JP2001221701A - Device for indicating vacuum pressure of electron microscope accelerating tube - Google Patents

Device for indicating vacuum pressure of electron microscope accelerating tube

Info

Publication number
JP2001221701A
JP2001221701A JP2000032526A JP2000032526A JP2001221701A JP 2001221701 A JP2001221701 A JP 2001221701A JP 2000032526 A JP2000032526 A JP 2000032526A JP 2000032526 A JP2000032526 A JP 2000032526A JP 2001221701 A JP2001221701 A JP 2001221701A
Authority
JP
Japan
Prior art keywords
pressure
accelerating tube
vacuum
tube
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000032526A
Other languages
Japanese (ja)
Other versions
JP3886691B2 (en
Inventor
Nagamitsu Yoshimura
長光 吉村
Katsukuni Mochizuki
克訓 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2000032526A priority Critical patent/JP3886691B2/en
Publication of JP2001221701A publication Critical patent/JP2001221701A/en
Application granted granted Critical
Publication of JP3886691B2 publication Critical patent/JP3886691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To calculate pressure within an accelerating tube on the basis of the indicated pressure of an ion pump or the like and to indicate it. SOLUTION: This device for indicating the vacuum pressure of an electron microscope accelerating tube computes and indicates the vacuum pressure within the accelerating tube having an electron-ray source 2 at its top and having a stack of electrodes arranged in series, with gas exhausted from the lower portion of the tube. The device includes a pressure measuring means 1 for measuring pressure at an exhaust system; a pressure computing means 3 for calculating pressure within the accelerating tube using a predetermined factor and on the basis of the pressure measured by the pressure measuring means 1, the factor varying depending on whether or not the electron-beam source 2 is on or off; and an indicating means 6 for indicating the pressure calculated by the pressure computing means 3. The pressure is measured at the exhaust system and the pressure within the accelerating tube is indicated, whereby the top pressure within the accelerating tube and pressures within other portions, both of which cannot be directly measured, are determined from the measured pressure of the exhaust system and indicated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、頂部に電子線源を
有し多段に電極を直列配置して下部から排気する加速管
の真空圧力を演算し表示する電子顕微鏡加速管の真空圧
力表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum pressure display for an electron microscope accelerating tube, which has an electron beam source at the top and has a plurality of electrodes arranged in series to calculate and display the vacuum pressure of an accelerating tube exhausted from below. About.

【0002】[0002]

【従来の技術】図5は電子顕微鏡の多段加速管の構成概
要を示す図であり、11は電子線源、12は電極、13
は緻密質アルミナ碍子、14は接続端子、15は中心軸
を示す。電子顕微鏡の多段加速管の電極は、1例として
図5に示すように、頂部に電子線源11が配置され、そ
の下方に多段に緻密質アルミナ碍子13にステンレス鋼
製電極12がロウ付けされて構成され、各段の電極12
の構成は同一になっている。そして、電極12には、電
子線が加速されて通過するように中心軸15上に開口が
ある。このように多段加速管では、電極12が多段に直
列につながっている。通常、1段当たりの電極/インシ
ュレータユニットの耐電圧は約40kVであり、例えば
200kV加速管では5段の電極系が、1000kV加
速管では約30段の電極系が用いられる。
2. Description of the Related Art FIG. 5 is a view showing an outline of the configuration of a multistage accelerating tube of an electron microscope, in which 11 is an electron beam source, 12 is an electrode, 13
Denotes a dense alumina insulator, 14 denotes a connection terminal, and 15 denotes a central axis. As an example, as shown in FIG. 5, an electrode of a multi-stage accelerating tube of an electron microscope has an electron beam source 11 disposed on the top, and a stainless steel electrode 12 brazed to a dense alumina insulator 13 in a multi-stage manner below the electron beam source 11. The electrode 12 of each stage
Has the same configuration. The electrode 12 has an opening on the central axis 15 so that the electron beam is accelerated and passes therethrough. As described above, in the multi-stage accelerating tube, the electrodes 12 are connected in series in multiple stages. Usually, the withstand voltage of the electrode / insulator unit per stage is about 40 kV. For example, a five-stage electrode system is used for a 200 kV accelerating tube, and a thirty-stage electrode system is used for a 1000 kV accelerating tube.

【0003】上記のような多段加速管を有する電子顕微
鏡においては、真空ゲージを電子線源11を配置した加
速管頂部に取り付けることができないため、加速管頂部
の圧力測定はできなかった。そこで、実際には、加速
管を排気するイオンポンプの指示圧力を目安として用い
たり、加速管用排気管部に真空ゲージを取り付け、そ
の計測値を加速管部圧力として用いたりしていた。
In an electron microscope having a multistage accelerating tube as described above, a vacuum gauge cannot be attached to the accelerating tube top on which the electron beam source 11 is arranged, so that the pressure at the accelerating tube top cannot be measured. Therefore, in practice, the indicated pressure of the ion pump for exhausting the acceleration tube is used as a guide, or a vacuum gauge is attached to the exhaust tube for the acceleration tube, and the measured value is used as the acceleration tube pressure.

