JP2001223623A - Digital radio communication system - Google Patents

Digital radio communication system

Info

Publication number
JP2001223623A
JP2001223623A JP2000028665A JP2000028665A JP2001223623A JP 2001223623 A JP2001223623 A JP 2001223623A JP 2000028665 A JP2000028665 A JP 2000028665A JP 2000028665 A JP2000028665 A JP 2000028665A JP 2001223623 A JP2001223623 A JP 2001223623A
Authority
JP
Japan
Prior art keywords
mobile station
signal
array antenna
weight vector
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000028665A
Other languages
Japanese (ja)
Inventor
Michinori Kishimoto
倫典 岸本
Shoichi Koga
正一 古賀
Yuji Igata
裕司 井形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000028665A priority Critical patent/JP2001223623A/en
Publication of JP2001223623A publication Critical patent/JP2001223623A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

PROBLEM TO BE SOLVED: To solve the problem in the conventional digital radio communication system, which effectively utilizes a method by which an array antenna separates and suppresses a multiplex wave and an interference wave depending on the difference from the arrival directions, that has required a large scale of an arithmetic unit to calculate a complex weight vector of the array antenna, requiring a high calculation quantity and an increased power consumption required for the arithmetic operation, in the case of adopting the array antenna for a mobile station whose lower power consumption is a requirement. SOLUTION: The digital radio communication system is configured, such that the array antenna of the mobile station receives a reference signal sent from a base station and a waveform memory stores a complex base band signal of a wireless signal received by each antenna element. The mobile station transmits each of the stored complex base band signals to the base station as transmission data, and the base station side calculates the complex weight vectors of the mobile station array antenna and transmits the calculated complex weight vector to the mobile station as transmission data.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアレーアンテナの制
御装置に関する。
The present invention relates to a control device for an array antenna.

【0002】[0002]

【従来の技術】ディジタル移動体通信では直接波のほか
に反射波、回折波などが重なり合って受信される多重波
伝搬路となり到来時間の異なる多数の波の合成により周
波数選択性フェージングが生じ、また他局からの干渉波
が到来する。周波数選択性フェージングや他局による干
渉を改善する方法としてスペクトル拡散通信方式があ
り、拡散変調信号の拡散帯域幅を十分広くして到来時間
の異なる多重波を時間軸上で分離し合成するRAKE受
信方法が用いられている。しかし拡散帯域幅が十分広く
とれず、多重波を時間軸上で分離できない場合には、ア
レーアンテナで多重波や干渉波の到来方向の違いによっ
て分離、抑圧する方法が有効である。アレーアンテナは
各アンテナ素子で受信されるそれぞれの信号に振幅、位
相シフト(複素重みベクトルで重み付け)を行い合成す
るとアンテナの指向性が変化することを利用する。既知
の制御アルゴリズムに基づいて各アンテナの複素重みベ
クトルを決定し、環境の変化に適応しながら指向性を制
御することで不要な多重波や干渉波を分離、抑圧する。
アレーアンテナの各アンテナの複素重みベクトルを決定
する制御アルゴリズムとして、希望信号の波形を事前情
報として持ち、評価関数として希望信号に対するアレー
合成された出力の誤差の自乗平均を用いるMMSE(Mi
nimum Mean Square Error)基準に基づくアルゴリズム
がよく知られている。MMSE基準における最適解(ウ
イナー解)に対して、逐次更新による近似解をもとめる
LMS(Least Mean Squares)法やRLS(Recursive
Least Squares)法、また直接近似解を計算するSMI
(Sample Matrix Inverse)法などがある。
2. Description of the Related Art In digital mobile communication, a reflected wave, a diffracted wave and the like in addition to a direct wave are superimposed to form a multipath propagation path in which a plurality of waves having different arrival times are combined, thereby causing frequency selective fading. An interference wave from another station arrives. As a method of improving frequency selective fading and interference by other stations, there is a spread spectrum communication system. RAKE reception which separates and combines multiplexed waves having different arrival times on a time axis by sufficiently widening a spread bandwidth of a spread modulation signal. A method is used. However, when the spread bandwidth cannot be sufficiently widened and the multiplexed wave cannot be separated on the time axis, a method of separating and suppressing the multiplexed wave or the interference wave by the array antenna depending on the arrival direction of the multiplexed wave is effective. The array antenna utilizes the fact that the directivity of the antenna changes when an amplitude and a phase shift (weighted by a complex weight vector) are performed on each signal received by each antenna element and combined. A complex weight vector of each antenna is determined based on a known control algorithm, and unnecessary direct waves and interference waves are separated and suppressed by controlling directivity while adapting to environmental changes.
As a control algorithm for determining a complex weight vector of each antenna of the array antenna, an MMSE (MiSE) which has a waveform of a desired signal as prior information and uses a root-mean-square of an error of an array-combined output with respect to the desired signal as an evaluation function.
Algorithms based on the (Nimum Mean Square Error) criterion are well known. The LMS (Least Mean Squares) method or RLS (Recursive) method for finding an approximate solution by successive update for the optimal solution (Winner solution) based on the MMSE standard
Least Squares) method, and SMI that directly calculates approximate solutions
(Sample Matrix Inverse) method.

【0003】図5は従来のSMI法を用いたデジタル無
線通信システムのブロック図である。アンテナ素子50
2〜504を備えるアレーアンテナ501と、各アンテ
ナ素子で受信した無線周波数を有する無線信号を増幅し
所定の中間周波数を有する中間周波数信号に周波数変換
するRF受信器505〜507と、各中間周波数信号を
デジタル信号に変換するA/D変換器508〜510
と、A/D変換後の中間周波数を複素ベースバンド信号
に変換する準同期検波器511〜513と、複素重みベ
クトルを計算し各複素ベースバンド信号に複素重みベク
トルで重み付け加算するDBF(Digital Beam Formin
g)部514と、重み付け加算した複素ベースバンド信
号から同期検波又は遅延検波を行い所望の受信データを
出力する復調器515を備える。
FIG. 5 is a block diagram of a digital radio communication system using the conventional SMI method. Antenna element 50
Array antennas 501 to 504, RF receivers 505 to 507 for amplifying a radio signal having a radio frequency received by each antenna element and converting the frequency to an intermediate frequency signal having a predetermined intermediate frequency, and each intermediate frequency signal / D converters 508 to 510 for converting into a digital signal
Quasi-synchronous detectors 511 to 513 for converting an intermediate frequency after A / D conversion into a complex baseband signal, and a DBF (Digital Beam) for calculating a complex weight vector and weighting and adding each complex baseband signal with a complex weight vector. Formin
g) a unit 514 and a demodulator 515 that performs synchronous detection or delay detection from the weighted and added complex baseband signal and outputs desired reception data.

