JP2001227451A - Wind/water force vane wheel by reversing blade - Google Patents

Wind/water force vane wheel by reversing blade

Info

Publication number
JP2001227451A
JP2001227451A JP2000105609A JP2000105609A JP2001227451A JP 2001227451 A JP2001227451 A JP 2001227451A JP 2000105609 A JP2000105609 A JP 2000105609A JP 2000105609 A JP2000105609 A JP 2000105609A JP 2001227451 A JP2001227451 A JP 2001227451A
Authority
JP
Japan
Prior art keywords
wing
reversing
wind
rotation
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000105609A
Other languages
Japanese (ja)
Inventor
Yutaka Abe
豊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000105609A priority Critical patent/JP2001227451A/en
Publication of JP2001227451A publication Critical patent/JP2001227451A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

PROBLEM TO BE SOLVED: To develop a device to be used for power generation by rotating a small-sized or ultra-large-sized vane wheel by efficiently utilizing both of lift and drag generated in the vane wheel by wind force/water flow force/wave force. SOLUTION: The problem is solved by unnecessitating a directional control by the vane wheel in which reversing blades 1 capable of freely rotating by a fixed angle are arranged on a cylindrical surface or a horizontal disc and by efficiently converting not only lift but also drag to be just a negative factor in a propeller-type windmill into rotational force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は主として発電を目
的として風力、水流力、波力を動力源として、回転力に
変換する装置の技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for converting wind power, water flow power, and wave power into rotational power for power generation, mainly for power generation.

【0002】[0002]

【従来の技術】現在風力発電として実用されているの
は、一部の例外例えばダリゥス風車を除いて殆ど翼の揚
力のみを利用する水平軸のプロペラ型の風車である。し
かし高速タイプの同風車は翼の内外径における速度差、
高速による先端部の騒音発生、向制御、増速装置、大型
化や実用コストに問題も多い。水流の落差を利用したタ
ービン方式のものは広く実用化されているが、河川流等
は水速が遅く発電にはあまり利用されない。海流に至っ
ては更に流速が低く、極めて大きなエネルギーを持ちな
がら殆ど活用出来ないでいる。波力も上下動によって空
気を圧縮するタービン方式が、実用化されているものの
間接的で効率も低く、広く一般に普及していないのが現
状である。
2. Description of the Related Art At present, a horizontal axis propeller-type wind turbine that uses almost only the lift of its wings, except for some exceptions, such as the Dallies wind turbine, is in practical use as a wind power generator. However, the high-speed wind turbine has a speed difference between the inner and outer diameters of the wing,
There are many problems with high-speed noise generation at the tip, direction control, speed-up devices, upsizing, and practical costs. The turbine type using the head of the water flow is widely used in practice, but the river flow has a low water speed and is not often used for power generation. In the case of the ocean current, the flow velocity is even lower, and it has very large energy but can hardly be used. At present, a turbine system that compresses air by vertical movement of wave force has been put to practical use but is indirect and has low efficiency, and is not widely used at present.

【0003】[0003]

【発明が解決しょうとする課題】上記のような自然エネ
ルギーの利用は、環境問題上の利点は多いが広く普及す
るには、何よりも発生電力の低コスト化が問題となる。
現状では実用されている一般の発電コストの数倍となっ
ているので、環境問題を考慮してもその普及は容易では
ない。本発明はこれらの問題を解決するため、従来型で
は不可能であった大型化、超大型化を可能にする事、向
制御を無くし増速装置を不要または簡略化して低コスト
化を実現する事、更には比較的実用化が進んでいる風力
の利用のみならず、巨大エネルギーながら殆ど利用され
ていない河川流、潮の干満流、波力、海流などの自然エ
ネルギーによる発電利用の促進を課題とする。
The use of renewable energy as described above has many environmental advantages, but if it is to be widely used, the most important issue is the reduction in power generation.
At present, the cost of power generation is several times higher than that of general power generation, and its diffusion is not easy even if environmental issues are taken into consideration. In order to solve these problems, the present invention realizes a large size and a super large size, which were impossible with the conventional type, and eliminates the direction control and eliminates or simplifies the speed increasing device, thereby realizing cost reduction. In addition to the use of wind power, which is relatively practical, the issue is to promote the use of natural energy, such as river currents, tidal currents, wave power, and ocean currents, which are enormous but hardly used. And

【0004】[0004]