【0004】[0004]

【発明が解決しようとする課題】しかし、加速管を排気
するイオンポンプの指示圧力を目安として用いるの方
式では、多数段の加速管電極と碍子を有する高電圧電子
顕微鏡の場合に、加速管頂部において、Wフィラメント
エミッターやLaB6 エミッターを加熱して使用する真
空条件が達成されているかが電子顕微鏡ユーザに不明で
あった。その結果、加速管頂部の圧力が十分に低くなっ
ていない時点でエミッターを点火したりして、エミッタ
ーの寿命を短くする不都合があった。特に、(a)エミ
ッターを点火して脱ガスエージング処理をしているとき
や、(b)電子線を引き出している時の頂部の圧力が不
明であり、WフィラメントエミッターやLaB6 エミッ
ターの寿命を短くしていた。また、加速管用排気管部に
真空ゲージを取り付けるの方式でも、多段加速管頂部
の圧力が不明であるため、の方式と状況は同じであっ
た。
However, in the method of using the indicated pressure of the ion pump for exhausting the accelerating tube as a guide, in the case of a high-voltage electron microscope having many stages of accelerating tube electrodes and insulators, the top of the accelerating tube is used. It was unknown to the user of the electron microscope whether or not the vacuum conditions for heating and using the W filament emitter and the LaB 6 emitter were achieved. As a result, there has been a problem that the emitter is ignited when the pressure at the top of the acceleration tube is not sufficiently low, thereby shortening the life of the emitter. In particular, the pressure at the top when (a) igniting the emitter to perform the degassing aging process or (b) when extracting the electron beam is unknown, and the life of the W filament emitter or LaB 6 emitter is reduced. Was shorter. Also, the method of attaching a vacuum gauge to the exhaust pipe for the acceleration tube was the same as the method because the pressure at the top of the multistage acceleration tube was unknown.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するものであって、イオンポンプ指示圧力等から直接
測定できない加速管内の圧力を計算し表示できるように
するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to calculate and display a pressure in an acceleration tube which cannot be directly measured from an ion pump command pressure or the like.

【0006】そのために本発明は、頂部に電子線源を有
し多段に電極を直列配置して下部から排気する加速管の
真空圧力を演算し表示する電子顕微鏡加速管の真空圧力
表示装置であって、前記排気系で圧力を測定する圧力測
定手段と、前記電子線源がオンかオフかに応じた所定の
係数を用いて前記圧力測定手段により測定した圧力から
前記加速管内の圧力を算出する圧力演算手段と、前記圧
力演算手段により算出された圧力を表示する表示手段と
を備え、前記排気系で圧力を測定して前記加速管内の圧
力を表示するように構成したことを特徴とするものであ
る。
For this purpose, the present invention provides a vacuum pressure display device for an electron microscope accelerating tube which has an electron beam source at the top and has a multistage arrangement of electrodes in series and calculates and displays the vacuum pressure of the accelerating tube evacuated from below. And calculating a pressure in the accelerating tube from the pressure measured by the pressure measuring means using a pressure measuring means for measuring pressure in the exhaust system and a predetermined coefficient depending on whether the electron beam source is on or off. A pressure calculating means, and a display means for displaying the pressure calculated by the pressure calculating means, wherein the pressure in the acceleration tube is displayed by measuring the pressure in the exhaust system. It is.

【0007】また、前記圧力演算手段は、前記加速管内
の圧力として前記頂部の圧力を算出し、前記圧力測定手
段は、スパッタイオンポンプのポンプ電流より圧力や排
気管に取り付けられた真空ゲージの指示圧力を測定する
ものであることを特徴とするものである。
The pressure calculating means calculates the pressure at the top as the pressure in the accelerating pipe, and the pressure measuring means indicates the pressure from the pump current of the sputter ion pump and the indication of a vacuum gauge attached to the exhaust pipe. It is characterized by measuring pressure.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1は本発明に係る電子顕微鏡
加速管の真空圧力表示装置の実施の形態を示す図、図2
は圧力演算表示制御部による圧力の演算・表示制御処理
を説明するための図である。図1中、1は圧力ゲージ、
2は電子線源、3は圧力演算表示制御部、4は入力設定
部、5は記憶部、6は圧力表示部を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing an embodiment of a vacuum pressure display device for an electron microscope accelerating tube according to the present invention, and FIG.
FIG. 4 is a diagram for explaining pressure calculation / display control processing by a pressure calculation display control unit. In FIG. 1, 1 is a pressure gauge,
2 is an electron beam source, 3 is a pressure calculation display control unit, 4 is an input setting unit, 5 is a storage unit, and 6 is a pressure display unit.