【0004】また、図6はDBF部のブロック図であ
り、各複素ベースバンド信号の相関行列とその逆行列、
各複素ベースバンド信号と参照信号の相関ベクトル、逆
行列と相関ベクトルの積を計算する重みベクトル演算部
605、各複素ベースバンドに求めた重みベクトルを乗
算する乗算器601〜603と乗算した信号を同相加算
する同相加算器604を備える。
FIG. 6 is a block diagram of the DBF unit, which shows the correlation matrix of each complex baseband signal and its inverse matrix,
A weight vector calculation unit 605 for calculating a product of a correlation vector of each complex baseband signal and a reference signal, and a product of an inverse matrix and a correlation vector, and a multiplier 601 to 603 for multiplying each complex baseband by the obtained weight vector, An in-phase adder 604 for in-phase addition is provided.

【0005】まず多重波伝搬環境を通って到来した信号
は、無線通信を行う搬送波周波数の半波長程度の間隔で
近接して並置されたアンテナ素子502〜504で受信
される。アンテナ素子502〜504で受信した基地局
から送信した参照信号の無線信号をRF受信器505〜
507で増幅し所定の中間周波数を有する中間周波数に
周波数変換し、A/D変換器508〜510を介して準
同期検波器511〜513に入力する。
[0005] First, a signal arriving through a multiplex wave propagation environment is received by antenna elements 502 to 504 which are juxtaposed and arranged at an interval of about a half wavelength of a carrier frequency for wireless communication. The radio signal of the reference signal transmitted from the base station received by the antenna elements 502 to 504 is transmitted to the RF receiver 505
The signal is amplified at 507, frequency-converted to an intermediate frequency having a predetermined intermediate frequency, and input to quasi-synchronous detectors 511 to 513 via A / D converters 508 to 510.

【0006】準同期検波器511〜513ではA/D変
換後の中間周波数信号を準同期検波して複素ベースバン
ド信号に変換しDBF部514に入力する。DBF部5
14において各複素ベースバンド信号を重みベクトル演
算部605に入力し、各複素ベースバンド信号の相関行
列と、各複素ベースバンド信号と参照信号の相関ベクト
ルを計算する。
The quasi-synchronous detectors 511 to 513 perform quasi-synchronous detection on the intermediate frequency signal after the A / D conversion, convert the intermediate frequency signal into a complex baseband signal, and input the complex baseband signal to the DBF section 514. DBF part 5
At 14, each complex baseband signal is input to the weight vector calculator 605, and a correlation matrix of each complex baseband signal and a correlation vector between each complex baseband signal and a reference signal are calculated.

【0007】さらに相関行列の逆行列を計算した後、求
めた逆行列と相関ベクトルの積を計算することによりア
レーアンテナの複素重みベクトルを決定する。次に決定
した複素重みベクトルと各アンテナ素子で受信した各複
素ベースバンド信号とを乗算器601〜603で乗算
し、同相加算器604で同相加し復調器515に入力す
る。復調器515で重み付け加算した複素ベースバンド
信号から同期検波又は遅延検波を行い所望の受信データ
を出力する。
After calculating the inverse matrix of the correlation matrix, the product of the obtained inverse matrix and the correlation vector is calculated to determine the complex weight vector of the array antenna. Next, the determined complex weight vector is multiplied by each complex baseband signal received by each antenna element by multipliers 601 to 603, added in phase by an in-phase adder 604, and input to a demodulator 515. The demodulator 515 performs synchronous detection or delay detection from the weighted and added complex baseband signal and outputs desired reception data.

【0008】このようにアレーアンテナを用いて多重波
及び他局からの干渉波の分離、抑圧を行う複素重みベク
トルを決定するために、SMI法では計算量の大きい相
関行列とその逆行列、相関ベクトルの計算する必要があ
る。またRLS法やLMS法ではSMI法に比べ計算量
を減らすことができるが、逐次更新によって近似解を求
めるため解の収束に時間を要する。
As described above, in order to determine a complex weight vector for separating and suppressing a multiplex wave and an interference wave from another station using an array antenna, the SMI method requires a large correlation matrix, its inverse matrix, and the correlation matrix. Vectors need to be calculated. Although the RLS method and the LMS method can reduce the amount of calculation as compared with the SMI method, it takes time to converge the solution because an approximate solution is obtained by successive updating.

【0009】[0009]

【発明が解決しようとする課題】上記のようにアレーア
ンテナで多重波や干渉波の到来方向の違いによって分
離、抑圧する方法が有効である。従来アレーアンテナを
用いる場合、上記従来の技術の構成を基地局に備えるこ
とが多い。この場合、基地局アレーアンテナの複素重み
ベクトルは基地局自体において演算され使用されてい
る。また移動局にアレーアンテナを用いる場合も上記従
来の技術の構成を移動局に備え、移動局アレーアンテナ
の複素重みベクトルは移動局自体において演算され使用
されている。しかし、計算量の大きいアレーアンテナの
複素重みベクトルの計算を行うためには演算装置の大規
模化、演算時の消費電力の増大を招くため、装置の小型
化、低消費電力化が要求される移動局で用いる場合に問
題となる。
As described above, it is effective to use the array antenna to separate and suppress the multiplexed waves and the interference waves depending on the arrival direction of the interference waves. When a conventional array antenna is used, the configuration of the above-described conventional technology is often provided in a base station. In this case, the complex weight vector of the base station array antenna is calculated and used in the base station itself. When an array antenna is used for a mobile station, the configuration of the above-described conventional technique is provided in the mobile station, and the complex weight vector of the mobile station array antenna is calculated and used in the mobile station itself. However, the calculation of the complex weight vector of the array antenna having a large amount of calculation requires a large-scale arithmetic device and an increase in power consumption at the time of calculation. Therefore, a reduction in the size and power consumption of the device is required. This is problematic when used in mobile stations.

【0010】[0010]

【課題を解決するための手段】本発明のデジタル無線通
信システムは、基地局から送信した参照信号を移動局の
アレーアンテナで受信し、各アンテナ素子で受信した無
線信号の複素ベースバンド信号を波形メモリに蓄積す
る。蓄積した各複素ベースバンド信号を送信データとし
て基地局に送信し、基地局側で移動局アレーアンテナの
複素重みベクトルを計算し、計算した複素重みベクトル
を送信データとして移動局に送信する。移動局でこれを
受信し移動局アレーアンテナの複素重みベクトルとして
用いることで多重波及び他局からの干渉波の分離、抑圧
を行う。
According to the digital radio communication system of the present invention, a reference signal transmitted from a base station is received by an array antenna of a mobile station, and a complex baseband signal of the radio signal received by each antenna element is converted into a waveform. Store in memory. Each of the stored complex baseband signals is transmitted to the base station as transmission data, the base station calculates a complex weight vector of the mobile station array antenna, and transmits the calculated complex weight vector to the mobile station as transmission data. The mobile station receives this and uses it as a complex weight vector of the mobile station array antenna to separate and suppress the multiplex wave and the interference wave from other stations.

【0011】このように本発明のデジタル無線通信シス
テムは、移動局のアレーアンテナの複素重みベクトルを
基地局側で計算することで、移動局に演算装置を持つ必
要がなく装置の小型化、低消費電力化が実現できる。
As described above, the digital radio communication system of the present invention calculates the complex weight vector of the array antenna of the mobile station on the base station side, so that the mobile station does not need to have an arithmetic unit, and the apparatus can be reduced in size and reduced in size. Power consumption can be realized.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1から図4を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0013】(実施の形態1)図1に本発明のデジタル
無線通信システムを適用した移動局の一形態のブロック
図を示す。本実施の形態のデジタル無線通信システムは
無線通信を行う搬送波周波数の半波長程度の間隔で近接
して並置された複数のアンテナ素子からなるアレーアン
テナの指向性を制御して、多重波伝搬路を通ってきた到
来波の到来方向の違いによって多重波及び他局からの干
渉波の分離、抑圧するもので、特に本実施の形態のデジ
タル無線通信システムは移動局アレーアンテナの指向性
を決定する複素重みベクトルを基地局側で求めることを
特徴とする。
(Embodiment 1) FIG. 1 is a block diagram showing an embodiment of a mobile station to which a digital radio communication system according to the present invention is applied. The digital radio communication system according to the present embodiment controls the directivity of an array antenna composed of a plurality of antenna elements that are juxtaposed and arranged close to each other at an interval of about a half wavelength of a carrier frequency for performing radio communication, thereby forming a multi-wave propagation path. It separates and suppresses multiplexed waves and interference waves from other stations depending on the direction of arrival of the incoming waves. It is characterized in that the weight vector is obtained on the base station side.

【0014】アンテナ素子102〜104を備えるアレ
ーアンテナ101と、各アンテナ素子で受信した無線周
波数を有する無線信号を増幅し所定の中間周波数を有す
る中間周波数信号に周波数変換するRF受信器105〜
107と、各中間周波数信号をデジタル信号に変換する
A/D変換器108〜110と、A/D変換後の中間周
波数を複素ベースバンド信号に変換する準同期検波器1
11〜113と、各複素ベースバンド信号に複素重みベ
クトルで重み付け加算する重み付け加算部114と、重
み付け加算した複素ベースバンド信号から同期検波又は
遅延検波を行い所望の受信データを出力する復調器11
5と、基地局で求めた複素重みベクトルを蓄積する重み
ベクトルメモリ116を備える。
An array antenna 101 having antenna elements 102 to 104, and an RF receiver 105 for amplifying a radio signal having a radio frequency received by each antenna element and converting the frequency into an intermediate frequency signal having a predetermined intermediate frequency.
107, A / D converters 108 to 110 for converting each intermediate frequency signal into a digital signal, and a quasi-synchronous detector 1 for converting the intermediate frequency after the A / D conversion into a complex baseband signal
11 to 113; a weighting and adding unit 114 for weighting and adding each complex baseband signal with a complex weight vector; and a demodulator 11 for performing synchronous detection or delay detection from the weighted and added complex baseband signal and outputting desired reception data.
5 and a weight vector memory 116 for storing the complex weight vector obtained by the base station.

【0015】さらに、準同期検波した各複素ベースバン
ド信号を蓄積する波形メモリ117と、蓄積した各複素
ベースバンド信号及び送信ベースバンド信号を所定の中
間周波数を有する中間周波数信号に変調する直交変調器
118と、中間周波数信号をアナログ信号に変換するD
/A変換器119と、D/A変換後の中間周波数信号を
無線周波数を有する無線信号に周波数変換し所定の電力
に増幅するRF送信器120と、無線信号を送信する送
信アンテナ121を備える。
[0015] Further, a waveform memory 117 for storing each complex baseband signal subjected to quasi-synchronous detection, and a quadrature modulator for modulating each of the stored complex baseband signal and transmission baseband signal to an intermediate frequency signal having a predetermined intermediate frequency. 118 and D for converting the intermediate frequency signal to an analog signal.
A / A converter 119, an RF transmitter 120 for frequency-converting the intermediate frequency signal after the D / A conversion into a radio signal having a radio frequency and amplifying the radio signal to a predetermined power, and a transmission antenna 121 for transmitting the radio signal.

【0016】また、図2は重み付け加算部のブロック図
であり、各複素ベースバンドに重みベクトルを乗算する
乗算器201〜203と乗算した信号を同相加算する同
相加算器204を備える。
FIG. 2 is a block diagram of the weighting and adding unit, which includes multipliers 201 to 203 for multiplying each complex baseband by a weight vector, and an in-phase adder 204 for in-phase adding the multiplied signals.

【0017】アレーアンテナ101内の各アンテナ素子
102〜104から準同期検波器111〜113までは
各アンテナ素子の系統毎に従属接続されており、各系統
毎の信号処理は同様に実行されるので、アンテナ素子1
02で受信された無線信号についての処理を述べる。
Each of the antenna elements 102 to 104 to the quasi-synchronous detectors 111 to 113 in the array antenna 101 are connected in a dependent manner for each antenna element system, and the signal processing for each system is executed in the same manner. , Antenna element 1
The processing for the radio signal received at 02 will be described.

【0018】アンテナ素102で受信した基地局から送
信した参照信号の無線信号をRF受信器105で増幅し
所定の中間周波数を有する中間周波数に周波数変換し、
A/D変換器108を介して準同期検波器111に入力
する。準同期検波器111ではA/D変換後の中間周波
数信号を準同期検波して複素ベースバンド信号に変換す
る。同様に各系統毎に得られた複素ベースバンド信号を
波形メモリ117に入力し蓄積する。
The radio signal of the reference signal transmitted from the base station received by the antenna element 102 is amplified by the RF receiver 105 and frequency-converted into an intermediate frequency having a predetermined intermediate frequency.
The signal is input to the quasi-synchronous detector 111 via the A / D converter 108. The quasi-synchronous detector 111 performs quasi-synchronous detection on the intermediate frequency signal after the A / D conversion and converts the signal into a complex baseband signal. Similarly, the complex baseband signal obtained for each system is input to the waveform memory 117 and stored.

【0019】蓄積した各複素ベースバンド信号を直交変
調器118に入力し、所定の周波数を有する中間周波数
信号に変調しD/A変換器119に入力する。D/A変
換後の中間周波数信号をRF送信器120に入力し、無
線周波数を有する無線信号に周波数変換し所定の電力に
増幅し、送信アンテナ121を介して基地局に送信す
る。
Each of the stored complex baseband signals is input to quadrature modulator 118, modulated to an intermediate frequency signal having a predetermined frequency, and input to D / A converter 119. The intermediate frequency signal after the D / A conversion is input to the RF transmitter 120, frequency-converted to a radio signal having a radio frequency, amplified to a predetermined power, and transmitted to the base station via the transmission antenna 121.

【0020】図3に基地局のブロック図を示す。基地局
にはアンテナ301と、送信と受信でアンテナ301を
共用するためのサーキュレータ302と、アンテナ30
1で受信した無線周波数を有する無線信号を増幅し所定
の中間周波数を有する中間周波数信号に周波数変換する
RF受信器303と、各中間周波数信号をデジタル信号
に変換するA/D変換器304と、A/D変換後の中間
周波数を複素ベースバンド信号に変換する準同期検波器
305と、複素ベースバンド信号から同期検波又は遅延
検波を行い所望の受信データを出力する復調器306
と、移動局から送信した複素ベースバンド信号を蓄積す
る波形メモリ307と、移動局の複素ベースバンド信号
から複素重みベクトルを演算する重みベクトル演算部3
08と、求めた重みベクトルを蓄積する重みベクトルメ
モリ309と、蓄積した複素重みベクトル及び送信ベー
スバンド信号を所定の中間周波数を有する中間周波数信
号に変調する直交変調器310と、中間周波数信号をア
ナログ信号に変換するD/A変換器311と、D/A変
換後の中間周波数信号を無線周波数を有する無線信号に
周波数変換し所定の電力に増幅するRF送信器312と
を備える。
FIG. 3 shows a block diagram of the base station. An antenna 301, a circulator 302 for sharing the antenna 301 for transmission and reception, and an antenna 30 for the base station.
An RF receiver 303 for amplifying a radio signal having a radio frequency received in 1 and converting the frequency into an intermediate frequency signal having a predetermined intermediate frequency; an A / D converter 304 for converting each intermediate frequency signal into a digital signal; A quasi-synchronous detector 305 for converting the intermediate frequency after the A / D conversion into a complex baseband signal, and a demodulator 306 for performing synchronous detection or delay detection from the complex baseband signal and outputting desired reception data.
A waveform memory 307 for storing a complex baseband signal transmitted from the mobile station, and a weight vector calculator 3 for calculating a complex weight vector from the complex baseband signal of the mobile station.
08, a weight vector memory 309 for storing the obtained weight vector, a quadrature modulator 310 for modulating the stored complex weight vector and the transmission baseband signal to an intermediate frequency signal having a predetermined intermediate frequency, A D / A converter 311 for converting the signal into a signal and an RF transmitter 312 for frequency-converting the intermediate frequency signal after the D / A conversion into a radio signal having a radio frequency and amplifying the signal to a predetermined power are provided.

【0021】移動局から送信した上記各複素ベースバン
ド信号の無線信号をアンテナ301で受信し、受信した
無線信号をサーキュレータ302を介してRF受信器3
03に入力し、RF受信器303で増幅し所定の中間周
波数を有する中間周波数に周波数変換し、A/D変換器
304を介して準同期検波器305に入力する。準同期
検波器305ではA/D変換後の中間周波数信号を準同
期検波して複素ベースバンド信号に変換する。これで基
地局は参照信号を移動局のアレーアンテナの各アンテナ
素子で受信した複素ベースバンド信号を得たことにな
る。
A radio signal of each of the complex baseband signals transmitted from the mobile station is received by an antenna 301, and the received radio signal is transmitted via a circulator 302 to an RF receiver 3.
The signal is amplified by an RF receiver 303, frequency-converted to an intermediate frequency having a predetermined intermediate frequency, and input to a quasi-synchronous detector 305 via an A / D converter 304. The quasi-synchronous detector 305 performs quasi-synchronous detection on the intermediate frequency signal after the A / D conversion and converts the signal into a complex baseband signal. This means that the base station has obtained a complex baseband signal in which the reference signal has been received by each antenna element of the array antenna of the mobile station.

【0022】各複素ベースバンド信号を重みベクトル演
算部308に入力し、上記SMI法を用いて複素重みを
基地局で計算する。重みベクトル演算部308において
先ず各複素ベースバンド信号から相関行列を計算し、さ
らにこの逆行列を求める。
Each complex baseband signal is input to weight vector calculation section 308, and the complex weight is calculated at the base station using the above-described SMI method. First, a weighting matrix calculation unit 308 calculates a correlation matrix from each complex baseband signal, and further obtains the inverse matrix.

【0023】次に各複素ベースバンド信号と参照信号と
の相関ベクトルを計算し、相関行列の逆行列との積をと
ることにより複素重みを計算する。次に求めた複素重み
ベクトル重みベクトルメモリ309に蓄積する。
Next, a complex vector is calculated by calculating a correlation vector between each complex baseband signal and the reference signal, and calculating a product of the inverse matrix of the correlation matrix. Next, the obtained complex weight vector is stored in the weight vector memory 309.

【0024】さらに蓄積した複素重みベクトルを直交変
調器310に入力し、所定の周波数を有する中間周波数
信号に変調しD/A変換器311に入力する。D/A変
換後の中間周波数信号をRF送信器312に入力し、無
線周波数を有する無線信号に周波数変換し所定の電力に
増幅し、サーキュレータ302とアンテナ301を介し
て移動局に送信する。
Further, the accumulated complex weight vector is input to quadrature modulator 310, modulated to an intermediate frequency signal having a predetermined frequency, and input to D / A converter 311. The intermediate frequency signal after the D / A conversion is input to the RF transmitter 312, frequency-converted into a radio signal having a radio frequency, amplified to a predetermined power, and transmitted to the mobile station via the circulator 302 and the antenna 301.

【0025】移動局において受信した無線信号をアンテ
ナ素子102で受信し、上記したアンテナ素子102か
ら準同期検波器111までの系統と同様の信号処理を行
って複素ベースバンド信号を得る。得られた複素ベース
バンド信号を復調器115に入力し、同期検波又は遅延
検波を行い基地局で求めた複素重みベクトルを受信デー
タとして重みベクトルメモリ116に入力し蓄積する。
The mobile station receives the radio signal received by the antenna element 102 and performs the same signal processing as in the system from the antenna element 102 to the quasi-synchronous detector 111 to obtain a complex baseband signal. The obtained complex baseband signal is input to a demodulator 115, and synchronous detection or delay detection is performed, and a complex weight vector obtained by the base station is input to a weight vector memory 116 as received data and stored.

【0026】以後次の複素重みベクトル更新まで、基地
局から移動局へのデータ送信時には蓄積された複素重み
ベクトルを使用して無線信号を受信する。重み付け加算
部において重みベクトルメモリ116に蓄積した複素重
みベクトルと上記したアンテナ素子102から準同期検
波器111までの系統と同様の信号処理を各系統毎に行
い得られた各複素ベースバンド信号とを乗算器201〜
203で乗算し、同相加算器204で同相加算し復調器
115に入力する。
Thereafter, until the next update of the complex weight vector, the radio signal is received using the accumulated complex weight vector when data is transmitted from the base station to the mobile station. The complex weight vector stored in the weight vector memory 116 in the weighting addition unit and each complex baseband signal obtained by performing signal processing similar to that of the system from the antenna element 102 to the quasi-synchronous detector 111 for each system. Multipliers 201-
The signal is multiplied by 203, added in phase by an in-phase adder 204, and input to the demodulator 115.

【0027】復調器115で重み付け加算した複素ベー
スバンド信号から同期検波又は遅延検波を行い所望の受
信データを出力する。これにより不要な多重波や干渉波
を分離、抑圧した受信波を得ることができる。
The demodulator 115 performs synchronous detection or delay detection from the complex baseband signal weighted and added, and outputs desired reception data. This makes it possible to obtain a received wave in which unnecessary multiple waves and interference waves are separated and suppressed.

【0028】なお本実施の形態ではアンテナ102〜1
04から重み付け加算部114の乗算器201〜203
までの系統が3の場合を示したが、2以上であれば良く
特に限定されるものではない。
In this embodiment, the antennas 102 to 1
04 to the multipliers 201 to 203 of the weighting addition unit 114
The case where the system up to 3 is 3 is shown, but it is not particularly limited as long as it is 2 or more.

【0029】複素重みベクトルの更新は、移動局の最大
移動速度を搬送波周波数の波長で除算することにより求
まる最大ドップラ周波数の少なくとも2倍の周期で行う
ことにより、移動局の移動や伝搬路の環境変化にともな
う到来方向の変化に追従して受信することができる。
The updating of the complex weight vector is performed at least twice as long as the maximum Doppler frequency obtained by dividing the maximum moving speed of the mobile station by the wavelength of the carrier frequency, thereby enabling the movement of the mobile station and the environment of the propagation path. The reception can be performed following the change in the arrival direction due to the change.

【0030】(実施の形態2)図4に本発明のデジタル
無線通信システムを適用した移動局の他の形態のブロッ
ク図を示す。アレーアンテナを送信と受信で使用するた
めのサーキュレータ405〜407以外、本実施の形態
の受信部は実施の形態1と同様の目的で、アンテナ素子
402〜404を備えるアレーアンテナ401と、RF
受信器408〜410と、A/D変換器411〜413
と、準同期検波器414〜416と、重み付け加算部4
19と、復調器417と、重みベクトルメモリ418
と、波形メモリ420とを備える。
(Embodiment 2) FIG. 4 is a block diagram showing another embodiment of a mobile station to which the digital radio communication system of the present invention is applied. Except for the circulators 405 to 407 for using the array antenna for transmission and reception, the receiving section of the present embodiment has the same purpose as that of the first embodiment, and includes an array antenna 401 having antenna elements 402 to 404,
Receivers 408 to 410 and A / D converters 411 to 413
Quasi-synchronous detectors 414 to 416 and the weighting and adding unit 4
19, demodulator 417, weight vector memory 418
And a waveform memory 420.

【0031】また、重み付け加算部の構成は図2に示し
た実施の形態1と同様であり乗算器201〜203と同
相加算器204を備える。
The configuration of the weighted addition unit is the same as that of the first embodiment shown in FIG. 2, and includes multipliers 201 to 203 and an in-phase adder 204.

【0032】さらに、送信ベースバンド信号を同相分配
する同相分配器421と、同相分配した各送信ベースバ
ンド信号に複素重みベクトルを乗算する乗算器422〜
424と、乗算後の各送信ベースバンド信号を所定の中
間周波数を有する中間周波数信号に変調する直交変調器
425〜427と、各中間周波数信号をアナログ信号に
変換するD/A変換器428〜430と、D/A変換後
の各中間周波数信号を無線周波数を有する無線信号に周
波数変換し所定の電力に増幅するRF送信器431〜4
33とを備える。基地局は図3に示す実施の形態1と同
様である。
Further, an in-phase distributor 421 for in-phase distribution of the transmission baseband signal, and multipliers 422 to 422 for multiplying each of the in-phase distributed transmission baseband signals by a complex weight vector.
424, quadrature modulators 425 to 427 for modulating each multiplied transmission baseband signal to an intermediate frequency signal having a predetermined intermediate frequency, and D / A converters 428 to 430 for converting each intermediate frequency signal to an analog signal. And RF transmitters 431 to 4 for frequency-converting each intermediate frequency signal after D / A conversion into a radio signal having a radio frequency and amplifying it to a predetermined power.
33. The base station is the same as in Embodiment 1 shown in FIG.

【0033】基地局から送信した参照信号の無線信号を
受信し複素バースバンド信号を波形メモリ420に蓄積
するまでの信号処理は、アンテナ素子402からの無線
信号をサーキュレータ405を介してRF受信器408
に入力することを除いて実施の形態1と同様なので説明
を省略する。
The signal processing from the reception of the radio signal of the reference signal transmitted from the base station to the accumulation of the complex burst band signal in the waveform memory 420 is performed by transmitting the radio signal from the antenna element 402 via the circulator 405 to the RF receiver 408.
Are the same as those in the first embodiment, except that the input is made, so that the description is omitted.

【0034】次に蓄積した各複素ベースバンド信号を直
交変調器425で所定の周波数を有する中間周波数信号
に変換しD/A変換器428に入力する。D/A変換後
の中間周波数信号をRF送信器431に入力し、無線周
波数を有する無線信号に周波数変換し所定の電力に増幅
し、サーキュレータ405とアンテナ素子402を介し
て基地局に送信する。
Next, each of the accumulated complex baseband signals is converted into an intermediate frequency signal having a predetermined frequency by a quadrature modulator 425 and input to a D / A converter 428. The intermediate frequency signal after the D / A conversion is input to the RF transmitter 431, frequency-converted into a radio signal having a radio frequency, amplified to a predetermined power, and transmitted to the base station via the circulator 405 and the antenna element 402.

【0035】基地局では実施の形態1と同様の処理を行
って複素重みベクトルを求め移動局に送信し、移動局で
は実施の形態1と同様の信号処理をアンテナ素子402
から復調器417で行って重みベクトルメモリ419に
複素重みベクトルを蓄積する。以後次の複素重みベクト
ル更新まで、基地局と移動局間のデータ送信と受信時に
は蓄積された複素重みベクトルを使用して無線信号を送
信、受信する。
The base station performs the same processing as in the first embodiment to obtain a complex weight vector and transmits it to the mobile station. The mobile station performs the same signal processing as in the first embodiment on the antenna element 402.
From the demodulator 417 to store the complex weight vector in the weight vector memory 419. Thereafter, the radio signal is transmitted and received using the accumulated complex weight vector at the time of data transmission and reception between the base station and the mobile station until the next update of the complex weight vector.

【0036】移動局受信時には、重み付け加算部419
において重みベクトルメモリ418に蓄積した複素重み
ベクトルと上記アンテナ素子402から準同期検波器4
14までの系統と同様の信号処理を各系統毎に行い得ら
れた各複素ベースバンド信号とを乗算器201〜203
で乗算し、同相加算器204で加算し復調器417に入
力する。復調器417で重み付け加算した複素ベースバ
ンド信号から同期検波又は遅延検波を行い所望の受信デ
ータを出力する。これにより移動局では不要な多重波や
干渉波を分離、抑圧した受信波を得ることができる。
At the time of mobile station reception, weighting and adding section 419
, The complex weight vector stored in the weight vector memory 418 and the quasi-synchronous
14 and the complex baseband signals obtained by performing the same signal processing for each system as the multipliers 201 to 203.
, And added by the in-phase adder 204 and input to the demodulator 417. The demodulator 417 performs synchronous detection or delay detection from the complex baseband signal weighted and added, and outputs desired reception data. As a result, the mobile station can obtain a received wave in which unnecessary multiple waves and interference waves are separated and suppressed.

【0037】移動局送信時には、送信ベースバンド信号
を同相分配器421で同相分配する。以下、乗算器42
2〜424からアンテナ素子402〜404までは各ア
ンテナ素子の系統毎に従属接続されており、各系統毎の
信号処理は同様に実行される。同相分配した送信ベース
バンド信号と重みベクトルメモリ418に蓄積した複素
重みベクトルとを乗算器422〜424でそれぞれ乗算
し直交変調器425〜427に入力し所定の周波数を有
する中間周波数信号にそれぞれ変調しD/A変換器42
8〜430に入力する。
At the time of mobile station transmission, the transmission baseband signal is in-phase distributed by the in-phase distributor 421. Hereinafter, the multiplier 42
2 to 424 to the antenna elements 402 to 404 are cascade-connected for each system of each antenna element, and the signal processing for each system is similarly executed. The in-phase distributed transmission baseband signal and the complex weight vector stored in the weight vector memory 418 are multiplied by multipliers 422 to 424, respectively, input to quadrature modulators 425 to 427, and modulated to intermediate frequency signals having a predetermined frequency. D / A converter 42
8 to 430.

【0038】D/A変換後の各中間周波数信号をRF送
信器431〜433に入力し、無線周波数を有する無線
信号に周波数変換し所定の電力に増幅し、各無線信号を
サーキュレータ405〜407とアンテナ素子402〜
404を介して基地局に送信する。これにより基地局で
は不要な多重波を分離、抑圧した受信波を得ることがで
きる。
Each of the intermediate frequency signals after the D / A conversion is input to the RF transmitters 431 to 433, frequency-converted into a radio signal having a radio frequency, amplified to a predetermined power, and each radio signal is transmitted to the circulators 405 to 407. Antenna elements 402 to
404 to the base station. As a result, the base station can obtain a received wave in which unnecessary multiplex waves are separated and suppressed.

【0039】なお、本実施の形態ではアンテナ素子40
2〜404から重み付け加算部419の乗算器201〜
203までの系統及び乗算器422〜424からアンテ
ナ素子402〜404までの系統が3の場合を示した
が、2以上であれば良く特に限定されるものではない。
In this embodiment, the antenna element 40
From 2 to 404, the multipliers 201 to 201 of the weighting addition unit 419
Although the case where the number of systems up to 203 and the number of systems from multipliers 422 to 424 to antenna elements 402 to 404 are 3 is shown, the number is not particularly limited as long as it is 2 or more.

【0040】複素重みベクトルの更新は、実施の形態1
と同様に移動局の最大移動速度を搬送波周波数の波長で
除算することにより求まる最大ドップラ周波数の少なく
とも2倍の周期で行うことにより、移動局の移動や伝搬
路の環境変化にともなう到来方向の変化に追従して送
信、受信することができる。
The updating of the complex weight vector is performed according to the first embodiment.
In the same way as described above, by changing the maximum moving speed of the mobile station by the wavelength of the carrier frequency at least twice as long as the maximum Doppler frequency, the change in the direction of arrival due to the movement of the mobile station and environmental changes in the propagation path Can be transmitted and received.

【0041】[0041]

【発明の効果】本発明は上記実施の形態から明らかなよ
うに、移動局の各アンテナ素子で受信した基地局から送
信した参照信号の複素ベースバンド信号を基地局に送信
し、基地局で移動局アレーアンテナの複素重みベクトル
を計算し、計算した複素重みベクトルを移動局アレーア
ンテナの複素重みベクトルとして用いることで多重波及
び他局からの干渉波の分離、抑圧を行うことにより、移
動局に重みベクトル演算装置を持つ必要がなく装置の小
型化、低消費電力化が実現できる。
As is apparent from the above embodiment, the present invention transmits a complex baseband signal of a reference signal transmitted from a base station received by each antenna element of a mobile station to the base station, and the mobile station transmits the complex baseband signal. By calculating the complex weight vector of the station array antenna and using the calculated complex weight vector as the complex weight vector of the mobile station array antenna to separate and suppress multiple waves and interference waves from other stations, It is not necessary to have a weight vector computing device, so that the device can be reduced in size and power consumption can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるデジタル無線通信システムを適用
した移動局の一形態のブロック図
FIG. 1 is a block diagram of an embodiment of a mobile station to which a digital wireless communication system according to the present invention is applied.

【図2】移動局の重み付け加算部のブロック図FIG. 2 is a block diagram of a weighting and adding unit of the mobile station.

【図3】本発明によるデジタル無線通信システムを適用
した基地局の一形態のブロック図
FIG. 3 is a block diagram of an embodiment of a base station to which the digital wireless communication system according to the present invention is applied;

【図4】本発明によるデジタル無線通信システムを適用
した移動局の他形態のブロック図
FIG. 4 is a block diagram of another embodiment of a mobile station to which the digital wireless communication system according to the present invention is applied;

【図5】従来のSMI法を用いたデジタル無線通信シス
テムのブロック図
FIG. 5 is a block diagram of a digital wireless communication system using a conventional SMI method.

【図6】DBF部のブロック図FIG. 6 is a block diagram of a DBF unit;

【符号の説明】[Explanation of symbols]

101 アレーアンテナ 102〜104 アンテナ素子 105〜107 RF受信器 108〜110 A/D変換器 111〜113 準同期検波器 114 重み付け加算器 115 復調器 116 重みベクトルメモリ 117 波形メモリ 118 直交復調器 119 D/A変換器 120 RF送信器 121 送信アンテナ 201〜203 乗算器 204 同相加算器 301 アンテナ 302 サーキュレータ 303 RF受信器 304 A/D変換器 305 準同期検波器 306 復調器 307 波形メモリ 308 重みベクトル演算部 309 重みベクトルメモリ 310 直交復調器 311 D/A変換器 312 RF送信器 401 アレーアンテナ 402〜404 アンテナ素子 405〜407 サーキュレータ 408〜410 RF受信器 411〜413 A/D変換器 414〜416 準同期検波器 417 復調器 418 重みベクトルメモリ 419 重み付け加算部 420 波形メモリ 421 同相分配器 422〜424 乗算器 425〜427 直交復調器 428〜430 D/A変換器 431〜433 RF送信器 501 アレーアンテナ 502〜504 アンテナ素子 505〜507 RF受信器 508〜510 A/D変換器 511〜513 準同期検波器 514 DBF部 515 復調器 601〜603 乗算器 604 同相加算器 605 重みベクトル演算部 101 Array antenna 102-104 Antenna element 105-107 RF receiver 108-110 A / D converter 111-113 Quasi-synchronous detector 114 Weight adder 115 Demodulator 116 Weight vector memory 117 Waveform memory 118 Quadrature demodulator 119 D / A converter 120 RF transmitter 121 Transmission antenna 201-203 Multiplier 204 In-phase adder 301 Antenna 302 Circulator 303 RF receiver 304 A / D converter 305 Quasi-synchronous detector 306 Demodulator 307 Waveform memory 308 Weight vector calculator 309 Weight vector memory 310 Quadrature demodulator 311 D / A converter 312 RF transmitter 401 Array antenna 402-404 Antenna element 405-407 Circulator 408-410 RF receiver 411-413A D converters 414 to 416 Quasi-synchronous detector 417 Demodulator 418 Weight vector memory 419 Weighting adder 420 Waveform memory 421 In-phase distributor 422 to 424 Multiplier 425 to 427 Quadrature demodulator 428 to 430 D / A converter 431 to 433 RF transmitter 501 Array antenna 502-504 Antenna element 505-507 RF receiver 508-510 A / D converter 511-513 Quasi-synchronous detector 514 DBF section 515 Demodulator 601-603 Multiplier 604 In-phase adder 605 Weight vector Arithmetic unit

フロントページの続き (72)発明者 井形 裕司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5J021 AA05 AA06 CA06 DB02 DB03 FA14 FA15 FA16 FA17 FA20 FA24 FA26 FA28 FA29 FA30 FA32 GA02 HA05 HA10 5K059 CC02 CC03 CC04 DD35 DD39 EE02 5K067 AA02 AA42 CC24 GG11 KK03Continued on the front page (72) Inventor Yuji Igata 1006 Kazuma Kadoma, Kazuma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. (reference) 5J021 AA05 AA06 CA06 DB02 DB03 FA14 FA15 FA16 FA17 FA20 FA24 FA26 FA28 FA29 FA30 FA32 GA02 HA05 HA10 5K059 CC02 CC03 CC04 DD35 DD39 EE02 5K067 AA02 AA42 CC24 GG11 KK03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数のアンテナ素子から構成されるアレー
アンテナを移動局が備えたデジタル無線通信システムに
おいて、 所定の参照信号を基地局から無線で送信し、移動局にお
いてアレーアンテナの各アンテナ素子で受信した前記参
照信号の受信信号を時間軸、振幅軸ともに離散化したデ
ジタル波形信号にそれぞれ変換し、前記変換したデジタ
ル波形信号を基地局に無線で送信し、 基地局において受信した前記変換された複数のデジタル
波形信号の相関行列、および前記参照信号と前記複数の
デジタル波形信号との相関ベクトルを基地局において演
算し、前記相関行列と相関ベクトルを用いて、移動局の
アレーアンテナの各アンテナ素子での受信信号を重みベ
クトルで重み付け合成したときの信号と前記参照信号と
の自乗平均誤差を最小とするような移動局アレーアンテ
ナの重みベクトルを基地局において演算し、 基地局において演算された移動局アレーアンテナの重み
ベクトルを送信データとして、基地局から移動局に無線
で送信することを特徴としたデジタル無線通信システ
ム。
In a digital radio communication system in which a mobile station has an array antenna composed of a plurality of antenna elements, a predetermined reference signal is wirelessly transmitted from a base station, and the mobile station transmits a predetermined reference signal to each antenna element of the array antenna. A received signal of the received reference signal is converted into a digital waveform signal that is discretized on both the time axis and the amplitude axis, and the converted digital waveform signal is wirelessly transmitted to a base station. A base station for calculating a correlation matrix of a plurality of digital waveform signals, and a correlation vector between the reference signal and the plurality of digital waveform signals, and using the correlation matrix and the correlation vector, each antenna element of an array antenna of a mobile station; And the root mean square error between the signal and the reference signal when the received signal is weighted and combined with the weight vector is minimized. The weight vector of the mobile station array antenna is calculated in the base station, and the weight vector of the mobile station array antenna calculated in the base station is wirelessly transmitted from the base station to the mobile station as transmission data. Digital wireless communication system.
【請求項2】移動局アレーアンテナの重みベクトルの更
新を最大ドップラー周波数の少なくとも2倍で行うこと
を特徴とする請求項1記載のデジタル無線通信システ
ム。
2. The digital radio communication system according to claim 1, wherein the updating of the weight vector of the mobile station array antenna is performed at least twice the maximum Doppler frequency.
JP2000028665A 2000-02-07 2000-02-07 Digital radio communication system Pending JP2001223623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000028665A JP2001223623A (en) 2000-02-07 2000-02-07 Digital radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000028665A JP2001223623A (en) 2000-02-07 2000-02-07 Digital radio communication system

Publications (1)

Publication Number Publication Date
JP2001223623A true JP2001223623A (en) 2001-08-17

Family

ID=18554035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000028665A Pending JP2001223623A (en) 2000-02-07 2000-02-07 Digital radio communication system

Country Status (1)

Country Link
JP (1) JP2001223623A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160375A (en) * 2006-12-22 2008-07-10 National Institute Of Information & Communication Technology Antenna arrangement method of rotorcraft and communication device thereof
JP2009124733A (en) * 2009-01-09 2009-06-04 Mitsubishi Electric Corp Radio communication method and radio communication system
WO2011077611A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Wireless receiving apparatus
US8125963B2 (en) 2003-08-04 2012-02-28 Mitsubishi Denki Kabushiki Kaisha Radio transmission control method, radio receiver apparatus, and radio transmitter apparatus
CN113671249A (en) * 2021-08-27 2021-11-19 中国科学院云南天文台 Real-time omnibearing scanning radio environment monitoring system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125963B2 (en) 2003-08-04 2012-02-28 Mitsubishi Denki Kabushiki Kaisha Radio transmission control method, radio receiver apparatus, and radio transmitter apparatus
US8385295B2 (en) 2003-08-04 2013-02-26 Mitsubishi Denki Kabushiki Kaisha Radio transmission control method, radio receiver apparatus, and radio transmitter apparatus
JP2008160375A (en) * 2006-12-22 2008-07-10 National Institute Of Information & Communication Technology Antenna arrangement method of rotorcraft and communication device thereof
JP2009124733A (en) * 2009-01-09 2009-06-04 Mitsubishi Electric Corp Radio communication method and radio communication system
WO2011077611A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Wireless receiving apparatus
US8693599B2 (en) 2009-12-25 2014-04-08 Panasonic Corporation Wireless receiving apparatus
CN113671249A (en) * 2021-08-27 2021-11-19 中国科学院云南天文台 Real-time omnibearing scanning radio environment monitoring system

Similar Documents

Publication Publication Date Title
JP3985883B2 (en) Radio wave arrival direction estimation antenna device
JP3204111B2 (en) Directivity control antenna device
JP3233088B2 (en) Directivity control antenna device
US7340248B2 (en) Calibration apparatus
JP3464606B2 (en) Wireless communication device and wireless communication method
CN100483969C (en) Adaptive array aerial directivity controlling system
JP4110519B2 (en) Space division multiple access control method, radio communication system, base station, and mobile station
EP1161001A2 (en) Multi-beam receiving apparatus
JP2000151488A (en) Radio communication equipment and method therefor
JP3455448B2 (en) Beam control antenna device and antenna control method
KR20120036748A (en) Apparatus for hybrid beam forming in wide band wireless communication system
JP3341701B2 (en) Array antenna transmitter
JP2001223623A (en) Digital radio communication system
CA2332960C (en) Radio transmission device and transmission directivity adjusting method
JP2004117246A (en) Antenna assembly
JPH1051221A (en) Adaptive array antenna
JPH10177064A (en) Arrival direction estimation device
JP2000138520A (en) Antenna system
WO1995012927A1 (en) A method for transmitting radio signals, and a tdma transceiver
JP2000286769A (en) Receiver
JP2002204193A (en) Mobile communication system
JPH09119970A (en) Communication and position-measuring device
JP3138243B2 (en) Adaptive array device
JP2001268633A (en) Radio communication system, radio base station, and mobile station
JP2001268006A (en) Wireless communication system.base station.mobile station