【課題を解決する為の手段】従来から利用されている水
平軸のプロペラ型の風車は、抗力の数十倍の揚力を利用
し高速回転によって回転力を得るものであるが、これは
翼の迎え角が十度前後までの事であり、約二十度を超え
ると逆転する。さらに迎え角が大きくなると抗力は飛躍
的に増大する。当然迎え角が大きくなると高速回転は出
来ないので、相対風速の三乗に比例する出力の低下は避
けられない。しかし水平軸のプロペラ型の風車は、揚力
のみを利用し抗力は負要因でしかない。本発明では揚・
抗力とも回転力として利用し図1、2に示したような反
転翼1を採用して、向制御(ヨー・システム)の要らな
い揚・抗力共効率よく利用できるものとした。また超大
型化を可能とする無回転軸構造、増速装置の簡略化など
によって課題解決の手段とした。
Means for Solving the Problems Conventionally used horizontal axis propeller type wind turbines use a lift of several tens of times the drag to obtain a rotational force by high-speed rotation. The angle of attack is up to about 10 degrees, and reverses when it exceeds about 20 degrees. Further, as the angle of attack increases, the drag increases dramatically. Naturally, when the angle of attack is large, high-speed rotation is not possible, so that a decrease in output in proportion to the cube of the relative wind speed is inevitable. However, propeller-type wind turbines with horizontal axes use only lift and drag is only a negative factor. In the present invention,
The reversing blade 1 as shown in FIGS. 1 and 2 is used as the rotating force, and the lift and the drag can be efficiently used without the need for the direction control (yaw system). In addition, a non-rotating shaft structure that enables an ultra-large size, simplification of a speed increasing device, and the like were used as means for solving the problem.

【0005】[0005]

【発明の実施の形態】本発明では翼の断面が図2のよう
になっており、この反転翼1は翼回転軸2を中心として
翼頭部より翼尾部の方が若干長くなっていて、風水流が
当たると翼頭は流れの来る方向に向くように動く。また
翼には回転制御がなされ例えば図2のように翼に付けら
れたピン4と固定された溝5によって、図例の場合両側
に45度合計90度自由に回転できる。この回転角度は
通常60から120度程度より選択される。翼断面も図
例のものに限らず航空機の翼状断面にしたり、前後部を
丸めた平板状とするなど自由に選定できる。図1におい
て下から上の方向に風水流がある場合、翼は各位置でそ
の破線で示した円の接線から両側に45度ほど自由に回
転できるので、翼は翼頭が風水流の来る方向に向こうと
する。即ち翼1a,1b,1hは図のように流れが来る
方向に向き、1bで回転は拘束され、以後各翼は軸回転
せず各位置での翼は1c,1d,1e,1fのようにな
る。1fの位置でこれより1gのほうに回転すると、翼
尾側の流圧により点線で示す位置まで反転し図例の場合
で90度回転する。その後は再び回転は拘束され1g,
1hのようになり1hから再び自由回転出来るようにな
る。各翼1の自由回転角が接線の両側60度の場合は、
1aから60度の1bと1c間で回転は拘束され、その
正反対側の1fと1gとの間で反転する。同様に両側9
0度自由回転の場合は、1cで回転拘束が始まり1gの
位置で反転し以後自由回転となる。上の例は下方からの
風水流に対する各位置の各翼の翼角度を示したが、風水
流がどの方角であっても全く同様に機能する。また図1
は静的にみた場合で反転翼1群の回転によって、風水流
の相対的方向も変化するので動的にみると、自由回転角
の範囲は変化する。風水流に対し各翼には流の方向に抗
力、その背面側の流れに直角の方向に揚力が働くが、そ
の力がその儘翼車の回転力にはならない。例えば1cに
加わる抗力は全く回転力として働かないが、翼車回転軸
3を通る中心線上を外れると次第に変換効率が上がり1
eで最大となる。つまり抗力の回転力えの変換効率は、
1cを基準としてその翼の回転角度をθとすると、Si
nθに比例し、揚力はCosθの絶対値に比例する。つ
まり抗力は自由回転位置即ち迎え角0度で最小となり9
0度になると最大となる。しかし変換効率を掛けると図
1の左側の回転力は非常に大きく、右側の逆回転力は非
常に小さいので、反転翼1群は抗力によって右回転させ
られる。各反転翼1に加わる揚力は風水流に対する迎え
角によって発生するが、抗力と逆で変換効率は1c,1
gで最大となり、1e,1aでゼロとなる。揚力は迎え
角ゼロと90度で発生しないがそれ以外全ての角度で生
じ、全てが回転力に変換される。勿論これは静的に各翼
に働く力をみた場合であって、翼車の回転によって生ず
る動的な揚・抗力の回転力えの変換はより複雑である。
その為に自由回転角は用途や全体構造に応じて選択しな
ければならない。何れにしても風水力に対し揚・抗力と
も同様に回転力として利用でき、全迎え角で流力を有効
に活用し、低速回転での効率もよく従来の風車とは全く
異なった実施の形態となる。図3は翼車6を支塔9上の
翼車軸受7で軸架し、放射状に突き出されたアーム8の
先端に、垂直に翼回転軸2を図1で述べた一定角度自由
回転出来るようにして上下に出し、それにそれぞれ反転
翼1を取り付ける。上から見て図1では8ヶ所である
が、図3の例では90度づつ設けた四対となっている。
アーム8先端の上下対称に反転翼1を取り付けるため、
風圧による揚・抗力に対しバランスがとれ回転軸受など
に無理な力がかからない利点がある。翼を細くして数を
増やす事等は対象の風水力の速度などを考慮して決めら
れる。図4は反転翼1の自由回転を拘束する図2とは違
った構造を示したものであるが、同様な働きをするもの
であれば他の公知の方法でも良い。図4は図3のA−A
断面を示し内外の突起10により自由回転角を制御する
例である。必要な場合ゴム・クッションや各種ダンパー
等を使用して反転時の衝撃を緩和する事が出来る。図3
の反転翼1群の回転の原理は図1で説明した通りであ
る。翼車6の回転は支塔9内の翼車回転軸3によって、
支塔9の基部に導かれて発電機を駆動する。水平軸の風
車と異なり大きな直径の扁平状の多極発電機を採用でき
増速器を不要とする事もできる。翼車6には必要な避雷
針を容易に設置できる。図5は海上に浮設した非常に大
型の翼車の実施例で、係留される固定台13を挟んで直
径数百米の環状の上回転台14と下回転台15にそれぞ
れ反転翼を取り付けたものである。下回転台15には扁
平船体状の水中反転翼11が12基、上方にも12基の
帆状の反転翼1が図1の8基を12基に増やした状態で
設置されている。反動を減少させるため上下の反転翼1
の翼頭の向きを逆にして互いに逆回転するようになって
いる。下回転台15、上回転台14、固底台13は大口
径の環状体で、図6はその一部である反転翼の取り付け
部を拡大して示した断面図である。水中反転翼11は環
状の下回転台15の下方に垂直に取り付けられ、それ自
体の浮力によって、下回転台15を持ち上げローラー1
8によって保持され、保持ローラー20によって回転位
置が拘束されている。上部の反転翼1は固定台13の上
に被さる上回転台14に垂直に立てられ、固定台13上
に設けられる多数のローラーによって回転可能に保持さ
れている。ローラーは鍔付きで脱輪を防いでいる。この
例の場合も各反転翼の機能、回転原理はこれまでの例と
全く同様である。各反転翼の自由回転範囲の制御は、図
6の反転翼1は図4のような形式の回転止30によっ
て、また水中反転翼11の方はゴム輪を持つ二本の回転
止21を下回転台13に当てて止める例を示した。他方
の一本は断面の手前にあるので表示されていない。上部
の多数のローラー16にはそれぞれ発電機17が直結さ
れ、直径比から数百倍の増速回転駆動を可能とし、複雑
且つ高価な歯車増速装置を省略できる。また発電機17
を多数設置するので発電負荷を広範囲に制御できる。下
回転台15の回転も同様にこれを支える受ローラー18
と発電機を直結したり、低率の増速器を介して駆動する
こともできるが、図例では環状の平面発電機19を採用
したものを例示している。水中反転翼11の浮力のみで
は全体を支えられない場合、固定台13の中心部に円盤
状の巨大な浮体12を設け水面上の物を支える。流体の
エネルギーは質量×速度の3乗であるので、平均速度で
十分の一として海流の速度効果は千分の一程度と低くな
るが、一方質量は約800倍なので実用性は十分にあ
る。毎秒1〜2mの水流は風速約9〜18m余に匹敵す
る。しかも変動率は風力と比較して桁違いに少なく安定
している。また浮力を利用して翼を保持するため例えば
100m幅の水中反転翼11の製造は鉄鋼製の船舶と同
様に容易である。従来のタービン類は、海流等巨大なエ
ネルギーを持ちながら極低速のため装置的にも経済的に
も、これらの利用は考えられなかった。本発明のように
巨大化と向制御を不要とし無軸回転、直結発電等によっ
て実用化しようとするもので、河川流、潮の干満流の利
用についても同様である。図5例は海上に係留し、海流
と風力の両方を利用するものであるが、勿論上方の風力
利用のみを山岳部の強風地区に設置したり、大型河川や
湾の入り口に適当な水路を整備して下方のみを利用する
事もできる。図7に示した実施例は水平反転翼22を円
盤状に多数配置して、波力によってその回転軸29を回
転させる。翼は自由に回転できるがその範囲は前例まで
の二分の一程度で十分である。海水面25が波の発生に
よって破線の上水面26,下水面27間を上下動する
と、枠体28内部の空気室33内の水面も下方開口部の
水圧の変化によって上下動する。海水の上下動による水
圧によって翼尾も上下動して、水平反転翼22は定方向
に回転する。その際水平反転翼22から出される海水は
渦巻き状となり、逆流時に水平反転翼22の受圧効力が
低下するので、海水の回転を防ぐ為にその上下に垂直状
の上整流板23、下整流板24を設けている。また水中
反転翼22にも前述のものと同様に回転制御30が設け
られる。空気室33は解放型でもよいが、空気弁31に
より密閉し高波時に空気室33内で圧縮加圧、膨張減圧
させてエネルギー・ロス無く枠体28内の上下動範囲を
縮少できる。枠体28は岸壁32や大きな浮体などに固
定される。また図5例の固定台13の廻りに並べて風
力、海流力、波力を総合的に利用できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the cross section of the wing is as shown in FIG. 2, and this reversing wing 1 has a wing tail slightly longer than a wing head around a wing rotation axis 2, When hit by the wind, the wings move in the direction of the flow. In addition, the wing is rotationally controlled and, for example, can be freely rotated to a total of 90 degrees by 45 degrees on both sides in the illustrated example by a pin 4 attached to the wing and a fixed groove 5 as shown in FIG. This rotation angle is usually selected from about 60 to 120 degrees. The wing section is not limited to the example shown in the figure, but can be freely selected, for example, a wing section of an aircraft, or a flat plate with rounded front and rear portions. In FIG. 1, when there is a flow of wind and water from the bottom to the top, the wing can freely rotate about 45 degrees to both sides from the tangent of the circle shown by the broken line at each position. To go to. That is, the wings 1a, 1b, 1h are oriented in the direction in which the flow comes as shown in the figure, and the rotation is restricted at 1b. Thereafter, each wing does not rotate axially, and the wing at each position is like 1c, 1d, 1e, 1f. Become. If it rotates 1 g further from this position at 1f, it reverses to the position shown by the dotted line due to the fluid pressure on the tail side, and rotates 90 degrees in the case of the figure. After that, the rotation was restricted again and 1g,
It becomes like 1h, and it becomes possible to rotate freely again from 1h. When the free rotation angle of each wing 1 is 60 degrees on both sides of the tangent,
The rotation is restricted between 1b and 1c from 1a to 60 degrees, and reverses between 1f and 1g on the opposite side. Similarly 9 on both sides
In the case of the 0-degree free rotation, the rotation restriction starts at 1c and is reversed at the position of 1g, and thereafter becomes free rotation. Although the above example shows the wing angle of each wing at each position with respect to the wind and water flow from below, the wind water flow works in exactly the same way in any direction. FIG.
When viewed statically, the relative direction of the wind and water flow changes due to the rotation of the group of reversing blades, so that when viewed dynamically, the range of the free rotation angle changes. Each wing resists the flow of wind and water, and the lift acts in the direction perpendicular to the flow on the back side of the wing, but this force does not directly turn the impeller. For example, the drag applied to 1c does not work as a rotational force at all, but when it deviates from the center line passing through the impeller rotating shaft 3, the conversion efficiency gradually increases.
It becomes maximum with e. In other words, the conversion efficiency of the rotational force of the drag is
Assuming that the rotation angle of the wing is θ with reference to 1c, Si
The lift is proportional to the absolute value of Cos θ. In other words, the drag becomes minimum at the free rotation position, that is, at the attack angle of 0 degree, and becomes 9
It reaches the maximum at 0 degrees. However, when the conversion efficiency is multiplied, the rotational force on the left side of FIG. 1 is very large and the reverse rotational force on the right side is very small, so that the inversion blade group is rotated rightward by the drag. The lift applied to each reversing blade 1 is generated by the angle of attack with respect to the flow of wind and water, but the conversion efficiency is 1c, 1
It becomes maximum at g and becomes zero at 1e and 1a. Lift does not occur at zero angle of attack and 90 degrees, but occurs at all other angles and is all converted to rotational force. Of course, this is a case in which the force acting on each wing is statically observed, and the conversion of the rotational force of the dynamic lift / drag generated by the rotation of the impeller is more complicated.
Therefore, the free rotation angle must be selected according to the application and the overall structure. Either way, the lift and drag can be used as the rotational force in the same way as the wind and hydraulic power, the hydraulic force is effectively used at all angles of attack, the efficiency at low speed rotation is good, and the embodiment is completely different from the conventional wind turbine Becomes FIG. 3 shows a state where the impeller 6 is supported by an impeller bearing 7 on a support tower 9 so that the impeller shaft 8 can be freely rotated at a fixed angle as described in FIG. And the reversing wing 1 is attached to each. In FIG. 1, eight pairs are seen from above, but in the example of FIG. 3, there are four pairs provided at 90 degrees.
In order to attach the reversing wing 1 vertically symmetrically at the tip of the arm 8,
There is the advantage that the lift and the drag due to the wind pressure are balanced and no excessive force is applied to the rotary bearings. The increase in the number of wings and the like can be determined in consideration of the speed of the target hydro-hydraulic power. FIG. 4 shows a structure different from that of FIG. 2 for restraining the free rotation of the reversing blade 1, but other known methods may be used as long as they have the same function. FIG. 4 is a sectional view taken along line AA
This is an example in which a cross section is shown and the free rotation angle is controlled by inner and outer protrusions 10. If necessary, the impact at the time of reversal can be reduced by using rubber cushions or various dampers. FIG.
The principle of rotation of the group of reverse wings is as described in FIG. The rotation of the impeller 6 is performed by the impeller rotation shaft 3 in the support tower 9.
Guided to the base of the tower 9 to drive the generator. Unlike a horizontal axis wind turbine, a flat multipolar generator with a large diameter can be adopted, and a speed increaser can be eliminated. Necessary lightning rods can be easily installed on the impeller 6. FIG. 5 shows an embodiment of a very large impeller floating on the sea. Inversion wings are respectively attached to an upper turntable 14 and a lower turntable 15 having a diameter of several hundreds of US with a fixed stand 13 interposed therebetween. It is a thing. The lower turntable 15 is provided with twelve flat hull-shaped underwater reversing wings 11, and twelve sail-shaped reversing wings 1 are provided above the twelve underwater reversing wings 1. Upside down wing 1 to reduce recoil
The wing heads are turned in the opposite direction by reversing the direction of the wings. The lower turntable 15, the upper turntable 14, and the fixed bottom stand 13 are large-diameter annular bodies, and FIG. 6 is an enlarged cross-sectional view showing a part where the reversing wing, which is a part thereof, is attached. The underwater reversing vane 11 is vertically mounted below the annular lower turntable 15, and lifts the lower turntable 15 by its own buoyancy to raise the roller 1.
8, and the rotation position is restricted by the holding roller 20. The upper reversing wing 1 is set upright on an upper rotating table 14 that covers the fixed table 13, and is rotatably held by a number of rollers provided on the fixed table 13. The rollers are guarded to prevent derailing. Also in this example, the function and the rotation principle of each reversing blade are exactly the same as those in the previous examples. The control of the free rotation range of each reversing wing is performed by rotating the reversing wing 1 shown in FIG. 6 with a detent 30 of the type shown in FIG. The example of stopping by hitting the turntable 13 is shown. The other is not shown because it is in front of the cross section. A generator 17 is directly connected to each of the plurality of rollers 16 on the upper side, enabling a rotational speed increase of several hundred times from the diameter ratio, and a complicated and expensive gear speed increasing device can be omitted. The generator 17
The power generation load can be controlled over a wide range because many are installed. The rotation of the lower turntable 15 is likewise supported by the receiving roller 18.
And the generator can be directly connected or driven via a low-speed gearbox. However, in the illustrated example, an annular flat generator 19 is employed. When the whole cannot be supported only by the buoyancy of the underwater reversing wings 11, a huge disk-shaped floating body 12 is provided at the center of the fixed base 13 to support objects on the water surface. Since the energy of the fluid is the mass times the velocity to the third power, the velocity effect of the ocean current is reduced to about one thousandth if the average velocity is one tenth, but the mass is about 800 times, and the practicality is sufficient. A water flow of 1 to 2 meters per second is comparable to a wind speed of about 9 to 18 meters. Moreover, the rate of change is much smaller and more stable than wind power. In addition, since the wing is held by utilizing buoyancy, for example, the manufacture of the underwater reversing wing 11 having a width of 100 m is as easy as a steel boat. Conventional turbines have huge energy, such as ocean currents, and have extremely low speeds, so that their use could not be considered in terms of equipment and economy. The present invention is intended to be put to practical use by non-axial rotation, direct connection power generation and the like without necessity of enlargement and direction control as in the present invention, and the same applies to the use of river flows and tidal flows. The example in Fig. 5 is moored at sea and uses both ocean currents and wind power. Of course, only the wind power above is installed in a strong wind area in the mountains, or an appropriate waterway is used at the entrance of a large river or bay. It is also possible to maintain and use only the lower part. In the embodiment shown in FIG. 7, a large number of horizontal reversing blades 22 are arranged in a disk shape, and a rotating shaft 29 is rotated by wave force. The wings can rotate freely, but the range is about half that of the previous case. When the seawater surface 25 moves up and down between the upper water surface 26 and the lower water surface 27 indicated by broken lines, the water surface in the air chamber 33 inside the frame 28 also moves up and down due to the change in water pressure at the lower opening. The wing tail also moves up and down by the water pressure due to the vertical movement of the seawater, and the horizontal reversing wing 22 rotates in a fixed direction. At that time, the seawater discharged from the horizontal reversing vanes 22 becomes spiral, and the pressure receiving effect of the horizontal reversing vanes 22 is reduced at the time of the backflow. 24 are provided. The underwater reversing blade 22 is also provided with a rotation control 30 in the same manner as described above. The air chamber 33 may be of an open type, but can be closed by the air valve 31 and compressed and expanded and decompressed in the air chamber 33 during high waves to reduce the vertical movement range within the frame 28 without energy loss. The frame 28 is fixed to the quay 32, a large floating body, or the like. In addition, wind power, ocean current power, and wave power can be used comprehensively by arranging them around the fixed base 13 in the example of FIG.

【発明の効果】従来の揚力利用の高速型の風車でも直径
百米程度の大型風車も実用化されているが、翼端速度か
らの強度、騒音などの問題もあり、大型化が必ずしも高
効率化、低コスト化とはならず、翼中心部と外周部の大
きな速度差、向制御や増速装置の問題も十分解決された
とは言えない。本発明による風水力翼車は低速タイプで
あるが、大きな迎え角のより高い揚力のみならず、前者
では全く利用出来なかった抗力も、揚力と同じように効
率よく回転力に変換でき、総合的にみてプロペラ型の風
車に劣らない風水力利用が可能となる。また向制御や増
速装置の省略や簡素化、プロペラ型では殆ど不可能な海
流等の水力も利用でき、さらに直径数百米というような
超大型化も困難でなく、低コスト化にも大きな効果を持
っている。
As described above, a large-sized wind turbine having a diameter of about one hundred meters has been put into practical use as a conventional high-speed wind turbine utilizing lift. However, there are problems such as strength from the tip speed and noise, and the size increase is not necessarily highly efficient. It cannot be said that the problems of the large speed difference between the central portion and the outer peripheral portion of the blade, the direction control and the speed increasing device have been sufficiently solved. Although the wind-powered impeller according to the present invention is a low-speed type, not only the higher lift at a large angle of attack, but also the drag which was not available at all in the former can be efficiently converted into rotational force in the same manner as lift, and the overall In this way, it is possible to use wind power as good as a propeller type wind turbine. Also, omission and simplification of direction control and speed-up devices are possible, and hydropower such as ocean currents, which is almost impossible with a propeller type, can be used. Has an effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は本発明の基本である反転翼1の位置による機
能を示した図。
FIG. 1 is a diagram showing a function according to the position of a reversing blade 1 which is a basis of the present invention.

【図2】は反転翼1の形状例とその自由回転範囲制御の
一例を示す。
FIG. 2 shows an example of the shape of the reversing blade 1 and an example of free rotation range control thereof.

【図3】は本発明の反転翼1を回転支持部の両側に設け
た風力翼車に応用した実施例を示した垂直の断面図であ
る。
FIG. 3 is a vertical sectional view showing an embodiment in which the reversing blade 1 of the present invention is applied to a wind turbine provided on both sides of a rotation support portion.

【図4】は図3のA−A断面図で、反転翼1の自由回転
角制御の他例を示す。
FIG. 4 is a sectional view taken along line AA of FIG. 3, showing another example of free rotation angle control of the reversing blade 1.

【図5】は海面に浮かべ係留し、下面を海流によってま
た上面に風力による本発明の反転翼による回転翼車とし
た、極めて大型の風水車の実施例を示すもので、一部の
反転翼1水中反転翼11を省略した側面図。
FIG. 5 shows an embodiment of an extremely large wind turbine, which is a floating impeller of the present invention, which is moored floating on the sea surface and the lower surface is driven by ocean currents and the upper surface is driven by wind power. The side view which omitted 1 underwater inversion wing 11.

【図6】は図5の反転翼1、水中反転翼11の取り付け
部分を拡大した断面図。
FIG. 6 is an enlarged sectional view of a mounting portion of the reversing blade 1 and the underwater reversing blade 11 of FIG.

【図7】は反転翼22を水平円盤状に多数配置し、波力
による回転翼車とした実施例の垂直断面図。
FIG. 7 is a vertical cross-sectional view of an embodiment in which a large number of reversing blades 22 are arranged in a horizontal disk shape to form a rotary impeller by wave force.

【図8】は図7の反転翼22の取り付け部分の拡大断面
図。
FIG. 8 is an enlarged sectional view of a portion where the reversing blade 22 of FIG. 7 is attached.

【符号の説明】[Explanation of symbols]

1 反転翼 2 翼回転軸 3 翼車回転軸 4 ピン 5 溝 6 翼車 7 翼車軸受 8 アーム 9 支塔 10 突起 11 水中反転翼 12 浮体 13 固定台 14 上回転台 15 下回転台 16 ローラー 17 発電機 18 受ローラー 19 平面発電機 20 保持ローラー 21 回転止 22 水平反転翼 23 上整流板 24 下整流板 25 海水面 26 上水面 27 下水面 28 枠体 29 回転軸 30 回転制御 31 空気弁 32 岸壁 33 空気室 DESCRIPTION OF SYMBOLS 1 Reversing blade 2 Blade rotating shaft 3 Impeller rotating shaft 4 Pin 5 Groove 6 Impeller 7 Impeller bearing 8 Arm 9 Support tower 10 Projection 11 Underwater reversing blade 12 Floating body 13 Fixed stand 14 Upper turntable 15 Lower turntable 16 Roller 17 Generator 18 Receiving roller 19 Planar generator 20 Holding roller 21 Rotation stop 22 Horizontal reversing blade 23 Upper straightening plate 24 Lower straightening plate 25 Sea level 26 Upper level 27 Lower level 28 Frame 29 Rotating axis 30 Rotation control 31 Air valve 32 Quay wall 33 air chamber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(イ)翼車回転軸3を中心として、図1の
ような円筒面上または図7のように水平円盤面上に、図
2に示したように回転面に対し両側に数十度自由に回転
できる反転翼1を2〜3個以上適当数を配置する。 (ロ)反転翼1は、図2のように翼回転軸2に対し翼頭
より翼尾の方を若干長くして、翼頭を常に風水力の来る
方向に向く力が働くようにする。 (ハ)反転翼1は、翼車回転軸3を中心とした回転によ
って生ずる遠心力に起因する回転力が生じないよう、翼
頭と翼尾側を動的にバランスさせる。 以上のように構成された反転翼による風水力翼車。
1. (a) With the impeller rotating shaft 3 as a center, on a cylindrical surface as shown in FIG. 1 or on a horizontal disk surface as shown in FIG. 7, on both sides with respect to the rotating surface as shown in FIG. An appropriate number of reversing blades 1 that can freely rotate by several tens of degrees are arranged in two or three or more. (B) As shown in FIG. 2, the reversing wing 1 has a wing tail slightly longer than the wing head with respect to the wing rotation axis 2 so that a force is always applied to the wing head in the direction of wind and water force. (C) The reversing blade 1 dynamically balances the wing head and the wing tail side so as not to generate a rotational force due to a centrifugal force generated by rotation about the impeller rotation shaft 3. A hydro-hydraulic impeller with inverted wings configured as described above.
【請求項2】大きな直径の例えば図5の上回転台14、
または下回転台15のような環状の回転台に、反転翼1
または水中反転翼11を設け、回転台をローラー16,
18で軸架し、そのローラーの回転により発電機を駆動
する請求項1による風水力翼車。
2. An upper turntable 14, for example of FIG.
Alternatively, the reversing wing 1 is placed on an annular turntable such as the lower turntable 15.
Alternatively, the underwater reversing wing 11 is provided, and the turntable is
The wind / hydro impeller according to claim 1, wherein the wind turbine is mounted on a shaft and the generator is driven by rotation of the roller.
【請求項3】図7のように水平反転翼22を配置し波力
で回転軸29を駆動させる場合、空気室33に空気弁3
1を設け、必要時に密閉し出力を減ずることなく空気室
33の加圧減圧を利用して、上下動範囲の縮少を可能と
する請求項1による風水力翼車。
3. In the case where the horizontal reversing blades 22 are arranged and the rotating shaft 29 is driven by wave force as shown in FIG.
2. A hydro-pneumatic impeller according to claim 1, wherein a vertical movement range is reduced by using a pressurized and depressurized air chamber 33 without reducing the output without providing a seal when necessary.
JP2000105609A 2000-02-16 2000-02-16 Wind/water force vane wheel by reversing blade Pending JP2001227451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000105609A JP2001227451A (en) 2000-02-16 2000-02-16 Wind/water force vane wheel by reversing blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000105609A JP2001227451A (en) 2000-02-16 2000-02-16 Wind/water force vane wheel by reversing blade

Publications (1)

Publication Number Publication Date
JP2001227451A true JP2001227451A (en) 2001-08-24

Family

ID=18618921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000105609A Pending JP2001227451A (en) 2000-02-16 2000-02-16 Wind/water force vane wheel by reversing blade

Country Status (1)

Country Link
JP (1) JP2001227451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455087B1 (en) * 2001-10-19 2004-11-06 이구식 Wind power generating apparatus
JP2006037936A (en) * 2004-07-23 2006-02-09 Baba Shizuko Vertical shaft type wind mill with built-in vertical blade capable of providing rotational energy by both front and rear surfaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455087B1 (en) * 2001-10-19 2004-11-06 이구식 Wind power generating apparatus
JP2006037936A (en) * 2004-07-23 2006-02-09 Baba Shizuko Vertical shaft type wind mill with built-in vertical blade capable of providing rotational energy by both front and rear surfaces

Similar Documents

Publication Publication Date Title
CA2879343C (en) Vertical axis wind and hydraulic turbine with flow control
CA1304272C (en) Fluid powered motor-generator apparatus
US8174135B1 (en) Marine energy hybrid
US20080159873A1 (en) Cross fluid-flow axis turbine
JP2008202588A (en) Wind/hydraulic power impeller using lift-drag force by double-acting rotations
CN104481780B (en) Shallow submergence floatation type band kuppe trunnion axis ocean current power-generating system
JP2014001689A (en) Power generation device utilizing water flow energy
WO2019101106A1 (en) Power device for increasing low flow rate
CN115263662A (en) Multi-rotor vertical shaft fan with rotatable support frame
JPS61261677A (en) Power generating equipment by waves
CN101265865A (en) Sea hydraulic drive apparatus
JP2001227451A (en) Wind/water force vane wheel by reversing blade
WO2019190387A1 (en) A floating vertical axis wind turbine with peripheral water turbine assemblies and a method of operating such
JP2002202042A (en) Hydraulic power device
JPS5874877A (en) Wind mill
EP0710326A1 (en) Turbine
GB2447781A (en) A nested waterwheel comprising at least two sets of paddles
RU2039885C1 (en) Wind motor
GB2386160A (en) Variable geometry magnus effect turbine
KR100622629B1 (en) Opening and closing door type turbine with vertical shaft and many wings for generating power using the flow of fluid
KR101840705B1 (en) Multiple vertical axis tidal generators and combined power generation using it
JPH04137270U (en) Variable blade type and rotating blades for wind and hydroelectric generators
JPS6318029B2 (en)
JPH11201018A (en) Power generating facility
JP2022553340A (en) Static pressure turbine and turbine runner therefor