【0009】図1において、圧力ゲージ1は、例えば加
速管を排気しているスパッターイオンポンプSIPのポ
ンプ電流により圧力を計測するものであり、電子線源2
は、フィラメントのオン/オフ信号を出力するものであ
る。圧力演算表示制御部3は、圧力ゲージ1により計測
された圧力、電子線源2のフィラメントのオン/オフ及
び記憶部5に記憶された設定情報に基づき圧力の演算、
表示制御を行うものであり、演算に必要なデータを記憶
しておくのが記憶部5、演算した圧力の表示を行うディ
スプレイ等の表示手段が圧力表示部6である。入力設定
部4は、記憶部5に記憶しておく演算に必要なデータの
設定入力を行うキーボード等の入力手段である。
In FIG. 1, a pressure gauge 1 measures a pressure by, for example, a pump current of a sputter ion pump SIP which exhausts an acceleration tube.
Outputs an on / off signal of the filament. The pressure calculation display control unit 3 calculates the pressure based on the pressure measured by the pressure gauge 1, on / off of the filament of the electron beam source 2, and the setting information stored in the storage unit 5.
The storage unit 5 stores data necessary for calculation, and a display unit such as a display for displaying the calculated pressure is a pressure display unit 6. The input setting unit 4 is input means such as a keyboard for inputting setting of data necessary for calculation stored in the storage unit 5.

【0010】圧力演算表示制御部3では、圧力ゲージ1
により計測される圧力PSIP をスパッターイオンポンプ
SIPの排気口における圧力として適宜圧力表示部6に
表示する。さらに、フィラメントがオフのときには、そ
の指示圧力PSIP-OFF に所定の係数k1を乗じて、その
値(=PSIP-OFF ×k1)を加速管頂部の圧力PTOP-
OFF として圧力表示部6に表示する。また、フィラメン
トがオンのときには、その指示圧力PSIP-ONとフィラメ
ントがオフのときの指示圧力PSIP-OFF との差ΔPに所
定の係数k2を乗じた値(=k2×ΔP)をフィラメン
トがオフのときの指示圧力PSIP-OFF に加算してその値
(=PSIP-OFF +k2×ΔP)を加速管頂部の圧力P
TOP-ONとして圧力表示部6に表示する。これら所定の係
数k1、k2は、加速管の構造に依存し、入力設定部4
よりユーザが設定することにより記憶部5に記憶される
ものである。したがって、記憶部5には、少なくともこ
れら所定の係数k1及びk2が記憶され、加えてフィラ
メントがオフのときの指示圧力PSIP-OFF が記憶され
る。
In the pressure calculation display control unit 3, the pressure gauge 1
It displayed on the appropriate pressure display section 6 as the pressure at the outlet of the pressure P SIP sputter ion pump SIP measured by. Further, when the filament is off, the indicated pressure P SIP-OFF is multiplied by a predetermined coefficient k1, and the value (= P SIP-OFF × k1) is used as the pressure P TOP- at the top of the accelerating pipe.
It is displayed on the pressure display section 6 as OFF . When the filament is on, the filament obtains a value (= k2 × ΔP) obtained by multiplying a difference ΔP between the indicated pressure P SIP-ON and the indicated pressure P SIP-OFF when the filament is off by a predetermined coefficient k2. Add the indicated pressure P SIP-OFF when off and add the value (= P SIP-OFF + k2 × ΔP) to the pressure P at the top of the accelerating pipe.
It is displayed on the pressure display section 6 as TOP-ON . These predetermined coefficients k1 and k2 depend on the structure of the accelerator tube,
The information is stored in the storage unit 5 by being set by the user. Therefore, the storage unit 5 stores at least these predetermined coefficients k1 and k2, and additionally stores the command pressure P SIP-OFF when the filament is off.

【0011】次に、圧力演算表示制御部3による圧力の
演算・表示制御処理を説明する。この処理では、例えば
図2に示すようにクロックにより所定のタイミングで起
動されてまず、圧力ゲージ1からゲージ圧を読み込み
(ステップS11)、さらに電子線源2からその動作情
報としてフィラメントのオン/オフ信号を読み込み(ス
テップS12)、フィラメントがオフか否かを判定する
(ステップS13)。
Next, the pressure calculation / display control processing by the pressure calculation / display control unit 3 will be described. In this processing, for example, as shown in FIG. 2, the processing is started at a predetermined timing by a clock, first, gauge pressure is read from the pressure gauge 1 (step S11), and on / off of the filament as operation information from the electron beam source 2 is further performed. The signal is read (step S12), and it is determined whether or not the filament is off (step S13).

【0012】ステップS13の判定処理で、フィラメン
トがオフの場合には、スパッターイオンポンプSIPの
排気口における圧力PSIP-OFF として記憶部5に記憶し
て圧力表示部6に表示する(ステップS14)。しかる
後、フィラメントオフ時の加速管頂部の圧力PTOP-OFF
の計算(PTOP-OFF =PSIP-OFF ×k1)を行い(ステ
ップS15)、算出した加速管頂部の圧力PTOP-OFF
圧力表示部6に表示する(ステップS16)。
If the filament is off in the determination process of step S13, the pressure P SIP-OFF at the exhaust port of the sputter ion pump SIP is stored in the storage unit 5 and displayed on the pressure display unit 6 (step S14). . Then, the pressure P TOP-OFF at the top of the accelerating tube when the filament is off
Is calculated (P TOP-OFF = P SIP-OFF × k1) (Step S15), and the calculated pressure P TOP-OFF at the top of the accelerating tube is displayed on the pressure display unit 6 (Step S16).

【0013】また、ステップS13の判定処理で、フィ
ラメントがオフでない(オンの)場合には、スパッター
イオンポンプSIPの排気口における圧力PSIP-ONを圧
力表示部6に表示する(ステップS17)。しかる後、
記憶部5からフィラメントがオフのときの指示圧力P
SIP-OFF を読み出して圧力差ΔP(=PSIP-ON−PSIP-
OFF )を求め(ステップS18)、フィラメントオン時
の加速管頂部の圧力PTO P-ONの計算(=PSIP-OFF +k
2×ΔP)を行い(ステップS19)、算出した加速管
頂部の圧力PTOP-ONを圧力表示部6に表示する(ステッ
プS20)。
If the filament is not turned off (turned on) in the judgment processing in step S13, the pressure P SIP-ON at the exhaust port of the sputter ion pump SIP is displayed on the pressure display section 6 (step S17). After a while
Indication pressure P when filament is off from storage unit 5
Read out the SIP-OFF and read the pressure difference ΔP (= P SIP-ON −P SIP-
OFF ) (step S18), and calculation of the pressure P TO P-ON at the top of the accelerating tube when the filament is on (= P SIP-OFF + k)
2 × ΔP) (step S19), and the calculated pressure P TOP-ON at the top of the acceleration tube is displayed on the pressure display unit 6 (step S20).

【0014】次に、本発明による圧力演算を行う係数k
1、k2について説明する。図3は加速管真空系の等価
真空回路を示す図、図4は図3に示す等価真空回路を分
割した回路を示す図である。先に図5により説明した電
子顕微鏡の多段加速管の電極系には以下の特徴がある。
各段の開口のコンダクタンスは同一である。各段の
電極/碍子のガス放出量は殆ど同じである。各段にお
いて緻密質アルミナ碍子部のガス放出量は非常に小さ
く、ステンレス鋼製電極部のガス放出量に比べて無視で
きる。加速管はステンレス鋼製導管を介してスパッタ
ーイオンポンプで排気されるが、ステンレス鋼製導管部
の単位面積当たりのガス放出量はステンレス鋼製電極部
の単位面積当たりのガス放出量とほぼ同じである。加
速管の頂部に、電子線源(フィラメントエミッターな
ど)があり、フィラメント点火時に付加的なガス放出を
示す。電子線源は、Wフィラメントであったり、LaB
6 エミッターであったり、最近ではフィールドエミッシ
ョン(FE)エミッターである。
Next, a coefficient k for performing the pressure calculation according to the present invention.
1, k2 will be described. FIG. 3 is a diagram showing an equivalent vacuum circuit of an accelerating tube vacuum system, and FIG. 4 is a diagram showing a circuit obtained by dividing the equivalent vacuum circuit shown in FIG. The electrode system of the multi-stage accelerator tube of the electron microscope described above with reference to FIG. 5 has the following features.
The conductance of the openings in each stage is the same. The gas emission amount of the electrode / insulator in each stage is almost the same. In each stage, the amount of gas released from the dense alumina insulator is very small and can be ignored compared to the amount of gas released from the stainless steel electrode. The accelerating tube is evacuated by a sputter ion pump through a stainless steel conduit, and the amount of gas released per unit area of the stainless steel conduit is almost the same as the amount of gas released per unit area of the stainless steel electrode. is there. At the top of the accelerating tube is an electron beam source (such as a filament emitter) that exhibits additional outgassing during filament ignition. The electron beam source may be a W filament, LaB
It is a six- emitter, or more recently a field emission (FE) emitter.

【0015】このような系における各位置の圧力は、以
下の図3、図4に示す等価真空回路による解析からわか
るように、フィラメントが点火されていないときの1点
での測定圧力とフィラメントが点火されているときの1
点の測定圧力から求めることができる。
As can be seen from the analysis by the equivalent vacuum circuit shown in FIGS. 3 and 4 below, the pressure measured at one point when the filament is not ignited and the pressure at each position in the system are as follows. 1 when ignited
It can be determined from the measured pressure at the point.

【0016】真空回路による圧力分布解析を図3に示す
モデルを用いて説明すると、以下のようになる。図3に
示す5段の電極/碍子をもつ加速管の高真空系の等価真
空回路において、電極開孔の流れ抵抗0.02s/lは
開孔のコンダクタンス50l/sの逆数、0.005s
/lの流れ抵抗は排気管の流れコンダクタンス200l
/sの逆数、0.0067s/lの流れ抵抗は真空ポン
プの排気速度150l/sの逆数である。排気管部のガ
ス負荷は、電極1段のガス放出量QELECの15倍の放出
ガス量(15×QELEC)に設定されている。この等価真
空回路は、図4(A)、(B)の2つの回路が重畳され
たものと考えることができる。
The pressure distribution analysis by the vacuum circuit will be described with reference to the model shown in FIG. In the high-vacuum equivalent vacuum circuit of the accelerating tube having the five-stage electrode / insulator shown in FIG. 3, the flow resistance of the electrode opening is 0.02 s / l, the reciprocal of the opening conductance of 50 l / s, 0.005 s.
/ L flow resistance is 200 l of flow conductance in the exhaust pipe.
The reciprocal of / s, the flow resistance of 0.0067 s / l is the reciprocal of the pumping speed of 150 l / s of the vacuum pump. The gas load of the exhaust pipe is set to a gas emission amount (15 × Q ELEC ) that is 15 times the gas emission amount Q ELEC of one stage of the electrode. This equivalent vacuum circuit can be considered as a superposition of the two circuits of FIGS. 4A and 4B.

【0017】ステンレス鋼とアルミナ絶縁体からなる各
段の電極系のガス放出量QELECは、排気条件などにより
時々刻々異なったガス放出量を示すが、各段のQELEC
等しい、と仮定できる。緻密質アルミナ碍子のガス放出
量はステンレス鋼と比較して十分小さいので、各段の電
極系のガス放出量は、ステンレス鋼の表面で支配されて
いると考えることができる。排気管部は、ステンレス鋼
のパイプと銅ガスケットからなるが、ステンレス鋼表面
がほとんどである。排気管部のガス放出量は、電極1段
のステンレス鋼表面積の15倍あるので、パイプのガス
放出量を15×QELECと設定している。ここでは、Q
ELECそして頂部のガス放出量QTOP が未知のパラメータ
となる。
The gas emission amount Q ELEC of the electrode system of each stage composed of stainless steel and alumina insulator shows a different gas emission amount every moment depending on the exhaust conditions and the like, but it can be assumed that the Q ELEC of each stage is equal. . Since the gas emission amount of the dense alumina insulator is sufficiently smaller than that of stainless steel, it can be considered that the gas emission amount of each electrode system is controlled by the surface of the stainless steel. The exhaust pipe section is made of a stainless steel pipe and a copper gasket, but mostly has a stainless steel surface. Since the gas emission amount of the exhaust pipe is 15 times the surface area of stainless steel of one stage of the electrode, the gas emission amount of the pipe is set to 15 × Q ELEC . Here, Q
The ELEC and the top outgassing QTOP are unknown parameters.

【0018】そこで、はじめに、フィラメントエミッタ
ーがオフの場合について考察する。この場合には、図4
(A)に示す回路のようにQTOP は無視でき、真空回路
に含まれている未知パラメータはQELECのみとなるの
で、各位置の圧力P0 、P1 、……、P6 は全てQELEC
の値に定数を乗じた値になる。したがって、例えばP0
を基準にした圧力比(P1 /P0 )、(P2 /P1 )、
……、(P6 /P0 )は全て定数になる。図4(A)に
おけるこれらの比は、電子回路解析により以下のように
求められる。
Therefore, first, the case where the filament emitter is off will be considered. In this case, FIG.
Q TOP as the circuit shown in (A) can be ignored, because the unknown parameters contained in the vacuum circuit and only the Q ELEC, pressure P 0, P 1 of each position, ......, P 6 all Q ELEC
Multiplied by a constant. Thus, for example, P 0
Pressure ratio relative to the (P 1 / P 0), (P 2 / P 1),
.., (P 6 / P 0 ) are all constants. These ratios in FIG. 4A are obtained by electronic circuit analysis as follows.

【0019】〔数1〕 (P3 /P0 )=4.14/1.34≒3.1 (P6 /P0 )=5.34/1.34≒4.0 したがって、P0-OFF =PPUMP-OFFが測定されると、加
速管中央部(3段目)と加速管頂部(6段目)の圧力は
以下のように求められる。
[Equation 1] (P 3 / P 0 ) = 4.14 / 1.34 ≒ 3.1 (P 6 / P 0 ) = 5.34 / 1.34 ≒ 4.0 Therefore, P 0− When OFF = P PUMP-OFF is measured, the pressures at the central part (third stage) and at the top part (sixth stage) of the accelerating tube are obtained as follows.

【0020】〔数2〕 PCENTER-OFF=3.1×P0-OFFTOP-OFF =4.0×P0-OFF 次に、フィラメントエミッターがオン、あるいはエミッ
ターから電子を引き出している場合について考察する。
この場合、フィラメントを点火することによって頂部で
TOP が発生し、その結果、P0-ON=PPUMP-ON の圧力
がΔP0 上昇したとすると、図4(B)からわかるよう
に、頂部の圧力の上昇分ΔPTOP-ONは、直列抵抗による
分圧比から、
[Equation 2] P CENTER-OFF = 3.1 × P 0 -OFF P TOP-OFF = 4.0 × P 0-OFF Next, when the filament emitter is turned on or electrons are drawn from the emitter. Is considered.
In this case, assuming that Q TOP is generated at the top by igniting the filament, and as a result, the pressure of P 0-ON = P PUMP-ON increases by ΔP 0, as can be seen from FIG. Pressure rise ΔP TOP-ON is calculated from the partial pressure ratio by the series resistance.

【0021】〔数3〕 ΔPTOP-ON=17×ΔP0-ON と求められる。したがって、頂部の圧力は、[Equation 3] ΔP TOP-ON = 17 × ΔP 0-ON is obtained. Therefore, the pressure at the top is

【0022】〔数4〕 PTOP-ON=PTOP-OFF +ΔPTOP-ON=4.0×P0-OFF
+17×ΔP0-ON と求められる。なお、〔数3〕でΔPTOP-ONを求める場
合、フィラメントがオンになった後に時々刻々測定され
るP0-ONの測定値とフィラメントをオンにする直前のP
0-OFF の測定圧力との差をΔPTOP-ONとしている。すな
わち、
[Equation 4] P TOP-ON = P TOP-OFF + ΔP TOP-ON = 4.0 × P 0-OFF
+ 17 × ΔP 0-ON is obtained. When calculating ΔP TOP-ON by [Equation 3], the measured value of P 0 -ON, which is measured every moment after the filament is turned on, and the value of P 0 immediately before the filament is turned on.
The difference from the measured pressure of 0-OFF is ΔP TOP-ON . That is,

【0023】〔数5〕 ΔPTOP-ON=P0-ON−P0-OFF したがって、長時間フィラメントをオンにしていると、
時間経過のために〔数4〕による算出圧力の誤差が大き
くなる。そして、条件によって〔数5〕によるΔP0
負値となることもある。しかしながら現実には、電子顕
微鏡において観察時以外はフィラメントをオフにし、ま
た、フィールドエミッションエミッターの場合には、エ
ミッションの引出しを停止する。そのため、P0-OFF
取込み値は、十分な頻度で更新される。また、〔数5〕
によるΔP0 が負値になる場合も、実際に圧力が低下し
ているのであるから、〔数4〕に基づいてPTOP-ONを求
めることが合理的である。
[0023] [number 5] ΔP TOP-ON = P 0- ON -P 0-OFF Therefore, if you turn on a long filament,
Due to the passage of time, the error in the calculated pressure according to [Equation 4] increases. Then, depending on conditions, ΔP 0 according to [Equation 5] may be a negative value. However, in reality, the filament is turned off except for observation with an electron microscope, and in the case of a field emission emitter, extraction of the emission is stopped. Therefore, the captured value of P0 -OFF is updated with sufficient frequency. Also, [Equation 5]
Even when ΔP 0 becomes a negative value, it is reasonable to obtain P TOP-ON based on [Equation 4] because the pressure is actually decreasing.

【0024】なお、本発明は、上記実施の形態に限定さ
れるものではなく、種々の変形が可能である。例えば上
記実施の形態では、加速管を排気しているスパッターイ
オンポンプSIPのポンプ電流による指示圧力を用いた
が、排気管部にB−Aゲージなどの高真空ゲージを取り
付けて、その真空ゲージの指示圧力PG を使用し、これ
をPSIP の代わりに用いても同様の頂部圧力表示システ
ムが構築できることはいうまでもない。また、測定した
ゲージ圧を表示した後、頂部圧力を演算して表示した
が、ゲージ圧は測定しなくてもよいし、頂部圧力の演算
では、ルックアップテーブルのような演算テーブルを用
いて、測定された圧力に基づき演算テーブルから演算さ
れた頂部圧力を読み出すようにしてもよい。さらに、同
様にして加速管の各部の圧力を求め、加速管の圧力分布
を表示してもよい。
Note that the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, in the above-described embodiment, the pressure indicated by the pump current of the sputter ion pump SIP for exhausting the acceleration tube was used. However, a high vacuum gauge such as a BA gauge was attached to the exhaust pipe portion, and the vacuum gauge was indicated pressure using P G, which can of course be constructed similar top pressure display system be used in place of P SIP. Also, after displaying the measured gauge pressure, the top pressure was calculated and displayed, but the gauge pressure does not have to be measured, and in the calculation of the top pressure, using a calculation table such as a lookup table, The top pressure calculated from the calculation table based on the measured pressure may be read. Further, the pressure of each part of the acceleration tube may be obtained in the same manner, and the pressure distribution of the acceleration tube may be displayed.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
によれば、頂部に電子線源を有し多段に電極を直列配置
して下部から排気する加速管の真空圧力を演算し表示す
る電子顕微鏡加速管の真空圧力表示装置であって、排気
系で圧力を測定する圧力測定手段と、電子線源がオンか
オフかに応じた所定の係数を用いて圧力測定手段により
測定した圧力から加速管内の圧力を算出する圧力演算手
段と、圧力演算手段により算出された圧力を表示する表
示手段とを備え、排気系で圧力を測定して加速管内の圧
力を表示するので、直接測定できない加速管内の圧力を
排気系の測定圧力から正確に求めて表示することができ
る。
As is apparent from the above description, according to the present invention, the vacuum pressure of the accelerating tube which has an electron beam source on the top, is arranged in multiple stages in series, and is evacuated from below, is calculated and displayed. A vacuum pressure display device for an electron microscope accelerating tube, comprising: a pressure measuring means for measuring pressure in an exhaust system; and a pressure measured by the pressure measuring means using a predetermined coefficient depending on whether an electron beam source is on or off. A pressure calculating means for calculating the pressure in the accelerating pipe, and a display means for displaying the pressure calculated by the pressure calculating means. Since the pressure in the accelerating pipe is displayed by measuring the pressure in the exhaust system, the acceleration cannot be directly measured. The pressure in the pipe can be accurately determined and displayed from the measured pressure of the exhaust system.

【0026】また、圧力演算手段は、加速管内の圧力と
して頂部の圧力を算出し、圧力測定手段は、スパッタイ
オンポンプのポンプ電流より圧力や排気管に取り付けら
れた真空ゲージの指示圧力を測定するので、フィラメン
トオフ時の加速管頂部の圧力を表示することができ、加
速管に高電圧を印加するタイミングを誤ることがなくな
り、真空圧力が原因となる高電圧放電を防止することが
できる。さらに、フィラメントオン後の頂部の圧力を表
示することができ、その表示圧力から直接頂部の正確な
圧力を知りフィラメントの点火を中断させることができ
るので、エミッター寿命を伸ばすことができる。
The pressure calculation means calculates the pressure at the top as the pressure in the acceleration pipe, and the pressure measurement means measures the pressure from the pump current of the sputter ion pump and the indicated pressure of the vacuum gauge attached to the exhaust pipe. Therefore, the pressure at the top of the accelerating tube when the filament is off can be displayed, and the timing of applying a high voltage to the accelerating tube can be prevented from being erroneous, and the high voltage discharge caused by the vacuum pressure can be prevented. Further, the pressure at the top after the filament is turned on can be displayed, and the accurate pressure at the top can be directly known from the displayed pressure to interrupt the ignition of the filament, thereby extending the life of the emitter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る電子顕微鏡加速管の真空圧力表
示装置の実施の形態を示す図である。
FIG. 1 is a view showing an embodiment of a vacuum pressure display device for an electron microscope accelerator tube according to the present invention.

【図2】 圧力演算表示制御部による圧力の演算・表示
制御処理を説明するための図である。
FIG. 2 is a diagram for explaining a pressure calculation / display control process performed by a pressure calculation / display control unit.

【図3】 加速管真空系の等価真空回路を示す図であ
る。
FIG. 3 is a diagram showing an equivalent vacuum circuit of an accelerating tube vacuum system.

【図4】 図3に示す等価真空回路を分割した回路を示
す図である。
FIG. 4 is a diagram showing a circuit obtained by dividing the equivalent vacuum circuit shown in FIG.

【図5】 電子顕微鏡の多段加速管の構成概要を示す図
である。
FIG. 5 is a diagram showing a schematic configuration of a multi-stage accelerator tube of an electron microscope.

【符号の説明】[Explanation of symbols]

1…圧力ゲージ、2…電子線源、3…圧力演算表示制御
部、4…入力設定部、5…記憶部、6…圧力表示部
DESCRIPTION OF SYMBOLS 1 ... Pressure gauge, 2 ... Electron beam source, 3 ... Pressure calculation display control part, 4 ... Input setting part, 5 ... Storage part, 6 ... Pressure display part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F055 AA39 BB08 CC41 CC46 DD20 EE40 GG03 GG45 5C030 BB09 BB10 5C033 KK04 SS01 SS10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F055 AA39 BB08 CC41 CC46 DD20 EE40 GG03 GG45 5C030 BB09 BB10 5C033 KK04 SS01 SS10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 頂部に電子線源を有し多段に電極を直列
配置して下部から排気する加速管の真空圧力を演算し表
示する電子顕微鏡加速管の真空圧力表示装置であって、
前記排気系で圧力を測定する圧力測定手段と、前記電子
線源がオンかオフかに応じた所定の係数を用いて前記圧
力測定手段により測定した圧力から前記加速管内の圧力
を算出する圧力演算手段と、前記圧力演算手段により算
出された圧力を表示する表示手段とを備え、前記排気系
で圧力を測定して前記加速管内の圧力を表示するように
構成したことを特徴とする電子顕微鏡加速管の真空圧力
表示装置。
1. A vacuum pressure display device for an electron microscope accelerating tube which has an electron beam source at the top and has a plurality of electrodes arranged in series to calculate and display the vacuum pressure of an accelerating tube evacuated from below.
Pressure measurement means for measuring the pressure in the exhaust system, and pressure calculation for calculating the pressure in the acceleration tube from the pressure measured by the pressure measurement means using a predetermined coefficient depending on whether the electron beam source is on or off. Means for displaying the pressure calculated by the pressure calculating means, and measuring the pressure in the exhaust system to display the pressure in the accelerating tube. Tube vacuum pressure display.
【請求項2】 前記圧力演算手段は、前記加速管内の圧
力として前記頂部の圧力を算出することを特徴とする請
求項1記載の電子顕微鏡加速管の真空圧力表示装置。
2. The vacuum pressure display device for an electron microscope accelerating tube according to claim 1, wherein said pressure calculating means calculates the pressure at the top as the pressure in said accelerating tube.
【請求項3】 前記圧力測定手段は、スパッタイオンポ
ンプのポンプ電流より圧力を測定するものであることを
特徴とする請求項1記載の電子顕微鏡加速管の真空圧力
表示装置。
3. The vacuum pressure display for an electron microscope accelerating tube according to claim 1, wherein said pressure measuring means measures a pressure from a pump current of a sputter ion pump.
【請求項4】 前記圧力測定手段は、排気管に取り付け
られた真空ゲージの指示圧力を測定するものであること
を特徴とする請求項1記載の電子顕微鏡加速管の真空圧
力表示装置。
4. A vacuum pressure display for an electron microscope accelerating tube according to claim 1, wherein said pressure measuring means measures an indicated pressure of a vacuum gauge attached to an exhaust pipe.
JP2000032526A 2000-02-10 2000-02-10 Vacuum pressure display for electron microscope acceleration tube Expired - Fee Related JP3886691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032526A JP3886691B2 (en) 2000-02-10 2000-02-10 Vacuum pressure display for electron microscope acceleration tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000032526A JP3886691B2 (en) 2000-02-10 2000-02-10 Vacuum pressure display for electron microscope acceleration tube

Publications (2)

Publication Number Publication Date
JP2001221701A true JP2001221701A (en) 2001-08-17
JP3886691B2 JP3886691B2 (en) 2007-02-28

Family

ID=18557115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032526A Expired - Fee Related JP3886691B2 (en) 2000-02-10 2000-02-10 Vacuum pressure display for electron microscope acceleration tube

Country Status (1)

Country Link
JP (1) JP3886691B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426847B1 (en) * 2001-08-27 2004-04-13 재단법인 포항산업과학연구원 Ion Pumper Conterroller
KR100931534B1 (en) * 2002-12-23 2009-12-14 재단법인 포항산업과학연구원 High Vacuum Measurement Circuit in Ion Pump
JP2016177926A (en) * 2015-03-19 2016-10-06 日本電子株式会社 Electron microscope and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426847B1 (en) * 2001-08-27 2004-04-13 재단법인 포항산업과학연구원 Ion Pumper Conterroller
KR100931534B1 (en) * 2002-12-23 2009-12-14 재단법인 포항산업과학연구원 High Vacuum Measurement Circuit in Ion Pump
JP2016177926A (en) * 2015-03-19 2016-10-06 日本電子株式会社 Electron microscope and control method

Also Published As

Publication number Publication date
JP3886691B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
CN102460636B (en) Mass spectrometer
US8766542B2 (en) Field-emission electron gun and method for controlling same
US7332714B2 (en) Quadrupole mass spectrometer and vacuum device using the same
KR0170400B1 (en) Plasma processing apparatus using capacitance manometer and pressure control method thereof
JPH1131473A (en) Method of correcting partial pressure measurement in mass spectrometer
US7034543B2 (en) Method of predicting a lifetime of filament in ion source and ion source device
US5866901A (en) Apparatus for and method of ion detection using electron multiplier over a range of high pressures
JP2001221701A (en) Device for indicating vacuum pressure of electron microscope accelerating tube
Peacock et al. Some characteristics of an inverted magnetron cold cathode ionization gauge with dual feedthroughs
Hong et al. Investigation of gas species in a stainless steel ultrahigh vacuum chamber with hot cathode ionization gauges
US4967157A (en) Method and circuit for extending the range of a cold cathode discharge vacuum gauge
Hackam Total secondary ionization coefficients and breakdown potentials of monatomic gases between mild steel coaxial cylinders
Redhead The ultimate vacuum
US3581195A (en) Detection of vacuum leaks by gas ionization method and apparatus providing decreased vacuum recovery time
EP0782174A1 (en) Sputter ion pump
JP2001525060A (en) Penning vacuum gauge
US2699505A (en) Mass spectrometry
Lafferty et al. The interplay of electronics and vacuum technology
JP2010086926A (en) Evacuation method and vacuum device
JP2697932B2 (en) Vacuum measurement device
JPH07272671A (en) Method and device for gas analysis
Peacock Measurement of x‐ray currents in Bayard–Alpert type gauges
Batho Neutralization and Ionization of High-Velocity Ions of Neon, Argon and Krypton by Collison with Similar Atoms
CN109706426B (en) Ion pump inert gas stability using small grain size cathode materials
Williams et al. Micromachined hot-filament ionization pressure sensor and magnetometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees