using the received signal of the array antenna 1. Accurate null formation can be performed depending on the direction of the interference wave.

【0038】(実施の形態4)図7は実施の形態4にお
ける指向性制御アンテナ装置の構成を示すブロック図で
ある。図において、41は方位推定手段、42は電力推
定手段である。以上のように構成された指向性制御アン
テナ装置について、以下にその動作を説明する。
(Embodiment 4) FIG. 7 is a block diagram showing a configuration of a directivity control antenna apparatus according to Embodiment 4. In the figure, 41 is an azimuth estimating means, and 42 is a power estimating means. The operation of the directivity control antenna device configured as described above will be described below.

【0039】本実施の形態で実施の形態1と異なるの
は、方位電力推定手段4の代わりに、受信信号の方位を
推定する方位推定手段41と、この方位推定手段とは別
に受信信号の電力を推定する電力推定手段42を有する
ため、方位推定処理と電力推定処理を並列に行うことが
可能となり処理を高速化することができる。
The present embodiment differs from the first embodiment in that the azimuth power estimating means 4 is replaced with an azimuth estimating means 41 for estimating the azimuth of the received signal, and the power of the received signal is separately provided from the azimuth estimating means. , The azimuth estimation processing and the power estimation processing can be performed in parallel, and the processing can be speeded up.

【0040】(実施の形態5)図8は実施の形態5にお
ける指向性制御アンテナ装置の構成を示すブロック図で
ある。51は送信指向性合成手段、52は送信周波数変
換手段である。以上のように構成された指向性制御アン
テナ装置について、以下にその動作を説明する。
(Embodiment 5) FIG. 8 is a block diagram showing a configuration of a directivity control antenna apparatus according to Embodiment 5. 51 is a transmission directivity synthesizing unit, and 52 is a transmission frequency conversion unit. The operation of the directivity control antenna device configured as described above will be described below.

【0041】本実施の形態で実施の形態1と異なるの
は、送信指向性合成手段51は重み係数算出手段選択手
段9によって選択された最適重み係数16を用いて送信
の指向性合成を行う。送信周波数変換手段52は送信の
中間周波数信号またはベースバンド信号53を無線周波
数信号に変換する。送信の指向性制御を行うことで受信
時だけでなく送信時においても通信品質の向上させるこ
とができる。請求項7では送受信の無線周波数が同一で
あるとしているが、送信と受信で異なる周波数を用いる
構成としても良い。
The difference between the present embodiment and the first embodiment is that the transmission directivity synthesizing means 51 performs transmission directivity synthesis using the optimum weighting factor 16 selected by the weighting factor calculating means selecting means 9. The transmission frequency conversion means 52 converts the transmission intermediate frequency signal or baseband signal 53 into a radio frequency signal. By performing transmission directivity control, communication quality can be improved not only at the time of reception but also at the time of transmission. In claim 7, the transmission and reception radio frequencies are the same, but different transmission and reception frequencies may be used.

【0042】[0042]

【発明の効果】以上のように本発明によれば、DCMP法に
代表されるヌル形成アルゴリズムを用いた場合に生じる
所望信号の受信電力の低下を防ぎ、干渉信号の電力が所
望信号に対して比較的小さい場合には単純にアレーアン
テナの指向性のピークを所望波方向に向ける方式に切り
替えることで感度特性を改善させ、通信品質の改善や低
消費電力化などの効果が得られる。
As described above, according to the present invention, it is possible to prevent the reception power of a desired signal from decreasing when the null forming algorithm represented by the DCMP method is used, and to reduce the power of the interference signal with respect to the desired signal. If it is relatively small, the sensitivity characteristic is improved by simply switching to a method in which the directivity peak of the array antenna is directed to a desired wave direction, and effects such as improvement in communication quality and lower power consumption can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における指向性制御アン
テナ装置の構成を示すブロック図
FIG. 1 is a block diagram showing a configuration of a directivity control antenna device according to a first embodiment of the present invention.

【図2】実施の形態1におけるアレーアンテナの指向性
パターン例を示す図
FIG. 2 is a diagram showing an example of a directivity pattern of an array antenna according to the first embodiment.

【図3】実施の形態1におけるアレーアンテナの指向性
パターン例を示す図
FIG. 3 is a diagram showing an example of a directivity pattern of an array antenna according to the first embodiment.

【図4】実施の形態1におけるアレーアンテナの指向性
パターンと誤り率特性の関係を示す図
FIG. 4 is a diagram showing a relationship between a directivity pattern and an error rate characteristic of an array antenna according to the first embodiment.

【図5】実施の形態2における指向性制御アンテナ装置
の構成を示すブロック図
FIG. 5 is a block diagram showing a configuration of a directivity control antenna device according to a second embodiment.

【図6】実施の形態3における指向性制御アンテナ装置
の構成を示すブロック図
FIG. 6 is a block diagram showing a configuration of a directivity control antenna device according to a third embodiment.

【図7】実施の形態4における指向性制御アンテナ装置
の構成を示すブロック図
FIG. 7 is a block diagram showing a configuration of a directivity control antenna device according to a fourth embodiment.

【図8】実施の形態5における指向性制御アンテナ装置
の構成を示すブロック図
FIG. 8 is a block diagram showing a configuration of a directivity control antenna device according to a fifth embodiment.

【符号の説明】[Explanation of symbols]

1 アレーアンテナ 2 アレー素子 3 受信周波数変換手段 4 方位電力推定手段 5 所望信号指定手段 6 ビーム形成重み係数算出手段 7 ヌル形成重み係数算出手段 8 重み係数選択手段 9 受信指向性合成手段 10 受信の中間周波数信号またはベースバンド信号 11 受信信号の方位 12 受信信号の電力 13 所望信号の方位 14 ビーム形成重み係数 15 ヌル形成重み係数 16 最適重み係数 21 重み係数テーブル 41 方位推定手段 42 電力推定手段 51 送信指向性合成手段 52 送信周波数変換手段 53 送信の中間数信号またはベースバンド信号 REFERENCE SIGNS LIST 1 array antenna 2 array element 3 reception frequency conversion means 4 azimuth power estimation means 5 desired signal designation means 6 beam formation weight coefficient calculation means 7 null formation weight coefficient calculation means 8 weight coefficient selection means 9 reception directivity synthesis means 10 intermediate reception Frequency signal or baseband signal 11 Received signal direction 12 Received signal power 13 Desired signal direction 14 Beam forming weight coefficient 15 Null forming weight coefficient 16 Optimal weight coefficient 21 Weight coefficient table 41 Direction estimating means 42 Power estimating means 51 Transmission direction Sex synthesis means 52 transmission frequency conversion means 53 transmission intermediate number signal or baseband signal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深川 隆 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (72)発明者 辻 宏之 神奈川県横須賀市光の丘3−4 郵政省通 信総合研究所 横須賀無線通信研究センタ ー内 (72)発明者 金澤 亜美 神奈川県横須賀市光の丘3−4 郵政省通 信総合研究所 横須賀無線通信研究センタ ー内 Fターム(参考) 5J021 AA05 AA06 CA06 DB02 DB03 EA04 FA05 FA14 FA17 FA20 FA24 FA26 FA32 GA02 HA05 HA10 5J070 AA02 AC13 AD08 AH31 AK06 5K067 AA03 EE08 JJ74 KK02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Fukagawa 3-10-1 Higashi Mita, Tama-ku, Kawasaki City, Kanagawa Prefecture Inside Matsushita Giken Co., Ltd. (72) Inventor Hiroyuki Tsuji 3-4 Hikarinooka, Yokosuka City, Kanagawa Prefecture Communication Research Laboratory Yokosuka Wireless Communication Research Center (72) Inventor Ami Kanazawa 3-4 Hikarinooka, Yokosuka City, Kanagawa Prefecture F-Term (in reference) 5J021 AA05 AA06 CA06 DB02 DB03 EA04 FA05 FA14 FA17 FA20 FA24 FA26 FA32 GA02 HA05 HA10 5J070 AA02 AC13 AD08 AH31 AK06 5K067 AA03 EE08 JJ74 KK02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 アレーアンテナにより受信された無線周
波数信号の中間周波数信号またはベースバンド信号から
推定された受信信号の方位と受信信号の電力を用いて、
所望信号の方位と干渉信号の方位の角度差と所望信号電
力に対する干渉信号電力の比を算出し、 予め求めておいた角度差と電力比の閾値をもとにビーム
形成重み係数とヌル形成重み係数から最適な重み係数を
選択し、 選択された最適重み係数を用いて、受信の中間周波数信
号またはベースバンド信号に対して重み付け合成処理を
行うことによって受信の指向性合成を行うようにしたこ
とを特徴とする受信の指向性制御方法。
1. An azimuth of a received signal estimated from an intermediate frequency signal or a baseband signal of a radio frequency signal received by an array antenna and power of the received signal,
Calculate the angle difference between the azimuth of the desired signal and the azimuth of the interference signal and the ratio of the interference signal power to the desired signal power, and calculate the beamforming weight coefficient and null formation weight based on the angle difference and the power ratio threshold obtained in advance. The optimum weighting factor is selected from the coefficients, and the directivity synthesis of the reception is performed by performing the weighting synthesis process on the intermediate frequency signal or the baseband signal of the reception using the selected optimum weighting factor. A reception directivity control method characterized by the following.
【請求項2】 無線通信装置に設けられ複数個のアンテ
ナをアレー素子として使用したアレーアンテナと、前記
アレーアンテナの各アレー素子で受信された無線周波数
信号を受信の中間周波数信号またはベースバンド信号に
変換する受信周波数変換手段と、前記受信の中間周波数
信号またはベースバンド信号を用いて受信信号の方位と
受信信号の電力を推定する方位電力推定手段と、前記方
位電力推定手段によって推定された受信信号の方位と受
信信号の電力から所望信号の方位を指定する所望信号指
定手段と、前記所望信号の方位を入力とし前記所望信号
の方位に前記アレーアンテナの指向性のピークを向ける
ためのビーム形成重み係数を算出するビーム形成重み係
数算出手段と、前記受信信号の方位と前記受信信号の電
力および前記所望信号の方位を入力として、前記所望信
号指定手段によって得られた所望信号の方位以外で前記
方位電力推定手段によって推定された前記受信信号の方
位を干渉信号の方位とし、前記干渉信号の方位に前記ア
レーアンテナの指向性のヌル点を向けるためのヌル形成
重み係数を算出するヌル形成重み係数算出手段と、前記
方位電力推定手段によって推定された前記受信信号の方
位と前記受信信号の電力を用い前記所望信号の方位と前
記干渉信号の方位の角度差と所望信号電力に対する干渉
信号電力の比を算出し、予め求めておいた角度差と電力
比の閾値をもとに前記ビーム形成重み係数と前記ヌル形
成重み係数から最適重み係数を選択する重み係数選択手
段と、前記重み係数選択手段によって選択された最適重
み係数を用いて、前記受信の中間周波数信号またはベー
スバンド信号に対して重み付け合成処理を行うことによ
って受信の指向性合成を行う受信指向性合成手段を有す
ることを特徴とする指向性制御アンテナ装置。
2. An array antenna provided in a wireless communication apparatus and using a plurality of antennas as array elements, and converting a radio frequency signal received by each array element of the array antenna into an intermediate frequency signal or baseband signal for reception. Receiving frequency converting means for converting, azimuth power estimating means for estimating the azimuth of the received signal and the power of the received signal using the intermediate frequency signal or baseband signal for reception, and the received signal estimated by the azimuth power estimating means Desired signal designating means for designating the direction of a desired signal from the direction of the received signal and the power of the received signal; and a beam forming weight for inputting the direction of the desired signal and directing the directivity peak of the array antenna to the direction of the desired signal. Beam forming weighting coefficient calculating means for calculating a coefficient, an azimuth of the received signal, a power of the received signal, and the desired signal. The azimuth of the received signal estimated by the azimuth power estimating means other than the azimuth of the desired signal obtained by the desired signal specifying means as the azimuth of the interference signal, and the azimuth of the interference signal, Null forming weight coefficient calculating means for calculating a null forming weight coefficient for directing a null point of the directivity of the array antenna, and the azimuth of the received signal estimated by the azimuth power estimating means and the power of the received signal, Calculate the angle difference between the azimuth of the desired signal and the azimuth of the interference signal and the ratio of the interference signal power to the desired signal power, and calculate the beamforming weight coefficient and the Weighting factor selecting means for selecting an optimal weighting factor from null forming weighting factors, and using the optimal weighting factor selected by the weighting factor selecting means, Directivity control antenna apparatus characterized by having a reception directivity synthesis unit configured to perform directivity synthesis of the receive by performing a weighting combining processing to the signals or baseband signals.
【請求項3】 前記ヌル形成重み係数算出手段は、前記
所望信号指定手段において得られた所望信号の方位を拘
束条件とし、前記方位電力推定手段において推定された
その他の受信信号の方位と電力を用いて前記アレーアン
テナにおける受信電力が最小となるように重み係数を算
出することを特徴とする請求項1記載の指向性制御アン
テナ装置。
3. The null forming weight coefficient calculating means sets the azimuth of the desired signal obtained by the desired signal specifying means as a constraint condition, and calculates the azimuth and power of the other received signals estimated by the azimuth power estimating means. The directivity control antenna device according to claim 1, wherein a weighting factor is calculated so that received power at the array antenna is minimized.
【請求項4】 前記ビーム形成重み係数算出手段と前記
ヌル形成重み係数算出手段および前記重み係数算出手段
選択手段の代わりに、予め算出された重み係数を記憶し
た重み係数テーブルと、前記所望信号の方位と前記干渉
信号の方位の角度差と所望信号電力に対する干渉信号電
力の比を算出し、予め求めておいた角度差と電力比の閾
値をもとに最適重み係数を前記重み係数テーブルより選
択参照する重み係数選択手段を有することを特徴とする
請求項1または2記載の指向性制御アンテナ装置。
4. A weighting factor table storing pre-calculated weighting factors instead of the beam forming weighting factor calculating means, the null forming weighting factor calculating means and the weighting factor calculating means selecting means, Calculate the ratio of the interference signal power to the desired signal power and the angle difference between the azimuth and the azimuth of the interference signal, and select the optimum weighting coefficient from the weighting coefficient table based on the angle difference and the power ratio threshold obtained in advance. 3. The directivity control antenna device according to claim 1, further comprising a weighting factor selection unit to be referred to.
【請求項5】 前記ヌル形成重み係数算出手段は、前記
受信の中間周波数信号またはベースバンド信号と前記方
位電力推定手段において推定された方位および前記所望
信号指定手段において得られた所望信号の方位を用いて
前記アレーアンテナの重み係数を算出することを特徴と
する請求項1乃至3のいずれかに記載の指向性制御アン
テナ装置。
5. The null forming weight coefficient calculating means calculates the received intermediate frequency signal or baseband signal, the azimuth estimated by the azimuth power estimating means, and the azimuth of the desired signal obtained by the desired signal specifying means. The directivity control antenna device according to any one of claims 1 to 3, wherein a weight coefficient of the array antenna is calculated using the weight coefficient.
【請求項6】 前記方位電力推定手段の代わりに、受信
信号の方位を推定する方位推定手段と、前記方位推定手
段とは別に受信信号の電力を推定する電力推定手段を有
することを特徴とする請求項1乃至4のいずれかに記載
の指向性制御アンテナ装置。
6. An azimuth estimating means for estimating the azimuth of a received signal, and a power estimating means for estimating the power of a received signal separately from the azimuth estimating means, in place of the azimuth power estimating means. The directivity control antenna device according to claim 1.
【請求項7】 前記重み係数算出手段選択手段によって
選択された最適重み係数を用いて送信の指向性合成を行
う送信指向性合成手段と、送信の中間周波数信号または
ベースバンド信号を前記無線周波数信号に変換する送信
周波数変換手段を有することを特徴とする請求項1乃至
5のいずれかに記載の指向性制御アンテナ装置。
7. A transmission directivity synthesizing means for performing transmission directivity synthesis using the optimum weighting factor selected by the weighting factor calculating means selecting means, and transmitting an intermediate frequency signal or a baseband signal to the radio frequency signal. The directivity control antenna device according to any one of claims 1 to 5, further comprising a transmission frequency conversion means for converting the transmission frequency into a signal.
【請求項8】 請求項2記載の指向性制御アンテナ装置
を用いた移動体通信の基地局。
8. A base station for mobile communication using the directivity control antenna device according to claim 2.
【請求項9】 請求項2記載の指向性制御アンテナ装置
を用いた移動体通信の移動局。
9. A mobile station for mobile communication using the directivity control antenna device according to claim 2.
JP2000039818A 2000-02-17 2000-02-17 Reception directivity control method, antenna apparatus, and mobile communication base station and mobile station using the same Expired - Fee Related JP4166401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039818A JP4166401B2 (en) 2000-02-17 2000-02-17 Reception directivity control method, antenna apparatus, and mobile communication base station and mobile station using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039818A JP4166401B2 (en) 2000-02-17 2000-02-17 Reception directivity control method, antenna apparatus, and mobile communication base station and mobile station using the same

Publications (2)

Publication Number Publication Date
JP2001230621A true JP2001230621A (en) 2001-08-24
JP4166401B2 JP4166401B2 (en) 2008-10-15

Family

ID=18563324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039818A Expired - Fee Related JP4166401B2 (en) 2000-02-17 2000-02-17 Reception directivity control method, antenna apparatus, and mobile communication base station and mobile station using the same

Country Status (1)

Country Link
JP (1) JP4166401B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315811A (en) * 2004-04-30 2005-11-10 Furuno Electric Co Ltd Characteristic optimization method for adaptive array
KR100770875B1 (en) 2004-05-24 2007-10-26 삼성전자주식회사 Beam forming apparatus and method using estimating interference power in array antenna system
WO2009072518A1 (en) * 2007-12-04 2009-06-11 Omron Corporation Non-contact ic medium communication device
JP2012209611A (en) * 2011-03-29 2012-10-25 Kyocera Corp Communication device and communication method
JP2012209615A (en) * 2011-03-29 2012-10-25 Kyocera Corp Communication device and communication method
US8547206B2 (en) 2007-12-13 2013-10-01 Omron Corporation Apparatus, method and program for detecting direction of noncontact IC medium and computer-readable recording medium having the program recorded thereon
JP2014126525A (en) * 2012-12-27 2014-07-07 Japan Radio Co Ltd Interference suppression support device
JP2017003361A (en) * 2015-06-08 2017-01-05 三菱電機株式会社 Signal processor
JP2017204855A (en) * 2016-05-13 2017-11-16 エヌエックスピー ビー ヴィNxp B.V. Receiver circuit
JP2019041232A (en) * 2017-08-25 2019-03-14 沖電気工業株式会社 Signal processing apparatus and signal processing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500098B2 (en) * 2004-04-30 2010-07-14 古野電気株式会社 Adaptive array characteristic optimization method
JP2005315811A (en) * 2004-04-30 2005-11-10 Furuno Electric Co Ltd Characteristic optimization method for adaptive array
KR100770875B1 (en) 2004-05-24 2007-10-26 삼성전자주식회사 Beam forming apparatus and method using estimating interference power in array antenna system
US8456281B2 (en) 2007-12-04 2013-06-04 Omron Corporation Non-contact IC medium communication device
WO2009072518A1 (en) * 2007-12-04 2009-06-11 Omron Corporation Non-contact ic medium communication device
US8547206B2 (en) 2007-12-13 2013-10-01 Omron Corporation Apparatus, method and program for detecting direction of noncontact IC medium and computer-readable recording medium having the program recorded thereon
JP2012209611A (en) * 2011-03-29 2012-10-25 Kyocera Corp Communication device and communication method
JP2012209615A (en) * 2011-03-29 2012-10-25 Kyocera Corp Communication device and communication method
US9024818B2 (en) 2011-03-29 2015-05-05 Kyocera Corporation Communication device
JP2014126525A (en) * 2012-12-27 2014-07-07 Japan Radio Co Ltd Interference suppression support device
JP2017003361A (en) * 2015-06-08 2017-01-05 三菱電機株式会社 Signal processor
JP2017204855A (en) * 2016-05-13 2017-11-16 エヌエックスピー ビー ヴィNxp B.V. Receiver circuit
JP2019041232A (en) * 2017-08-25 2019-03-14 沖電気工業株式会社 Signal processing apparatus and signal processing method
JP7013726B2 (en) 2017-08-25 2022-02-01 沖電気工業株式会社 Signal processing device and signal processing method

Also Published As

Publication number Publication date
JP4166401B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US9252864B2 (en) Method and apparatus for fast beam-link construction in mobile communication system
JP3738705B2 (en) Adaptive antenna device
JP2007529955A (en) Adaptive beamforming system using hierarchical weight banks for antenna arrays in wireless communication systems
US6931244B2 (en) Radio equipment capable of real time change of antenna directivity and doppler frequency estimating circuit used for the radio equipment
US20040046695A1 (en) Method and apparatus for high resolution tracking via mono-pulse beam-forming in a communication system
US7515892B2 (en) Base station antenna system and method for estimating mobile station direction in wireless communication system
JP2002540706A (en) Beam forming method and apparatus
KR20050004605A (en) Combined beamforming-diversity wireless fading channel de-modulator using sub-array grouped adaptive array antennas, portable telecommunication receiving system comprising it and method thereof
JP2001324557A (en) Device and method for estimating position of signal transmitting source in short range field with array antenna
US6333713B1 (en) Direction estimating apparatus, directivity controlling antenna apparatus, and direction estimating method
JP4166401B2 (en) Reception directivity control method, antenna apparatus, and mobile communication base station and mobile station using the same
Khan et al. Antenna beam-forming for a 60 Ghz transceiver system
US6218988B1 (en) Array antenna transmitter with a high transmission gain proportional to the number of antenna elements
CN109239678B (en) Portable high-frequency ground wave radar radio frequency interference suppression method
Misra et al. Smart Antenna for Wireless Cellular Communication-A Technological Analysis on Architecture, Working Mechanism, Drawbacks and Future Scope
WO2003041283A2 (en) Digital adaptive beamforming and demodulation apparatus and method
JP4925502B2 (en) Array antenna, azimuth estimation apparatus, communication apparatus, and azimuth estimation method
JP2004061468A (en) Method for estimating arrival direction of multiplex wave using spatial characteristic and receiving beam formation device using the same
Al-Ardi et al. Performance evaluation of the LMS adaptive beamforming algorithm used in smart antenna systems
JP4098026B2 (en) Method of estimating direction of arrival of periodic stationary signal in multipath propagation environment and reception beam forming apparatus using the same
JP2002204193A (en) Mobile communication system
WO2019180831A1 (en) Autonomous radiation pattern generation antenna control device, control method therefor, and wireless communication system
Balanis et al. Smart antennas
Mankal et al. Adaptive Beamforming Algorithms Applicable for Mobile Communication
JP3740063B2 (en) Base station apparatus and diversity control method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees