JP2001229923A - Zinc alloy powder and alkaline storage battery using the same - Google Patents

Zinc alloy powder and alkaline storage battery using the same

Info

Publication number
JP2001229923A
JP2001229923A JP2000041880A JP2000041880A JP2001229923A JP 2001229923 A JP2001229923 A JP 2001229923A JP 2000041880 A JP2000041880 A JP 2000041880A JP 2000041880 A JP2000041880 A JP 2000041880A JP 2001229923 A JP2001229923 A JP 2001229923A
Authority
JP
Japan
Prior art keywords
zinc alloy
alloy powder
mesh
weight
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000041880A
Other languages
Japanese (ja)
Other versions
JP3545985B2 (en
Inventor
Akira Koyama
昭 小山
Seiji Fuchino
誠治 渕野
Mitsuo Shinoda
光男 篠田
Koji Morita
浩二 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000041880A priority Critical patent/JP3545985B2/en
Publication of JP2001229923A publication Critical patent/JP2001229923A/en
Application granted granted Critical
Publication of JP3545985B2 publication Critical patent/JP3545985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zinc alloy powder for an alkaline storage battery, having superior anticorrosiveness and improved battery discharge characteristics in particular, high-rate discharge characteristics and suiting a negative electrode active material for the alkaline storage battery, and the alkaline storage battery using the zinc alloy powder. SOLUTION: The zinc alloy powder for the alkaline storage battery contains 0.005-0.05% by weight of at least one or more types of a trace of added metal Al, Bi, Ca, In, Mg, Pb, Sn. It is formed by mixing a 5-50% by weight of particulate powder, to which heat treatment is given in an inert gas atmosphere and a 50-95% by weight of untreated zinc alloy powder in the particle size range of 20-150 mesh, 35-150 mesh, 20-200 mesh or 35-200 mesh.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ電池用亜
鉛合金粉として、負極活物質に用いられるもので、耐食
性に優れ放電性能を向上させたアルカリ電池用亜鉛合金
粉および、この亜鉛合金粉を用いたアルカリ電池に関す
る。
The present invention relates to a zinc alloy powder for an alkaline battery which is used as a negative electrode active material as a zinc alloy powder for an alkaline battery and which has excellent corrosion resistance and improved discharge performance. It relates to the alkaline battery used.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、アルカリ電池用亜鉛合金粉は、亜鉛合金溶湯をアト
マイズ法(エアーアトマイズ)により製造している。こ
うして得られた亜鉛合金粉をアルカリ電池の負極として
電池に充填するが、亜鉛合金粉の微粒粉の比率が高いも
のを負極材として使用することで放電性能は向上する
が、水素ガスの発生量が増え、電池からの電解液漏れ等
の問題が想定され実用化には至っていない。
2. Description of the Related Art Heretofore, zinc alloy powder for alkaline batteries has been produced from a molten zinc alloy by an atomizing method (air atomizing). The zinc alloy powder thus obtained is filled in a battery as a negative electrode of an alkaline battery. The discharge performance is improved by using a zinc alloy powder having a high ratio of fine powder as a negative electrode material, but the amount of hydrogen gas generated is increased. However, problems such as leakage of the electrolyte from the battery are assumed, and the battery has not been put to practical use.

【0003】また、アルカリ電池の負極活物質である微
量金属添加亜鉛合金粉は、熱処理を行うことで水素ガス
の発生が抑制されることは、例えば特開平3−3599
73号、特開平8−151407号などに記載されてい
るが、内部抵抗が高くなり、放電特性が低下するという
問題がある。
Further, it has been reported in Japanese Patent Laid-Open No. 3-3599 that the heat treatment of a trace metal-added zinc alloy powder, which is a negative electrode active material of an alkaline battery, suppresses the generation of hydrogen gas.
No. 73, JP-A-8-151407 and the like, there is a problem that the internal resistance increases and the discharge characteristics deteriorate.

【0004】本発明は、耐食性に優れ、電池放電特性特
にハイレート放電性能を向上させることのできる、アル
カリ電池の負極活物質に用いるのに好適なアルカリ電池
用亜鉛合金粉および、この亜鉛合金粉を用いたアルカリ
電池を提供することにある。
The present invention relates to a zinc alloy powder for an alkaline battery, which is excellent in corrosion resistance and can improve battery discharge characteristics, particularly high-rate discharge performance, and which is suitable for use as a negative electrode active material of an alkaline battery. It is to provide an alkaline battery used.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
に本発明者等は、熱処理を施した微量金属添加亜鉛合金
粉の水素ガス発生量及び電池特性を粒度別に調べた結
果、微粒粉側が水素ガス発生の抑制効果が大きく、内部
抵抗の上昇率が低いことが確認できた。この為、種々検
討した結果、内部抵抗が低く、放電性能に優れた微粒粉
のみ熱処理を行い、未処理の通常粒度品(20〜150
meshまたは、35〜150meshまたは、20〜
200meshまたは、35〜200mesh)と混合
することで、微粒粉の比率を高くしても水素ガス発生量
が現行品と同等もしくは低減でき、内部抵抗も抑制され
放電性能が向上することが確認され、本発明に至った。
Means for Solving the Problems In order to solve the above problems, the present inventors examined the amount of hydrogen gas generated and the battery characteristics of the heat-treated trace metal-added zinc alloy powder by particle size. It was confirmed that the effect of suppressing hydrogen gas generation was large and the rate of increase in internal resistance was low. For this reason, as a result of various examinations, only the fine powder having a low internal resistance and excellent discharge performance was subjected to heat treatment, and untreated normal particle size products (20 to 150
mesh or 35-150 mesh or 20-
By mixing with 200 mesh or 35 to 200 mesh), it was confirmed that even if the ratio of fine powder was increased, the amount of hydrogen gas generated could be equal to or reduced from the current product, the internal resistance was suppressed, and the discharge performance was improved, The present invention has been reached.

【0006】即ち、[請求項1]の発明は、微量添加金属
Al,Bi,Ca,In,Mg,Pb,Snの内少なく
とも1種以上を0.005〜0.05重量%含むアルカ
リ電池用亜鉛合金粉であって、不活性ガス雰囲気中で熱
処理した微粒粉を5〜50重量%と、20〜150me
shまたは、35〜150meshの粒度範囲の未処理
亜鉛合金粉50〜95重量%とを混合してなるアルカリ
電池用亜鉛合金粉であることを特徴とする。
That is, the invention of claim 1 is directed to an alkaline battery containing at least one of at least one of Al, Bi, Ca, In, Mg, Pb and Sn, which is a trace addition metal, in an amount of 0.005 to 0.05% by weight. 5 to 50% by weight of a zinc alloy powder which has been heat-treated in an inert gas atmosphere and 20 to 150 me
sh or an untreated zinc alloy powder having a particle size range of 35 to 150 mesh, and a zinc alloy powder for an alkaline battery obtained by mixing 50 to 95% by weight.

【0007】[請求項2]の発明は、請求項1において、
微粒粉が150〜300meshまたは、150mes
h以下の粒度範囲であることを特徴とする。
[0007] The invention of claim 2 is based on claim 1,
Fine powder is 150-300 mesh or 150 mesh
h or less.

【0008】[請求項3]の発明は、微量添加金属Al,
Bi,Ca,In,Mg,Pb,Snの内少なくとも1
種以上を0.005〜0.05重量%含むアルカリ電池
用亜鉛合金粉であって、不活性ガス雰囲気中で熱処理し
た微粒粉を5〜50重量%と、20〜200meshま
たは、35〜200meshの粒度範囲の未処理亜鉛合
金粉50〜95重量%とを混合してなるアルカリ電池用
亜鉛合金粉であることを特徴とする。
[0008] The invention of claim 3 provides a method for manufacturing a semiconductor device comprising:
At least one of Bi, Ca, In, Mg, Pb and Sn
A zinc alloy powder for an alkaline battery containing 0.005 to 0.05% by weight of a seed or more, wherein 5 to 50% by weight of a fine powder heat-treated in an inert gas atmosphere is added to 20 to 200 mesh or 35 to 200 mesh. It is a zinc alloy powder for an alkaline battery obtained by mixing 50 to 95% by weight of an untreated zinc alloy powder having a particle size range.

【0009】[請求項4]の発明は、請求項3において、
微粒粉が200〜300meshまたは、200mes
h以下の粒度範囲であることを特徴とする。
[0009] The invention of claim 4 is the invention according to claim 3,
Fine powder is 200-300 mesh or 200 mesh
h or less.

【0010】[請求項5]の発明は、請求項1乃至請求項
4の亜鉛合金粉を負極活物質に用いてなるアルカリ電池
であることを特徴とする。
The invention of claim 5 is characterized in that the invention is an alkaline battery using the zinc alloy powder of claims 1 to 4 as a negative electrode active material.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、微量添加金属Al,Bi,Ca,In,M
g,Pb,Snの内少なくとも1種以上を0.005〜
0.05重量%含むアルカリ電池用亜鉛合金粉であっ
て、不活性ガス雰囲気中で熱処理した微粒粉を5〜50
重量%と、20〜150meshまたは、35〜150
meshまたは、20〜200meshまたは、35〜
200meshの粒度範囲の未処理亜鉛合金粉50〜9
5重量%とを混合してなるアルカリ電池用亜鉛合金粉で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present invention provides a method for adding a trace amount of added metal Al, Bi, Ca, In, M
g, Pb, Sn at least one of 0.005 to
5 to 50% by weight of a zinc alloy powder for an alkaline battery containing 0.05% by weight, which is heat-treated in an inert gas atmosphere.
% By weight and 20 to 150 mesh or 35 to 150
mesh or 20-200 mesh or 35-
Untreated zinc alloy powder 50-9 with a particle size range of 200 mesh
5% by weight of a zinc alloy powder for alkaline batteries.

【0012】ここで、未処理亜鉛合金粉とは熱処理して
いない亜鉛合金粉を言う。また、微量添加金属Al,B
i,Ca,In,Mg,Pb,Snの内少なくとも1種
以上が0.005重量%以下では、添加金属の効果が充
分でなく、0.05重量%以上では、放電容量の低下に
つながる。また、不活性ガス雰囲気中で熱処理した微粒
粉が5重量%以下では、放電性能の向上が充分でなく、
50重量%以上だと、水素ガス発生の抑制が充分でな
い。
Here, the untreated zinc alloy powder refers to a zinc alloy powder that has not been heat-treated. Also, trace amounts of added metals Al and B
If at least one of i, Ca, In, Mg, Pb, and Sn is 0.005% by weight or less, the effect of the added metal is not sufficient, and if it is 0.05% by weight or more, the discharge capacity decreases. Further, when the fine powder heat-treated in an inert gas atmosphere is 5% by weight or less, the discharge performance is not sufficiently improved,
If it is 50% by weight or more, the suppression of hydrogen gas generation is not sufficient.

【0013】[0013]

【実施例】以下、本発明の効果を示す好適な実施例を表
1に示したが、本発明はこれに限定されるものではな
い。また、表1の数値に基づき、図1〜6を作成した。
図1は亜鉛合金粉の放電前ガス発生速度を粒度別にグラ
フ化したものである。合金組成はBiを0.015重量
%、Inを0.05重量%添加したものと、Biを0.
025重量%、Inを0.025重量%、Ca0.01
3重量%添加したものの2試料を用い、熱処理を行った
場合と、行わなかった場合との比較を行った。熱処理
は、アルゴンガス雰囲気中に300℃で2時間静置保持
して、自然冷却することにより行った。
EXAMPLES Preferred examples showing the effects of the present invention are shown in Table 1 below, but the present invention is not limited to these examples. 1 to 6 were created based on the numerical values in Table 1.
FIG. 1 is a graph of the pre-discharge gas generation rate of zinc alloy powder for each particle size. The alloy composition was 0.015% by weight of Bi and 0.05% by weight of In and 0.2% of Bi.
025% by weight, 0.025% by weight of In, Ca0.01
Using two samples of which 3% by weight was added, a comparison was made between the case where heat treatment was performed and the case where heat treatment was not performed. The heat treatment was performed by allowing to stand still at 300 ° C. for 2 hours in an argon gas atmosphere and allowing it to cool naturally.

【0014】また、亜鉛合金粉の放電前ガス発生速度の
測定は、電解液として濃度40重量%の水酸化カリウム
水溶液に酸化亜鉛を飽和させたものを5ml用い、これ
に亜鉛合金粉を10g浸漬し、45℃で3日間のガス発
生速度(μl/g・day)を測定することによって行
った。図1から、熱処理を施すことで、各粒度共、水素
ガスの発生が抑制されているが、特に微粒粉側で熱処理
の効果が大きいことが分かる。
The gas generation rate of the zinc alloy powder before discharge was measured by using 5 ml of a 40% by weight aqueous solution of potassium hydroxide saturated with zinc oxide as an electrolytic solution, and immersing 10 g of the zinc alloy powder in this. The measurement was performed by measuring the gas generation rate (μl / g · day) at 45 ° C. for 3 days. From FIG. 1, it can be seen that the generation of hydrogen gas is suppressed for each particle size by performing the heat treatment, but the effect of the heat treatment is particularly large on the fine powder side.

【0015】図2は、アルカリ電池の内部抵抗を、負極
に用いた亜鉛合金粉の粒度別に測定したものである。合
金組成はBiを0.015重量%、Inを0.05重量
%添加したものと、Biを0.025重量%、Inを
0.025重量%、Ca0.013重量%添加したもの
の2試料を用い、熱処理を行った場合と、行わなかった
場合との比較を行った。熱処理は、アルゴンガス雰囲気
中に300℃で2時間静置保持して、自然冷却すること
により行った。
FIG. 2 shows the results obtained by measuring the internal resistance of the alkaline battery for each particle size of the zinc alloy powder used for the negative electrode. The alloy composition was composed of two samples, one containing 0.015% by weight of Bi and 0.05% by weight of In, and the other containing 0.025% by weight of Bi, 0.025% by weight of In, and 0.013% by weight of Ca. A comparison was made between the case where heat treatment was performed and the case where heat treatment was not performed. The heat treatment was performed by allowing to stand still at 300 ° C. for 2 hours in an argon gas atmosphere and allowing it to cool naturally.

【0016】また、アルカリ電池は図7に示すようにJ
IS規格LR6形式とし、20℃の温度で7日間保存し
た後、電池テスターにて内部抵抗の測定を行った。図2
から、熱処理を施すことで、各粒度共、内部抵抗が上が
る傾向があるが、微粒粉側で内部抵抗の上昇率が低いこ
とが分かる。
As shown in FIG.
After storage in an IS standard LR6 format at a temperature of 20 ° C. for 7 days, the internal resistance was measured with a battery tester. FIG.
From this, it can be seen that the internal resistance tends to increase for each particle size by performing the heat treatment, but the increase rate of the internal resistance is low on the fine powder side.

【0017】図3は、アルカリ電池の放電持続時間を、
負極に用いた亜鉛合金粉の粒度別に測定したものであ
る。合金組成はBiを0.015重量%、Inを0.0
5重量%添加したものと、Biを0.025重量%、I
nを0.025重量%、Ca0.013重量%添加した
ものの2試料を用い、熱処理を行った場合と、行わなか
った場合との比較を行った。なお、放電持続時間は、B
iを0.015重量%、Inを0.05重量%添加し
た、20〜200meshの熱処理を行なっていない亜
鉛合金粉を用いた場合の放電持続時間を100とした相
対値で示した。熱処理は、アルゴンガス雰囲気中に30
0℃で2時間静置保持して、自然冷却することにより行
った。
FIG. 3 shows the discharge duration of the alkaline battery.
It was measured for each particle size of the zinc alloy powder used for the negative electrode. The alloy composition was 0.015% by weight of Bi and 0.0% of In.
5 wt% added, 0.025 wt% Bi, I
Using two samples in which 0.025% by weight of n was added and 0.013% by weight of Ca, a comparison was made between the case where heat treatment was performed and the case where heat treatment was not performed. The discharge duration is B
The values are shown as relative values with the discharge duration of 100 when using a zinc alloy powder that has not been subjected to a heat treatment of 20 to 200 mesh to which 0.015% by weight of i and 0.05% by weight of In have been added. Heat treatment is performed in an argon gas atmosphere for 30 minutes.
This was carried out by allowing to stand still at 0 ° C. for 2 hours and naturally cooling.

【0018】また、JIS規格LR6形式としたアルカ
リ電池を20℃の温度で7日間保存した後、図2での内部
抵抗測定終了後、放電抵抗1Ωで連続放電を行い、終止
電圧0.9Vに至るまでの放電持続時間の測定を行っ
た。図3から、熱処理を施すことで、各粒度共、放電持
続時間が短くなる傾向があるが、粗粒粉側に比べ微粒粉
側で熱処理の影響が少ないことが分かる。
After storing the alkaline battery in JIS standard LR6 format for 7 days at a temperature of 20 ° C., after measuring the internal resistance in FIG. 2, a continuous discharge is performed with a discharge resistance of 1Ω, and the final voltage is reduced to 0.9 V. The duration of the discharge up to that point was measured. From FIG. 3, it can be seen that the duration of the discharge tends to be shorter for each particle size when the heat treatment is performed, but the influence of the heat treatment is smaller on the fine powder side than on the coarse powder side.

【0019】上記の図1〜図3までの結果により、粗粒子
側はもともと水素ガス発生のレベルが低く、逆に熱処理
することにより、放電性能が低下することにもなる為、
亜鉛合金粉全体に熱処理を施すことは適切でないことが
分かる。
According to the results shown in FIGS. 1 to 3, the level of hydrogen gas generation is originally low on the coarse particle side, and conversely, the heat treatment reduces the discharge performance.
It can be seen that heat treatment of the entire zinc alloy powder is not appropriate.

【0020】図4は亜鉛合金混合粉の放電前ガス発生速
度を混合比率別に測定したものである。合金組成はBi
を0.015重量%、Inを0.05重量%添加したも
のを用い、粒度範囲は200mesh以下、150me
sh以下、200〜300mesh、150〜300m
eshの4種類の微粒粉を熱処理した。次に、150m
esh以下及び150〜300meshの熱処理亜鉛合
金粉は、20〜150meshの未処理亜鉛合金粉に混
合し、200mesh以下及び200〜300mesh
の熱処理亜鉛合金粉は、20〜200meshの未処理
亜鉛合金粉に混合して、混合比率別に亜鉛合金粉の放電
前ガス発生速度を測定した。熱処理は、アルゴンガス雰
囲気中に300℃で2時間静置保持して、自然冷却する
ことにより行った。
FIG. 4 shows the pre-discharge gas generation rate of the zinc alloy mixed powder measured for each mixing ratio. Alloy composition is Bi
Of 0.015% by weight and 0.05% by weight of In are used.
sh or less, 200-300 mesh, 150-300 m
Four kinds of fine powder of esh were heat-treated. Next, 150m
The heat-treated zinc alloy powder of less than esh and 150-300 mesh is mixed with the untreated zinc alloy powder of 20-150 mesh, and less than 200 mesh and 200-300 mesh
Was mixed with untreated zinc alloy powder of 20 to 200 mesh, and the gas generation rate before discharge of the zinc alloy powder was measured for each mixing ratio. The heat treatment was performed by allowing to stand still at 300 ° C. for 2 hours in an argon gas atmosphere and allowing it to cool naturally.

【0021】また、亜鉛合金混合粉の放電前ガス発生速
度の測定は、電解液として濃度40重量%の水酸化カリ
ウム水溶液に酸化亜鉛を飽和させたものを5ml用い、
これに亜鉛合金粉を10g浸漬し、45℃で3日間のガ
ス発生速度(μl/g・day)を測定することによっ
て行った。図4から、混合比率が50重量%を超える
と、ガス発生量が大きくなることが分かる。また、20
〜200mesh粉の亜鉛合金粉に200mesh以下
の微粒粉を混合したものを全て熱処理した従来方法にお
いても、同様の傾向が見られた。
The gas generation rate of the zinc alloy mixed powder before discharge was measured by using 5 ml of a 40 wt% aqueous solution of potassium hydroxide saturated with zinc oxide as an electrolytic solution.
This was carried out by immersing 10 g of zinc alloy powder in this and measuring the gas generation rate (μl / g · day) at 45 ° C. for 3 days. FIG. 4 shows that when the mixing ratio exceeds 50% by weight, the amount of gas generated increases. Also, 20
The same tendency was observed in the conventional method in which all of a mixture of zinc alloy powder of 200 mesh or less and fine powder of 200 mesh or less was heat-treated.

【0022】図5はアルカリ電池の内部抵抗を、負極に
用いた亜鉛合金混合粉の混合比率別に測定したものであ
る。合金組成はBiを0.015重量%、Inを0.0
5重量%添加したものを用い、粒度範囲は200mes
h以下、150mesh以下、200〜300mes
h、150〜300meshの4種類の微粒粉を熱処理
した。次に、150mesh以下及び150〜300m
eshの熱処理亜鉛合金粉は、20〜150meshの
未処理亜鉛合金粉に混合し、200mesh以下及び2
00〜300meshの熱処理亜鉛合金粉は、20〜2
00meshの未処理亜鉛合金粉に混合して、混合比率
別に亜鉛合金粉の内部抵抗を測定した。熱処理は、アル
ゴンガス雰囲気中に300℃で2時間静置保持して、自
然冷却することにより行った。
FIG. 5 shows the internal resistance of the alkaline battery measured for each mixing ratio of the zinc alloy mixed powder used for the negative electrode. The alloy composition was 0.015% by weight of Bi and 0.0% of In.
5% by weight was added, and the particle size range was 200mes.
h or less, 150 mesh or less, 200-300 mes
h, four types of fine powder of 150 to 300 mesh were heat-treated. Next, 150 mesh or less and 150-300m
The heat-treated zinc alloy powder of esh is mixed with untreated zinc alloy powder of 20 to 150 mesh, and 200 mesh or less and 2
The heat-treated zinc alloy powder of 00 to 300 mesh is 20 to 2
The mixture was mixed with 00 mesh untreated zinc alloy powder, and the internal resistance of the zinc alloy powder was measured for each mixing ratio. The heat treatment was performed by allowing to stand still at 300 ° C. for 2 hours in an argon gas atmosphere and allowing it to cool naturally.

【0023】アルカリ電池はJIS規格LR6形式と
し、20℃の温度で7日間保存した後、電池テスターに
て内部抵抗の測定を行った。図5から、混合比率が高く
なると、内部抵抗が下がる傾向にあることが分かる。ま
た、20〜200mesh粉の亜鉛合金粉に200me
sh以下の微粒粉を混合したものを全て熱処理した従来
方法と比較して、いずれの混合比率においても、内部抵
抗が低くなる傾向がある。特に30〜50%の混合比率
で、内部抵抗が著しく低いことが分かる。
The alkaline battery was JIS standard LR6 format, stored at a temperature of 20 ° C. for 7 days, and then the internal resistance was measured with a battery tester. From FIG. 5, it can be seen that the higher the mixing ratio, the lower the internal resistance tends to be. Moreover, 200 me is added to the zinc alloy powder of 20 to 200 mesh powder.
At any mixing ratio, the internal resistance tends to be lower as compared with the conventional method in which all of the powders having a particle size of sh or less are heat-treated. In particular, it can be seen that the internal resistance is remarkably low at a mixing ratio of 30 to 50%.

【0024】図6はアルカリ電池の放電持続時間を、負
極に用いた亜鉛合金混合粉の混合比率別に測定したもの
である。合金組成はBiを0.015重量%、Inを
0.05重量%添加したものを用い、粒度範囲は200
mesh以下、150mesh以下、200〜300m
esh、150〜300meshの4種類の微粒粉を熱
処理しした。次に、150mesh以下及び150〜3
00meshの熱処理亜鉛合金粉は、20〜150me
shの未処理亜鉛合金粉に混合し、200mesh以下
及び200〜300meshの熱処理亜鉛合金粉は、2
0〜200meshの未処理亜鉛合金粉に混合して、混
合比率別に亜鉛合金粉の放電持続時間を測定した。熱処
理は、アルゴンガス雰囲気中に300℃で2時間静置保
持して、自然冷却することにより行った。
FIG. 6 shows the discharge duration of the alkaline battery measured for each mixing ratio of the zinc alloy mixed powder used for the negative electrode. The alloy composition used was 0.015% by weight of Bi and 0.05% by weight of In. The particle size range was 200.
less than mesh, less than 150 mesh, 200-300m
Four types of fine powders of esh and 150 to 300 mesh were heat-treated. Next, 150 mesh or less and 150 to 3
00mesh heat treated zinc alloy powder is 20 ~ 150me
sh untreated zinc alloy powder, heat treated zinc alloy powder of 200 mesh or less and 200-300 mesh
The mixture was mixed with 0 to 200 mesh untreated zinc alloy powder, and the duration of discharge of the zinc alloy powder was measured for each mixing ratio. The heat treatment was performed by allowing to stand still at 300 ° C. for 2 hours in an argon gas atmosphere and allowing it to cool naturally.

【0025】アルカリ電池はJIS規格LR6形式と
し、20℃の温度で7日間保存した後、放電抵抗1Ωで
連続放電を行い、終止電圧0.9Vに至るまでの放電持
続時間の測定を行った。図6から、混合比率が高くなる
と、放電時間が延びる傾向にあることが分かる。また、
20〜200mesh粉の亜鉛合金粉に200mesh
以下の微粒粉を混合したものを全て熱処理した従来方法
と比較して、いずれの混合比率においても、放電時間が
延びる傾向がある。特に30〜50%の混合比率で、放
電時間が著しく延びていることが分かる。
The alkaline battery was stored in a JIS standard LR6 format at a temperature of 20 ° C. for 7 days, then was continuously discharged with a discharge resistance of 1Ω, and the duration of discharge until reaching a final voltage of 0.9 V was measured. FIG. 6 shows that the discharge time tends to increase as the mixing ratio increases. Also,
200 mesh to zinc alloy powder of 20-200 mesh powder
The discharge time tends to be longer at any mixing ratio as compared with the conventional method in which all of the following fine powders are mixed and heat-treated. In particular, it can be seen that the discharge time is significantly increased at a mixing ratio of 30 to 50%.

【0026】上記の図4〜図6までの結果により、微粒
粉のみ熱処理を施した場合、50%の混合比率までは、
微粒粉を混合しない製品と同等のレベルにまで放電前の
ガス発生が抑制され、かつ放電時間は、全ての粒度に熱
処理を施した場合に比較して伸びていることが分かる。
特に熱処理を施した微粒粉を30〜50%混合した場
合、著しい効果が得られる。
According to the results shown in FIGS. 4 to 6, when only the fine powder is subjected to the heat treatment, up to the mixing ratio of 50%,
It can be seen that gas generation before discharge is suppressed to a level equivalent to that of a product in which fine powder is not mixed, and that the discharge time is longer than when heat treatment is applied to all particle sizes.
In particular, when 30 to 50% of the heat-treated fine powder is mixed, a remarkable effect is obtained.

【0027】また、亜鉛合金粉の合金組成をBiを0.
05重量%、Inを0.05重量%、Mgを0.01重
量%、Snを0.01重量%添加して、上記と同様の試
験を行ったので、その結果を表1の実施例16と比較例
17〜19に示した。また、亜鉛合金粉の合金組成をB
iを0.05重量%、Inを0.05重量%、Alを
0.05重量%添加して、上記と同様の試験を行ったの
で、その結果を表1の実施例12〜15と比較例12〜
16に示した。これらの場合も図1から図6に示したの
と同様の傾向が見られた。
Further, the alloy composition of the zinc alloy powder is set to a Bi content of 0.1.
A test similar to the above was conducted with the addition of 0.05% by weight, 0.05% by weight of In, 0.01% by weight of Mg, and 0.01% by weight of Sn. The results are shown in Example 16 in Table 1. And Comparative Examples 17 to 19. In addition, the alloy composition of the zinc alloy powder is changed to B
The same test was performed by adding 0.05% by weight of i, 0.05% by weight of In, and 0.05% by weight of Al. The results were compared with Examples 12 to 15 in Table 1. Example 12-
The results are shown in FIG. In these cases, the same tendency as that shown in FIGS. 1 to 6 was observed.

【0028】表1 Table 1

【0029】[0029]

【発明の効果】耐食性に優れ、電池放電特性特にハイレ
ート放電性能を向上させることができる、アルカリ電池
の負極活物質に用いるのに好適なアルカリ電池用亜鉛合
金粉および、この亜鉛合金粉を用いたアルカリ電池を提
供できる。また、ガスアトマイズ法において発生する微
粒粉を無駄にすること無く負極材料として用いることが
可能になった。
EFFECTS OF THE INVENTION A zinc alloy powder for an alkaline battery suitable for use as a negative electrode active material of an alkaline battery, which is excellent in corrosion resistance and can improve battery discharge characteristics, particularly high-rate discharge performance, and using this zinc alloy powder An alkaline battery can be provided. Further, the fine powder generated in the gas atomization method can be used as a negative electrode material without waste.

【図面の簡単な説明】[Brief description of the drawings]

【図1】亜鉛合金粉粒度別の放電前ガス発生速度を示す
グラフである。
FIG. 1 is a graph showing the gas generation rate before discharge for each particle size of zinc alloy powder.

【図2】亜鉛合金粉粒度別の内部抵抗を示すグラフであ
る。
FIG. 2 is a graph showing internal resistance according to zinc alloy powder particle size.

【図3】亜鉛合金粉粒度別の放電持続時間を示すグラフ
である。
FIG. 3 is a graph showing a discharge duration for each particle size of a zinc alloy powder.

【図4】熱処理微粒粉の混合比率による放電前ガス発生
速度を示すグラフである。
FIG. 4 is a graph showing a pre-discharge gas generation rate depending on a mixing ratio of heat-treated fine powder.

【図5】熱処理微粒粉の混合比率による内部抵抗を示す
グラフである。
FIG. 5 is a graph showing internal resistance depending on the mixing ratio of heat-treated fine powder.

【図6】熱処理微粒粉の混合比率による放電持続時間を
示すグラフである。
FIG. 6 is a graph showing a discharge duration according to a mixing ratio of heat-treated fine powder.

【図7】本発明で用いたアルカリ電池を例示する断面図FIG. 7 is a cross-sectional view illustrating an alkaline battery used in the present invention.

【符号の説明】[Explanation of symbols]

1…正極缶、2…正極、3…セパレーター、4…負極、
5…負極集電子、6…封口キャップ、7…ガスケット、
8…負極端子。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode can, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode,
5: negative electrode current collector, 6: sealing cap, 7: gasket,
8 ... negative electrode terminal.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H024 AA03 AA14 BB01 BB07 BB18 CC02 FF31 FF40 HH01 HH13 5H028 BB05 BB06 BB15 EE01 FF02 FF05 HH01 HH05 5H050 AA02 AA18 BA04 CA05 CB13 DA03 FA17 GA02 GA10 GA27 HA01 HA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H024 AA03 AA14 BB01 BB07 BB18 CC02 FF31 FF40 HH01 HH13 5H028 BB05 BB06 BB15 EE01 FF02 FF05 HH01 HH05 5H050 AA02 AA18 BA04 CA05 CB13 DA03 FA17 GA02 GA05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微量添加金属Al,Bi,Ca,In,
Mg,Pb,Snの内少なくとも1種以上を0.005
〜0.05重量%含むアルカリ電池用亜鉛合金粉であっ
て、不活性ガス雰囲気中で熱処理した微粒粉を5〜50
重量%と、20〜150meshまたは、35〜150
meshの粒度範囲の未処理亜鉛合金粉50〜95重量
%とを混合してなることを特徴とするアルカリ電池用亜
鉛合金粉。
1. A method according to claim 1, wherein the addition of a small amount of metal Al, Bi, Ca, In,
0.005 or more of at least one of Mg, Pb and Sn
5 to 50% by weight of a zinc alloy powder for an alkaline battery which is heat-treated in an inert gas atmosphere.
% By weight and 20 to 150 mesh or 35 to 150
A zinc alloy powder for an alkaline battery, characterized by being mixed with 50 to 95% by weight of an untreated zinc alloy powder having a mesh particle size range.
【請求項2】 請求項1において、微粒粉が150〜3
00meshまたは、150mesh以下の粒度範囲で
あることを特徴とする亜鉛合金粉。
2. The method according to claim 1, wherein the fine powder is 150 to 3
A zinc alloy powder having a particle size range of 00 mesh or 150 mesh or less.
【請求項3】 微量添加金属Al,Bi,Ca,In,
Mg,Pb,Snの内少なくとも1種以上を0.005
〜0.05重量%含むアルカリ電池用亜鉛合金粉であっ
て、不活性ガス雰囲気中で熱処理した微粒粉を5〜50
重量%と、20〜200meshまたは、35〜200
meshの粒度範囲の未処理亜鉛合金粉50〜95重量
%とを混合してなることを特徴とするアルカリ電池用亜
鉛合金粉。
3. A small amount of added metal Al, Bi, Ca, In,
0.005 or more of at least one of Mg, Pb and Sn
5 to 50% by weight of a zinc alloy powder for an alkaline battery which is heat-treated in an inert gas atmosphere.
% By weight and 20-200 mesh or 35-200
A zinc alloy powder for an alkaline battery, characterized by being mixed with 50 to 95% by weight of an untreated zinc alloy powder having a mesh particle size range.
【請求項4】請求項3において、微粒粉が200〜30
0meshまたは、200mesh以下の粒度範囲であ
ることを特徴とする亜鉛合金粉。
4. The method according to claim 3, wherein the fine powder is 200 to 30.
A zinc alloy powder having a particle size range of 0 mesh or 200 mesh or less.
【請求項5】 請求項1乃至請求項4の亜鉛合金粉を負
極活物質に用いてなることを特徴とするアルカリ電池。
5. An alkaline battery comprising the zinc alloy powder according to claim 1 as a negative electrode active material.
JP2000041880A 2000-02-18 2000-02-18 Zinc alloy powder and alkaline battery using the same Expired - Lifetime JP3545985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000041880A JP3545985B2 (en) 2000-02-18 2000-02-18 Zinc alloy powder and alkaline battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000041880A JP3545985B2 (en) 2000-02-18 2000-02-18 Zinc alloy powder and alkaline battery using the same

Publications (2)

Publication Number Publication Date
JP2001229923A true JP2001229923A (en) 2001-08-24
JP3545985B2 JP3545985B2 (en) 2004-07-21

Family

ID=18565032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000041880A Expired - Lifetime JP3545985B2 (en) 2000-02-18 2000-02-18 Zinc alloy powder and alkaline battery using the same

Country Status (1)

Country Link
JP (1) JP3545985B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006047917A1 (en) * 2004-11-05 2006-05-11 Chung Pak Battery Works Ltd. Negative electrode of dry battery, manufacture method of the same, and zinc-manganese dry battery using the same
WO2006053466A1 (en) * 2004-11-16 2006-05-26 Chung Pak Battery Works Ltd. Zinc plate for zinc-manganese dry battery and forming method of the same
WO2006053465A1 (en) * 2004-11-16 2006-05-26 Chung Pak Battery Works Ltd. Zinc particles for zinc-manganese dry battery and manufacture method of the same
JP2006216353A (en) * 2005-02-03 2006-08-17 Hitachi Maxell Ltd Alkaline battery
JP2006302774A (en) * 2005-04-22 2006-11-02 Matsushita Electric Ind Co Ltd Negative electrode active material and alkaline battery using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006047917A1 (en) * 2004-11-05 2006-05-11 Chung Pak Battery Works Ltd. Negative electrode of dry battery, manufacture method of the same, and zinc-manganese dry battery using the same
WO2006053466A1 (en) * 2004-11-16 2006-05-26 Chung Pak Battery Works Ltd. Zinc plate for zinc-manganese dry battery and forming method of the same
WO2006053465A1 (en) * 2004-11-16 2006-05-26 Chung Pak Battery Works Ltd. Zinc particles for zinc-manganese dry battery and manufacture method of the same
JP2006216353A (en) * 2005-02-03 2006-08-17 Hitachi Maxell Ltd Alkaline battery
JP2006302774A (en) * 2005-04-22 2006-11-02 Matsushita Electric Ind Co Ltd Negative electrode active material and alkaline battery using the same

Also Published As

Publication number Publication date
JP3545985B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
JP5114763B2 (en) Zinc alloy powder for alkaline batteries and method for producing the same
EP1900834B1 (en) Composition for negative electrode of accumulator with alkaline electrolyte
Kim et al. A study on the improvement of the cyclic durability by Cr substitution in V–Ti alloy and surface modification by the ball-milling process
JP3215448B2 (en) Zinc alkaline battery
JPH04284357A (en) Zinc alkaline battery
JPH04284358A (en) Zinc alkaline battery
JPH09245783A (en) Manufacture of hydrogen storage alloy for battery
JP2001229923A (en) Zinc alloy powder and alkaline storage battery using the same
JP2002270164A (en) Zinc alloy powder and alkaline battery with usage of the same
EP0497186B1 (en) Process for preparing non-amalgamated zinc alloy powder for alkali dry cells
JP3592345B2 (en) Manganese dry cell
JPH11265715A (en) Zinc alloy powder for alkaline battery having little gas generation amount
JPH10162820A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JP2003272615A (en) Zinc alloy powder and alkaline battery using the same
JP2001273893A (en) Zinc alloy powder for alkaline battery with less gas generation amount and method of manufacturing the same
JPWO2019181538A1 (en) Alkaline battery
JP4327586B2 (en) Aluminum primary battery
JP2007080547A (en) Zinc alloy powder for alkaline battery and its manufacturing method
JP3111773B2 (en) Mercury-free alkaline battery and its manufacturing method
JPH0636764A (en) Zinc-alkaline battery
JP2935855B2 (en) Alkaline battery
JPH06318456A (en) Manufacture of non-amalgamated negative electrode zinc alloy powder for alkaline battery
JP2005071985A (en) Zinc alloy powder and alkaline battery using same
JPH04368776A (en) Zinc-alloy powder for alkaline battery, and manufacture thereof
JP2004319339A (en) Zinc alloy powder for alkaline battery, and alkaline battery using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040409

R150 Certificate of patent or registration of utility model

Ref document number: 3545985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term